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Abstract The disordered network of blood vessels that arises from tumour
angiogenesis results in variations in blood flow which generate fluctuations in
the delivery of oxygen into the tumour tissue. This brings about regions of
chronic hypoxia (i.e. sustained low oxygen levels) and cycling hypoxia (i.e. al-
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2 Aleksandra ArdaSeva et al.

ternating phases of low and relatively higher oxygen levels) within vascularised
tumours, and makes it necessary for cancer cells to adapt to fluctuating en-
vironmental conditions. We use a phenotype-structured model to dissect the
evolutionary dynamics of cell populations exposed to fluctuating oxygen lev-
els. In this model, the phenotypic state of every cell is described by a continu-
ous variable that provides a simple representation of its metabolic phenotype,
ranging from fully oxidative to fully glycolytic, and cells are grouped into two
competing populations that undergo heritable, spontaneous phenotypic vari-
ations at different rates. Model simulations indicate that, depending on the
rate at which oxygen is consumed by the cells, nonlinear dynamic interactions
between cells and oxygen can stimulate chronic hypoxia and cycling hypoxia.
Moreover, the model supports the idea that under chronic-hypoxic conditions
lower rates of phenotypic variation lead to a competitive advantage, whereas
higher rates of phenotypic variation can confer a competitive advantage under
cycling-hypoxic conditions. In the latter case, the numerical results obtained
show that bet-hedging evolutionary strategies, whereby cells switch between
oxidative and glycolytic phenotypes, can spontaneously emerge. We explain
how these results can shed light on the evolutionary process that may under-
pin the emergence of phenotypic heterogeneity in vascularised tumours.

Keywords Cell populations - Fluctuating oxygen levels - Bet-hedging -
Adaptive dynamics - Phenotype-structured models

1 Introduction

The vascular structure in tumours is highly disordered, and, as a consequence,
there can be variations in blood flow leading to cycles of perfusion, cessation
of flow, and then re-perfusion, which brings about fluctuations in the inflow
of oxygen into the tumour tissue (Kimura et al., 1996). Experimental and
clinical studies have shown that these fluctuations can occur on a range of
timescales, ranging from minutes to days (Dewhirst, 2009), and may lead to
the emergence of regions of chronic hypoxia (i.e. sustained low oxygen levels)
and cycling hypoxia (i.e. transient periods of low and relatively higher oxygen
levels) within vascularised tumours (Matsumoto et al., 2010; Michiels et al.,
2016; Ron et al., 2019).

Previous empirical and theoretical work has suggested that cycling hy-
poxia makes it necessary for cancer cells to adapt to fluctuating environmental
conditions (Gillies et al., 2018; Amend et al., 2018) and impacts on tumour
growth by increasing clonal diversity, promoting metastasis and supporting
more plastic phenotypic variants (Cairns et al., 2001; Cairns and Hill, 2004;
Louie et al., 2010; Verduzco et al., 2015; Chen et al., 2018; Saxena and Jolly,
2019). In particular, it has been hypothesised that — by analogy with bac-
terial populations facing unpredictable environmental changes (Kussell and
Leibler, 2005; Smits et al., 2006; Veening et al., 2008; Acar et al., 2008; Beau-
mont et al., 2009; Nichol et al., 2016) — cancer cell populations could utilise
risk spreading through stochastic phenotype switching, which is also known
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as bet-hedging (Philippi and Seger, 1989), as an adaptive strategy to survive
in the harsh, constantly changing environmental conditions associated with
cycling hypoxia (Gravenmier et al., 2018; Gillies et al., 2018).

In this paper, we use a phenotype-structured model of evolutionary dy-
namics in time-varying but spatially homogeneous environments to elucidate
the mechanisms that underpin the adaptation of cell populations to fluctuat-
ing oxygen inflow. Building upon the modelling framework that we presented
in Ardageva et al. (2019), the model is defined in terms of a system of non-local
parabolic partial differential equations (PDEs) for the evolution of the pheno-
type distributions of two competing cell populations that undergo heritable,
spontaneous phenotypic variations at different rates. Similar PDEs modelling
the evolutionary dynamics of populations structured by continuous traits in
periodically-fluctuating environments have recently received increasing atten-
tion from the mathematical community (Lorenzi et al., 2015; Mirrahimi et al.,
2015; Iglesias and Mirrahimi, 2018; Carrere and Nadin, 2019).

In the model considered here, the phenotypic state of every cell is mod-
elled by a continuous variable that provides a simple representation of its
metabolic phenotype, ranging from oxidative to glycolytic. The phenotypic
fitness landscape of the two cell populations evolves in time due to variations
in the concentration of oxygen. The oxygen concentration is governed by an
ordinary differential equation (ODE) with a time-dependent source term that
models the effect of variations in the oxygen supply. The fact that oxygen is
consumed by the cells is taken into account by a negative term coupling the
ODE with the system of PDEs.

The paper is organised as follows. In Section 2, we introduce the equations
of the model and the underlying modelling assumptions. In Section 3, we
present the main numerical results of our study complemented by analytical
results obtained for a model corresponding to a simplified scenario, and discuss
their biological relevance. In Section 4, we explain how these mathematical
results can shed light on the evolutionary process that underpins the emergence
of phenotypic heterogeneity in vascularised tumours. Section 5 concludes the
paper and provides a brief overview of possible research perspectives.

