

4 *Owen Powell<sup>1</sup>, Raphael Mrode<sup>2,3</sup>, R. Chris Gaynor<sup>1</sup>, Martin Johnsson<sup>1,4</sup>, Gregor Gorjanc<sup>1</sup>,*

5 & John M. Hickey<sup>1</sup>

*1 The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh,  
2 Easter Bush, Midlothian, EH25 9RG, UK.*

<sup>8</sup> *Scotland's Rural College (SRUC), Easter Bush, Midlothian, EH25 9RG, UK.*

<sup>9</sup> *<sup>3</sup>International Livestock Research Institute (ILRI), Nairobi 00100, Kenya.*

*4Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences,  
Box 7023, 750 07, Uppsala, Sweden*

12

13

14 **Abstract**

15 **Background:** Genetic evaluation is a central component of a breeding program. In advanced  
16 economies, most genetic evaluations depend on large quantities of data that are recorded on  
17 commercial farms. Large herd sizes and widespread use of artificial insemination create  
18 strong genetic connectedness that enables the genetic and environmental effects of an  
19 individual animal's phenotype to be accurately separated. In contrast to this, herds are neither  
20 large nor have strong genetic connectedness in smallholder dairy production systems of many  
21 low to middle-income countries (LMIC). This limits genetic evaluation, and furthermore, the  
22 pedigree information needed for traditional genetic evaluation is typically unavailable.  
23 Genomic information keeps track of shared haplotypes rather than shared relatives. This  
24 information could capture and strengthen genetic connectedness between herds and through  
25 this may enable genetic evaluations for LMIC smallholder dairy farms. The objective of this  
26 study was to use simulation to quantify the power of genomic information to enable genetic  
27 evaluation under such conditions.

28 **Results:** The results from this study show: (i) the genetic evaluation of phenotyped cows  
29 using genomic information had higher accuracy compared to pedigree information across all  
30 breeding designs; (ii) the genetic evaluation of phenotyped cows with genomic information  
31 and modelling herd as a random effect had higher or equal accuracy compared to modelling  
32 herd as a fixed effect; (iii) the genetic evaluation of phenotyped cows from breeding designs  
33 with strong genetic connectedness had higher accuracy compared to breeding designs with  
34 weaker genetic connectedness; (iv) genomic prediction of young bulls was possible using  
35 marker estimates from the genetic evaluations of their phenotyped dams. For example, the  
36 accuracy of genomic prediction of young bulls from an average herd size of 1 ( $\mu=1.58$ ) was  
37 0.40 under a breeding design with 1,000 sires mated per generation and a training set of 8,000  
38 phenotyped and genotyped cows.

39 **Conclusions:** This study demonstrates the potential of genomic information to be an enabling  
40 technology in LMIC smallholder dairy production systems by facilitating genetic evaluations  
41 with *in-situ* records collected from farms with herd sizes of four cows or less. Across a range  
42 of breeding designs, genomic data enabled accurate genetic evaluation of phenotyped cows  
43 and genomic prediction of young bulls using data sets that contained small herds with weak  
44 genetic connections. The use of smallholder dairy data in genetic evaluations would enable  
45 the establishment of breeding programs to improve *in-situ* germplasm and, if required, would  
46 enable the importation of the most suitable external germplasm. This could be individually  
47 tailored for each target environment. Together this would increase the productivity,  
48 profitability and sustainability of LMIC smallholder dairy production systems. However, data  
49 collection, including genomic data, is expensive and business models will need to be  
50 carefully constructed so that the costs are sustainably offset.

51 **Background**

52 The huge increase in milk yield of dairy cattle in advanced economies over the past  
53 century is a powerful example of the impact that selective breeding can have on improving  
54 livestock productivity. For example, in the US dairy industry, production of milk per cow  
55 doubled from an average of 20 litres to 40 litres per day between 1960 and 2000 [1].  
56 Approximately 50% of this improvement can be attributed to breeding. However, despite the  
57 potential benefits, similar breeding practices have had poor efficacy and adoption in  
58 smallholder dairy production systems in many low to middle-income countries (LMICs).  
59 Recent estimates from Kenyan smallholder farms suggest that average productivity per cow  
60 is approximately 5 litres per day and there is little evidence of major genetic improvement in  
61 recent decades [2–5].

62 In Kenya and other East African countries, farms with five cows or less account for  
63 more than 70% of milk production [6,7], and farms with 10 cows or less account for around  
64 90% of milk production [8]. The low levels of productivity and its economic importance has  
65 stimulated renewed efforts to improve dairy cow productivity in LMIC smallholder dairy  
66 production systems [6,9–11]. These efforts include new approaches for collecting data from  
67 rural farms more effectively and the establishment of effective and penetrant genetic  
68 evaluation schemes [10,12–14], breeding programs and dissemination programs [15], all of  
69 which have been somewhat intractable to sustain over the long-term in the past.

70 Genetic evaluation is a central component of a breeding program. The properties of an  
71 ideal data set that enables an accurate genetic evaluation include: (i) genetic connectedness  
72 between herds or management groups [16]; (ii) sufficient numbers of animals; (iii)  
73 sufficiently large herd sizes; and (iv) accurate phenotype collection. Genetic evaluations have  
74 been very successful in advanced economies because large data sets are routinely assembled

75 from commercial farms with modest to large herd sizes (e.g., twenty to several thousand  
76 cows). Genetic connectedness between herds is high due to the widespread use of artificial  
77 insemination (AI). Typically, phenotypes are accurately measured (e.g., automatically on  
78 advanced milking machines). Such data enables the genetic and environmental effects of an  
79 individual animal's phenotype to be accurately separated. All or many of these features are  
80 not present in many LMIC smallholder dairy production systems. For example, smallholder  
81 dairy farmers in East Africa have small herd sizes (e.g., herds with one to five cows), a low  
82 prevalence of AI (5-10%) [8], and an absence of automated phenotyping systems [17].  
83 Traditionally, this has prevented the establishment of effective genetic evaluation systems in  
84 these settings.

85 Genomic evaluations use a genomic relationship matrix to capture the realised, rather  
86 than expected pedigree-derived relationships between animals [18,19]. The use of genomic  
87 information has been transformative for many genetic evaluation systems in advanced  
88 economies. For example, the accuracy, which is the square root of reliability, of prediction  
89 for milk yield of young bulls increased from 0.62 using pedigree best linear unbiased  
90 prediction (PBLUP) to 0.85 for genomic best linear unbiased prediction (GBLUP) [20]. In  
91 the context of LMIC smallholder dairy production systems, genomic data could be even more  
92 important than it has been in advanced economies. For the first time, genomic data could  
93 enable effective genetic evaluation systems based on relatively imprecisely measured  
94 phenotypes, collected on cows in very small herd sizes, which have relatively low levels of  
95 genetic connectedness. In such a setting, genomic data could capture and utilise information  
96 pertaining to haplotypes that are shared by animals in different herds. This information could  
97 reveal genetic connectedness that is unseen by pedigree information, which would, in turn,  
98 enable more accurate partitioning of the genetic and environmental effects on animal's  
99 performance in small herds. This opens up the possibility of an *in-situ* breeding program

100 based on *in-situ* performance data from LMIC smallholder dairy farms. Given that such data  
101 reflects the performance of animals within the target management and environment settings,  
102 animals produced by such a breeding program would be most suited to the participating  
103 smallholder dairy farmers.

104 In genetic evaluations, the herd or management group is usually included in the  
105 statistical model to enhance the separation of the genetic and environmental effects of an  
106 animal's performance [21–24]. Herds can be modelled as fixed or random effects. Most  
107 genetic evaluations in advanced economies model herds as fixed effects because herd sizes  
108 are typically large, which leads to fixed and random effects models giving almost equal  
109 solutions [22,23]. When herd sizes are small, such as in many LMIC smallholder dairy  
110 production systems, modelling herd as a fixed effect leads to inaccurate solutions [25].  
111 Modelling small herds as random effects may reduce this inaccuracy, providing estimated  
112 breeding values (EBVs) with higher accuracies. In combination with the use of genomic  
113 information, this could enable genetic evaluations to be performed using data recorded, *in-*  
114 *situ*, on LMIC smallholder dairy farms.

115 The aims of this study were to use simulation to quantify: (i) the power of genomic  
116 information to enable genetic evaluation based on phenotypes recorded on smallholder dairy  
117 farms and, under such conditions, the impact of: (ii) modelling herd as a fixed or random  
118 effect; (iii) the genetic connectedness of a breeding population; and (iv) the number of  
119 records on the accuracy of EBVs of phenotyped cows and young bulls.

