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14  Abstract

15 Background: Genetic evaluation is a central component of a breeding program. In advanced
16  economies, most genetic evaluations depend on large quantities of data that are recorded on
17 commercial farms. Large herd sizes and widespread use of artificial insemination create
18 strong genetic connectedness that enables the genetic and environmental effects of an
19 individual animal’s phenotype to be accurately separated. In contrast to this, herds are neither
20 large nor have strong genetic connectedness in smallholder dairy production systems of many
21  low to middle-income countries (LMIC). This limits genetic evaluation, and furthermore, the
22  pedigree information needed for traditional genetic evaluation is typically unavailable.
23 Genomic information keeps track of shared haplotypes rather than shared relatives. This
24  information could capture and strengthen genetic connectedness between herds and through
25 this may enable genetic evaluations for LMIC smallholder dairy farms. The objective of this
26  study was to use simulation to quantify the power of genomic information to enable genetic

27  evauation under such conditions.

28 Results: The results from this study show: (i) the genetic evaluation of phenotyped cows
29 using genomic information had higher accuracy compared to pedigree information across all
30 breeding designs; (ii) the genetic evaluation of phenotyped cows with genomic information
31 and modelling herd as a random effect had higher or equal accuracy compared to modelling
32 herd as afixed effect; (iii) the genetic evaluation of phenotyped cows from breeding designs
33  with strong genetic connectedness had higher accuracy compared to breeding designs with
34  weaker genetic connectedness; (iv) genomic prediction of young bulls was possible using
35 marker estimates from the genetic evaluations of their phenotyped dams. For example, the
36  accuracy of genomic prediction of young bulls from an average herd size of 1 (u=1.58) was
37  0.40 under abreeding design with 1,000 sires mated per generation and atraining set of 8,000

38  phenotyped and genotyped cows.
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39 Conclusions: This study demonstrates the potential of genomic information to be an enabling
40 technology in LMIC smallholder dairy production systems by facilitating genetic evaluations
41  within-situ records collected from farms with herd sizes of four cows or less. Across a range
42  of breeding designs, genomic data enabled accurate genetic evaluation of phenotyped cows
43  and genomic prediction of young bulls using data sets that contained small herds with weak
44  genetic connections. The use of smallholder dairy data in genetic evaluations would enable
45  the establishment of breeding programs to improve in-situ germplasm and, if required, would
46  enable the importation of the most suitable external germplasm. This could be individually
47 tailored for each target environment. Together this would increase the productivity,
48  profitability and sustainability of LMIC smallholder dairy production systems. However, data
49  collection, including genomic data, is expensive and business models will need to be

50 carefully constructed so that the costs are sustainably offset.
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51 Background

52 The huge increase in milk yield of dairy cattle in advanced economies over the past
53 century is a powerful example of the impact that selective breeding can have on improving
54  livestock productivity. For example, in the US dairy industry, production of milk per cow
55 doubled from an average of 20 litres to 40 litres per day between 1960 and 2000 [1].
56  Approximately 50% of this improvement can be attributed to breeding. However, despite the
57 potential benefits, similar breeding practices have had poor efficacy and adoption in
58 smallholder dairy production systems in many low to middle-income countries (LMICs).
59  Recent estimates from Kenyan smallholder farms suggest that average productivity per cow
60 isapproximately 5 litres per day and there is little evidence of major genetic improvement in

61  recent decades [2-5].

62 In Kenya and other East African countries, farms with five cows or less account for
63  more than 70% of milk production [6,7], and farms with 10 cows or less account for around
64  90% of milk production [8]. The low levels of productivity and its economic importance has
65 stimulated renewed efforts to improve dairy cow productivity in LMIC smallholder dairy
66  production systems [6,9-11]. These efforts include new approaches for collecting data from
67 rural farms more effectively and the establishment of effective and penetrant genetic
68 evauation schemes [10,12-14], breeding programs and dissemination programs [15], all of

69  which have been somewhat intractable to sustain over the long-term in the past.

70 Genetic evaluation is acentral component of a breeding program. The properties of an
71 ideal data set that enables an accurate genetic evaluation include: (i) genetic connectedness
72  between herds or management groups [16]; (ii) sufficient numbers of animals; (iii)
73  sufficiently large herd sizes; and (iv) accurate phenotype collection. Genetic evaluations have

74  been very successful in advanced economies because large data sets are routinely assembled
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75 from commercia farms with modest to large herd sizes (e.g., twenty to several thousand
76  cows). Genetic connectedness between herds is high due to the widespread use of artificial
77 insemination (Al). Typically, phenotypes are accurately measured (e.g., automatically on
78  advanced milking machines). Such data enables the genetic and environmental effects of an
79  individua animal’s phenotype to be accurately separated. All or many of these features are
80 not present in many LMIC smallholder dairy production systems. For example, smallholder
81 dairy farmers in East Africa have small herd sizes (e.g., herds with one to five cows), alow
82 prevaence of Al (5-10%) [8], and an absence of automated phenotyping systems [17].
83  Traditionaly, this has prevented the establishment of effective genetic evaluation systemsin

84  these settings.

85 Genomic evaluations use a genomic relationship matrix to capture the realised, rather
86 than expected pedigree-derived relationships between animals [18,19]. The use of genomic
87 information has been transformative for many genetic evaluation systems in advanced
88 economies. For example, the accuracy, which is the sgquare root of reliability, of prediction
89 for milk yield of young bulls increased from 0.62 using pedigree best linear unbiased
90 prediction (PBLUP) to 0.85 for genomic best linear unbiased prediction (GBLUP) [20]. In
91 the context of LMIC smallholder dairy production systems, genomic data could be even more
92  important than it has been in advanced economies. For the first time, genomic data could
93 enable effective genetic evaluation systems based on relatively imprecisely measured
94  phenotypes, collected on cows in very small herd sizes, which have relatively low levels of
95  genetic connectedness. In such a setting, genomic data could capture and utilise information
96 pertaining to haplotypes that are shared by animals in different herds. This information could
97 reveal genetic connectedness that is unseen by pedigree information, which would, in turn,
98 enable more accurate partitioning of the genetic and environmental effects on animal’s

99 performance in small herds. This opens up the possibility of an in-situ breeding program
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100  based on in-situ performance data from LMIC smallholder dairy farms. Given that such data
101 reflects the performance of animals within the target management and environment settings,
102 animals produced by such a breeding program would be most suited to the participating

103  smallholder dairy farmers.

