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Abstract 14 

Background: Genetic evaluation is a central component of a breeding program. In advanced 15 

economies, most genetic evaluations depend on large quantities of data that are recorded on 16 

commercial farms. Large herd sizes and widespread use of artificial insemination create 17 

strong genetic connectedness that enables the genetic and environmental effects of an 18 

individual animal’s phenotype to be accurately separated. In contrast to this, herds are neither 19 

large nor have strong genetic connectedness in smallholder dairy production systems of many 20 

low to middle-income countries (LMIC). This limits genetic evaluation, and furthermore, the 21 

pedigree information needed for traditional genetic evaluation is typically unavailable. 22 

Genomic information keeps track of shared haplotypes rather than shared relatives. This 23 

information could capture and strengthen genetic connectedness between herds and through 24 

this may enable genetic evaluations for LMIC smallholder dairy farms. The objective of this 25 

study was to use simulation to quantify the power of genomic information to enable genetic 26 

evaluation under such conditions. 27 

Results: The results from this study show: (i) the genetic evaluation of phenotyped cows 28 

using genomic information had higher accuracy compared to pedigree information across all 29 

breeding designs; (ii) the genetic evaluation of phenotyped cows with genomic information 30 

and modelling herd as a random effect had higher or equal accuracy compared to modelling 31 

herd as a fixed effect; (iii) the genetic evaluation of phenotyped cows from breeding designs 32 

with strong genetic connectedness had higher accuracy compared to breeding designs with 33 

weaker genetic connectedness; (iv) genomic prediction of young bulls was possible using 34 

marker estimates from the genetic evaluations of their phenotyped dams. For example, the 35 

accuracy of genomic prediction of young bulls from an average herd size of 1 (μ=1.58) was 36 

0.40 under a breeding design with 1,000 sires mated per generation and a training set of 8,000 37 

phenotyped and genotyped cows. 38 
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Conclusions: This study demonstrates the potential of genomic information to be an enabling 39 

technology in LMIC smallholder dairy production systems by facilitating genetic evaluations 40 

with in-situ records collected from farms with herd sizes of four cows or less. Across a range 41 

of breeding designs, genomic data enabled accurate genetic evaluation of phenotyped cows 42 

and genomic prediction of young bulls using data sets that contained small herds with weak 43 

genetic connections. The use of smallholder dairy data in genetic evaluations would enable 44 

the establishment of breeding programs to improve in-situ germplasm and, if required, would 45 

enable the importation of the most suitable external germplasm. This could be individually 46 

tailored for each target environment. Together this would increase the productivity, 47 

profitability and sustainability of LMIC smallholder dairy production systems. However, data 48 

collection, including genomic data, is expensive and business models will need to be 49 

carefully constructed so that the costs are sustainably offset. 50 
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Background 51 

 The huge increase in milk yield of dairy cattle in advanced economies over the past 52 

century is a powerful example of the impact that selective breeding can have on improving 53 

livestock productivity. For example, in the US dairy industry, production of milk per cow 54 

doubled from an average of 20 litres to 40 litres per day between 1960 and 2000 [1]. 55 

Approximately 50% of this improvement can be attributed to breeding. However, despite the 56 

potential benefits, similar breeding practices have had poor efficacy and adoption in 57 

smallholder dairy production systems in many low to middle-income countries (LMICs). 58 

Recent estimates from Kenyan smallholder farms suggest that average productivity per cow 59 

is approximately 5 litres per day and there is little evidence of major genetic improvement in 60 

recent decades [2–5].  61 

 In Kenya and other East African countries, farms with five cows or less account for 62 

more than 70% of milk production [6,7], and farms with 10 cows or less account for around 63 

90% of milk production [8]. The low levels of productivity and its economic importance has 64 

stimulated renewed efforts to improve dairy cow productivity in LMIC smallholder dairy 65 

production systems [6,9–11]. These efforts include new approaches for collecting data from 66 

rural farms more effectively and the establishment of effective and penetrant genetic 67 

evaluation schemes [10,12–14], breeding programs and dissemination programs [15], all of 68 

which have been somewhat intractable to sustain over the long-term in the past. 69 

 Genetic evaluation is a central component of a breeding program. The properties of an 70 

ideal data set that enables an accurate genetic evaluation include: (i) genetic connectedness 71 

between herds or management groups [16]; (ii) sufficient numbers of animals; (iii) 72 

sufficiently large herd sizes; and (iv) accurate phenotype collection. Genetic evaluations have 73 

been very successful in advanced economies because large data sets are routinely assembled 74 
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from commercial farms with modest to large herd sizes (e.g., twenty to several thousand 75 

cows). Genetic connectedness between herds is high due to the widespread use of artificial 76 

insemination (AI). Typically, phenotypes are accurately measured (e.g., automatically on 77 

advanced milking machines). Such data enables the genetic and environmental effects of an 78 

individual animal’s phenotype to be accurately separated. All or many of these features are 79 

not present in many LMIC smallholder dairy production systems. For example, smallholder 80 

dairy farmers in East Africa have small herd sizes (e.g., herds with one to five cows), a low 81 

prevalence of AI (5-10%) [8], and an absence of automated phenotyping systems [17]. 82 

Traditionally, this has prevented the establishment of effective genetic evaluation systems in 83 

these settings. 84 

 Genomic evaluations use a genomic relationship matrix to capture the realised, rather 85 

than expected pedigree-derived relationships between animals [18,19]. The use of genomic 86 

information has been transformative for many genetic evaluation systems in advanced 87 

economies. For example, the accuracy, which is the square root of reliability, of prediction 88 

for milk yield of young bulls increased from 0.62 using pedigree best linear unbiased 89 

prediction (PBLUP) to 0.85 for genomic best linear unbiased prediction (GBLUP) [20]. In 90 

the context of LMIC smallholder dairy production systems, genomic data could be even more 91 

important than it has been in advanced economies. For the first time, genomic data could 92 

enable effective genetic evaluation systems based on relatively imprecisely measured 93 

phenotypes, collected on cows in very small herd sizes, which have relatively low levels of 94 

genetic connectedness. In such a setting, genomic data could capture and utilise information 95 

pertaining to haplotypes that are shared by animals in different herds. This information could 96 

reveal genetic connectedness that is unseen by pedigree information, which would, in turn, 97 

enable more accurate partitioning of the genetic and environmental effects on animal’s 98 

performance in small herds. This opens up the possibility of an in-situ breeding program 99 
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based on in-situ performance data from LMIC smallholder dairy farms. Given that such data 100 

reflects the performance of animals within the target management and environment settings, 101 

animals produced by such a breeding program would be most suited to the participating 102 

smallholder dairy farmers.  103 

 In genetic evaluations, the herd or management group is usually included in the 104 

statistical model to enhance the separation of the genetic and environmental effects of an 105 

animal's performance [21–24]. Herds can be modelled as fixed or random effects. Most 106 

genetic evaluations in advanced economies model herds as fixed effects because herd sizes 107 

are typically large, which leads to fixed and random effects models giving almost equal 108 

solutions [22,23]. When herd sizes are small, such as in many LMIC smallholder dairy 109 

production systems, modelling herd as a fixed effect leads to inaccurate solutions [25]. 110 