120 Across a range of breeding designs, genomic data enabled accurate genetic evaluation  
121 of phenotyped cows using data sets that contained small herds with weak genetic connections  
122 (according to pedigree). The genetic evaluation of phenotyped cows using genomic  
123 information had higher accuracy compared to pedigree information across all breeding

124 designs. The genetic evaluation of phenotyped cows with genomic information and  
125 modelling herd as a random effect had higher or equal accuracy compared to modelling herd  
126 as a fixed effect. The genetic evaluation of phenotyped cows from breeding designs with  
127 strong genetic connectedness had higher accuracy compared to breeding designs with weaker  
128 genetic connectedness. The genomic prediction of young bulls was possible using marker  
129 estimates from the genetic evaluations of their phenotyped dams. For example, the accuracy  
130 of genomic prediction of young bulls from an average herd size of 1 ( $\mu=1.58$ ) was 0.40 under  
131 a breeding design with 1,000 sires mated per generation and a training set of 8,000  
132 phenotyped and genotyped cows. Our results show that genetic evaluations with genomic  
133 information can provide a high accuracy of EBVs of phenotyped cows and young bulls when  
134 using data from smallholder dairy farms, and would, therefore, enable *in-situ* breeding  
135 programs based on performance measured *in-situ*.

136

137 **Material and methods**

138 Simulations were used to quantify the power of genomic information to enable  
139 genetic evaluation based on phenotypes recorded on smallholder dairy farms. Ten replicates  
140 of several scenarios were performed with the overall simulation scheme depicted in Figure 1.  
141 The simulations were performed using AlphaSimR [26] and were designed to: (i) generate  
142 whole genome sequence data; (ii) generate single nucleotide polymorphisms (SNP),  
143 quantitative trait loci (QTL) and phenotypes; (iii) generate pedigree structures for LMIC  
144 smallholder dairy populations; (iv) vary the population and average herd size; (v) vary the  
145 ratios of genetic, herd and environmental variances; and (vi) run genetic evaluations  
146 modelling herd as either fixed or random effects. Conceptually, the simulation scheme was  
147 divided into historical and evaluation phases.

148 Each of the 10 replicates consisted of: (i) a burn-in phase shared by all strategies; and  
149 (ii) an evaluation phase that simulated breeding with each of a number of different breeding  
150 designs. Specifically, the historical component was subdivided into three stages: the first  
151 simulated the species' genome sequence; the second simulated founder genotypes for the  
152 initial parents; and the third simulated five generations of breeding using phenotypic  
153 selection.

154 The burn-in phase represented historical evolution, under the assumption that  
155 livestock populations have been evolving for tens of thousands of years, and historical  
156 breeding efforts that were represented by five generations of phenotypic selection. The  
157 evaluation phase represented six generations of animal breeding in which animals were  
158 selected on their phenotypes. In the evaluation phase, population parameters were varied (i.e.,  
159 the number of sires mated per generation, large or small population sizes, large or small

160 average herd sizes, and different proportions of the genetic, herd and environmental  
161 variances) to resemble a range of possible breeding designs (Figure 1).

162 **Burn-In: Generation of whole genome sequence data**

163 For each replicate, a genome consisting of 10 chromosome pairs was simulated for  
164 the hypothetical animal species similar to cattle. Sequence data was generated using the  
165 Markovian Coalescent Simulator (MaCS) [27] and AlphaSimR [26] for 4,000 base  
166 haplotypes for each of ten chromosomes. The chromosomes were each 100 cM in length  
167 comprising  $10^8$  base pairs and were simulated using a per site mutation rate of  $1 \times 10^{-8}$  and a  
168 per site recombination rate of  $1 \times 10^{-8}$ . The  $N_e$  was set to 1,035 in the final generation of  
169 historical simulation, to  $N_e=6,000$  (1,000 years ago) to  $N_e=24,000$  (10,000 years ago), and to  
170  $N_e=48,000$  (100,000 years ago) with linear changes in between [28]. The  $N_e$  of 1,035 was  
171 chosen to reflect the high genetic diversity found in cattle populations in Africa.

172 **Burn-In: Founder Genotypes**

173 Simulated genome sequences were used to produce 2,000 founder animals. These  
174 founder animals served as the initial parents in the burn-in phase. Sites segregating in the  
175 founders' sequences were randomly selected to serve as 5,000 SNP markers per chromosome  
176 (50,000 genome-wide in total) and 1,000 QTL per chromosome (10,000 genome-wide in  
177 total).

178 **Burn-In: Phenotype**

179 A single trait representing total milk yield for a single lactation was simulated for all  
180 animals. The true breeding values (TBVs) were calculated by summing the average effects of  
181 the animal's genotype at each QTL. QTL additive effects were sampled from a standard  
182 normal distribution,  $N(0,1)$ , and linearly scaled to produce TBVs in the founder population

183 with a variance ( $\sigma_a^2$ ) of 0.2. Random error was sampled from a normal distribution,  
184  $N(0, \sigma_e^2)$ . The initial random error variance was set at  $\sigma_e^2=1.8$ . The TBVs and random error  
185 effects were summed to create the phenotypes of the animal. These phenotypes were used for  
186 selection during the burn-in and the first 5 years in the evaluation phases of the simulation.  
187 Additional herd effects were added to the phenotypes of the animals, described in a later  
188 section, in the final generation of the evaluation phase of the simulation

189 **Recent (Burn-In) Breeding**

190 Recent (burn-in) breeding for milk yield was simulated over 5 discrete generations of  
191 selective breeding on phenotype. The features of this breeding stage were: (i) 225 sires per  
192 generation, (ii) 1,000 dams per generation, and (iii) 2,000 offspring per generation. These  
193 numbers were chosen to match the base population  $N_e$  of 1,035 following the equation from  
194 Charlesworth et al. (2008) that accounts for the variable number of males and females as well  
195 as the mean and variance of family size. In the final generation of this stage, 80,000 offspring  
196 were generated to enable the full range of scenarios in the evaluation phase of the simulation.

197 **Evaluation Phase**

198 The evaluation phase of the simulation modelled breeding using alternative breeding  
199 designs. Each design was simulated for an additional 6 generations following the recent  
200 breeding burn-in component so that each design could be evaluated with an equivalent  
201 starting point. A baseline design was constructed using parameters that are representative of  
202 the current smallholder farming system commonly observed in East Africa. We refer to this  
203 design as the LMIC design. Alternative breeding designs were modifications that used the  
204 LMIC design as a template (Figure 1). The common features across the simulation of all the  
205 breeding designs were: (i) all generations of selection produced 80,000 animals of equal sex  
206 ratio, (ii) for simplicity selection on sires was based on their phenotype, (iii) no selection was

207 performed on dams. Alternate breeding designs varied: (i) the size of the training set; (ii) the  
208 number of sires mated per generation; (iii) the average herd size; and (iv) the proportions of  
209 genetic, herd and environmental variances. A schematic for the overall structure of the  
210 breeding designs, including the LMIC design, is given in Figure 1 and a detailed description  
211 follows.

212 **LMIC Design**

213 The LMIC design was developed to approximate the current smallholder farming  
214 system structure commonly observed in East Africa. The training set size was set at 8,000  
215 phenotyped cows and the number of sires mated per generation was set to 1,000. A trait  
216 heritability of 0.1 and ratio of 1:4 between genetic and herd effect variance ratios were  
217 chosen based upon unpublished data [29].

218 **Genetic Evaluation Models**

219 Breeding values were estimated using the following basic model:

$$220 \quad \mathbf{y} = \mathbf{X}\mathbf{b} + \mathbf{Z}\mathbf{u} + \mathbf{e}, \quad (1)$$

221 where  $\mathbf{y}$  is a vector of phenotype records measured on cows;  $\mathbf{b}$  is a vector of fixed effects;  $\mathbf{u}$   
222 is a vector of breeding values for which we assumed that with the PBLUP  $\mathbf{u} \sim N(0, \mathbf{A}\sigma_a^2)$  and  
223 with the GBUP  $\mathbf{u} \sim N(0, \mathbf{G}\sigma_a^2)$ , where  $\mathbf{A}$  is the pedigree numerator relationship matrix based  
224 on 5 generations of the pedigree [30] and  $\mathbf{G}$  is the genomic numerator relationship matrix  
225 based on 50k SNP chip [31];  $\mathbf{e}$  is a vector of residuals for which we assume  $\mathbf{e} \sim N(0, \mathbf{I}\sigma_e^2)$ ;  
226  $\mathbf{X}$  and  $\mathbf{Z}$  are the incidence matrices linking phenotype records respectively to  $\mathbf{b}$  and  $\mathbf{u}$ . We  
227 have conducted three analyses with the basic model in relation to a herd effect: (i) we  
228 excluded it, which gave us the basic model with intercept as the only fixed effect; (ii) we  
229 modelled it as a fixed effect; and (iii) we modelled it as a random effect for which we

230 assumed  $\mathbf{h} \sim N(0, \mathbf{I}\sigma_h^2)$ . We assumed that the variance of herd effects  $\sigma_h^2$ , breeding values  $\sigma_a^2$   
231 and residuals  $\sigma_e^2$  were known and set them to the simulated values of the LMIC design. Only  
232 the last generation of phenotype data was used in model 1 to mimic the recent introduction of  
233 phenotype, pedigree and genomic data recording.