2 Description of the model

We study the evolutionary dynamics of two competing cell populations in a
well-mixed system. Cells proliferate (i.e. divide and die) and undergo sponta-
neous, heritable phenotypic variations. We assume the two populations differ
only in their rate of phenotypic variation. The population undergoing pheno-
typic variations at a higher rate is labelled by the letter H, while the other
population is labelled by the letter L.

As summarised by the schematic in Fig. 1A, we represent the phenotypic
state of every cell by a continuous variable « € [0, 1]. In particular, we assume
that: cells in the phenotypic state x = 0 have a fully oxidative metabolism
and produce energy through aerobic respiration only; cells in the phenotypic
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state z = 1 express a fully glycolytic metabolism and produce energy through
anaerobic glycolysis only; cells in other phenotypic states = € (0,1) produce
energy via aerobic respiration and anaerobic glycolysis, and higher values of x
correlate with a less oxidative and more glycolytic metabolism.

The oxygen concentration in the system at time ¢ € [0, 00) is denoted by
S(t). Based on the observation that glucose levels in biological tissues are
usually high enough not to represent a limiting factor for the proliferation of
cells (Gravenmier et al., 2018), for the sake of simplicity, we do not model the
dynamics of the glucose concentration.

We describe the phenotype distributions of the two cell populations at
time ¢ by means of the population density functions ng(x,t) and np(z,t). We
define the size of populations H and L, and the total number of cells inside
the system at time ¢, respectively, as

pr(®) 1= [ mae ) de, pult) = [ ni(en) da (1)
and
p(t) == pir(t) + pL(t). 2)

Moreover, we define the mean phenotype and the phenotypic variance of pop-
ulation ¢ € {H, L} at time ¢, respectively, as

1
pi(t)

1 i(x z, o2(t) = L 1m2n-x x— p?
[ antenan o= o [ nan do-iio. ©)

pi(t) =

2.1 Cell dynamics

Building upon the modelling framework that we presented in ArdaSeva et al.
(2019), we describe the evolution of the two cell populations through the fol-
lowing system of conservation equations for the population density functions

2
83*? - 5H% + R(2,8(t), p(t)) na,
(z,t) € (0,1) x (0,00)  (4)
%L - 5L8552L + R(x,S(t), p(t)) ne,

subject to no-flux boundary conditions, i.e.

(0, ) Oni(1,1)

Ox
In the non-local parabolic PDEs (4), the diffusion terms model the effect of

heritable, spontaneous phenotypic variations, which occur at rates Sy and Gy,
with

=0 and =0 forallte (0,00), i€{H, L}

Bu > Br > 0. (5)
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The function R(x,S(t), p(t)) represents the fitness of cells in the phenotypic
state z at time ¢ under the environmental conditions given by the oxygen
concentration S(t) and the total number of cells p(t). This function can be
seen as the phenotypic fitness landscape of the two cell populations at time ¢.
We use the following definition

R(m,S,p) =p(z,S) — dp, (6)

where p(z, S) is the division rate of cells in the phenotypic state  under the
oxygen concentration S, while the term dp, with d > 0, models the rate of
cell death due to intrapopulation and interpopulation competition. In order
to model the fact that fully oxidative phenotypic variants (i.e. cells in the
phenotypic state = 0) have the highest fitness if oxygen is abundant (i.e.
when S — 00), whereas fully glycolytic phenotypic variants (i.e. cells in the
phenotypic state x = 1) are the fittest in hypoxic conditions (i.e. when S — 0),
we define the cell division rate as

p(m,S) ::’ym (1—z2) +C(11—ES> [17(1—1)2}. (7)

Here, the parameters v and ¢ are the maximum cell division rates of fully
oxidative and fully glycolytic phenotypic variants, respectively. As we noted
in ArdaSeva et al. (2019), definition (7) leads to a fitness function that is
close to the approximate fitness landscapes which can be inferred from exper-
imental data through regression techniques — see, for instance, equation (1)
in Otwinowski and Plotkin (2014).

To incorporate into the model the fitness cost associated with a less efficient
glycolytic metabolism (Basanta et al., 2008), we assume that

¥>¢>0. (8)

A sample of plots of the function p(:v, S) for different values of the oxygen
concentration S and of the quotient v/ is displayed in Fig. 1B. If v/{ =1
then there is no fitness cost associated with glycolytic metabolism, whereas
increasing values of v/¢ > 1 correspond to larger fitness costs of glycolytic

metabolism.
We remark that definition (7) can be rewritten as

p(z,8) = 79(S) — h(S)(z — @(9))?, (9)

where
1 1 1
9(5) := S+ , e(8) = (10)
1+58 1+28
2 (1+129) ¢

and
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Fig. 1 A. Schematic diagram illustrating the relationship between the variable = € [0, 1],
the cell phenotype and the dependence on oxygen and glucose of energy production for
different phenotypic variants. B. Plot of the cell division rate p(z,S) defined according to
Eqn. (7) in the case of a relatively high oxygen level (i.e. S = 10) and a relatively low
oxygen level (i.e. S = 0.1), for increasing values of the fitness cost associated with glycolytic
metabolism (i.e. increasing values of the quotient /¢ > 1).