104 In genetic evaluations, the herd or management group is usualy included in the
105 atistical model to enhance the separation of the genetic and environmental effects of an
106 anima's performance [21-24]. Herds can be modelled as fixed or random effects. Most
107  genetic evauations in advanced economies model herds as fixed effects because herd sizes
108 are typically large, which leads to fixed and random effects models giving aimost equa
109 solutions [22,23]. When herd sizes are small, such as in many LMIC smallholder dairy
110  production systems, modelling herd as a fixed effect leads to inaccurate solutions [25].
111  Modelling small herds as random effects may reduce this inaccuracy, providing estimated
112 breeding values (EBVs) with higher accuracies. In combination with the use of genomic
113  information, this could enable genetic evaluations to be performed using data recorded, in-

114  situ, on LMIC smallholder dairy farms.

115 The aims of this study were to use simulation to quantify: (i) the power of genomic
116 information to enable genetic evaluation based on phenotypes recorded on smallholder dairy
117  farms and, under such conditions, the impact of: (ii) modelling herd as a fixed or random
118  effect; (iii) the genetic connectedness of a breeding population; and (iv) the number of

119 records on the accuracy of EBV's of phenotyped cows and young bulls.

120 Across arange of breeding designs, genomic data enabled accurate genetic evaluation
121  of phenotyped cows using data sets that contained small herds with weak genetic connections
122  (according to pedigree). The genetic evaluation of phenotyped cows using genomic

123 information had higher accuracy compared to pedigree information across al breeding
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124  designs. The genetic evaluation of phenotyped cows with genomic information and
125 modelling herd as a random effect had higher or equal accuracy compared to modelling herd
126 as a fixed effect. The genetic evaluation of phenotyped cows from breeding designs with
127  strong genetic connectedness had higher accuracy compared to breeding designs with weaker
128  genetic connectedness. The genomic prediction of young bulls was possible using marker
129  estimates from the genetic evaluations of their phenotyped dams. For example, the accuracy
130  of genomic prediction of young bulls from an average herd size of 1 (u=1.58) was 0.40 under
131 a breeding design with 1,000 sires mated per generation and a training set of 8,000
132  phenotyped and genotyped cows. Our results show that genetic evaluations with genomic
133 information can provide a high accuracy of EBV's of phenotyped cows and young bulls when
134 using data from smallholder dairy farms, and would, therefore, enable in-situ breeding

135 programs based on performance measured in-situ.

136
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137  Material and methods

138 Simulations were used to quantify the power of genomic information to enable
139  genetic evaluation based on phenotypes recorded on smallholder dairy farms. Ten replicates
140  of several scenarios were performed with the overall simulation scheme depicted in Figure 1.
141  The simulations were performed using AlphaSimR [26] and were designed to: (i) generate
142 whole genome sequence data; (ii) generate single nucleotide polymorphisms (SNP),
143 quantitative trait loci (QTL) and phenotypes; (iii) generate pedigree structures for LMIC
144  smallholder dairy populations; (iv) vary the population and average herd size; (v) vary the
145 ratios of genetic, herd and environmental variances; and (vi) run genetic evaluations
146 modelling herd as either fixed or random effects. Conceptually, the smulation scheme was

147  divided into historical and evaluation phases.

148 Each of the 10 replicates consisted of: (i) a burn-in phase shared by all strategies; and
149  (ii) an evaluation phase that simulated breeding with each of a number of different breeding
150 designs. Specifically, the historical component was subdivided into three stages: the first
151 smulated the species’ genome sequence; the second simulated founder genotypes for the
152 initial parents; and the third simulated five generations of breeding using phenotypic

153  selection.

154 The burn-in phase represented historical evolution, under the assumption that
155 livestock populations have been evolving for tens of thousands of years, and historical
156  breeding efforts that were represented by five generations of phenotypic selection. The
157 evaluation phase represented six generations of animal breeding in which animals were
158  selected on their phenotypes. In the evaluation phase, population parameters were varied (i.e.,

159 the number of sires mated per generation, large or small population sizes, large or small
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160 average herd sizes, and different proportions of the genetic, herd and environmental

161 variances) to resemble arange of possible breeding designs (Figure 1).

162 Burn-In: Generation of whole genome sequence data

163 For each replicate, a genome consisting of 10 chromosome pairs was simulated for
164 the hypothetical animal species similar to cattle. Sequence data was generated using the
165 Markovian Coaescent Simulator (MaCS) [27] and AlphaSmR [26] for 4,000 base
166  haplotypes for each of ten chromosomes. The chromosomes were each 100 cM in length
167  comprising 10° base pairs and were simulated using a per site mutation rate of 1x10® and a
168  per site recombination rate of 1x10®°. The Ne was set to 1,035 in the final generation of
169 historical simulation, to Ne=6,000 (1,000 years ago) to Ne=24,000 (10,000 years ago), and to
170  Ng=48,000 (100,000 years ago) with linear changes in between [28]. The N, of 1,035 was

171  chosen to reflect the high genetic diversity found in cattle populations in Africa.

172  Burn-In: Founder Genotypes

173 Simulated genome sequences were used to produce 2,000 founder animals. These
174  founder animals served as the initial parents in the burn-in phase. Sites segregating in the
175 founders sequences were randomly selected to serve as 5,000 SNP markers per chromosome
176 (50,000 genome-wide in total) and 1,000 QTL per chromosome (10,000 genome-wide in

177 total).