Modelling small herds as random effects may reduce this inaccuracy, providing estimated 111 

breeding values (EBVs) with higher accuracies. In combination with the use of genomic 112 

information, this could enable genetic evaluations to be performed using data recorded, in-113 

situ, on LMIC smallholder dairy farms. 114 

 The aims of this study were to use simulation to quantify: (i) the power of genomic 115 

information to enable genetic evaluation based on phenotypes recorded on smallholder dairy 116 

farms and, under such conditions, the impact of: (ii) modelling herd as a fixed or random 117 

effect; (iii) the genetic connectedness of a breeding population; and (iv) the number of 118 

records on the accuracy of EBVs of phenotyped cows and young bulls.  119 

 Across a range of breeding designs, genomic data enabled accurate genetic evaluation 120 

of phenotyped cows using data sets that contained small herds with weak genetic connections 121 

(according to pedigree). The genetic evaluation of phenotyped cows using genomic 122 

information had higher accuracy compared to pedigree information across all breeding 123 
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designs. The genetic evaluation of phenotyped cows with genomic information and 124 

modelling herd as a random effect had higher or equal accuracy compared to modelling herd 125 

as a fixed effect. The genetic evaluation of phenotyped cows from breeding designs with 126 

strong genetic connectedness had higher accuracy compared to breeding designs with weaker 127 

genetic connectedness. The genomic prediction of young bulls was possible using marker 128 

estimates from the genetic evaluations of their phenotyped dams. For example, the accuracy 129 

of genomic prediction of young bulls from an average herd size of 1 (μ=1.58) was 0.40 under 130 

a breeding design with 1,000 sires mated per generation and a training set of 8,000 131 

phenotyped and genotyped cows. Our results show that genetic evaluations with genomic 132 

information can provide a high accuracy of EBVs of phenotyped cows and young bulls when 133 

using data from smallholder dairy farms, and would, therefore, enable in-situ breeding 134 

programs based on performance measured in-situ. 135 

 136 
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Material and methods 137 

 Simulations were used to quantify the power of genomic information to enable 138 

genetic evaluation based on phenotypes recorded on smallholder dairy farms. Ten replicates 139 

of several scenarios were performed with the overall simulation scheme depicted in Figure 1. 140 

The simulations were performed using AlphaSimR [26] and were designed to: (i) generate 141 

whole genome sequence data; (ii) generate single nucleotide polymorphisms (SNP), 142 

quantitative trait loci (QTL) and phenotypes; (iii) generate pedigree structures for LMIC 143 

smallholder dairy populations; (iv) vary the population and average herd size; (v) vary the 144 

ratios of genetic, herd and environmental variances; and (vi) run genetic evaluations 145 

modelling herd as either fixed or random effects. Conceptually, the simulation scheme was 146 

divided into historical and evaluation phases. 147 

 Each of the 10 replicates consisted of: (i) a burn-in phase shared by all strategies; and 148 

(ii) an evaluation phase that simulated breeding with each of a number of different breeding 149 

designs. Specifically, the historical component was subdivided into three stages: the first 150 

simulated the species’ genome sequence; the second simulated founder genotypes for the 151 

initial parents; and the third simulated five generations of breeding using phenotypic 152 

selection. 153 

 The burn-in phase represented historical evolution, under the assumption that 154 

livestock populations have been evolving for tens of thousands of years, and historical 155 

breeding efforts that were represented by five generations of phenotypic selection. The 156 

evaluation phase represented six generations of animal breeding in which animals were 157 

selected on their phenotypes. In the evaluation phase, population parameters were varied (i.e., 158 

the number of sires mated per generation, large or small population sizes, large or small 159 
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average herd sizes, and different proportions of the genetic, herd and environmental 160 

variances) to resemble a range of possible breeding designs (Figure 1). 161 

Burn-In: Generation of whole genome sequence data 162 

 For each replicate, a genome consisting of 10 chromosome pairs was simulated for 163 

the hypothetical animal species similar to cattle. Sequence data was generated using the 164 

Markovian Coalescent Simulator (MaCS) [27] and AlphaSimR [26] for 4,000 base 165 

haplotypes for each of ten chromosomes. The chromosomes were each 100 cM in length 166 

comprising 108 base pairs and were simulated using a per site mutation rate of 1×10-8 and a 167 

per site recombination rate of 1×10-8. The Ne was set to 1,035 in the final generation of 168 

historical simulation, to Ne=6,000 (1,000 years ago) to Ne=24,000 (10,000 years ago), and to 169 

Ne=48,000 (100,000 years ago) with linear changes in between [28]. The Ne of 1,035 was 170 

chosen to reflect the high genetic diversity found in cattle populations in Africa. 171 

Burn-In: Founder Genotypes 172 

 Simulated genome sequences were used to produce 2,000 founder animals. These 173 

founder animals served as the initial parents in the burn-in phase. Sites segregating in the 174 

founders’ sequences were randomly selected to serve as 5,000 SNP markers per chromosome 175 

(50,000 genome-wide in total) and 1,000 QTL per chromosome (10,000 genome-wide in 176 

total).  177 

Burn-In: Phenotype 178 

 A single trait representing total milk yield for a single lactation was simulated for all 179 

animals. The true breeding values (TBVs) were calculated by summing the average effects of 180 

the animal’s genotype at each QTL. QTL additive effects were sampled from a standard 181 

normal distribution, N�0,1�, and linearly scaled to produce TBVs in the founder population 182 
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with a variance (σ�
�� of 0.2. Random error was sampled from a normal distribution, 183 