234 PBLUP evaluations were run using the WOMBAT software [32]. GBLUP evaluations  
235 were run using the AlphaBayes software [33]. Three genetic evaluation models were fit: (i)  
236 excluding herd effects; (ii) herds modelled as fixed effects; and (iii) herds modelled as  
237 random effects. All models modelled the animal IDs as random effects. All other parameters  
238 were held constant at the values used in the LMIC design.

### 239 **Genetic Connectedness and Herd Size**

240 Genetic connectedness was varied across different breeding designs in two ways; (i)  
241 herd connectivity – the distribution of related animals within and across different herds, and  
242 (ii) the recent  $N_e$  of the breeding design. The herd connectivity was varied by simulating  
243 different average herd sizes. To generate datasets with a range of different average herd sizes,  
244 the realised herd sizes were sampled from a Poisson distribution with a lambda of 1 ( $\mu =$   
245  $1.58$ ,  $\sigma^2 = 0.66$ ), 2 ( $\mu = 2.32$ ,  $\sigma^2 = 1.60$ ), 4 ( $\mu = 4.06$ ,  $\sigma^2 = 3.78$ ), 8 ( $\mu = 8$ ,  $\sigma^2 = 8$ ), 16 ( $\mu = 16$ ,  
246  $\sigma^2 = 16.19$ ) and 32 ( $\mu = 32$ ,  $\sigma^2 = 31.92$ ). The recent  $N_e$  of the breeding design was varied  
247 using four different numbers of sires mated per generation: 100, 250, 1,000 and 5,000 sires.  
248 The number of dams per generation remained constant at 40,000. All other parameters were  
249 held constant at the values used in the LMIC design.

### 250 **Size of Training Set**

251 The size of the training set used in the genetic evaluations was varied across different  
252 breeding designs using four different numbers of records: 2,000, 8,000, 16,000 and 32,000

253 phenotyped cows. Phenotyped cows were sampled evenly across the population, to ensure the  
254 genetic connectedness was maintained. All other parameters were held constant at the values  
255 used in the LMIC design.

256 **Trait Heritability and Herd Effect**

257 To produce the final phenotype records, the TBVs were standardized and re-scaled,  
258 and herd and random error effects were sampled from a normal distribution with  
259 corresponding variances. In addition to the LMIC design, which had a trait with a narrow  
260 sense heritability of 0.1 and herd effect variance ratio of 0.4, we simulated two other  
261 scenarios: (i) a trait with a narrow sense heritability of 0.3 and herd effect variance ratio of  
262 0.4; and (ii) a trait with a narrow sense heritability of 0.5 and herd effect variance ratio of 0.4.  
263 For each of the three scenarios, the TBVs, herd effects and random errors were summed to  
264 create the final phenotypes of the cows. All other parameters were held constant at the values  
265 used in the LMIC design.

266 **Generation of young bull population**

267 For each scenario we generated an additional generation of offspring to produce a  
268 validation set of 2,000, 8,000, 16,000 and 32,000 selection candidates, the young bulls that  
269 would have been genomically tested. Young bulls had no phenotypes recorded and as such  
270 served as forward validation of the model 1 fitted on phenotyped cows.

271 **Comparison of Breeding Designs**

272 The various breeding designs resulted in 288 different scenarios which enabled  
273 multiple comparisons. The breeding designs were compared based upon the accuracy and  
274 bias of EBVs separately for each scenario and replicate – we report mean and 95% interval of  
275 estimates over replicates. Accuracy was measured as the Pearson’s correlation coefficient

276 between the EBVs and TBVs. The bias of genomic prediction was measured as the slope of  
277 the regression of the TBVs on the EBVs.

278 **Results**

279 The various breeding designs resulted in 288 different scenarios which enabled  
280 multiple comparisons. Across a range of breeding designs, genomic data enabled accurate  
281 genetic evaluation of phenotyped cows using data sets that contained small herds with weak  
282 genetic connections. The main trends observed in our results show: (i) the genetic evaluation  
283 of phenotyped cows using genomic information had higher accuracy compared to pedigree  
284 information across all breeding designs; (ii) the genetic evaluation of phenotyped cows with  
285 genomic information and modelling herd as a random effect had higher or equal accuracy  
286 compared to modelling herd as a fixed effect; (iii) the genetic evaluation of phenotyped cows  
287 from breeding designs with strong genetic connectedness had higher accuracy compared to  
288 breeding designs with weaker genetic connectedness; (iv) the genomic prediction of young  
289 bulls was possible using marker estimates from the genetic evaluations of their phenotyped  
290 dams. For example, the accuracy of young bulls from an average herd size of 1 ( $\mu=1.58$ ) was  
291 0.40 under a breeding design with 1,000 sires mated per generation and a training set of 8,000  
292 phenotyped and genotyped cows. The accuracies of genomic prediction of young bulls  
293 followed similar trends to those observed in the evaluation of phenotyped cows, with a  
294 reduction of ~0.1 in overall accuracy.

295 To ease the presentation, we break the results into 5 sections: (i) LMIC design; (ii)  
296 impact of herd effect modelling; (iii) impact of genetic connectedness and heritability; (iv)  
297 impact of training set size; and (v) prediction of young bulls.

298 **LMIC Design**

299 The accuracy of genetic evaluation of phenotyped cows, from small, weakly  
300 genetically connected herds was quantified under the LMIC design. Genetic evaluation with  
301 phenotyped cows from intermediate and large average herd sizes had a higher accuracy than

302 genetic evaluation with phenotyped cows from small average herd sizes. Increases in average  
303 herd size had a diminishing effect on increases in accuracy of genetic evaluation of  
304 phenotyped cows. The genetic evaluation of phenotyped cows using genomic information  
305 had higher accuracy compared to pedigree information across all breeding designs. Table 1  
306 reports the accuracy of EBVs of phenotyped cows with both genetic evaluation methods as  
307 average herd size was changed. The accuracies reported correspond to models with the herd  
308 modelled as a random effect. At an average herd size of 1 ( $\mu=1.58$ ), phenotyped cows had an  
309 accuracy of EBVs of 0.40 with the PBLUP and 0.50 with the GBLUP (an increase of 0.10).  
310 At all other average herd sizes, the increase in accuracy of GBLUP compared to PBLUP was  
311 between 0.11 and 0.12. In what follows, results will only be presented for the GBLUP.

312 **Table 1. The impact of genetic evaluation method on EBV accuracy**

| <i>Method</i> | <i>Size of Herd</i> |          |          |          |           |           |
|---------------|---------------------|----------|----------|----------|-----------|-----------|
|               | <i>1</i>            | <i>2</i> | <i>4</i> | <i>8</i> | <i>16</i> | <i>32</i> |
| <i>PBLUP</i>  | <i>Accuracy</i>     | 0.40     | 0.41     | 0.43     | 0.44      | 0.45      |
| <i>GBLUP</i>  | <i>Accuracy</i>     | 0.50     | 0.53     | 0.54     | 0.56      | 0.57      |

313  
314 *Comparison of the accuracy of genetic evaluation method under the LMIC design with different*  
315 *average herd sizes and using the PBLUP or GBLUP method. Herd is modelled as a random*  
316 *effect. Standard error was 0.01 or less.*  
317

318 **Impact of herd effect modelling**

319 Genetic evaluations were run using three models: (i) excluding a herd effect, (ii) herd  
320 modelled as a fixed effect, and (iii) herd modelled as a random effect. The genetic evaluation  
321 of phenotyped cows that included a herd effect had higher accuracies across all breeding  
322 designs. The genetic evaluation of phenotyped cows with genomic information and  
323 modelling herd as a random effect had higher accuracy compared to modelling herd as a

324 fixed effect at low average herd sizes. However, the accuracies of the two modelling  
325 approaches converged once a herd size of 8 was reached. Figure 2 plots the average herd size  
326 against the accuracy for each of the three evaluation models. Figure 2 shows that excluding a  
327 herd effect gave an accuracy of 0.48, averaged across all herd sizes. At average herd sizes of  
328 1.58 and 2.32, modelling herd as a random effect increased the accuracy by 0.10 and 0.05,  
329 compared to modelling herd as a fixed effect. At an average herd size of 8, the accuracies  
330 from the two modelling approaches had practically converged.

331 **Impact of genetic connectedness and trait heritability**

332 In the simulations we varied genetic connectedness between herds in two ways; (i)  
333 herd connectivity – varied by simulating different average herd sizes; and (ii) the recent  $N_e$  of  
334 the breeding design - varied using different numbers of sires mated per generation. The  
335 genetic evaluation of phenotyped cows from breeding designs with strong genetic  
336 connectedness had higher accuracy compared to breeding designs with weaker genetic  
337 connectedness. Figure 3 plots the average herd size against the accuracy of EBVs of  
338 phenotyped cows for each of the four breeding designs with different numbers of sires mated  
339 per generation. Figure 3 shows that at an average herd size of 1 ( $\mu=1.58$ ), a decrease in the  
340 number of sires mated per generation from 5,000 to 1,000, 250 and 100 increased the  
341 accuracy from 0.46 to 0.50, 0.55 and 0.62, respectively. This shows the individual impact of  
342 the number of sires mated per generation on the accuracy. With 1,000 sires mated per  
343 generation, an increase in the average herd size from 1.58 to 32, increased the accuracy from  
344 0.50 to 0.58. This shows the individual impact of the average herd size on the accuracy. An  
345 increase in the average herd size from 1.58 to 32, and a decrease in the number of sires mated  
346 per generation from 1,000 to 100, increased the accuracy from 0.50 to 0.68. This shows the  
347 combined impact of the genetic connectedness of the breeding design on the accuracy.