178 Burn-In: Phenotype

179 A single trait representing total milk yield for a single lactation was simulated for al
180 animals. The true breeding values (TBVs) were calculated by summing the average effects of
181 the animal’s genotype at each QTL. QTL additive effects were sampled from a standard

182 normal distribution, N(0,1), and linearly scaled to produce TBVs in the founder population
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183  with a variance (c2) of 0.2. Random error was sampled from a normal distribution,
184  N(0,02). The initial random error variance was set at 62=1.8. The TBVs and random error
185 effects were summed to create the phenotypes of the animal. These phenotypes were used for
186  selection during the burn-in and the first 5 years in the evaluation phases of the simulation.
187  Additiona herd effects were added to the phenotypes of the animals, described in a later

188  section, in the final generation of the evaluation phase of the simulation

189 Recent (Burn-In) Breeding

190 Recent (burn-in) breeding for milk yield was simulated over 5 discrete generations of
191  selective breeding on phenotype. The features of this breeding stage were: (i) 225 sires per
192  generation, (ii) 1,000 dams per generation, and (iii) 2,000 offspring per generation. These
193 numbers were chosen to match the base population Ne of 1,035 following the equation from
194  Charlesworth et a. (2008) that accounts for the variable number of males and females as well
195 asthe mean and variance of family size. In the final generation of this stage, 80,000 offspring

196  were generated to enable the full range of scenarios in the evaluation phase of the simulation.

197 Evaluation Phase

198 The evaluation phase of the simulation modelled breeding using alternative breeding
199 designs. Each design was ssmulated for an additional 6 generations following the recent
200  breeding burn-in component so that each design could be evaluated with an equivalent
201 starting point. A baseline design was constructed using parameters that are representative of
202  the current smallholder farming system commonly observed in East Africa. We refer to this
203 design as the LMIC design. Alternative breeding designs were modifications that used the
204  LMIC design as atemplate (Figure 1). The common features across the simulation of all the
205  breeding designs were: (i) all generations of selection produced 80,000 animals of equal sex

206  ratio, (ii) for simplicity selection on sires was based on their phenotype, (iii) no selection was
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207  performed on dams. Alternate breeding designs varied: (i) the size of the training set; (ii) the
208 number of sires mated per generation; (iii) the average herd size; and (iv) the proportions of
209 genetic, herd and environmental variances. A schematic for the overall structure of the
210  breeding designs, including the LMIC design, is given in Figure 1 and a detailed description

211 follows.

212 LMIC Design

213 The LMIC design was developed to approximate the current smallholder farming
214  system structure commonly observed in East Africa The training set size was set a 8,000
215 phenotyped cows and the number of sires mated per generation was set to 1,000. A trait
216 heritability of 0.1 and ratio of 1:4 between genetic and herd effect variance ratios were

217  chosen based upon unpublished data [29].

218 Genetic Evaluation Modds

219 Breeding values were estimated using the following basic model:

220 y=Xb+Zu+e, D

221 wherey isavector of phenotype records measured on cows; b is a vector of fixed effects; u
222  isavector of breeding values for which we assumed that with the PBLUP u ~ N(0, Ac2) and
223 with the GBUP u ~ N(0, Go2), where A is the pedigree numerator relationship matrix based
224 on 5 generations of the pedigree [30] and G is the genomic numerator relationship matrix
225  based on 50k SNP chip [31]; eis a vector of residuals for which we assumes e ~ N(0, Io2);
226 X and Z are the incidence matrices linking phenotype records respectively to b and u. We
227 have conducted three analyses with the basic model in relation to a herd effect: (i) we
228  excluded it, which gave us the basic model with intercept as the only fixed effect; (ii) we

229 modelled it as a fixed effect; and (iii) we modelled it as a random effect for which we
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230 assumed h ~ N(0,Io2). We assumed that the variance of herd effects o7, breeding values o2
231  and residuals o2 were known and set them to the simulated values of the LMIC design. Only
232  thelast generation of phenotype data was used in model 1 to mimic the recent introduction of

233  phenotype, pedigree and genomic data recording.

234 PBLUP evaluations were run using the WOMBAT software [32]. GBLUP evaluations
235 were run using the AlphaBayes software [33]. Three genetic evaluation models were fit: (i)
236  excluding herd effects; (ii) herds modelled as fixed effects; and (iii) herds modelled as
237  random effects. All models modelled the animal I1Ds as random effects. All other parameters

238 wereheld constant at the values used in the LMIC design.

239 Genetic Connectedness and Herd Size

240 Genetic connectedness was varied across different breeding designs in two ways; (i)
241  herd connectivity — the distribution of related animals within and across different herds, and
242  (ii) the recent N. of the breeding design. The herd connectivity was varied by simulating
243  different average herd sizes. To generate datasets with arange of different average herd sizes,
244 the realised herd sizes were sampled from a Poisson distribution with a lambda of 1 (u =
245 1.58,6°=0.66), 2 (1= 2.32, 6° = 1.60), 4 (1L = 4.06, 6° = 3.78), 8 (L =8, 6° = 8), 16 (u = 16,
246 ©°=16.19) and 32 (1 = 32, 6° = 31.92). The recent N, of the breeding design was varied
247  using four different numbers of sires mated per generation: 100, 250, 1,000 and 5,000 sires.
248  The number of dams per generation remained constant at 40,000. All other parameters were

249  held constant at the values used in the LMIC design.

250 Sizeof Training Set

251 The size of the training set used in the genetic evaluations was varied across different

252  breeding designs using four different numbers of records: 2,000, 8,000, 16,000 and 32,000
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253  phenotyped cows. Phenotyped cows were sampled evenly across the population, to ensure the
254  genetic connectedness was maintained. All other parameters were held constant at the values

255 usedinthe LMIC design.

256  Trait Heritability and Herd Effect

257 To produce the final phenotype records, the TBVs were standardized and re-scaled,
258 and herd and random error effects were sampled from a norma distribution with
259  corresponding variances. In addition to the LMIC design, which had a trait with a narrow
260 sense heritability of 0.1 and herd effect variance ratio of 0.4, we smulated two other
261  scenarios. (i) atrait with a narrow sense heritability of 0.3 and herd effect variance ratio of
262 0.4; and (ii) atrait with anarrow sense heritability of 0.5 and herd effect variance ratio of 0.4.
263  For each of the three scenarios, the TBVs, herd effects and random errors were summed to
264  create the final phenotypes of the cows. All other parameters were held constant at the values

265 usedinthe LMIC design.