N�0, σ�
��. The initial random error variance was set at σ�

�=1.8. The TBVs and random error 184 

effects were summed to create the phenotypes of the animal. These phenotypes were used for 185 

selection during the burn-in and the first 5 years in the evaluation phases of the simulation. 186 

Additional herd effects were added to the phenotypes of the animals, described in a later 187 

section, in the final generation of the evaluation phase of the simulation  188 

Recent (Burn-In) Breeding 189 

 Recent (burn-in) breeding for milk yield was simulated over 5 discrete generations of 190 

selective breeding on phenotype. The features of this breeding stage were: (i) 225 sires per 191 

generation, (ii) 1,000 dams per generation, and (iii) 2,000 offspring per generation. These 192 

numbers were chosen to match the base population Ne of 1,035 following the equation from 193 

Charlesworth et al. (2008) that accounts for the variable number of males and females as well 194 

as the mean and variance of family size. In the final generation of this stage, 80,000 offspring 195 

were generated to enable the full range of scenarios in the evaluation phase of the simulation. 196 

Evaluation Phase 197 

 The evaluation phase of the simulation modelled breeding using alternative breeding 198 

designs. Each design was simulated for an additional 6 generations following the recent 199 

breeding burn-in component so that each design could be evaluated with an equivalent 200 

starting point. A baseline design was constructed using parameters that are representative of 201 

the current smallholder farming system commonly observed in East Africa. We refer to this 202 

design as the LMIC design. Alternative breeding designs were modifications that used the 203 

LMIC design as a template (Figure 1). The common features across the simulation of all the 204 

breeding designs were: (i) all generations of selection produced 80,000 animals of equal sex 205 

ratio, (ii) for simplicity selection on sires was based on their phenotype, (iii) no selection was 206 
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performed on dams. Alternate breeding designs varied: (i) the size of the training set; (ii) the 207 

number of sires mated per generation; (iii) the average herd size; and (iv) the proportions of 208 

genetic, herd and environmental variances. A schematic for the overall structure of the 209 

breeding designs, including the LMIC design, is given in Figure 1 and a detailed description 210 

follows. 211 

LMIC Design 212 

 The LMIC design was developed to approximate the current smallholder farming 213 

system structure commonly observed in East Africa. The training set size was set at 8,000 214 

phenotyped cows and the number of sires mated per generation was set to 1,000. A trait 215 

heritability of 0.1 and ratio of 1:4 between genetic and herd effect variance ratios were 216 

chosen based upon unpublished data [29]. 217 

Genetic Evaluation Models 218 

 Breeding values were estimated using the following basic model: 219 


 � �
 � �� � �,                  (1� 220 

where y is a vector of phenotype records measured on cows; 
 is a vector of fixed effects; � 221 

is a vector of breeding values for which we assumed that with the PBLUP � ~ N�0, �σ�
�� and 222 

with the GBUP � ~ N�0, �σ�
��, where A is the pedigree numerator relationship matrix based 223 

on 5 generations of the pedigree [30] and G is the genomic numerator relationship matrix 224 

based on 50k SNP chip [31]; e is a vector of residuals for which we assumes � ~ N�0, �σ�
��; 225 

X and Z are the incidence matrices linking phenotype records respectively to b and u. We 226 

have conducted three analyses with the basic model in relation to a herd effect: (i) we 227 

excluded it, which gave us the basic model with intercept as the only fixed effect; (ii) we 228 

modelled it as a fixed effect; and (iii) we modelled it as a random effect for which we 229 
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assumed � ~ N�0, �σ
�

��. We assumed that the variance of herd effects σ
�

� , breeding values σ�
� 230 

and residuals σ�
� were known and set them to the simulated values of the LMIC design. Only 231 

the last generation of phenotype data was used in model 1 to mimic the recent introduction of 232 

phenotype, pedigree and genomic data recording. 233 

PBLUP evaluations were run using the WOMBAT software [32]. GBLUP evaluations 234 

were run using the AlphaBayes software [33]. Three genetic evaluation models were fit: (i) 235 

excluding herd effects; (ii) herds modelled as fixed effects; and (iii) herds modelled as 236 

random effects. All models modelled the animal IDs as random effects. All other parameters 237 

were held constant at the values used in the LMIC design. 238 

Genetic Connectedness and Herd Size 239 

 Genetic connectedness was varied across different breeding designs in two ways; (i) 240 

herd connectivity – the distribution of related animals within and across different herds, and 241 

(ii) the recent Ne of the breeding design. The herd connectivity was varied by simulating 242 

different average herd sizes. To generate datasets with a range of different average herd sizes, 243 

the realised herd sizes were sampled from a Poisson distribution with a lambda of 1 (μ = 244 

1.58, σ2 = 0.66), 2 (μ = 2.32, σ2 = 1.60), 4 (μ = 4.06, σ2 = 3.78), 8 (μ = 8, σ2 = 8), 16 (μ = 16, 245 

σ2 = 16.19) and 32 (μ = 32, σ2 = 31.92).  The recent Ne of the breeding design was varied 246 

using four different numbers of sires mated per generation: 100, 250, 1,000 and 5,000 sires. 247 

The number of dams per generation remained constant at 40,000. All other parameters were 248 

held constant at the values used in the LMIC design. 249 

Size of Training Set 250 

 The size of the training set used in the genetic evaluations was varied across different 251 

breeding designs using four different numbers of records: 2,000, 8,000, 16,000 and 32,000 252 
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phenotyped cows. Phenotyped cows were sampled evenly across the population, to ensure the 253 

genetic connectedness was maintained. All other parameters were held constant at the values 254 

used in the LMIC design. 255 

Trait Heritability and Herd Effect 256 

 To produce the final phenotype records, the TBVs were standardized and re-scaled, 257 

and herd and random error effects were sampled from a normal distribution with 258 

corresponding variances. In addition to the LMIC design, which had a trait with a narrow 259 

sense heritability of 0.1 and herd effect variance ratio of 0.4, we simulated two other 260 

scenarios: (i) a trait with a narrow sense heritability of 0.3 and herd effect variance ratio of 261 

0.4; and (ii) a trait with a narrow sense heritability of 0.5 and herd effect variance ratio of 0.4. 262 