Since

&p(z, S)
max p(x,S) = vg(S), arg maxp(z,S)=¢(S) and ————= = —2h(S),
max p(, 5) =79(S) rg ma p(z,S) = @(S) D02 (S)

~vg(S) is the maximum fitness, ¢(5) is the fittest phenotypic state and h(S)
is a nonlinear selection gradient. Notice that, consistent with our modelling
assumptions, ¢ : [0,00) — [0,1] and ¢’ < 0, so that

élg}) p(S)=1 and Slgr;o o(S) =0.

2.2 Oxygen dynamics
We describe the oxygen dynamics via the following conservation equation for
S(t):

ds

1
G 1035 [ 4w S) )+ m0)dn te0.0)  (12)

which is coupled with the non-local PDEs (4). In the ODE (12), the parameter
A > 0 represents the rate of natural decay of oxygen and the non-negative
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function I(t) models the rate at which oxygen is supplied to the system. The
last term on the right-hand side of (12) models the rate of oxygen consumption
by the cells. Here, the non-negative function ¢(z,.S) is the consumption rate
of cells in phenotypic state x, and we take it to be

Q(xvs) ::9,77(1_132)7 (13)

based on the following argument. Cells in the phenotypic state © = 1 (i.e.
fully glycolytic phenotype) produce energy through anaerobic glycolysis only
and, therefore, they do not consume any oxygen (i.e. ¢(1,S) = 0 for any 5).
Moreover, cells in the phenotypic state = 0 (i.e. fully oxidative phenotype)
consume oxygen at a rate proportional to their division rate, with constant of
proportionality 8 > 0 (i.e. ¢(0,5) = 6p(0,S) = 0~ His) Finally, the rate at
which oxygen is consumed by cells in phenotypic states 2 € (0,1) is a fraction of
the consumption rate of cells in the phenotypic state x = 0, and higher values
of x correlate with lower oxygen consumption (i.e. q(z,S) = ¢(0,S)(1 — z?)
for x € (0,1)).

3 Main results

In this section, we present the results of numerical simulations of the mathe-
matical model defined by the non-local PDEs (4) coupled with the ODE (12).
We combine these numerical results with analytical results obtained for a sim-
plified version of the model presented in Appendix A, and we discuss their
biological relevance. In more detail, Section 3.1 provides a description of the
numerical methods employed and the set-up of numerical simulations. In Sec-
tion 3.2, we consider the case where the inflow of oxygen is constant, i.e. we
assume

I(t)=1Is >0 forallt>0, (14)

while in Section 3.3 we study the case where the oxygen inflow undergoes
periodic oscillations of period T' > 0, i.e. we assume

I(t+T)=I(t) forallt>0. (15)

In particular, to construct numerical solutions we consider the case where

10 = m (0,450 (22)). s

with A > 0 modelling the amplitude of the periodic fluctuations in oxygen
inflow. Definition (16) corresponds to a biological scenario in which oxygen
inflow is periodically interrupted due to, for instance, the periodic blockage of
a blood vessel.
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3.1 Numerical methods and set-up of numerical simulations

We use a uniform discretisation consisting of 200 points on the interval [0, 1] as
the computational domain of the independent variable z. We assume ¢ € [0, ],
with ¢y = 40 being the final time of simulations, and we discretise the time
interval [0, t;] with the uniform step A¢ = 0.0001. The method for construct-
ing numerical solutions to the system of non-local parabolic PDEs (4) subject
to no-flux boundary conditions is based on a three-point finite difference ex-
plicit scheme for the diffusion terms and an explicit finite difference scheme
for the reaction terms (LeVeque, 2007). Moreover, numerical solutions to the
ODE (12) are constructed using the explicit Euler method.

The parameter values used in the numerical simulations are listed in Ta-
ble 1. We define the rates of phenotypic variation Sy and S so that they are
consistent with typical times required by cells to acquire a glycolytic phenotype
through epigenetic changes (Baumann et al., 2007). Moreover, we choose the
value of the maximum cell division rate of fully oxidative phenotypic variants
v such that v > Bp, in order to capture the fact that phenotypic variations
occur on a slower time scale than cell division. Furthermore, to explore the
effect of the cost of glycolytic metabolism on the evolutionary dynamics of the
cells and on the dynamics of oxygen, we consider different values of ¢ such
that v/¢ € [1,4]. Given the values of the parameters v, S and S, we fix the
value of the death rate due to competition, d, to be such that the long-term
limit of the size of population in the presence of a constant and relatively
high supply of oxygen is approximatively 104, which is consistent with biolog-
ical data on in wvitro cell populations (Voorde et al., 2019). Since the rate at
which cells consume oxygen varies between cell lines and depends on a vari-
ety of environmental factors, including the pH level (Casciari et al., 1992), we
consider a range of values for the rate of consumption of oxygen, 6, that is,
6 € [107°,107?], to investigate also the influence this parameter has on the
cell and oxygen dynamics. Finally, we choose the value of the rate of natural
decay of oxygen, A, to be consistent with values used by other authors, such
as Macklin et al. (2009).

Description Value range
B | Rate of phenotypic variation of cells in population H 2.5x102
BL Rate of phenotypic variation of cells in population L 10—2
o Maximum cell division rate of fully oxidative phenotypic variants 100
¢ Maximum cell division rate of fully glycolytic phenotypic variants | [25,100]
d Death rate due to competition 10—2
0 Consumption rate of oxygen (1073, 1073
A Rate of natural decay of oxygen 10—

Table 1 Parameter values used in numerical simulations.