266  Generation of young bull population

267 For each scenario we generated an additional generation of offspring to produce a
268 validation set of 2,000, 8,000, 16,000 and 32,000 selection candidates, the young bulls that
269  would have been genomically tested. Young bulls had no phenotypes recorded and as such

270  served asforward validation of the model 1 fitted on phenotyped cows.

271  Comparison of Breeding Designs

272 The various breeding designs resulted in 288 different scenarios which enabled
273  multiple comparisons. The breeding designs were compared based upon the accuracy and
274  bias of EBVs separately for each scenario and replicate — we report mean and 95% interval of

275 estimates over replicates. Accuracy was measured as the Pearson’s correlation coefficient
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276  between the EBVs and TBVs. The bias of genomic prediction was measured as the slope of

277 theregression of the TBVs on the EBVs.
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278 Results

279 The various breeding designs resulted in 288 different scenarios which enabled
280 multiple comparisons. Across a range of breeding designs, genomic data enabled accurate
281  genetic evaluation of phenotyped cows using data sets that contained small herds with weak
282  genetic connections. The main trends observed in our results show: (i) the genetic evaluation
283  of phenotyped cows using genomic information had higher accuracy compared to pedigree
284  information across all breeding designs; (ii) the genetic evaluation of phenotyped cows with
285 genomic information and modelling herd as a random effect had higher or equal accuracy
286  compared to modelling herd as afixed effect; (iii) the genetic evaluation of phenotyped cows
287  from breeding designs with strong genetic connectedness had higher accuracy compared to
288  breeding designs with weaker genetic connectedness; (iv) the genomic prediction of young
289  bulls was possible using marker estimates from the genetic evaluations of their phenotyped
290 dams. For example, the accuracy of young bulls from an average herd size of 1 (u=1.58) was
291  0.40 under a breeding design with 1,000 sires mated per generation and atraining set of 8,000
292  phenotyped and genotyped cows. The accuracies of genomic prediction of young bulls
293 followed similar trends to those observed in the evaluation of phenotyped cows, with a

294  reduction of ~0.1 in overall accuracy.

295 To ease the presentation, we break the results into 5 sections: (i) LMIC design; (ii)
296 impact of herd effect modelling; (iii) impact of genetic connectedness and heritability; (iv)

297  impact of training set size; and (v) prediction of young bulls.

298 LMIC Design

299 The accuracy of genetic evaluation of phenotyped cows, from small, weakly
300 genetically connected herds was quantified under the LMIC design. Genetic evaluation with

301 phenotyped cows from intermediate and large average herd sizes had a higher accuracy than
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302 genetic evaluation with phenotyped cows from small average herd sizes. Increases in average
303 herd size had a diminishing effect on increases in accuracy of genetic evaluation of
304  phenotyped cows. The genetic evaluation of phenotyped cows using genomic information
305 had higher accuracy compared to pedigree information across all breeding designs. Table 1
306 reports the accuracy of EBVs of phenotyped cows with both genetic evaluation methods as
307 average herd size was changed. The accuracies reported correspond to models with the herd
308 modelled as arandom effect. At an average herd size of 1 (u=1.58), phenotyped cows had an
309 accuracy of EBVs of 0.40 with the PBLUP and 0.50 with the GBLUP (an increase of 0.10).
310 At all other average herd sizes, the increase in accuracy of GBLUP compared to PBLUP was

311  between 0.11 and 0.12. In what follows, results will only be presented for the GBLUP.

312 Tablel. Theimpact of genetic evaluation method on EBV accuracy

Size of Herd
Method
1 2 4 8 16 32
PBLUP Accuracy 0.40 0.41 043 0.44 0.45 0.46
GBLUP Accuracy 0.50 0.53 0.54 0.56 0.57 0.57

313

314  Comparison of the accuracy of genetic evaluation method under the LMIC design with different
315 average herd sizes and using the PBLUP or GBLUP method. Herd is modelled as a random
316  effect. Sandard error was 0.01 or less.

317

318 Impact of herd effect modelling

319 Genetic evaluations were run using three models: (i) excluding a herd effect, (ii) herd
320 modelled as afixed effect, and (iii) herd modelled as a random effect. The genetic evaluation
321 of phenotyped cows that included a herd effect had higher accuracies across all breeding
322 designs. The genetic evaluation of phenotyped cows with genomic information and

323 modelling herd as a random effect had higher accuracy compared to modelling herd as a
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324 fixed effect at low average herd sizes. However, the accuracies of the two modelling
325  approaches converged once a herd size of 8 was reached. Figure 2 plots the average herd size
326  against the accuracy for each of the three evaluation models. Figure 2 shows that excluding a
327 herd effect gave an accuracy of 0.48, averaged across all herd sizes. At average herd sizes of
328 1.58 and 2.32, modelling herd as a random effect increased the accuracy by 0.10 and 0.05,
329 compared to modelling herd as a fixed effect. At an average herd size of 8, the accuracies

330 from the two modelling approaches had practically converged.

331 Impact of genetic connectedness and trait heritability

332 In the simulations we varied genetic connectedness between herds in two ways; (i)
333  herd connectivity — varied by simulating different average herd sizes; and (ii) the recent Ne of
334 the breeding design - varied using different numbers of sires mated per generation. The
335 genetic evauation of phenotyped cows from breeding designs with strong genetic
336 connectedness had higher accuracy compared to breeding designs with weaker genetic
337  connectedness. Figure 3 plots the average herd size against the accuracy of EBVs of
338  phenotyped cows for each of the four breeding designs with different numbers of sires mated
339  per generation. Figure 3 shows that at an average herd size of 1 (u=1.58), a decrease in the
340 number of sires mated per generation from 5,000 to 1,000, 250 and 100 increased the
341  accuracy from 0.46 to 0.50, 0.55 and 0.62, respectively. This shows the individual impact of
342  the number of sires mated per generation on the accuracy. With 1,000 sires mated per
343  generation, an increase in the average herd size from 1.58 to 32, increased the accuracy from
344  0.50 to 0.58. This shows the individual impact of the average herd size on the accuracy. An
345 increasein the average herd size from 1.58 to 32, and a decrease in the number of sires mated
346  per generation from 1,000 to 100, increased the accuracy from 0.50 to 0.68. This shows the