For each of the three scenarios, the TBVs, herd effects and random errors were summed to 263 

create the final phenotypes of the cows. All other parameters were held constant at the values 264 

used in the LMIC design. 265 

Generation of young bull population 266 

 For each scenario we generated an additional generation of offspring to produce a 267 

validation set of 2,000, 8,000, 16,000 and 32,000 selection candidates, the young bulls that 268 

would have been genomically tested. Young bulls had no phenotypes recorded and as such 269 

served as forward validation of the model 1 fitted on phenotyped cows. 270 

Comparison of Breeding Designs 271 

 The various breeding designs resulted in 288 different scenarios which enabled 272 

multiple comparisons. The breeding designs were compared based upon the accuracy and 273 

bias of EBVs separately for each scenario and replicate – we report mean and 95% interval of 274 

estimates over replicates. Accuracy was measured as the Pearson’s correlation coefficient 275 
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between the EBVs and TBVs. The bias of genomic prediction was measured as the slope of 276 

the regression of the TBVs on the EBVs. 277 
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Results 278 

 The various breeding designs resulted in 288 different scenarios which enabled 279 

multiple comparisons. Across a range of breeding designs, genomic data enabled accurate 280 

genetic evaluation of phenotyped cows using data sets that contained small herds with weak 281 

genetic connections. The main trends observed in our results show: (i) the genetic evaluation 282 

of phenotyped cows using genomic information had higher accuracy compared to pedigree 283 

information across all breeding designs; (ii) the genetic evaluation of phenotyped cows with 284 

genomic information and modelling herd as a random effect had higher or equal accuracy 285 

compared to modelling herd as a fixed effect; (iii) the genetic evaluation of phenotyped cows 286 

from breeding designs with strong genetic connectedness had higher accuracy compared to 287 

breeding designs with weaker genetic connectedness; (iv) the genomic prediction of young 288 

bulls was possible using marker estimates from the genetic evaluations of their phenotyped 289 

dams. For example, the accuracy of young bulls from an average herd size of 1 (μ=1.58) was 290 

0.40 under a breeding design with 1,000 sires mated per generation and a training set of 8,000 291 

phenotyped and genotyped cows. The accuracies of genomic prediction of young bulls 292 

followed similar trends to those observed in the evaluation of phenotyped cows, with a 293 

reduction of ~0.1 in overall accuracy.  294 

To ease the presentation, we break the results into 5 sections: (i) LMIC design; (ii) 295 

impact of herd effect modelling; (iii) impact of genetic connectedness and heritability; (iv) 296 

impact of training set size; and (v) prediction of young bulls.  297 

LMIC Design 298 

 The accuracy of genetic evaluation of phenotyped cows, from small, weakly 299 

genetically connected herds was quantified under the LMIC design. Genetic evaluation with 300 

phenotyped cows from intermediate and large average herd sizes had a higher accuracy than 301 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 4, 2019. ; https://doi.org/10.1101/827956doi: bioRxiv preprint 

https://doi.org/10.1101/827956
http://creativecommons.org/licenses/by-nc-nd/4.0/


genetic evaluation with phenotyped cows from small average herd sizes. Increases in average 302 

herd size had a diminishing effect on increases in accuracy of genetic evaluation of 303 

phenotyped cows. The genetic evaluation of phenotyped cows using genomic information 304 

had higher accuracy compared to pedigree information across all breeding designs. Table 1 305 

reports the accuracy of EBVs of phenotyped cows with both genetic evaluation methods as 306 

average herd size was changed. The accuracies reported correspond to models with the herd 307 

modelled as a random effect. At an average herd size of 1 (μ=1.58), phenotyped cows had an 308 

accuracy of EBVs of 0.40 with the PBLUP and 0.50 with the GBLUP (an increase of 0.10). 309 

At all other average herd sizes, the increase in accuracy of GBLUP compared to PBLUP was 310 

between 0.11 and 0.12. In what follows, results will only be presented for the GBLUP. 311 

Table 1. The impact of genetic evaluation method on EBV accuracy 312 

Method  

  
  

Size of Herd   
  

  1  2  4  8  16  32  

PBLUP  Accuracy  0.40 0.41  0.43  0.44  0.45  0.46  

GBLUP  Accuracy  0.50  0.53  0.54  0.56  0.57  0.57  

 313 
Comparison of the accuracy of genetic evaluation method under the LMIC design with different 314 
average herd sizes and using the PBLUP or GBLUP method. Herd is modelled as a random 315 
effect. Standard error was 0.01 or less.   316 
 317 

Impact of herd effect modelling 318 

 Genetic evaluations were run using three models: (i) excluding a herd effect, (ii) herd 319 

modelled as a fixed effect, and (iii) herd modelled as a random effect. The genetic evaluation 320 

of phenotyped cows that included a herd effect had higher accuracies across all breeding 321 

designs. The genetic evaluation of phenotyped cows with genomic information and 322 

modelling herd as a random effect had higher accuracy compared to modelling herd as a 323 
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fixed effect at low average herd sizes. However, the accuracies of the two modelling 324 

approaches converged once a herd size of 8 was reached. Figure 2 plots the average herd size 325 

against the accuracy for each of the three evaluation models. Figure 2 shows that excluding a 326 

herd effect gave an accuracy of 0.48, averaged across all herd sizes. At average herd sizes of 327 

1.58 and 2.32, modelling herd as a random effect increased the accuracy by 0.10 and 0.05, 328 

compared to modelling herd as a fixed effect. At an average herd size of 8, the accuracies 329 

from the two modelling approaches had practically converged. 330 

Impact of genetic connectedness and trait heritability 331 

 In the simulations we varied genetic connectedness between herds in two ways; (i) 332 

herd connectivity – varied by simulating different average herd sizes; and (ii) the recent Ne of 333 

the breeding design - varied using different numbers of sires mated per generation. The 334 

genetic evaluation of phenotyped cows from breeding designs with strong genetic 335 

connectedness had higher accuracy compared to breeding designs with weaker genetic 336 

connectedness. Figure 3 plots the average herd size against the accuracy of EBVs of 337 

phenotyped cows for each of the four breeding designs with different numbers of sires mated 338 

per generation. Figure 3 shows that at an average herd size of 1 (μ=1.58), a decrease in the 339 

number of sires mated per generation from 5,000 to 1,000, 250 and 100 increased the 340 

accuracy from 0.46 to 0.50, 0.55 and 0.62, respectively. This shows the individual impact of 341 

the number of sires mated per generation on the accuracy. With 1,000 sires mated per 342 

generation, an increase in the average herd size from 1.58 to 32, increased the accuracy from 343 