We let the initial cell population density functions n;(x,0) with ¢ € {H, L}
be Gaussian-like functions such that

pi(0) ~ 800, u;(0) =0, o7(0)=0.05
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and define the initial oxygen concentration as S(0) = I(0).

3.2 Constant oxygen inflow

The numerical solutions presented in Fig. 2 show that when the oxygen in-
flow is constant [i.e. when the function I(¢) is defined according to (14)], cell
population L outcompetes cell population H, which eventually goes extinct.
Moreover, the population density function ny(x,t) is unimodal, attaining its
maximum at the mean phenotype. Further, since the oxygen concentration
S(t) converges to an equilibrium value, the population size py,(t) also converges
to an equilibrium value. The equilibrium value of pr(t) is approximately equal
to the asymptotic value p3° given by definition (A.6) in Appendix A, which is
obtained by studying the long-time behaviour of the solutions to a simplified
version of the model (vid. Theorem 1 in Appendix A). This is consistent with
the analytical results that we presented in Ardaseva et al. (2019).

A S(t) n(t,x)
o
8
o
0
0
B , S(t)
N
Q
8
o
i
C ) S(t)
™
3
8
0 40 0 40 40

t t

Fig. 2 A. Dynamics of the oxygen concentration S(t) (first column), the population sizes
pr(t) (second column, red line) and pr,(¢) (second column, blue line), and the population
density function ny (¢, z) (third column) obtained by solving numerically Eqns. (4) and (12),
for the oxygen inflow I(t) defined via Eqn. (14) with Is = 10. The dotted lines in the second
column highlight the asymptotic value pg° given by definition (A.6) in Appendix A, while
the yellow lines in the third column highlight the mean phenotype pr,(t). The consumption
rate of oxygen is # = 5 x 1075, the maximum cell division rate of fully glycolytic phenotypic
variants is ( = 25, and the values of the other parameters are defined as in Table 1. B, C.
Same as row A but for § = 1074 (row B) and § = 5 x 10~% (row C).

The results displayed in Fig. 2 also show that larger values of the oxygen
consumption rate 6 lead to smaller equilibrium values of the oxygen concentra-
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tion .S and, therefore, smaller final values of p; and larger final values of .
Moreover, the numerical results summarised by the plots in Fig. 3 demonstrate
that larger values of the fitness cost associated with glycolytic metabolism,
~v/¢, correspond to smaller final values of p;, and uy. The plots in Fig. 3 also
show that lower values of Ig, which lead to smaller equilibrium values of S
for a given value of 6 (data not shown), correlate with a weaker impact of the
value of the quotient «/¢ on the final values of py, and py. All these findings
are consistent with the way in which the equilibrium values of the population
size, p7°, and the mean phenotype, 17°, obtained through the analysis of the
simplified model considered in Appendix A depend on the equilibrium value
of the oxygen concentration, S°°, and on the quotient v/¢ (vid. Theorem 1 in
Appendix A).

A B C
Is=0.1 Is=1 Is =10

[}

N
2‘ 100001 . ° ° . . - . ° " ° a
_g N A A A A : R N A A ; : N N
= 50001 e ¢ ¢ ¢ ¢ ¢ . [y ¢ ¢ [} 3 ¢
— | | n

8—4 ] n n | | | | [ ] ] | | n ] n
]
A~ 107°5x107°10745 x 1074107 107°5x 10721074 5x 1074 10™* 1072 5x 10710745 x 107 10~°

(5] 1 casel | case2 | case3

& v 8 2 2 1 s ¢ 1 0 r !

° ] ° ] ° n

= A [ ° A ]

T . : .

=

Q, n ¢ n

= [ ]

g L]

= 107°5x107°107* 5 x 1074 107% 10795 x 1079107 5x 107410~ 1075 x107°107*5 x 1074 10~°

0 0 0
increasing cost y/{
® /(=10 Ay/C=14 4 y/¢C=20 m /¢ =40

Fig. 3 A. Values of the population size pr (t) and the mean phenotype ur (t) at ¢ = 40 (i.e.
at the end of numerical simulations) obtained by solving numerically Eqns. (4) and (12), for
the oxygen inflow I(t) defined via Eqn. (14) with Ig = 0.1 and for different values of the
consumption rate of oxygen, 6, and different values of the cost associated with glycolytic
metabolism, v/¢, obtained by changing the value of the maximum cell division rate of fully
glycolytic phenotypic variants, ¢, and keeping the value the maximum cell division rate
of fully oxidative phenotypic variants, v, constant (i.e. v = 100). The values of the other
parameters are defined as in Table 1. B, C. Same as column A but for Ig = 1 (column B) and
Is =10 (column C). The blue boxes in the last panel highlight the values of 8 corresponding
to Case 1,2,3 in Fig. 2.

Taken together, these results indicate that lower rates of heritable, sponte-
neous phenotypic variation constitute a source of competitive advantage under
constant oxygen inflow. Furthermore, the negative feedback that regulates the
growth of cell populations through oxygen consumption shapes, in a nonlin-
ear way, the evolutionary dynamics of the cells. In particular, larger values
of the rate of oxygen consumption, 6, lead to the emergence of lower oxy-
genated environments whereby phenotypic variants that rely to a larger extent
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on anaerobic glycolysis for energy production are ultimately selected. Finally,
all other things being equal, larger values of the fitness cost associated with
glycolytic metabolism, /¢, are to be expected to promote the selection of
less glycolytic phenotypic variants and to reduce the equilibrium size of cell
populations exposed to constant oxygen inflow.