347  combined impact of the genetic connectedness of the breeding design on the accuracy.
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348 The genetic connectedness of the breeding design also showed interactions with the
349 heritability of the trait. Across al trait heritabilities, the EBVs of phenotyped cows had lower
350 accuracy in breeding designs that had weak genetic connections. The lower accuracy due to
351 anincrease in the number of sires mated per generation in the breeding design became more
352 prominent at lower heritabilities. The lower accuracy due to a decrease in the average herd
353 size of the breeding design was more prominent at higher heritabilities. Figure 4 plots the
354 average herd size against the accuracy of EBVs of phenotyped cows for two of the four
355 different numbers of sire mated per generation (100 and 1,000 sires). The three panels
356  correspond to the heritability under the different breeding designs. Figure 4 shows that the
357 highest accuracy (0.94) was achieved for a high heritability trait (0.5) and when genetic
358  connectedness was strong (100 sires mated per generation and an average herd size of 32). A
359 decrease in the average herd size from 32 to 1.58, reduced the accuracy by 0.07. An accuracy
360 of 0.68 was achieved for a low heritability trait (0.1) and when genetic connectedness was
361 strong (100 sires mated per generation and an average herd size of 32). An increase in the
362 number of sires mated per generation to 1,000 sires mated per generation, reduced the

363  accuracy by 0.10.

364 Impact of Training Set Size

365 Genetic evaluation of phenotyped cows with a larger number of records had higher
366  accuracies for all average herd sizes. Figure 5 plots the average herd size against the accuracy
367 of EBVs of phenotyped cows for the four different training set sizes. Figure 5 shows an
368 increase in the number of records in the training set increased the accuracy across all of the
369 average herd sizes. At an average herd size of 1 (u=1.58), an increase in the number of
370 records in the training set from 2,000 to 8,000, 16,000 and 32,000 records increased the

371  accuracy from 0.41 to 0.50, 0.59 and 0.68, respectively.
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372  Prediction of young bulls

373 Genomic prediction of young bulls was possible using marker estimates from the
374  genetic evaluations of their phenotyped dams. The accuracies of young bulls followed similar
375 trends to those observed in the evaluation of phenotyped cows, with a reduction of ~0.1 in
376  overal accuracy. Genomic prediction of young bulls with a larger number of records in the
377  training set had higher accuracies. The accuracy of genomic prediction of young bulls from
378 an average herd size of 1 (u=1.58) was 0.40 under a breeding design with 1,000 sires mated
379  per generation and atraining set of 8,000 phenotyped and genotyped cows. Figure 6 plots the
380 accuracy of EBVs of candidate young bulls against the average herd size for the four
381 different training set sizes. Figure 6 shows that an increase in the number of records in the
382 training set increased the accuracy across all of the average herd sizes. At an average herd
383 size of 1 (u=1.58), an increase in the number of records in the training set from 2,000 to
384 8,000, 16,000 and 32,000 records increased the accuracy from 0.28 to 0.40, 0.51 and 0.62,

385  respectively.

386 The accuracy was also affected by an interaction between the heritability of the trait
387 and the genetic connectedness of the breeding design. The genetic connectedness of the
388 breeding design was less important for traits with a higher heritability. Figure 7 plots the
389 accuracy against the average herd size for two of the four different numbers of sire mated per
390 generation (100 and 1,000 sires). The three panels correspond to the different trait
391 heritabilities in the breeding designs. Figure 7 shows that an increase in the average herd size
392  did not recover the loss of accuracy due to lower genetic connectedness (100 vs 1,000 sires
393 mated per generation). This is different from what was observed with the accuracy for
394  phenotyped cows. Figure 7 shows that for a high heritability trait (0.5) and an average herd
395 sizeof 32, increasing the number of sires mated per generation from 100 to 1,000 sires mated

396 per generation reduced the accuracy of young bulls by 0.04.
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397 Discussion

398 In this paper, we demonstrated that genetic evaluation using genomic information can
399 provide accurate EBVs when using data recorded on smallholder farms across a range of
400 breeding designs. Therefore, genetic evaluations using genomic information could enable in-
401 situ data recorded on smallholder farms to be used to drive in-situ genetic improvement
402 programs and genetic importation programs to improve anima performance on such
403 smallholder farms. This capacity would enable tailored improvement and importation of
404  genetics for smallholder farms. The results of our study highlight three main points for
405 discussion: (i) factors that impact the accuracy of genomic evaluations; (ii) limitations of the
406 simulation; and (iii) prospects for anima breeding in LMIC smallholder dairy production

407  systems.

408 Factorsthat impact the accuracy of genomic evaluations
409  Impact of Herd Sze

410 The herd or management group is usually included in the statistical model of genetic
411 evaluations to enhance the partitioning of the genetic merit of an individual from the non-
412  genetic effects underlying its phenotype [21-24]. Herds can be modelled as fixed or random
413  effects. One of the reasons underlying the great success of genetic evaluations in advanced
414  economies is that large data sets are routinely assembled from commercia farms with large
415 herd sizes. This data structure is suited to modelling herd as a fixed effect. This data structure
416 also enables accurate separation of genetic and environmental effects and reduces potential

417  bias dueto adifference in management effects between different herds.