0.50 to 0.58. This shows the individual impact of the average herd size on the accuracy. An 344 

increase in the average herd size from 1.58 to 32, and a decrease in the number of sires mated 345 

per generation from 1,000 to 100, increased the accuracy from 0.50 to 0.68. This shows the 346 

combined impact of the genetic connectedness of the breeding design on the accuracy. 347 
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 The genetic connectedness of the breeding design also showed interactions with the 348 

heritability of the trait. Across all trait heritabilities, the EBVs of phenotyped cows had lower 349 

accuracy in breeding designs that had weak genetic connections. The lower accuracy due to 350 

an increase in the number of sires mated per generation in the breeding design became more 351 

prominent at lower heritabilities. The lower accuracy due to a decrease in the average herd 352 

size of the breeding design was more prominent at higher heritabilities. Figure 4 plots the 353 

average herd size against the accuracy of EBVs of phenotyped cows for two of the four 354 

different numbers of sire mated per generation (100 and 1,000 sires). The three panels 355 

correspond to the heritability under the different breeding designs. Figure 4 shows that the 356 

highest accuracy (0.94) was achieved for a high heritability trait (0.5) and when genetic 357 

connectedness was strong (100 sires mated per generation and an average herd size of 32). A 358 

decrease in the average herd size from 32 to 1.58, reduced the accuracy by 0.07. An accuracy 359 

of 0.68 was achieved for a low heritability trait (0.1) and when genetic connectedness was 360 

strong (100 sires mated per generation and an average herd size of 32). An increase in the 361 

number of sires mated per generation to 1,000 sires mated per generation, reduced the 362 

accuracy by 0.10.  363 

Impact of Training Set Size 364 

 Genetic evaluation of phenotyped cows with a larger number of records had higher 365 

accuracies for all average herd sizes. Figure 5 plots the average herd size against the accuracy 366 

of EBVs of phenotyped cows for the four different training set sizes. Figure 5 shows an 367 

increase in the number of records in the training set increased the accuracy across all of the 368 

average herd sizes. At an average herd size of 1 (μ=1.58), an increase in the number of 369 

records in the training set from 2,000 to 8,000, 16,000 and 32,000 records increased the 370 

accuracy from 0.41 to 0.50, 0.59 and 0.68, respectively. 371 
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Prediction of young bulls 372 

Genomic prediction of young bulls was possible using marker estimates from the 373 

genetic evaluations of their phenotyped dams. The accuracies of young bulls followed similar 374 

trends to those observed in the evaluation of phenotyped cows, with a reduction of ~0.1 in 375 

overall accuracy. Genomic prediction of young bulls with a larger number of records in the 376 

training set had higher accuracies. The accuracy of genomic prediction of young bulls from 377 

an average herd size of 1 (μ=1.58) was 0.40 under a breeding design with 1,000 sires mated 378 

per generation and a training set of 8,000 phenotyped and genotyped cows. Figure 6 plots the 379 

accuracy of EBVs of candidate young bulls against the average herd size for the four 380 

different training set sizes. Figure 6 shows that an increase in the number of records in the 381 

training set increased the accuracy across all of the average herd sizes. At an average herd 382 

size of 1 (μ=1.58), an increase in the number of records in the training set from 2,000 to 383 

8,000, 16,000 and 32,000 records increased the accuracy from 0.28 to 0.40, 0.51 and 0.62, 384 

respectively. 385 

The accuracy was also affected by an interaction between the heritability of the trait 386 

and the genetic connectedness of the breeding design. The genetic connectedness of the 387 

breeding design was less important for traits with a higher heritability. Figure 7 plots the 388 

accuracy against the average herd size for two of the four different numbers of sire mated per 389 

generation (100 and 1,000 sires). The three panels correspond to the different trait 390 

heritabilities in the breeding designs. Figure 7 shows that an increase in the average herd size 391 

did not recover the loss of accuracy due to lower genetic connectedness (100 vs 1,000 sires 392 

mated per generation). This is different from what was observed with the accuracy for 393 

phenotyped cows. Figure 7 shows that for a high heritability trait (0.5) and an average herd 394 

size of 32, increasing the number of sires mated per generation from 100 to 1,000 sires mated 395 

per generation reduced the accuracy of young bulls by 0.04. 396 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 4, 2019. ; https://doi.org/10.1101/827956doi: bioRxiv preprint 

https://doi.org/10.1101/827956
http://creativecommons.org/licenses/by-nc-nd/4.0/


Discussion 397 

 In this paper, we demonstrated that genetic evaluation using genomic information can 398 

provide accurate EBVs when using data recorded on smallholder farms across a range of 399 

breeding designs. Therefore, genetic evaluations using genomic information could enable in-400 

situ data recorded on smallholder farms to be used to drive in-situ genetic improvement 401 

programs and genetic importation programs to improve animal performance on such 402 

smallholder farms. This capacity would enable tailored improvement and importation of 403 

genetics for smallholder farms. The results of our study highlight three main points for 404 

discussion: (i) factors that impact the accuracy of genomic evaluations; (ii) limitations of the 405 

simulation; and (iii) prospects for animal breeding in LMIC smallholder dairy production 406 

systems. 407 

Factors that impact the accuracy of genomic evaluations 408 

Impact of Herd Size 409 

 The herd or management group is usually included in the statistical model of genetic 410 

evaluations to enhance the partitioning of the genetic merit of an individual from the non-411 

genetic effects underlying its phenotype [21–24]. Herds can be modelled as fixed or random 412 

effects. One of the reasons underlying the great success of genetic evaluations in advanced 413 

economies is that large data sets are routinely assembled from commercial farms with large 414 

herd sizes. This data structure is suited to modelling herd as a fixed effect. This data structure 415 

also enables accurate separation of genetic and environmental effects and reduces potential 416 

bias due to a difference in management effects between different herds.   417 

 However, LMIC smallholder dairy farms often have small herd sizes, typically 418 

between one and five cows. With herd sizes as small as this, LMIC smallholder dairy datasets 419 

sit at one extreme of the bias-variance trade-off [34]. Modelling herd as a fixed effect 420 
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provides unbiased estimates. However, when herd sizes are small, these estimates of herd 421 

effect may have large variance. Therefore, modelling herd as a fixed effect in the LMIC 422 

smallholder dairy genetic evaluations may lead to herd effect estimates with high variance 423 

and a reduced ability to correctly rank individuals by genetic merit [25].  This could lead to a 424 

decreased accuracy of EBVs. An alternative approach in such settings would be to model 425 

herds as random effects. Modelling herd as a random effect looks to minimize the variance of 426 

estimates, but the resulting estimates are inherently biased due to shrinkage applied during 427 

estimation. However, the shrinkage process allows phenotypes recorded in small herds to 428 

partially and proportionately contribute to the genetic evaluation. This is essential for LMIC 429 

smallholder dairy genetic evaluations with herd sizes typically between one and five cows. 430 