3.3 Periodic oxygen inflow

The numerical solutions presented in Fig. 4 show how the system evolves when
the oxygen inflow undergoes periodic oscillations [e.g. when the function I(t)
is defined according to (16)]: if the oxygen concentration is relatively stable
(low-amplitude oscillations), cell population L outcompetes cell population H,
which eventually goes extinct; if the oxygen concentration undergoes drastic,
high-amplitude variations, then cell population L is outcompeted by cell pop-
ulation H and ultimately goes extinct. Moreover, the population density func-
tion of the surviving cell population, n;(z,t), is unimodal with maximum at
the mean phenotype. Since the oxygen concentration S(t) becomes T-periodic,
after an initial transient, the population size p;(t) of the surviving population
also converges to a T-periodic function. Such a T-periodic function is approxi-
mately equal to the solution p;(t) of the problem (A.11) in Appendix A, which
is obtained by studying the long-time behaviour of the solutions to a simplified
version of the model (vid. Theorem 2 in Appendix A). This is in line with the
analytical results presented in Ardaseva et al. (2019).

The results displayed in Fig. 4 also show that the consumption rate of
oxygen, 6, has a crucial impact on the dynamics of the oxygen concentration
S(t) and, therefore, on the outcome of the competition between the two cell
populations. In fact, ceteris paribus, for sufficiently small (¢f. Fig. 4A) or suf-
ficiently large (c¢f. Figs. 4D and 4E) values of 6 the function S(t) is bounded
well above zero or undergoes small oscillations while remaining close to zero,
respectively. This brings about relatively stable oxygen concentrations in the
presence of which cell population L outcompetes cell population H. On the
other hand, for intermediate values of 0 (¢f. Figs. 4B and 4C) the function S(t)
oscillates between small and relatively larger values. This results in more dras-
tic variations of the oxygen concentration, which lead cell population L being
outcompeted by cell population H. As we would expect, when S(t) remains
away from zero or undergoes small oscillations while remaining close to zero,
the mean phenotype of the surviving population py (¢) undergoes small oscil-
lations and its value remains close, respectively, either to the fully oxidative
phenotypic state © = 0 (¢f. Fig. 4A) or to the fully glycolytic phenotypic state
x =1 (cf Figs. 4D and 4E). By contrast, when S(t) oscillates between small
and relatively larger values, the mean phenotype of the surviving population
wp(t) undergoes rapid and large amplitude transitions between phenotypic
states closer to = 0 and phenotypic states closer to z = 1 (¢f. Figs. 4B and
4C).
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Fig. 4 A. Dynamics of the oxygen concentration S(t) (first column), the population sizes
pr(t) (second column, red line) and py,(¢t) (second column, blue line), and the population
density function of the surviving population n;(¢,z) (third column) obtained by solving
numerically Eqns. (4) and (12), for the oxygen inflow I(¢) defined via Eqn. (16) with A = 60
and T = 10. The dotted (or dashed) lines in the second column highlight the T-periodic
solution pr(t) (or pg(t)) of the problem (A.11) in Appendix A, while the yellow lines
in the third column highlight the mean phenotype of the surviving population p;(t). The
consumption rate of oxygen is @ = 2x10~°, the maximum cell division rate of fully glycolytic
phenotypic variants is { = 7, and the values of the other parameters are defined as in Table 1.
B - E. Same as row A but for § = 5 x 107° (row B), § = 10=% (row C), § = 5 x 10~* (row
D) and § = 1073 (row E).

The numerical results in Fig. 4 refer to the case where there is no cost
associated with glycolytic metabolism (i.e. 7v/¢ = 1) and both the amplitude
A and the period T of the fluctuations in oxygen inflow in definition (16) are
relatively large. However, the numerical results summarised by the plots in
Fig. 5 demonstrate that similar conclusions about how the oxygen consumption
rate 0 affects the outcome of the competition between the two cell populations
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[y

3

hold when different values of the parameters v/(, A and T are considered,
provided that the value of A is sufficiently large.

Increasing the consumption rate 6

0.1
0.1 100

0.1

>
5

0.1 0.1 0.1

0.1 100 0.1 100

Increasing the cost 7/¢

0.1

0.1 0.1

4 100 100 4
I Population L survives I Population H survives
[ ] Transient coexistence, py < pr, [ Transient coexistence, pg > pr.