418 However, LMIC smallholder dairy farms often have small herd sizes, typicaly
419  between one and five cows. With herd sizes as small as this, LMIC smallholder dairy datasets

420 St a one extreme of the bias-variance trade-off [34]. Modelling herd as a fixed effect
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421  provides unbiased estimates. However, when herd sizes are small, these estimates of herd
422  effect may have large variance. Therefore, modelling herd as a fixed effect in the LMIC
423  smallholder dairy genetic evaluations may lead to herd effect estimates with high variance
424  and areduced ability to correctly rank individuals by genetic merit [25]. This could lead to a
425  decreased accuracy of EBVs. An alternative approach in such settings would be to model
426  herds as random effects. Modelling herd as a random effect looks to minimize the variance of
427  estimates, but the resulting estimates are inherently biased due to shrinkage applied during
428  estimation. However, the shrinkage process allows phenotypes recorded in small herds to
429 partially and proportionately contribute to the genetic evaluation. This is essential for LMIC
430 smallholder dairy genetic evaluations with herd sizes typically between one and five cows.
431  The results from our study support this and showed that when data is collected from herds
432  between one and four cows, genomic evauations modelling herd as a random effect
433  outperformed modelling herd as afixed effect. In the case of genomic evaluations using data
434  from an average herd size of 1 (u=1.58), modelling herd as a random effect increased the
435  accuracy of EBVs of phenotyped cows by 0.10 compared to modelling herd as a fixed effect.
436 It was only when the average herd size was 8 or more that the accuracy of EBVs of
437  phenotyped cows from the two models converged. Overall our results demonstrate that
438 modelling herd as a random effect in LMIC smallholder dairy genetic evauations: (i)
439 increases the accuracy of genetic evaluations; (ii) enables phenotypes recorded in all herds to
440 partially and proportionately contribute to the genetic evaluation; and (iii) enables the
441  breeding values of al animals (even those in single cow herds) to be calculated. However, as
442  isdiscussed later, modelling herd as a random effect may increase accuracy but bias may be
443  generated when non-random associations between the genetic value of cattle and the herd

444  management exist within the training set.
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445  Impact of GBLUP as atool to increase connectedness between herds

446 Sufficient genetic connectedness between herds is important for accurate genetic
447  evauations [16,35]. In dairy production systems in advanced economies, large herd sizes and
448  widespread use of artificial insemination creates strong genetic connectedness between herds
449  that enables accurate separation of genetic and environmental effects. Because strong genetic
450 connectedness between herds is already established in dairy production systems in advanced
451  economies, GBLUP has primarily increased the accuracy of EBV's compared to PBLUP by
452  capturing and exploiting deviations from expected relationships between cattle caused by
453 Mendelian sampling [36-38]. For example, the accuracy, which is the square root of
454 reliability, of prediction for milk yield of young bulls have increased from 0.62 using PBLUP
455 to 0.85 for GBLUP [20]. We say “primarily” because most training populations are
456  comprised of bulls that were progeny tested across a large number of herds. In this situation,
457 modelling both the genetic and herd effects jointly is less of a concern. The single-step
458 GBLUP method and the recent rise of cow genotyping will also enable improvements by
459  jointly modelling of genetic and herd effects. In LMIC smallholder dairy production systems
460 the benefit using GBLUP will be both due to exploiting deviations from expected
461 relationships caused by Mendelian sampling and due to implicit increases of genetic

462  connectedness between herds.

463 Generating sufficient genetic connectedness between herds is especially difficult and
464  important in LMIC smallholder dairy production systems because herd sizes are often small,
465 farms are geographically dispersed, and artificial insemination is not widely used [8]. In such
466  production systems, the genetic and environmental effects are likely to be partially or fully
467  confounded. Thisis most obvious in the case of a single cow herd where we cannot separate
468  the genetic effect of the cow from the herd effect of the farm. However, a range of levels of

469  confounding could aso arise in small herds composed of cows sharing the same pedigree-
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470 derived relatedness, with the recent common ancestor or ancestors only used in that herd. In
471  both of these circumstances, PBLUP has limited ability to partition a cow’s phenotype into its
472  genetic and environmental components. In contrast, GBLUP can achieve this partitioning,
473  because it is capable of tracking the different permutations of haplotypes shared between
474  cattle in different herds. During a genetic evaluation, GBLUP implicitly estimates the effects
475  of these haplotypes and from this also the EBV of each animal. This allows phenotypic
476  records from cows with shared haplotypes in different herds to contribute to the implicit
477 estimation of haplotype effects and the estimates of those haplotype effects allows the
478  partitioning of those cow’s phenotypes into their genetic and herd environment components.
479  Furthermore, through this implicit increasing of genetic connectedness between herds,
480 GBLUP increases the number of herds and cows that contribute useable information to the
481 genetic evaluation compared to PBLUP. All of these interlinked factors that underlie the
482 advantages of GBLUP, firstly make genetic evaluations using data recorded in-situ on
483 smallholder herds possible, and secondly, work to make those genetic evaluations more
484  accurate than those of PBLUP. In our study, the increase in genetic connectedness provided
485 by GBLUP resulted in genetic evaluations with approximately 0.1 higher accuracy of EBVs
486  compared to PBLUP, independent of herd size. This result probably overestimates the power
487 of PBLUP in such settings. We used five generations of error-free pedigree records in
488 PBLUP. In redlity, limited pedigree recording takes place in LMIC smallholder dairy
489  production systems. We should emphasise though that LMIC smallholder dairy data
490  structures likely do not enable very accurate estimation of individual haplotype effects and

491 that the dataset size will continue to be an important factor.

492 Another benefit of the increased genetic connectedness of training sets provided by
493 GBLUP, not assessed in our study, may be the mitigation of the bias of EBVs. In LMIC

494  smallholder dairy production systems, natural sire mating is prevalent, pedigree recording is
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495  limited, herd sizes are often small and farms are geographically dispersed. This structure is
496 likely to lead toisolated family clusters in pedigrees. Therefore, when using PBLUP in LMIC
497  smallholder dairy genetic evaluations, most of the information used to calculate the EBV for
498 any particular individual will be provided by close relatives captured by this poorly
499  connected pedigree. This may result in only a very smal number of herds contributing
500 effective information to the genetic evaluation of an animal or group of related animals. This
501 becomes a problem if confounding exists between the environment and the genetics in the
502 isolated clusters of herds. Confounding can occur when the same natural service bull is used
503 by acohort of farmers with farms that have a better or worse than average herd environment.
504  This may lead to biased breeding values under PBLUP. In contrast, haplotypes are likely to
505  be dispersed across more herds. Therefore, GBLUP could accumulate effective information
506 from more herds and more cows and thus be less prone to having haplotypes confounded

507  with the environment.