The results from our study support this and showed that when data is collected from herds 431 

between one and four cows, genomic evaluations modelling herd as a random effect 432 

outperformed modelling herd as a fixed effect. In the case of genomic evaluations using data 433 

from an average herd size of 1 (μ=1.58), modelling herd as a random effect increased the 434 

accuracy of EBVs of phenotyped cows by 0.10 compared to modelling herd as a fixed effect. 435 

It was only when the average herd size was 8 or more that the accuracy of EBVs of 436 

phenotyped cows from the two models converged. Overall our results demonstrate that 437 

modelling herd as a random effect in LMIC smallholder dairy genetic evaluations: (i) 438 

increases the accuracy of genetic evaluations; (ii) enables phenotypes recorded in all herds to 439 

partially and proportionately contribute to the genetic evaluation; and (iii) enables the 440 

breeding values of all animals (even those in single cow herds) to be calculated. However, as 441 

is discussed later, modelling herd as a random effect may increase accuracy but bias may be 442 

generated when non-random associations between the genetic value of cattle and the herd 443 

management exist within the training set.  444 
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Impact of GBLUP as a tool to increase connectedness between herds 445 

 Sufficient genetic connectedness between herds is important for accurate genetic 446 

evaluations [16,35]. In dairy production systems in advanced economies, large herd sizes and 447 

widespread use of artificial insemination creates strong genetic connectedness between herds 448 

that enables accurate separation of genetic and environmental effects. Because strong genetic 449 

connectedness between herds is already established in dairy production systems in advanced 450 

economies, GBLUP has primarily increased the accuracy of EBVs compared to PBLUP by 451 

capturing and exploiting deviations from expected relationships between cattle caused by 452 

Mendelian sampling [36–38]. For example, the accuracy, which is the square root of 453 

reliability, of prediction for milk yield of young bulls have increased from 0.62 using PBLUP 454 

to 0.85 for GBLUP [20]. We say “primarily” because most training populations are 455 

comprised of bulls that were progeny tested across a large number of herds. In this situation, 456 

modelling both the genetic and herd effects jointly is less of a concern. The single-step 457 

GBLUP method and the recent rise of cow genotyping will also enable improvements by 458 

jointly modelling of genetic and herd effects. In LMIC smallholder dairy production systems 459 

the benefit using GBLUP will be both due to exploiting deviations from expected 460 

relationships caused by Mendelian sampling and due to implicit increases of genetic 461 

connectedness between herds. 462 

 Generating sufficient genetic connectedness between herds is especially difficult and 463 

important in LMIC smallholder dairy production systems because herd sizes are often small, 464 

farms are geographically dispersed, and artificial insemination is not widely used [8]. In such 465 

production systems, the genetic and environmental effects are likely to be partially or fully 466 

confounded. This is most obvious in the case of a single cow herd where we cannot separate 467 

the genetic effect of the cow from the herd effect of the farm. However, a range of levels of 468 

confounding could also arise in small herds composed of cows sharing the same pedigree-469 
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derived relatedness, with the recent common ancestor or ancestors only used in that herd. In 470 

both of these circumstances, PBLUP has limited ability to partition a cow’s phenotype into its 471 

genetic and environmental components. In contrast, GBLUP can achieve this partitioning, 472 

because it is capable of tracking the different permutations of haplotypes shared between 473 

cattle in different herds. During a genetic evaluation, GBLUP implicitly estimates the effects 474 

of these haplotypes and from this also the EBV of each animal. This allows phenotypic 475 

records from cows with shared haplotypes in different herds to contribute to the implicit 476 

estimation of haplotype effects and the estimates of those haplotype effects allows the 477 

partitioning of those cow’s phenotypes into their genetic and herd environment components. 478 

Furthermore, through this implicit increasing of genetic connectedness between herds, 479 

GBLUP increases the number of herds and cows that contribute useable information to the 480 

genetic evaluation compared to PBLUP. All of these interlinked factors that underlie the 481 

advantages of GBLUP, firstly make genetic evaluations using data recorded in-situ on 482 

smallholder herds possible, and secondly, work to make those genetic evaluations more 483 

accurate than those of PBLUP. In our study, the increase in genetic connectedness provided 484 

by GBLUP resulted in genetic evaluations with approximately 0.1 higher accuracy of EBVs 485 

compared to PBLUP, independent of herd size. This result probably overestimates the power 486 

of PBLUP in such settings. We used five generations of error-free pedigree records in 487 

PBLUP. In reality, limited pedigree recording takes place in LMIC smallholder dairy 488 

production systems. We should emphasise though that LMIC smallholder dairy data 489 

structures likely do not enable very accurate estimation of individual haplotype effects and 490 

that the dataset size will continue to be an important factor. 491 

 Another benefit of the increased genetic connectedness of training sets provided by 492 

GBLUP, not assessed in our study, may be the mitigation of the bias of EBVs. In LMIC 493 

smallholder dairy production systems, natural sire mating is prevalent, pedigree recording is 494 
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limited, herd sizes are often small and farms are geographically dispersed. This structure is 495 

likely to lead to isolated family clusters in pedigrees. Therefore, when using PBLUP in LMIC 496 

smallholder dairy genetic evaluations, most of the information used to calculate the EBV for 497 

any particular individual will be provided by close relatives captured by this poorly 498 

connected pedigree. This may result in only a very small number of herds contributing 499 

effective information to the genetic evaluation of an animal or group of related animals. This 500 

becomes a problem if confounding exists between the environment and the genetics in the 501 

isolated clusters of herds. Confounding can occur when the same natural service bull is used 502 

by a cohort of farmers with farms that have a better or worse than average herd environment. 503 