[ ] Transient coexistence, py ~ pr,

Fig. 5 A. Summary of the results of numerical solutions of Eqns. (4) and (12), with the
oxygen inflow I(t) defined via Eqn. (16) for different values of A and T'. Different columns
correspond to different values of the consumption rate of oxygen 6, that is, § = 2 x 10~°
(first column), § = 5x 10™° (second column), § = 10~% (third column), = 5x 10~* (fourth
column) and § = 10~3 (fifth column). The maximum cell division rate of fully glycolytic
phenotypic variants is ¢ = v and the values of the other parameters are specified in Table 1.
The blue points in the A-T plane correspond to parameter combinations for which gy and
pr (i.e. the mean values of pg(t) and pr(t) computed over the last period of I(t)) are,
respectively, smaller than 100 and larger than 1000 (i.e. pg(t) will eventually converge
to zero), while the red points correspond to parameter combinations for which the same
quantities are, respectively, larger than 1000 and smaller than 100 (i.e. pr, () will eventually
converge to zero). Moreover, the lighter regions highlight the parameter combinations for
which both pg and pr, are considerably larger than 100 and gy < pr (light blue regions),
pr > pr (pink regions) or py &~ pr, (withe regions) — i.e. for these parameter combinations,
transient coexistence occurs for longer times although only one population will ultimately
survive. The black stars highlight the parameter values corresponding to the numerical
results displayed in Fig. 4. B - D. Same as row A but for ¢ = 0.75~ (row B), ( = 0.5 (row
C) and ¢ = 0.25~v (row D).
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The results summarised in Fig. 5 also show that, for relatively large val-
ues of A, when 6 is sufficiently high (¢f. second to fourth columns in Fig. 5),
larger values of /¢ correspond to a wider range of values of the parameters
A and T under which transient coexistence between the two cell populations
is observed. Moreover, these results show that for sufficiently large values of
0, larger values of v/ increase the likelihood that cell population H will ulti-
mately outcompete cell population L. As illustrated by the sample dynamics
presented in Fig. 6, this gives rise to smaller cell numbers, more pronounced
variations in the mean phenotype of the surviving cell population and higher
levels of phenotypic heterogeneity. On the other hand, the plots in the first
column of Fig. 5 show that for relatively small values of A and 6 the outcome
of the competition between the two cell populations is only weakly affected by
the quotient /(.

A
S() pilt) n(t,7) \
0.6 wooo.:_,. ¥ 1 (v v 2 < 10
* 0.3 5000 =
— L
— H
0.0 0 0 0
. - 0 . 20 0 . 20 20
B
t
0.6 5(t) 10000 pilt 7% 10°
0.3 5000 & N
4
\o—
0.0 0 0
0.1 0 20 0 20 20

A 100 t

Fig. 6 A. The plots in the first column are the same as the plots in the fourth column of
Fig. 5A (row A) and Fig. 5D (row B), and the yellow stars highlight the parameter values
corresponding to the numerical results displayed here. Dynamics of the oxygen concentration
S(t) (second column), the population sizes pg (t) (third column, red line) and pr (¢) (third
column, blue line), and the population density function of the surviving population n;(t, z)
(fourth column) obtained by solving numerically Eqns. (4) and (12), with oxygen inflow
I(t) defined via Eqn. (16) with A = 50 and T = 5. The dotted (or dashed) lines in the
third column highlight the T-periodic solution pr,(t) (or pg(t)) of the problem (A.11) in
Appendix A, while the yellow lines in the fourth column highlight the mean phenotype u;(t).
The consumption rate of oxygen is # = 5 x 10~%, the maximum cell division rate of fully
glycolytic phenotypic variants is ¢ = «, and the values of the other parameters are defined
as in Table 1. B Same as row A but for ¢ = 0.25+.

Taken together, these results indicate that, when oxygen inflow undergoes
periodic oscillations, chronic hypoxia and cycling hypoxia can spontaneously
emerge depending on the rate at which oxygen is consumed by the cells. In
this biological scenario, the evolutionary fate of cell populations that undergo
heritable, spontaneous phenotypic variations at different rates depends cru-
cially upon the rate at which cells consume oxygen, 6, and the fitness costs
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associated with glycolytic metabolism, /. Overall, cell populations under-
going phenotypic variations at lower rates are to be expected to be selected
when the oxygen concentration remains, on average, relatively high or under
chronic-hypoxic conditions. By contrast, cell populations with higher rates of
phenotypic variation will outcompete other cell populations under cycling-
hypoxic conditions. In the latter case, the surviving cells adopt a bet-hedging
strategy switching between oxidative and glycolytic metabolic phenotypes.
Moreover, under cycling hypoxia, larger values of 6 and /¢ can favour the
transient coexistence of competing populations of cells that undergo heritable,
spontaneous phenotypic variations at different rates.

4 Application of the results to the emergence of phenotypic
heterogeneity in vascularised tumours

In the presence of oscillating blood flow in tumour tissue, the oxygen concen-
tration can be expected to remain uniformly high in regions close to a blood
vessel, whereas the diffusion limit of oxygen can be expected to bring about
chronic hypoxia in regions distal to a blood vessel, where the oxygen con-
centration will be uniformly low. On the other hand, the dynamic, nonlinear
interplay between oxygen consumption by the cells and fluctuations in oxygen
supply resulting from oscillating blood flow makes cycling hypoxia more likely
to emerge in regions at an intermediate distance from a blood vessel (c¢f. the
schemes in the upper part of Fig. 7).