348 The genetic connectedness of the breeding design also showed interactions with the  
349 heritability of the trait. Across all trait heritabilities, the EBVs of phenotyped cows had lower  
350 accuracy in breeding designs that had weak genetic connections. The lower accuracy due to  
351 an increase in the number of sires mated per generation in the breeding design became more  
352 prominent at lower heritabilities. The lower accuracy due to a decrease in the average herd  
353 size of the breeding design was more prominent at higher heritabilities. Figure 4 plots the  
354 average herd size against the accuracy of EBVs of phenotyped cows for two of the four  
355 different numbers of sire mated per generation (100 and 1,000 sires). The three panels  
356 correspond to the heritability under the different breeding designs. Figure 4 shows that the  
357 highest accuracy (0.94) was achieved for a high heritability trait (0.5) and when genetic  
358 connectedness was strong (100 sires mated per generation and an average herd size of 32). A  
359 decrease in the average herd size from 32 to 1.58, reduced the accuracy by 0.07. An accuracy  
360 of 0.68 was achieved for a low heritability trait (0.1) and when genetic connectedness was  
361 strong (100 sires mated per generation and an average herd size of 32). An increase in the  
362 number of sires mated per generation to 1,000 sires mated per generation, reduced the  
363 accuracy by 0.10.

364 **Impact of Training Set Size**

365 Genetic evaluation of phenotyped cows with a larger number of records had higher  
366 accuracies for all average herd sizes. Figure 5 plots the average herd size against the accuracy  
367 of EBVs of phenotyped cows for the four different training set sizes. Figure 5 shows an  
368 increase in the number of records in the training set increased the accuracy across all of the  
369 average herd sizes. At an average herd size of 1 ( $\mu=1.58$ ), an increase in the number of  
370 records in the training set from 2,000 to 8,000, 16,000 and 32,000 records increased the  
371 accuracy from 0.41 to 0.50, 0.59 and 0.68, respectively.

372 **Prediction of young bulls**

373 Genomic prediction of young bulls was possible using marker estimates from the  
374 genetic evaluations of their phenotyped dams. The accuracies of young bulls followed similar  
375 trends to those observed in the evaluation of phenotyped cows, with a reduction of ~0.1 in  
376 overall accuracy. Genomic prediction of young bulls with a larger number of records in the  
377 training set had higher accuracies. The accuracy of genomic prediction of young bulls from  
378 an average herd size of 1 ( $\mu=1.58$ ) was 0.40 under a breeding design with 1,000 sires mated  
379 per generation and a training set of 8,000 phenotyped and genotyped cows. Figure 6 plots the  
380 accuracy of EBVs of candidate young bulls against the average herd size for the four  
381 different training set sizes. Figure 6 shows that an increase in the number of records in the  
382 training set increased the accuracy across all of the average herd sizes. At an average herd  
383 size of 1 ( $\mu=1.58$ ), an increase in the number of records in the training set from 2,000 to  
384 8,000, 16,000 and 32,000 records increased the accuracy from 0.28 to 0.40, 0.51 and 0.62,  
385 respectively.

386 The accuracy was also affected by an interaction between the heritability of the trait  
387 and the genetic connectedness of the breeding design. The genetic connectedness of the  
388 breeding design was less important for traits with a higher heritability. Figure 7 plots the  
389 accuracy against the average herd size for two of the four different numbers of sires mated per  
390 generation (100 and 1,000 sires). The three panels correspond to the different trait  
391 heritabilities in the breeding designs. Figure 7 shows that an increase in the average herd size  
392 did not recover the loss of accuracy due to lower genetic connectedness (100 vs 1,000 sires  
393 mated per generation). This is different from what was observed with the accuracy for  
394 phenotyped cows. Figure 7 shows that for a high heritability trait (0.5) and an average herd  
395 size of 32, increasing the number of sires mated per generation from 100 to 1,000 sires mated  
396 per generation reduced the accuracy of young bulls by 0.04.

397 **Discussion**

398 In this paper, we demonstrated that genetic evaluation using genomic information can  
399 provide accurate EBVs when using data recorded on smallholder farms across a range of  
400 breeding designs. Therefore, genetic evaluations using genomic information could enable *in-*  
401 *situ* data recorded on smallholder farms to be used to drive *in-situ* genetic improvement  
402 programs and genetic importation programs to improve animal performance on such  
403 smallholder farms. This capacity would enable tailored improvement and importation of  
404 genetics for smallholder farms. The results of our study highlight three main points for  
405 discussion: (i) factors that impact the accuracy of genomic evaluations; (ii) limitations of the  
406 simulation; and (iii) prospects for animal breeding in LMIC smallholder dairy production  
407 systems.

408 **Factors that impact the accuracy of genomic evaluations**

409 *Impact of Herd Size*

410 The herd or management group is usually included in the statistical model of genetic  
411 evaluations to enhance the partitioning of the genetic merit of an individual from the non-  
412 genetic effects underlying its phenotype [21–24]. Herds can be modelled as fixed or random  
413 effects. One of the reasons underlying the great success of genetic evaluations in advanced  
414 economies is that large data sets are routinely assembled from commercial farms with large  
415 herd sizes. This data structure is suited to modelling herd as a fixed effect. This data structure  
416 also enables accurate separation of genetic and environmental effects and reduces potential  
417 bias due to a difference in management effects between different herds.

418 However, LMIC smallholder dairy farms often have small herd sizes, typically  
419 between one and five cows. With herd sizes as small as this, LMIC smallholder dairy datasets  
420 sit at one extreme of the bias-variance trade-off [34]. Modelling herd as a fixed effect

421 provides unbiased estimates. However, when herd sizes are small, these estimates of herd  
422 effect may have large variance. Therefore, modelling herd as a fixed effect in the LMIC  
423 smallholder dairy genetic evaluations may lead to herd effect estimates with high variance  
424 and a reduced ability to correctly rank individuals by genetic merit [25]. This could lead to a  
425 decreased accuracy of EBVs. An alternative approach in such settings would be to model  
426 herds as random effects. Modelling herd as a random effect looks to minimize the variance of  
427 estimates, but the resulting estimates are inherently biased due to shrinkage applied during  
428 estimation. However, the shrinkage process allows phenotypes recorded in small herds to  
429 partially and proportionately contribute to the genetic evaluation. This is essential for LMIC  
430 smallholder dairy genetic evaluations with herd sizes typically between one and five cows.  
431 The results from our study support this and showed that when data is collected from herds  
432 between one and four cows, genomic evaluations modelling herd as a random effect  
433 outperformed modelling herd as a fixed effect. In the case of genomic evaluations using data  
434 from an average herd size of 1 ( $\mu=1.58$ ), modelling herd as a random effect increased the  
435 accuracy of EBVs of phenotyped cows by 0.10 compared to modelling herd as a fixed effect.  
436 It was only when the average herd size was 8 or more that the accuracy of EBVs of  
437 phenotyped cows from the two models converged. Overall our results demonstrate that  
438 modelling herd as a random effect in LMIC smallholder dairy genetic evaluations: (i)  
439 increases the accuracy of genetic evaluations; (ii) enables phenotypes recorded in all herds to  
440 partially and proportionately contribute to the genetic evaluation; and (iii) enables the  
441 breeding values of all animals (even those in single cow herds) to be calculated. However, as  
442 is discussed later, modelling herd as a random effect may increase accuracy but bias may be  
443 generated when non-random associations between the genetic value of cattle and the herd  
444 management exist within the training set.

445 *Impact of GBLUP as a tool to increase connectedness between herds*

446 Sufficient genetic connectedness between herds is important for accurate genetic  
447 evaluations [16,35]. In dairy production systems in advanced economies, large herd sizes and  
448 widespread use of artificial insemination creates strong genetic connectedness between herds  
449 that enables accurate separation of genetic and environmental effects. Because strong genetic  
450 connectedness between herds is already established in dairy production systems in advanced  
451 economies, GBLUP has primarily increased the accuracy of EBVs compared to PBLUP by  
452 capturing and exploiting deviations from expected relationships between cattle caused by  
453 Mendelian sampling [36–38]. For example, the accuracy, which is the square root of  
454 reliability, of prediction for milk yield of young bulls have increased from 0.62 using PBLUP  
455 to 0.85 for GBLUP [20]. We say “primarily” because most training populations are  
456 comprised of bulls that were progeny tested across a large number of herds. In this situation,  
457 modelling both the genetic and herd effects jointly is less of a concern. The single-step  
458 GBLUP method and the recent rise of cow genotyping will also enable improvements by  
459 jointly modelling of genetic and herd effects. In LMIC smallholder dairy production systems  
460 the benefit using GBLUP will be both due to exploiting deviations from expected  
461 relationships caused by Mendelian sampling and due to implicit increases of genetic  
462 connectedness between herds.