This may lead to biased breeding values under PBLUP. In contrast, haplotypes are likely to 504 

be dispersed across more herds. Therefore, GBLUP could accumulate effective information 505 

from more herds and more cows and thus be less prone to having haplotypes confounded 506 

with the environment. 507 

Limitations of the simulation 508 

 Our simulations did not model the full complexity that would arise in practical genetic 509 

evaluations for LMIC smallholder dairy production systems. In this section we discuss three 510 

limitations of our simulations: (i) high genomic selection accuracy; (ii) a simplified 511 

distribution of animals across farms; and (iii) a simplified breeding goal. 512 

Impact of high genomic selection accuracy 513 

 The accuracies of EBVs of phenotyped cows and young bulls observed in these 514 

simulations are likely higher than what may be expected in practical genetic evaluations for 515 

LMIC smallholder dairy production systems. Several simplifications of the simulation are 516 

likely to have caused this, including the absence of genotyping and pedigree errors, additive 517 

genetic architecture, homogeneity of environment and a single breed. Also, fixed variance 518 
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components were used in the estimation of EBVs. In practical LMIC genetic evaluations, the 519 

estimation error of variance components may result in lower accuracies of EBVs. However, 520 

we believe that the main conclusion from this study (i.e., that GBLUP is more powerful than 521 

PBLUP in LMIC smallholder production systems for several reasons) would still hold for 522 

more realistic simulations or real data. For decades it has been difficult to sustain widespread 523 

recording and use of pedigree to drive genetic evaluations in LMIC dairy production systems. 524 

GBLUP, for the reasons we outline, offers a route to overcoming this problem. 525 

Impact of simplified distribution of animals across farms 526 

 The distribution of cattle across herds in the population impacts the choice of 527 

modelling herd as a fixed or random effect in genetic evaluations. Bias, detected in this study 528 

as an inflation or deflation of EBVs, can be generated when a non-random association 529 

between herd management and genetic potential of cattle exists. Such non-random 530 

associations can be generated, for example, by well-resourced farmers who use better 531 

management practices also being able to afford semen of higher genetic merit sires, or by the 532 

restriction of natural mating sires to herds in specific regions. As discussed previously, 533 

modelling herd as a fixed effect estimates the herd effects independently for each herd. When 534 

herd sizes are large, such as in advanced economies, this can reduce bias caused by 535 

differences in the genetic means of different herds. Herd sizes are not large in LMIC 536 

smallholder dairy production systems. In such circumstances, modelling herd as a random 537 

effect in genetic evaluations allows phenotypes recorded in small herds to partially and 538 

proportionately contribute to the genetic evaluation. This benefit extends to small herds 539 

composed of cows of varying relatedness, with the ancestral haplotypes only present in that 540 

herd. This is important in an LMIC smallholder dairy production systems context, with more 541 

than 70% of milk in Kenya produced by herds of one to five cows [6,7]. However, the choice 542 

between modelling herd as a random effect should consider the bias-variance trade-off [34]. 543 
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This choice is particularly important if correlations between herd management and the 544 

genetic value of cows exist. Under this scenario, if the differences in genetic means across 545 

herds are not accounted for, the herd effect of an animal may be partially assigned to the 546 

genetic effect when herd is modelled as a random effect. In our study, cattle were assigned to 547 

herds at random and no correlation between herd management and the genetic value of cows 548 

existed. Therefore, significant bias effects were only detected in genetic evaluations 549 

modelling herd as a fixed effect with an average herd size of one (results not shown). There is 550 

another impact of the simulation not modelling the full complexity of the distribution of 551 

cattle and its genetic effects across farms. The training sets likely had an increased genetic 552 

connectedness compared to practical genetic evaluations in LMIC smallholder dairy 553 

production systems. This resulted in accuracies of EBVs that are likely to be higher than 554 

expected in practical genetic evaluations in LMIC smallholder dairy production systems. 555 

However, our study also did not capture the full complexity of the interaction between 556 

genetic connectedness and herd size. Therefore, our results likely underestimated the benefits 557 

of GBLUP to increase genetic connectedness and more accurately separate the genetic and 558 

environmental components of each cow's phenotype in small herds in practical genetic 559 

evaluations in LMIC smallholder dairy production systems. With the projected increases in 560 

data recording, we expect that these effects will diminish or that the scale of the data will 561 

enable at least reasonably high accuracy to stimulate genetic progress. 562 

Impact of simplified breeding goal 563 

 The breeding program examined in this simulation only considered a single 564 

quantitative trait that did not interact with the environment. The breeding goal for practical 565 

LMIC smallholder dairy production systems would be much more complex in practice. It 566 

would comprise of several correlated traits (e.g., milk yield, milk components, fertility, feed 567 

requirements, heat tolerance, disease resistance) many of which would interact with the 568 
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environment. The single quantitative trait with 10,000 QTL that we simulated is 569 

representative of such an index with a few additional assumptions: all traits are measured on 570 

all animals, all traits are pleiotropic, and economic merit is linear. This study simulated a 571 

simplified genetic architecture without considering dominance, epistasis and gene by 572 

environment interaction. This will likely decrease the absolute values of accuracy reported in 573 

this study but the main conclusions of our study (i.e., that GBLUP is more powerful than 574 

PBLUP in LMIC smallholder dairy production systems for several reasons) will still hold.  575 

Prospects for animal breeding in LMICs 576 

 Our motivations for undertaking this study were to contribute to the enabling of the 577 

sustained and long-term use of animal breeding to improve agricultural productivity and 578 

sustainability in LMIC smallholder dairy production systems. Breeding has been hugely 579 

successful for improving animals and plants in advanced economies and for improving plants 580 

in LMICs. Breeding has had limited success in improving animals in LMICs. We believe that 581 

for animal breeding to be successful in LMIC smallholder dairy production systems it must 582 

be driven by data recorded in-situ on animals from such farms. We believe that the limited 583 

success of animal breeding in these contexts is due to the infrastructure and data structures 584 

that are prevalent in these systems, which make genetic evaluation using pedigree difficult, if 585 

not impossible. Specifically, the infrastructure required to record pedigree over long periods 586 

of time is typically absent in LMIC smallholder dairy production systems. The lack of 587 

widespread use of AI and the small herd sizes result in a data structure that has insufficient 588 

genetic connectedness between herds to facilitate genetic evaluations based on pedigree. We 589 

believe that genomic data offers a route to overcome these problems and the results of our 590 

study show this. However, our study did not quantify the long-term impacts of genomic data 591 

in LMIC smallholder dairy breeding programs. As an example, our study demonstrated that 592 

the EBVs of young bulls from an average herd size of 1 (μ=1.58) could be predicted with an 593 
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accuracy of 0.40. However, as well as increasing the accuracy of selection, genomic 594 

evaluations also offer an opportunity to reduce the generation interval of breeding programs. 595 