The results of our theoretical study indicate that such an expected spatio-
temporal variability in oxygen concentration across tumour tissue can create
distinct ecological niches in which different phenotypic variants undergoing
heritable, spontaneous phenotypic variations at different rates can be selected
and that this can also foster the emergence of phenotypic intratumour het-
erogeneity (cf. the schemes in the lower part of Fig. 7). In particular, cell
populations characterised by lower rates of phenotypic variation and a more
oxidative metabolism can be expected to colonise the oxygenated regions near
to a blood vessel; cell populations characterised by higher rates of phenotypic
variation that switch between oxidative and glycolytic metabolism are likely to
populate regions of cycling-hypoxia at an intermediate distance from a blood
vessel; cell populations characterised by lower rates of phenotypic variation
and a more glycolytic metabolism can be expected to colonise chronic-hypoxic
regions far from a blood vessel.

5 Conclusions and research perspectives

In this work, we have adopted a mathematical modelling approach to dis-
sect the evolutionary underpinnings of the adaptation of cell populations to
constant and periodically-oscillating oxygen inflow.

For both cases, there is excellent agreement between numerical simulations
of our model and analytical results from a simplified model, which is based on
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Fig. 7 Application of the results to the emergence of phenotypic heterogeneity in vascu-
larised tumours.

asymptotic analysis of evolutionary dynamics carried out in ArdaSeva et al.
(2019) (see Appendix A). This agreement shows both the robustness of the
biological conclusions drawn from the simulation results and the idea that the
key features of the analytical results that we derived previously carry through
when additional biological complexity is incorporated into the model. Further-
more, because our results persist across a range of values of the consumption
rate of oxygen, 6, and the fitness cost associated with glycolytic metabolism,
~/¢, we conclude that they are applicable to a variety of cancer cell lines under
different environmental conditions, such as different levels of acidity (Casciari
et al., 1992).

In summary, the simulation results generated from our model indicate that
nonlinear interactions between cells and oxygen can lead naturally to the oc-
currence of hypoxia and cycling hypoxia depending on the rate at which oxygen
is consumed by the cells. Moreover, the model supports the idea that under
chronic-hypoxia lower rates of phenotypic variation constitute a source of com-
petitive advantage. On the other hand, higher rates of phenotypic variation can
confer a competitive advantage under cycling-hypoxia, when the fitness costs
associated with glycolytic metabolism are higher. Under cycling hypoxia, the
model demonstrates that bet-hedging strategies, where cells switch between
oxidative and glycolytic metabolic phenotypes, can spontaneously emerge.
This provides a theoretical basis for previous experimental results, such as
those presented by Verduzco et al. (2015) and Chen et al. (2018), showing
that cycling hypoxia can trigger the emergence of different phenotypic proper-
ties in cancer cell populations. Furthermore, in line with previous theoretical
studies indicating that periodically fluctuating environments can promote co-
existence of competing populations (Hastings, 2004), our results suggest that,
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under cycling hypoxia, higher rates of oxygen consumption by cells and higher
fitness costs associated with glycolytic metabolism can promote transient co-
existence of competing cell populations that undergo heritable, spontaneous
phenotypic variations at different rates. Finally, we have discussed how our
mathematical results can shed light on the evolutionary process underlying
the emergence of phenotypic heterogeneity in vascularised tumours.

We conclude with an outlook on possible extensions of the present work.
The first natural extension would be to describe the metabolic dynamics of the
cells in greater detail. For instance, it would be interesting to model explicitly
the evolution of the concentrations of glucose and lactic acid. In the same way,
it would be interesting to extend the model to account for dynamics of reactive
oxygen species that promote DNA damage and lead to mutagenesis (Liou and
Storz, 2010).

Building upon previous work on the derivation of deterministic continuum
models for the evolution of populations structured by phenotypic traits from
stochastic individual-based models (Champagnat et al., 2002, 2006; Chisholm
et al., 2016; Stace et al., 2019), it would also be interesting to develop a stochas-
tic individual-based model corresponding to the continuum model presented
here. This would make it possible to explore the impact of stochastic fluctu-
ations in single-cell phenotypic properties on the outcome of the competition
between cell populations undergoing phenotypic variations at different rates.
Such stochastic effects are expected to be relevant in the regime of low cell
numbers and cannot easily be captured by continuum models like the one
considered here.

An additional development of our study would be to incorporate into the
model spatial structure, as done for instance by Lorz et al. (2015) and Lorenzi
et al. (2018), and to distribute multiple blood vessels across the spatial domain,
as done for instance by Villa et al. (2019). We could then allow the formation
of new blood vessels via angiogenesis, which is known be triggered by hy-
poxia (Dong et al., 2019). This would enable a more detailed assessment of
the way in which the interplay between spatial and temporal variability of oxy-
gen levels may dictate the phenotypic composition and the level of phenotypic
heterogeneity of vascularised tumours. Moreover, since experimental results
suggest that cycling hypoxia increases cell motility and promotes the forma-
tion of metastases (Liu et al., 2017; Chen et al., 2018), when including spatial
structure in the model it would also be interesting to explore the adaptive
role of the trade-off between cell motility and cellular proliferation (Gallaher
et al., 2019). Such a model would have the potential to inform new treatment
strategies aimed at minimising the pro-metastatic effect of cycling hypoxia.