508 Limitationsof the ssimulation

509 Our simulations did not model the full complexity that would arise in practical genetic
510 evauations for LMIC smallholder dairy production systems. In this section we discuss three
511 limitations of our simulations: (i) high genomic selection accuracy; (ii) a simplified

512  distribution of animals across farms; and (iii) asimplified breeding goal.

513  Impact of high genomic selection accuracy

514 The accuracies of EBVs of phenotyped cows and young bulls observed in these
515 simulations are likely higher than what may be expected in practical genetic evaluations for
516 LMIC smallholder dairy production systems. Several simplifications of the simulation are
517 likely to have caused this, including the absence of genotyping and pedigree errors, additive

518 genetic architecture, homogeneity of environment and a single breed. Also, fixed variance
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519 components were used in the estimation of EBVs. In practical LMIC genetic evaluations, the
520 estimation error of variance components may result in lower accuracies of EBVs. However,
521  we believe that the main conclusion from this study (i.e., that GBLUP is more powerful than
522 PBLUP in LMIC smallholder production systems for several reasons) would still hold for
523  more redlistic simulations or real data. For decades it has been difficult to sustain widespread
524  recording and use of pedigree to drive genetic evaluations in LMIC dairy production systems.

525  GBLUP, for the reasons we outline, offers a route to overcoming this problem.

526  Impact of simplified distribution of animals across farms

527 The distribution of cattle across herds in the population impacts the choice of
528 modelling herd as a fixed or random effect in genetic evaluations. Bias, detected in this study
529 as an inflation or deflation of EBVS, can be generated when a non-random association
530 between herd management and genetic potential of cattle exists. Such non-random
531 associations can be generated, for example, by well-resourced farmers who use better
532  management practices also being able to afford semen of higher genetic merit sires, or by the
533  redtriction of natural mating sires to herds in specific regions. As discussed previously,
534  modelling herd as afixed effect estimates the herd effects independently for each herd. When
535 herd sizes are large, such as in advanced economies, this can reduce bias caused by
536 differences in the genetic means of different herds. Herd sizes are not large in LMIC
537 smallholder dairy production systems. In such circumstances, modelling herd as a random
538 effect in genetic evaluations allows phenotypes recorded in small herds to partially and
539 proportionately contribute to the genetic evaluation. This benefit extends to small herds
540 composed of cows of varying relatedness, with the ancestral haplotypes only present in that
541  herd. Thisis important in an LMIC smallholder dairy production systems context, with more
542  than 70% of milk in Kenya produced by herds of one to five cows [6,7]. However, the choice

543  between modelling herd as a random effect should consider the bias-variance trade-off [34].
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544  This choice is particularly important if correlations between herd management and the
545  genetic value of cows exist. Under this scenario, if the differences in genetic means across
546  herds are not accounted for, the herd effect of an animal may be partially assigned to the
547  genetic effect when herd is modelled as a random effect. In our study, cattle were assigned to
548 herds at random and no correlation between herd management and the genetic value of cows
549 existed. Therefore, significant bias effects were only detected in genetic evaluations
550 modelling herd as a fixed effect with an average herd size of one (results not shown). Thereis
551  another impact of the ssimulation not modelling the full complexity of the distribution of
552 cattle and its genetic effects across farms. The training sets likely had an increased genetic
553 connectedness compared to practica genetic evaluations in LMIC smallholder dairy
554  production systems. This resulted in accuracies of EBVs that are likely to be higher than
555  expected in practical genetic evaluations in LMIC smallholder dairy production systems.
556  However, our study also did not capture the full complexity of the interaction between
557  genetic connectedness and herd size. Therefore, our results likely underestimated the benefits
558 of GBLUP to increase genetic connectedness and more accurately separate the genetic and
559  environmental components of each cow's phenotype in small herds in practical genetic
560 evaluations in LMIC smallholder dairy production systems. With the projected increases in
561 data recording, we expect that these effects will diminish or that the scale of the data will

562 enable at least reasonably high accuracy to stimulate genetic progress.

563  Impact of simplified breeding goal

564 The breeding program examined in this simulation only considered a single
565 quantitative trait that did not interact with the environment. The breeding goal for practical
566 LMIC smallholder dairy production systems would be much more complex in practice. It
567  would comprise of several correlated traits (e.g., milk yield, milk components, fertility, feed

568 requirements, heat tolerance, disease resistance) many of which would interact with the
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569 environment. The single quantitative trait with 10,000 QTL that we simulated is
570 representative of such an index with a few additional assumptions: al traits are measured on
571 al animals, all traits are pleiotropic, and economic merit is linear. This study simulated a
572 simplified genetic architecture without considering dominance, epistasis and gene by
573  environment interaction. This will likely decrease the absolute values of accuracy reported in
574  this study but the main conclusions of our study (i.e., that GBLUP is more powerful than

575 PBLUPIin LMIC smallholder dairy production systems for several reasons) will still hold.

576  Prospectsfor animal breedingin LMICs

577 Our motivations for undertaking this study were to contribute to the enabling of the
578 sustained and long-term use of animal breeding to improve agricultura productivity and
579 sustainability in LMIC smallholder dairy production systems. Breeding has been hugely
580  successful for improving animals and plants in advanced economies and for improving plants
581 in LMICs. Breeding has had limited success in improving animals in LMICs. We believe that
582  for animal breeding to be successful in LMIC smallholder dairy production systems it must
583  be driven by data recorded in-situ on animals from such farms. We believe that the limited
584  success of animal breeding in these contexts is due to the infrastructure and data structures
585 that are prevalent in these systems, which make genetic evaluation using pedigree difficult, if
586 not impossible. Specifically, the infrastructure required to record pedigree over long periods
587 of time is typically absent in LMIC smallholder dairy production systems. The lack of
588  widespread use of Al and the small herd sizes result in a data structure that has insufficient
589  genetic connectedness between herds to facilitate genetic evaluations based on pedigree. We
590 believe that genomic data offers a route to overcome these problems and the results of our
591  study show this. However, our study did not quantify the long-term impacts of genomic data
592 in LMIC smallholder dairy breeding programs. As an example, our study demonstrated that

593 the EBVs of young bulls from an average herd size of 1 (u=1.58) could be predicted with an
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594  accuracy of 0.40. However, as well as increasing the accuracy of selection, genomic
595 evauations also offer an opportunity to reduce the generation interval of breeding programs.
596  These reductions in the generation interval have been the primary driver of the gain in the
597 rate of genetic improvement in dairy breeding programs in advanced economies because they
598 have approximately halved the generation interval, thereby doubling the rate of genetic gain
599 [20]. In LMIC breeding programs, it is difficult to estimate the reductions in the generation
600 interval that genomic evaluations could provide. Thisis due to the lack of pedigree recording
601 and infrastructure for the widespread use of Al, aready discussed. However, it is possible to
602 say that genomic evaluations will alow LMIC breeding programs to drive the generation
603 interval to near the biological and economic minimum for that system. The impact of this,
604 and the other results from our study, on the long-term genetic gain of LMIC smallholder

605 dairy breeding programs will need to be explored further.