463 Generating sufficient genetic connectedness between herds is especially difficult and  
464 important in LMIC smallholder dairy production systems because herd sizes are often small,  
465 farms are geographically dispersed, and artificial insemination is not widely used [8]. In such  
466 production systems, the genetic and environmental effects are likely to be partially or fully  
467 confounded. This is most obvious in the case of a single cow herd where we cannot separate  
468 the genetic effect of the cow from the herd effect of the farm. However, a range of levels of  
469 confounding could also arise in small herds composed of cows sharing the same pedigree-

470 derived relatedness, with the recent common ancestor or ancestors only used in that herd. In  
471 both of these circumstances, PBLUP has limited ability to partition a cow's phenotype into its  
472 genetic and environmental components. In contrast, GBLUP can achieve this partitioning,  
473 because it is capable of tracking the different permutations of haplotypes shared between  
474 cattle in different herds. During a genetic evaluation, GBLUP implicitly estimates the effects  
475 of these haplotypes and from this also the EBV of each animal. This allows phenotypic  
476 records from cows with shared haplotypes in different herds to contribute to the implicit  
477 estimation of haplotype effects and the estimates of those haplotype effects allows the  
478 partitioning of those cow's phenotypes into their genetic and herd environment components.  
479 Furthermore, through this implicit increasing of genetic connectedness between herds,  
480 GBLUP increases the number of herds and cows that contribute useable information to the  
481 genetic evaluation compared to PBLUP. All of these interlinked factors that underlie the  
482 advantages of GBLUP, firstly make genetic evaluations using data recorded *in-situ* on  
483 smallholder herds possible, and secondly, work to make those genetic evaluations more  
484 accurate than those of PBLUP. In our study, the increase in genetic connectedness provided  
485 by GBLUP resulted in genetic evaluations with approximately 0.1 higher accuracy of EBVs  
486 compared to PBLUP, independent of herd size. This result probably overestimates the power  
487 of PBLUP in such settings. We used five generations of error-free pedigree records in  
488 PBLUP. In reality, limited pedigree recording takes place in LMIC smallholder dairy  
489 production systems. We should emphasise though that LMIC smallholder dairy data  
490 structures likely do not enable very accurate estimation of individual haplotype effects and  
491 that the dataset size will continue to be an important factor.

492 Another benefit of the increased genetic connectedness of training sets provided by  
493 GBLUP, not assessed in our study, may be the mitigation of the bias of EBVs. In LMIC  
494 smallholder dairy production systems, natural sire mating is prevalent, pedigree recording is

495 limited, herd sizes are often small and farms are geographically dispersed. This structure is  
496 likely to lead to isolated family clusters in pedigrees. Therefore, when using PBLUP in LMIC  
497 smallholder dairy genetic evaluations, most of the information used to calculate the EBV for  
498 any particular individual will be provided by close relatives captured by this poorly  
499 connected pedigree. This may result in only a very small number of herds contributing  
500 effective information to the genetic evaluation of an animal or group of related animals. This  
501 becomes a problem if confounding exists between the environment and the genetics in the  
502 isolated clusters of herds. Confounding can occur when the same natural service bull is used  
503 by a cohort of farmers with farms that have a better or worse than average herd environment.  
504 This may lead to biased breeding values under PBLUP. In contrast, haplotypes are likely to  
505 be dispersed across more herds. Therefore, GBLUP could accumulate effective information  
506 from more herds and more cows and thus be less prone to having haplotypes confounded  
507 with the environment.

508 **Limitations of the simulation**

509 Our simulations did not model the full complexity that would arise in practical genetic  
510 evaluations for LMIC smallholder dairy production systems. In this section we discuss three  
511 limitations of our simulations: (i) high genomic selection accuracy; (ii) a simplified  
512 distribution of animals across farms; and (iii) a simplified breeding goal.

513 *Impact of high genomic selection accuracy*

514 The accuracies of EBVs of phenotyped cows and young bulls observed in these  
515 simulations are likely higher than what may be expected in practical genetic evaluations for  
516 LMIC smallholder dairy production systems. Several simplifications of the simulation are  
517 likely to have caused this, including the absence of genotyping and pedigree errors, additive  
518 genetic architecture, homogeneity of environment and a single breed. Also, fixed variance

519 components were used in the estimation of EBVs. In practical LMIC genetic evaluations, the  
520 estimation error of variance components may result in lower accuracies of EBVs. However,  
521 we believe that the main conclusion from this study (i.e., that GBLUP is more powerful than  
522 PBLUP in LMIC smallholder production systems for several reasons) would still hold for  
523 more realistic simulations or real data. For decades it has been difficult to sustain widespread  
524 recording and use of pedigree to drive genetic evaluations in LMIC dairy production systems.  
525 GBLUP, for the reasons we outline, offers a route to overcoming this problem.

526 *Impact of simplified distribution of animals across farms*

527 The distribution of cattle across herds in the population impacts the choice of  
528 modelling herd as a fixed or random effect in genetic evaluations. Bias, detected in this study  
529 as an inflation or deflation of EBVs, can be generated when a non-random association  
530 between herd management and genetic potential of cattle exists. Such non-random  
531 associations can be generated, for example, by well-resourced farmers who use better  
532 management practices also being able to afford semen of higher genetic merit sires, or by the  
533 restriction of natural mating sires to herds in specific regions. As discussed previously,  
534 modelling herd as a fixed effect estimates the herd effects independently for each herd. When  
535 herd sizes are large, such as in advanced economies, this can reduce bias caused by  
536 differences in the genetic means of different herds. Herd sizes are not large in LMIC  
537 smallholder dairy production systems. In such circumstances, modelling herd as a random  
538 effect in genetic evaluations allows phenotypes recorded in small herds to partially and  
539 proportionately contribute to the genetic evaluation. This benefit extends to small herds  
540 composed of cows of varying relatedness, with the ancestral haplotypes only present in that  
541 herd. This is important in an LMIC smallholder dairy production systems context, with more  
542 than 70% of milk in Kenya produced by herds of one to five cows [6,7]. However, the choice  
543 between modelling herd as a random effect should consider the bias-variance trade-off [34].

544 This choice is particularly important if correlations between herd management and the  
545 genetic value of cows exist. Under this scenario, if the differences in genetic means across  
546 herds are not accounted for, the herd effect of an animal may be partially assigned to the  
547 genetic effect when herd is modelled as a random effect. In our study, cattle were assigned to  
548 herds at random and no correlation between herd management and the genetic value of cows  
549 existed. Therefore, significant bias effects were only detected in genetic evaluations  
550 modelling herd as a fixed effect with an average herd size of one (results not shown). There is  
551 another impact of the simulation not modelling the full complexity of the distribution of  
552 cattle and its genetic effects across farms. The training sets likely had an increased genetic  
553 connectedness compared to practical genetic evaluations in LMIC smallholder dairy  
554 production systems. This resulted in accuracies of EBVs that are likely to be higher than  
555 expected in practical genetic evaluations in LMIC smallholder dairy production systems.  
556 However, our study also did not capture the full complexity of the interaction between  
557 genetic connectedness and herd size. Therefore, our results likely underestimated the benefits  
558 of GBLUP to increase genetic connectedness and more accurately separate the genetic and  
559 environmental components of each cow's phenotype in small herds in practical genetic  
560 evaluations in LMIC smallholder dairy production systems. With the projected increases in  
561 data recording, we expect that these effects will diminish or that the scale of the data will  
562 enable at least reasonably high accuracy to stimulate genetic progress.

563 *Impact of simplified breeding goal*

564 The breeding program examined in this simulation only considered a single  
565 quantitative trait that did not interact with the environment. The breeding goal for practical  
566 LMIC smallholder dairy production systems would be much more complex in practice. It  
567 would comprise of several correlated traits (e.g., milk yield, milk components, fertility, feed  
568 requirements, heat tolerance, disease resistance) many of which would interact with the

569 environment. The single quantitative trait with 10,000 QTL that we simulated is  
570 representative of such an index with a few additional assumptions: all traits are measured on  
571 all animals, all traits are pleiotropic, and economic merit is linear. This study simulated a  
572 simplified genetic architecture without considering dominance, epistasis and gene by  
573 environment interaction. This will likely decrease the absolute values of accuracy reported in  
574 this study but the main conclusions of our study (i.e., that GBLUP is more powerful than  
575 PBLUP in LMIC smallholder dairy production systems for several reasons) will still hold.