Conflict of interest

The authors declare that they have no conflict of interest.


https://doi.org/10.1101/827980
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/827980; this version posted November 1, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

18 Aleksandra ArdaSeva et al.

A Analysis of evolutionary dynamics for a simplified model

In order to obtain a detailed analytical description of the evolutionary dynamics of the two
cell populations, we can consider a simplified scenario whereby the ODE for S(t) is decoupled
from the system of non-local parabolic PDEs (4). In particular, we let the evolution of the
oxygen concentration S(t) be governed by the following Cauchy problem

% — I(t) — O5,
t € (0,00), (A1)

S(0) = 5% >0,

where the effects of oxygen consumption and oxygen decay are both encapsulated in the
parameter @ > 0. Moreover, to facilitate analysis, we extend the interval [0,1] to R and
re-define the population-level quantities accordingly, i.e. we use the definitions

pi®) = [ na(at)de, pre) = [ nu(et)de (0= pal) +pu(®)

and )
2
wi(t) ::—/xn-(x t)dz, o (t):=
' pit) Jr =T pi(t)
with ¢ € {H, L}. Finally, in agreement with much of the previous work on the mathematical
analysis of the evolutionary dynamics of continuous traits, which relies on the simplifying as-
sumption that population densities are Gaussians (Rice, 2004), we consider initial conditions
of the form

[ @ nie0) do =0
R

0 0
vt vy
ni(z,0) = p? ; exp [73’(2 - ,u?)z] , where p? v? € Ry and p? € R. (A.2)

This allows us to use the result established by Proposition 1, which can be proved through
the method that we previously employed in Ardaseva et al. (2019).

Proposition 1 Under assumptions (6) and (7), the system of non-local PDEs (4) posed
on R x (0,00) and subject to the initial condition (A.2) admits the exact solution

ni(e,1) = pi (0 L exp [—L(t)

@ —m@)?| for i€ {H,L},  (A3)

2

with the population size, p;(t), the mean phenotype, p;(t), and the inverse of the phenotypic
variance, vi(t) = 1/:71-2 (t), being solutions of the Cauchy problem

dv;
=2 (h(S) - iv?),
du; _ 2h(S)
- S) — i ’
2= 22 (p(5) — )
dp; for i€ {H,L}, (A.4)
a = (Fi(S,vi, i) — dp) pi,
Uz(o) = ’U?, ;LL’L(O) = /‘ng pz(o) = Pg7
pi=pH +PL,

where
7S v, ) = 79(8) — () (s — o(9))7. (A5)

7
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In the case where the inflow of oxygen is constant, i.e. the source term I(¢) in the
ODE (A.1) satisfies assumption (14), our main results are summarised by Theorem 1, where
the functions g, ¢ and h are defined according to (10) and (11), and we use the definitions

§%°) — \/h(5%
5= 15 e WEDZVREDI e s, (A.6)

Theorem 1 Under assumptions (5)-(8) and the additional assumption (14), the solution
of the system of non-local PDEs (4) posed on R x (0,00), subject to the initial condi-
tion (A.2) and complemented with the Cauchy problem (A.1) is of the Gaussian form (A.3)
and satisfies the following:

(i) if
VI(S>®) Br > vg(S™)
then
Jim pp(t) =0 and  lim pr(t) =0;
(i6) if
Vh(5%°) B, < v9(5*)
then
Jim pp(t) =0, lim pr(t) = pr’
and
lim pp(t) =p$°, lim o2(t) = P
oo t—o0 h(5°)

In the case where the inflow of oxygen undergoes periodic oscillations, i.e. the source
term I(t) in the ODE (A.1) satisfies assumption (15) along with the additional assumption

I € Lip([0, 0)), (A7)

our main results are summarised by Theorem 2, where S’(t) is the unique non-negative
T-periodic solution of the problem

ds &
5 —I®-0s, te (), (A.8)
5(0) = S(T),

¥;(t) is the unique real positive T-periodic solution of the problem

do; - ~
= =2(nS) - 4i77), te (1),
(A.9)
9:(0) = 0;(1),
f1;(t) is the unique real T-periodic solution of the problem
di;  2h(S o
:tl = 6( ) (w(S) _/»Li>7 te (0,1,
¢ (A.10)
#i(0) = fi(T),
pi(t) is the unique real non-negative T-periodic solution of the problem
dp; 5o - N\ -
dptl = (Fi(S, Vs, i) — dpi) pi, t€(0,T),
(A.11)

pi(0) = pi(T),
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and

1 2

A; = —/ (~ (2) dz—|— / i(z) — (S (z))) h(S(z))dz for i€ {H,L}. (A.12)
T 0;(2)

In (A.9)-(A.12), the functions g, ¢ and h are defined according to (10) and (11). Moreover,

the function F; in (A.11) is defined according to (A.5).

Theorem 2 Under assumptions (5)-(8) and the additional assumptions (15) and (A.7),
the solution of the system of non-local PDEs (4) posed on R X (0,00), subject to the ini-
tial condition (A.2) and complemented with the Cauchy problem (A.1) is of the Gaussian
form (A.3) and satisfies the following:

(i) if
v (T
min {Ap, A2} > 2 / g(S(t)) at
0
then
Jim pp(t) =0 and  lim pp(t) =0
(ii) if
min{Ag, AL} < —/ (t))dt
and
¢ = arg min Ag, j = arg max A,
ke{H,L} ke{H,L}
then
pi(t) = pi(t), pi(t) >0 ast— oo,
and

wi(t) = (), o2(t) — as t — oo.

1
Bi(t)
Theorem 1 and Theorem 2 can be proved through methods similar to those that we
employed in ArdasSeva et al. (2019) and, therefore, their proofs are omitted here.
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