606 Genomic data is expensive and its requirement may create a new cost barrier to the
607  success of animal breeding in LMIC smallholder dairy production systems. New business
608 models are needed to overcome this barrier in a self-sustaining way. One such model could
609 involve establishing an intertwined breeding and dissemination program for a target
610 environment. The cost of operating the breeding program would need to be proportionate to
611 the market that it would serve via its dissemination program. The breeding program could
612 comprise an informal set of nucleus animals distributed across many small herds within the
613 target environment. These nucleus animals could be genotyped and phenotyped and this data
614 used for a genetic evaluation using GBLUP. The best animals from this nucleus could be
615 disseminated via artificial insemination (with or without a subsequent progeny testing
616 scheme), as natural service sires, or as heifers. Further, the genomic prediction equation
617 calculated for the genetic evaluation could be used to select any external animals that would

618 be imported into the region. To reduce the costs of data recording in the nucleus and to
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619 increase the value of what would be disseminated a whole range of additional technologies
620 and services could be bundled together. For example, nucleus herds could also serve as
621 demonstration herds and the dissemination program could provide additional extension
622  services (e.g., a text message for a small fee with management or market information). Or
623 improved animal genetics could be packaged together with other technology (e.g., improved
624  seeds) which may have higher adoption rates. Overall, a business model could be constructed
625 that bundles technology, data recording, extension services, and a marketplace for LMIC
626 smallholder farmers. This type of self-sustaining platform would maximize the benefits and
627 cost-efficiency of any component (e.g., the genotyping and phenotyping of animals). This
628 business model could leverage the successes of established technologies and practices to
629 drive adoption of those that have been traditionally more intractable. The Africa Dairy
630 Genetic Gains [14], the Public Private Partnership for Al Dissemination [15] projects and the
631 emerging social enterprises (e.g., One Acre Fund [39], and electronic marketplaces for
632 agricultural products in LMICs (e.g., Livestock 247 [40]) show that many components of

633 such amodel areaready in place.
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634 Conclusions

635 This study has demonstrated the potential of genomic information to be an enabling
636 technology in LMIC smallholder dairy production systems by facilitating genetic evaluations
637  with in-situ records collected from farms with herd sizes of four cows or less. Across arange
638  of breeding designs, genomic data made it possible to accurately predict EBVs of phenotyped
639 cows and young bulls using data sets that contained small herds that had weak genetic
640  connections. The use of in-situ smallholder dairy data in genetic evaluations would establish
641 breeding programs to improve in-situ germplasm and, if required, would enable the
642 importation of the most suitable external germplasm. This could be individually tailored for
643 each target environment. Together this would increase the productivity, profitability and
644  sustainability of LMIC smallholder dairy systems. However, genomic data is expensive and

645  business models will need to be carefully constructed so that the costs are sustainably offset.
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785  Figure 1. Simulation scenarios. The conventional breeding design is highlighted in green. Breeding

786  designswere compared for each design parameter individually (horizontally), while keeping all other

787  design parameters fixed at the values of the conventional breeding design.
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789  Figure 2. The impact of the model on EBV accuracy of cows. Comparison of the statistical
790  modelling of herd under the LMIC design with GBLUP. The accuracy of estimated breeding values as
791  afunction of average herd size (1-32) and the herd effect (i) excluded from the model, (i) modelled as

792  afixed effect and (iii) modelled as a random effect.
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Figure 3. The impact of genetic connectedness on EBV accuracy of cows. Comparison of genetic
connectedness of the training set with GBLUP. The accuracy of edimated breeding
values are presented as a function of average herd size (1-32) and the number of sires (100, 250,
1000 & 5000). The number of records in the training set is 8000. Herd is modelled as a random

effect.
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Figure 4. The impact of genetic connectedness and heritability on EBV accuracy of cows.

Comparison of the heritability of the trait and genetic connectedness with GBLUP. The accuracy of
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802 edtimated breeding values as a function of average herd size (1-32) and the genetic connectedness of
803 thetraining set (100 & 1,000 sires per generation). The three panels correspond to the heritability of

804 thetrait (0.1, 0.3 & 0.5). Herd is modelled as a random effect.
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806  Figure 5. The impact of training set size on EBV accuracy of cows. Comparison of the number of
807  records in the training set with GBLUP. The accuracy of estimated breeding values of cows as a
808  function of average herd size (1-32) and the number of records in the training set (2000, 8000, 16000

809 & 32000). Herd is modelled as a random effect.
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811 Figure 6. The impact of training set size on EBV accuracy of young bulls. Comparison of the
812  number of records in the training set and genetic connectedness with GBLUP. The accuracy of

813 genomic estimated breeding values of young bulls as a function of average herd size (1-32) and the
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number of records in the training set (2000, 8000, 16000 & 32000. Herd is modelled as a random

effect.
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Figure 7. Theimpact of genetic connectedness and heritability on EBV accuracy of young bulls.
Comparison of the heritability of the trait with GBLUP. The accuracy of genomic estimated breeding
values of young as a function of average herd size (1-32) and the genetic connectedness of the

training set (100 & 1,000 sires per generation). The three panels correspond to the heritability of the

trait (0.1, 0.3 & 0.5). Herd is modelled as a random effect.
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