576 **Prospects for animal breeding in LMICs**

577 Our motivations for undertaking this study were to contribute to the enabling of the  
578 sustained and long-term use of animal breeding to improve agricultural productivity and  
579 sustainability in LMIC smallholder dairy production systems. Breeding has been hugely  
580 successful for improving animals and plants in advanced economies and for improving plants  
581 in LMICs. Breeding has had limited success in improving animals in LMICs. We believe that  
582 for animal breeding to be successful in LMIC smallholder dairy production systems it must  
583 be driven by data recorded *in-situ* on animals from such farms. We believe that the limited  
584 success of animal breeding in these contexts is due to the infrastructure and data structures  
585 that are prevalent in these systems, which make genetic evaluation using pedigree difficult, if  
586 not impossible. Specifically, the infrastructure required to record pedigree over long periods  
587 of time is typically absent in LMIC smallholder dairy production systems. The lack of  
588 widespread use of AI and the small herd sizes result in a data structure that has insufficient  
589 genetic connectedness between herds to facilitate genetic evaluations based on pedigree. We  
590 believe that genomic data offers a route to overcome these problems and the results of our  
591 study show this. However, our study did not quantify the long-term impacts of genomic data  
592 in LMIC smallholder dairy breeding programs. As an example, our study demonstrated that  
593 the EBVs of young bulls from an average herd size of 1 ( $\mu=1.58$ ) could be predicted with an

594 accuracy of 0.40. However, as well as increasing the accuracy of selection, genomic  
595 evaluations also offer an opportunity to reduce the generation interval of breeding programs.  
596 These reductions in the generation interval have been the primary driver of the gain in the  
597 rate of genetic improvement in dairy breeding programs in advanced economies because they  
598 have approximately halved the generation interval, thereby doubling the rate of genetic gain  
599 [20]. In LMIC breeding programs, it is difficult to estimate the reductions in the generation  
600 interval that genomic evaluations could provide. This is due to the lack of pedigree recording  
601 and infrastructure for the widespread use of AI, already discussed. However, it is possible to  
602 say that genomic evaluations will allow LMIC breeding programs to drive the generation  
603 interval to near the biological and economic minimum for that system. The impact of this,  
604 and the other results from our study, on the long-term genetic gain of LMIC smallholder  
605 dairy breeding programs will need to be explored further.

606 Genomic data is expensive and its requirement may create a new cost barrier to the  
607 success of animal breeding in LMIC smallholder dairy production systems. New business  
608 models are needed to overcome this barrier in a self-sustaining way. One such model could  
609 involve establishing an intertwined breeding and dissemination program for a target  
610 environment. The cost of operating the breeding program would need to be proportionate to  
611 the market that it would serve via its dissemination program. The breeding program could  
612 comprise an informal set of nucleus animals distributed across many small herds within the  
613 target environment. These nucleus animals could be genotyped and phenotyped and this data  
614 used for a genetic evaluation using GBLUP. The best animals from this nucleus could be  
615 disseminated via artificial insemination (with or without a subsequent progeny testing  
616 scheme), as natural service sires, or as heifers. Further, the genomic prediction equation  
617 calculated for the genetic evaluation could be used to select any external animals that would  
618 be imported into the region. To reduce the costs of data recording in the nucleus and to

619 increase the value of what would be disseminated a whole range of additional technologies  
620 and services could be bundled together. For example, nucleus herds could also serve as  
621 demonstration herds and the dissemination program could provide additional extension  
622 services (e.g., a text message for a small fee with management or market information). Or  
623 improved animal genetics could be packaged together with other technology (e.g., improved  
624 seeds) which may have higher adoption rates. Overall, a business model could be constructed  
625 that bundles technology, data recording, extension services, and a marketplace for LMIC  
626 smallholder farmers. This type of self-sustaining platform would maximize the benefits and  
627 cost-efficiency of any component (e.g., the genotyping and phenotyping of animals). This  
628 business model could leverage the successes of established technologies and practices to  
629 drive adoption of those that have been traditionally more intractable. The Africa Dairy  
630 Genetic Gains [14], the Public Private Partnership for AI Dissemination [15] projects and the  
631 emerging social enterprises (e.g., One Acre Fund [39], and electronic marketplaces for  
632 agricultural products in LMICs (e.g., Livestock 247 [40]) show that many components of  
633 such a model are already in place.

634 **Conclusions**

635 This study has demonstrated the potential of genomic information to be an enabling  
636 technology in LMIC smallholder dairy production systems by facilitating genetic evaluations  
637 with *in-situ* records collected from farms with herd sizes of four cows or less. Across a range  
638 of breeding designs, genomic data made it possible to accurately predict EBVs of phenotyped  
639 cows and young bulls using data sets that contained small herds that had weak genetic  
640 connections. The use of *in-situ* smallholder dairy data in genetic evaluations would establish  
641 breeding programs to improve *in-situ* germplasm and, if required, would enable the  
642 importation of the most suitable external germplasm. This could be individually tailored for  
643 each target environment. Together this would increase the productivity, profitability and  
644 sustainability of LMIC smallholder dairy systems. However, genomic data is expensive and  
645 business models will need to be carefully constructed so that the costs are sustainably offset.

646

647

648

649

650

651

652

653 **Declarations**

654 **Ethics approval and consent to participate**

655 Not applicable.

656 **Consent for publication**

657 Not applicable.

658 **Availability of data and material**

659 The simulated data and materials are available upon request.

660 **Competing interests**

661 The authors declare that they have no competing interests

662 **Funding**

663 The authors acknowledge the financial support from the BBSRC ISPG to The Roslin Institute  
664 (BBS/E/D/30002275), and the Centre for Tropical Livestock Genetics and Health (CTLGH)  
665 dairy Genetics Program.

666  
667 **Author's contributions**

668 JMH conceived the study. JMH and OP designed the study. OP performed the analysis. OP  
669 and JMH wrote the manuscript. RM, RCG, MJ and GG helped interpret the result and refined  
670 the manuscript. All authors read and approved the final manuscript.

671 **Acknowledgements**

672 The authors thank Georgios Banos for valuable comments on a previous draft of the paper.

673 This work has made use of the resources provided by the Edinburgh Compute and Data

674 Facility (ECDF) (<http://www.ecdf.ed.ac.uk>).

675

676 **References**

677 [1] Dekkers J, Hospital F. The use of molecular genetics in the improvement of agricultural  
678 populations. *Nat Rev Genet* 2002;162:1945–59. doi:10.1038/nrg701.

679 [2] Kahi AK, Nitter G, Gall CF. Developing breeding schemes for pasture based dairy  
680 production systems in Kenya: II. Evaluation of alternative objectives and schemes  
681 using a two-tier open nucleus and young bull system. *Livest Prod Sci* 2004;88:179–92.  
682 doi:10.1016/j.livprodsci.2003.07.015.

683 [3] Muriuki HG. Dairy development in kenya. *Food Agric Organ United Nations* 2011:1–  
684 52.

685 [4] Ojango JMK, Wasike CB, Enahoro DK, Okeyo AM. Dairy production systems and the  
686 adoption of genetic and breeding technologies in Tanzania, Kenya, India and  
687 Nicaragua. *Anim Genet Resour* 2016;59:81–95. doi:10.1017/S2078633616000096.

688 [5] FAOSTAT. FAOSTAT 2018. <http://www.fao.org/faostat/> (accessed November 1,  
689 2018).

690 [6] East African Dairy Development Program. The Dairy Value Chain in Kenya  
691 2012:2011–2.

692 [7] Abdulsamad A, Gereffi G. East Africa dairy value chains: Firm capabilities to expand  
693 regional trade. 2016.

694 [8] Ojango JMK, Marete A, Mujibi D, Rao J, Pool J, Rege JEO, et al. A novel use of high  
695 density SNP assays to optimize choice of different crossbred dairy cattle genotypes in  
696 small-holder systems in East Africa. *Proc 10th World Congr Genet Appl to Livest*  
697 *Prod* 2014:2–4. doi:10.13140/2.1.3730.5603.

698 [9] Mutavi SK, Kanui TI, Njarui DM, Musimba NR, Amwata DA. Innovativeness and  
699 Adaptations□: The Way forward for Small scale Peri- Urban Dairy Farmers in Semi-  
700 Arid Regions of South Eastern Kenya 2016;3:1–14.

701 [10] Ducrocq V, Laloe D, Swaminathan M, Rognon X, Tixier-Boichard M, Zerjal T.  
702 Genomics for ruminants in developing countries: From principles to practice. *Front  
703 Genet* 2018;9:1–7. doi:10.3389/fgene.2018.00251.

704 [11] Rothschild MF, Plastow GS. Applications of genomics to improve livestock in the  
705 developing world. *Livest Sci* 2014;166:76–83. doi:10.1016/j.livsci.2014.03.020.

706 [12] Potdar V, Bhave K, Khadse J. BAIF Experience in Field Data Collection International  
707 Journal of Animal 2017;3–7.

708 [13] Wurzinger M, Sölkner J, Iñiguez L. Important aspects and limitations in considering  
709 community-based breeding programs for low-input smallholder livestock systems.  
710 *Small Rumin Res* 2011;98:170–5. doi:10.1016/j.smallrumres.2011.03.035.