These reductions in the generation interval have been the primary driver of the gain in the 596 

rate of genetic improvement in dairy breeding programs in advanced economies because they 597 

have approximately halved the generation interval, thereby doubling the rate of genetic gain 598 

[20]. In LMIC breeding programs, it is difficult to estimate the reductions in the generation 599 

interval that genomic evaluations could provide. This is due to the lack of pedigree recording 600 

and infrastructure for the widespread use of AI, already discussed. However, it is possible to 601 

say that genomic evaluations will allow LMIC breeding programs to drive the generation 602 

interval to near the biological and economic minimum for that system. The impact of this, 603 

and the other results from our study, on the long-term genetic gain of LMIC smallholder 604 

dairy breeding programs will need to be explored further. 605 

Genomic data is expensive and its requirement may create a new cost barrier to the 606 

success of animal breeding in LMIC smallholder dairy production systems. New business 607 

models are needed to overcome this barrier in a self-sustaining way. One such model could 608 

involve establishing an intertwined breeding and dissemination program for a target 609 

environment. The cost of operating the breeding program would need to be proportionate to 610 

the market that it would serve via its dissemination program. The breeding program could 611 

comprise an informal set of nucleus animals distributed across many small herds within the 612 

target environment. These nucleus animals could be genotyped and phenotyped and this data 613 

used for a genetic evaluation using GBLUP. The best animals from this nucleus could be 614 

disseminated via artificial insemination (with or without a subsequent progeny testing 615 

scheme), as natural service sires, or as heifers. Further, the genomic prediction equation 616 

calculated for the genetic evaluation could be used to select any external animals that would 617 

be imported into the region. To reduce the costs of data recording in the nucleus and to 618 
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increase the value of what would be disseminated a whole range of additional technologies 619 

and services could be bundled together. For example, nucleus herds could also serve as 620 

demonstration herds and the dissemination program could provide additional extension 621 

services (e.g., a text message for a small fee with management or market information). Or 622 

improved animal genetics could be packaged together with other technology (e.g., improved 623 

seeds) which may have higher adoption rates. Overall, a business model could be constructed 624 

that bundles technology, data recording, extension services, and a marketplace for LMIC 625 

smallholder farmers. This type of self-sustaining platform would maximize the benefits and 626 

cost-efficiency of any component (e.g., the genotyping and phenotyping of animals). This 627 

business model could leverage the successes of established technologies and practices to 628 

drive adoption of those that have been traditionally more intractable. The Africa Dairy 629 

Genetic Gains [14], the Public Private Partnership for AI Dissemination [15] projects and the 630 

emerging social enterprises (e.g., One Acre Fund [39], and electronic marketplaces for 631 

agricultural products in LMICs (e.g., Livestock 247 [40]) show that many components of 632 

such a model are already in place. 633 
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Conclusions 634 

 This study has demonstrated the potential of genomic information to be an enabling 635 

technology in LMIC smallholder dairy production systems by facilitating genetic evaluations 636 

with in-situ records collected from farms with herd sizes of four cows or less. Across a range 637 

of breeding designs, genomic data made it possible to accurately predict EBVs of phenotyped 638 

cows and young bulls using data sets that contained small herds that had weak genetic 639 

connections. The use of in-situ smallholder dairy data in genetic evaluations would establish 640 

breeding programs to improve in-situ germplasm and, if required, would enable the 641 

importation of the most suitable external germplasm. This could be individually tailored for 642 

each target environment. Together this would increase the productivity, profitability and 643 

sustainability of LMIC smallholder dairy systems. However, genomic data is expensive and 644 

business models will need to be carefully constructed so that the costs are sustainably offset. 645 

 646 

 647 

 648 

 649 

 650 

 651 

 652 
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Figures  783 

 784 

Figure 1. Simulation scenarios. The conventional breeding design is highlighted in green. Breeding 785 

designs were compared for each design parameter individually (horizontally), while keeping all other 786 

design parameters fixed at the values of the conventional breeding design.  787 

   788 

Figure 2. The impact of the model on EBV accuracy of cows. Comparison of the statistical 789 

modelling of herd under the LMIC design with GBLUP. The accuracy of estimated breeding values as 790 

a function of average herd size (1-32) and the herd effect (i) excluded from the model, (ii) modelled as 791 

a fixed effect and (iii) modelled as a random effect.   792 
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 793 

Figure 3. The impact of genetic connectedness on EBV accuracy of cows. Comparison of genetic 794 

connectedness of the training set with GBLUP. The accuracy of estimated breeding 795 

values are presented as a function of average herd size (1-32) and the number of sires (100, 250, 796 

1000 & 5000). The number of records in the training set is 8000. Herd is modelled as a random 797 

effect.  798 

 799 

Figure 4. The impact of genetic connectedness and heritability on EBV accuracy of cows. 800 

Comparison of the heritability of the trait and genetic connectedness with GBLUP. The accuracy of 801 
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estimated breeding values as a function of average herd size (1-32) and the genetic connectedness of 802 

the training set (100 & 1,000 sires per generation). The three panels correspond to the heritability of 803 

the trait (0.1, 0.3 & 0.5). Herd is modelled as a random effect.  804 

 805 

Figure 5. The impact of training set size on EBV accuracy of cows. Comparison of the number of 806 

records in the training set with GBLUP. The accuracy of estimated breeding values of cows as a 807 

function of average herd size (1-32) and the number of records in the training set (2000, 8000, 16000 808 

& 32000). Herd is modelled as a random effect.  809 

 810 

Figure 6. The impact of training set size on EBV accuracy of young bulls. Comparison of the 811 

number of records in the training set and genetic connectedness with GBLUP. The accuracy of 812 

genomic estimated breeding values of young bulls as a function of average herd size (1-32) and the 813 
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number of records in the training set (2000, 8000, 16000 & 32000. Herd is modelled as a random 814 

effect. 815 

 816 

Figure 7. The impact of genetic connectedness and heritability on EBV accuracy of young bulls. 817 

Comparison of the heritability of the trait with GBLUP. The accuracy of genomic estimated breeding 818 

values of young as a function of average herd size (1-32) and the genetic connectedness of the 819 

training set (100 & 1,000 sires per generation). The three panels correspond to the heritability of the 820 

trait (0.1, 0.3 & 0.5). Herd is modelled as a random effect. 821 
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