711 [14] ADGG. Africa Dairy Genetic Gains (ADGG) n.d. <https://africadgg.wordpress.com/>.

712 [15] PAID. Public Private Partnership n.d. [https://www.slideshare.net/ILRI/adgg-paid2-  
713 feb2017](https://www.slideshare.net/ILRI/adgg-paid2-feb2017) (accessed August 14, 2019).

714 [16] Kennedy BW, Trus D. Considerations on genetic connectedness between management  
715 units under an animal model. *J Anim Sci* 1993;71:2341–52.  
716 doi:10.2527/1993.7192341x.

717 [17] Mrode R, Ojango JMK, Okeyo AM, Mwacharo JM. Genomic Selection and Use of  
718 Molecular Tools in Breeding Programs for Indigenous and Crossbred Cattle in  
719 Developing Countries: Current Status and Future Prospects. *Front Genet* 2019;9.

720 doi:10.3389/fgene.2018.00694.

721 [18] Nejati-Javaremi a., Smith C, Gibson JP. Effect of total Allelic Relationship on  
722 Accuracy of Evaluation and Response to Selection. *J Anim Sci* 1997;75:1738–45.  
723 doi:10.1111/j.1540-5834.2011.00603.x.

724 [19] Villanueva B, Pong-Wong R, Fernandez J, Toro MA. Benefits from marker-assisted  
725 selection under an additive. *J Anim Sci* 2005;83:1747–52.

726 [20] Wiggans GR, Cole JB, Hubbard SM, Sonstegard TS. Genomic Selection in Dairy  
727 Cattle: The USDA Experience. *Annu Rev Anim Biosci* 2017;5:309–27.  
728 doi:10.1146/annurev-animal-021815-111422.

729 [21] Schaeffer LR. Contemporary Groups Are Always Random. Personal 2009.  
730 http://www.aps.uoguelph.ca/~lrs/LRSsite/ranfix.pdf (accessed August 14, 2019).

731 [22] Visscher MP., Goddard ME. Fixed and Random Contemporary Groups. *J Dairy Sci*  
732 1993;76:1444-54.

[23] Ugarte E, Alenda R, Carabaño MJ. Fixed or Random Contemporary Groups in Genetic Evaluations. *J Dairy Sci* 1992;75:269–78. doi:10.3168/ids.S0022-0302(92)77762-5.

735 [24] Frey M, Hofer A, Künzi N. Comparison of models with a fixed or a random  
736 contemporary group effect for the genetic evaluation for litter size in pigs. *Livest Prod  
737 Sci* 1997;48:135–41.

[25] Oikawa T, Sato K. Treating small herds as fixed or random in an animal model. *J Anim Breed Genet* 1997;114:177–83. doi:10.1111/j.1439-0388.1997.tb00503.x.

740 [26] Gaynor RC, Gorjanc G, Wilson D, Money D, Hickey JM. AlphaSimR 2019.

741 [27] Chen GK, Marjoram P, Wall JD. Fast and flexible simulation of DNA sequence data.  
742 Genome Res 2009;19:136–42. doi:10.1101/gr.083634.108.

743 [28] MacLeod IM, Larkin DM, Lewin HA, Hayes BJ, Goddard ME. Inferring demography  
744 from runs of homozygosity in whole-genome sequence, with correction for sequence  
745 errors. Mol Biol Evol 2013;30:2209–23. doi:10.1093/molbev/mst125.

746 [29] Gibson J, Ojango J, Okeyo M. Dairy Genetics East Africa (DGEA) Phase 2 - The final  
747 narrative report to the Bill and Melinda Gates Foundation. 2014.

748 [30] Henderson CR. Best Linear Unbiased Estimation and Prediction under a Selection  
749 Model. Biometrics 1975;31:423–47.

750 [31] VanRaden PM. Efficient Methods to Compute Genomic Predictions. J Dairy Sci  
751 2008;91:4414–23. doi:10.3168/jds.2007-0980.

752 [32] Meyer K. WOMBAT – A tool for mixed model analyses in quantitative genetics by  
753 REML. J Zhejiang Uni Sci B 2007;815–21. doi:[doi:10.1631/jzus.2007.B0815].

754 [33] Hickey JM, Gorjanc G. AlphaBayes n.d.

755 [34] Stanek EJ, Well A, Ockene I. Why not routinely use best linear unbiased predictors  
756 (BLUPs) as estimates of cholesterol, per cent fat from kcal and physical activity? Stat  
757 Med 1999;18:2943–59. doi:10.1002/(SICI)1097-0258(19991115)18:21<2943::AID-  
758 SIM241>3.0.CO;2-0.

759 [35] Foulley JL, Bouix J, Goffinet B, Elsen JM. Connectedness in Genetic Evaluation. In:  
760 Gianola D, Hammond K, editors. Adv. Stat. Methods Genet. Improv. Livest., Berlin,  
761 Heidelberg: Springer Berlin Heidelberg; 1990, p. 277–308. doi:10.1007/978-3-642-  
762 74487-7\_13.

763 [36] Hayes BJ, Visscher PM, Goddard ME. Increased accuracy of artificial selection by  
764 using the realized relationship matrix. *Genet Res (Camb)* 2009;91:47–60.  
765 doi:10.1017/S0016672308009981.

766 [37] VanRaden PM, Van Tassell CP, Wiggans GR, Sonstegard TS, Schnabel RD, Taylor  
767 JF, et al. Invited Review: Reliability of genomic predictions for North American  
768 Holstein bulls. *J Dairy Sci* 2009;92:16–24. doi:10.3168/jds.2008-1514.

769 [38] Su G, Guldbrandtsen B, Gregersen VR, Lund MS. Preliminary investigation on  
770 reliability of genomic estimated breeding values in the Danish Holstein population. *J*  
771 *Dairy Sci* 2010;93:1175–83. doi:10.3168/jds.2009-2192.

772 [39] One Acre Fund n.d. <https://oneacrefund.org/> (accessed August 14, 2019).

773 [40] Livestock 247 n.d. <https://livestock247.com/> (accessed August 14, 2019).

774

775

776

777

778

779

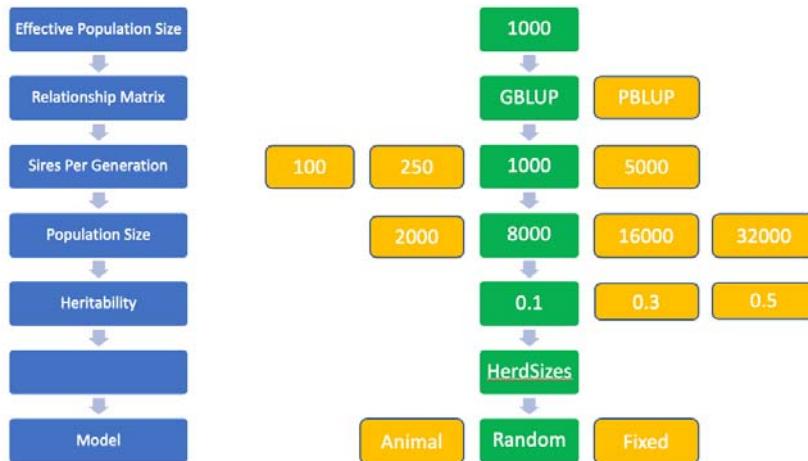
780

781

782

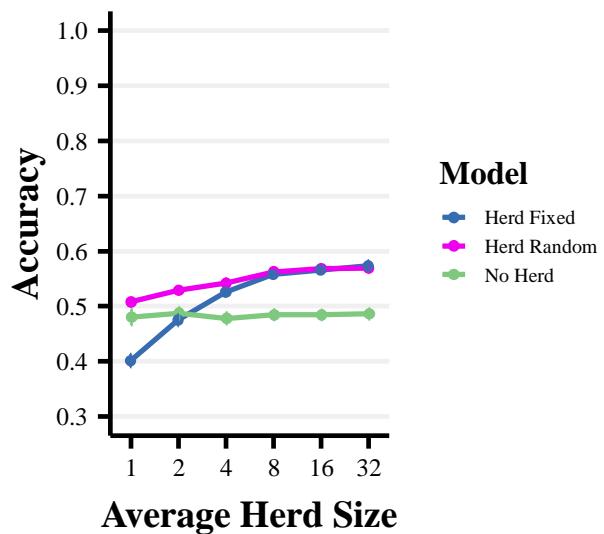
783 **Figures**

## Simulation Scenarios



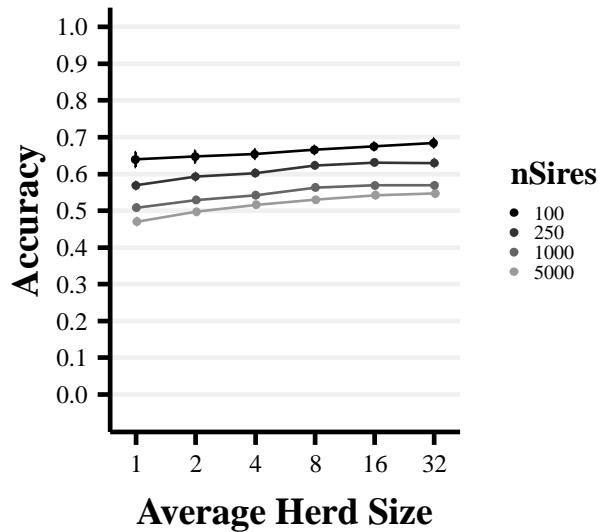
784

785 *Figure 1. Simulation scenarios.* The conventional breeding design is highlighted in green. Breeding  
786 designs were compared for each design parameter individually (horizontally), while keeping all other  
787 design parameters fixed at the values of the conventional breeding design.



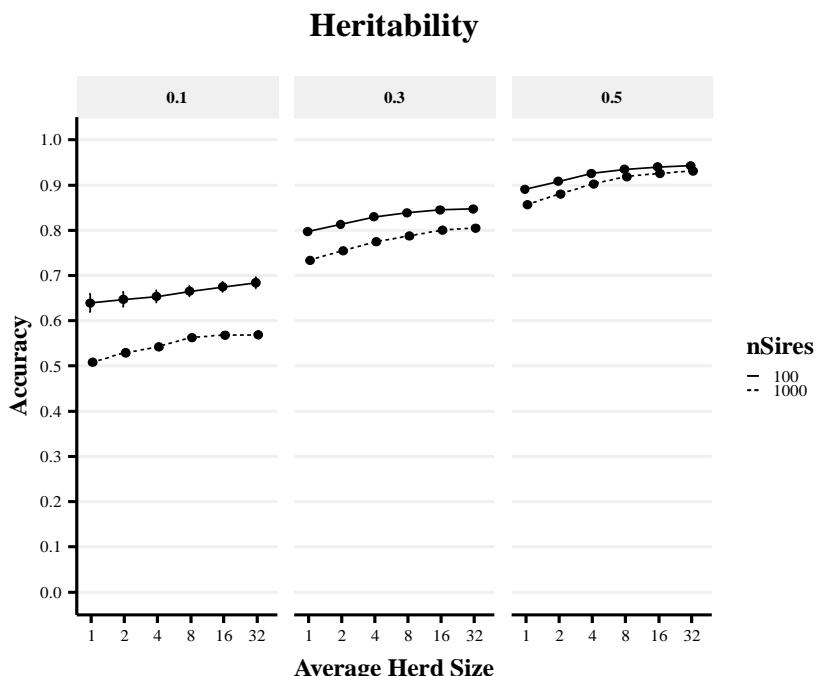
788

789 *Figure 2. The impact of the model on EBV accuracy of cows.* Comparison of the statistical  
790 modelling of herd under the LMIC design with GBLUP. The accuracy of estimated breeding values as  
791 a function of average herd size (1-32) and the herd effect (i) excluded from the model, (ii) modelled as  
792 a fixed effect and (iii) modelled as a random effect.



793

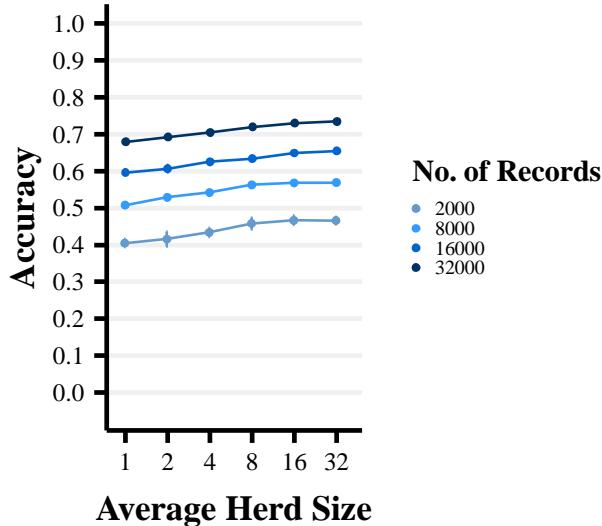
794 *Figure 3. The impact of genetic connectedness on EBV accuracy of cows. Comparison of genetic*  
795 *connectedness of the training set with GBLUP. The accuracy of estimated breeding*  
796 *values are presented as a function of average herd size (1-32) and the number of sires (100, 250,*  
797 *1000 & 5000). The number of records in the training set is 8000. Herd is modelled as a random*  
798 *effect.*



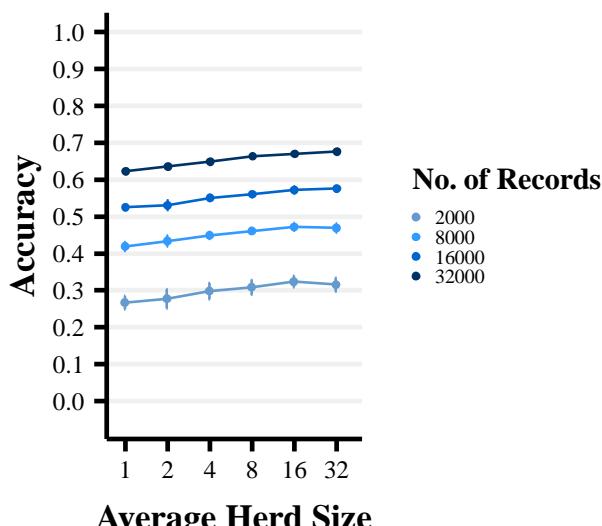
799

800 *Figure 4. The impact of genetic connectedness and heritability on EBV accuracy of cows.*  
801 *Comparison of the heritability of the trait and genetic connectedness with GBLUP. The accuracy of*

802 *estimated breeding values as a function of average herd size (1-32) and the genetic connectedness of*  
803 *the training set (100 & 1,000 sires per generation). The three panels correspond to the heritability of*  
804 *the trait (0.1, 0.3 & 0.5). Herd is modelled as a random effect.*

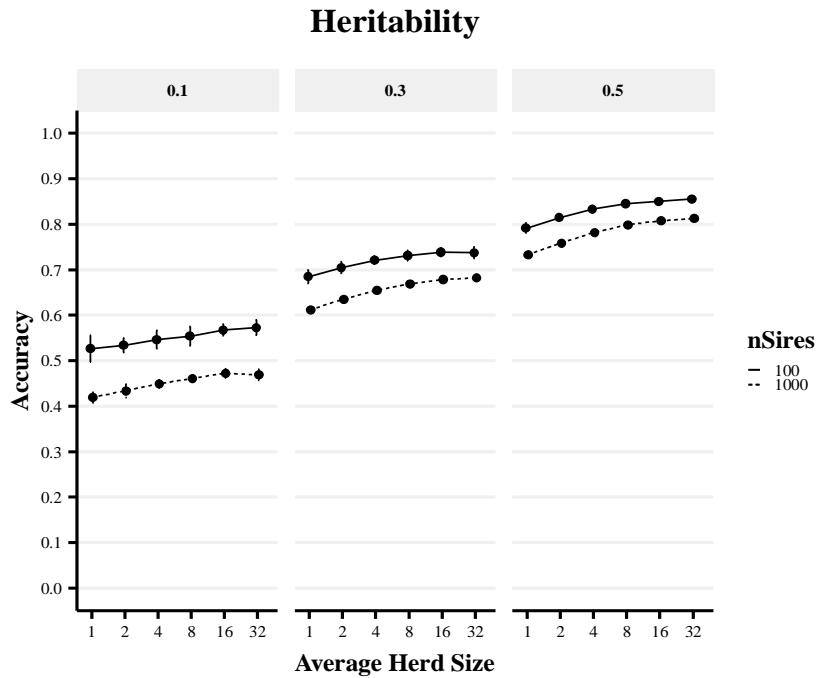


805  
806 *Figure 5. The impact of training set size on EBV accuracy of cows. Comparison of the number of*  
807 *records in the training set with GBLUP. The accuracy of estimated breeding values of cows as a*  
808 *function of average herd size (1-32) and the number of records in the training set (2000, 8000, 16000*  
809 *& 32000). Herd is modelled as a random effect.*



810  
811 *Figure 6. The impact of training set size on EBV accuracy of young bulls. Comparison of the*  
812 *number of records in the training set and genetic connectedness with GBLUP. The accuracy of*  
813 *genomic estimated breeding values of young bulls as a function of average herd size (1-32) and the*

814    *number of records in the training set (2000, 8000, 16000 & 32000. Herd is modelled as a random*  
815    *effect.*



816

817    *Figure 7. The impact of genetic connectedness and heritability on EBV accuracy of young bulls.*  
818    *Comparison of the heritability of the trait with GBLUP. The accuracy of genomic estimated breeding*  
819    *values of young as a function of average herd size (1-32) and the genetic connectedness of the*  
820    *training set (100 & 1,000 sires per generation). The three panels correspond to the heritability of the*  
821    *trait (0.1, 0.3 & 0.5). Herd is modelled as a random effect.*

822