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Abstract 

Genome-wide association studies have identified genetic variation contributing to complex disease risk but 

assigning causal genes and mechanisms has been more challenging, as disease-associated variants are often 

found in distal regulatory regions with cell-type specific behaviours. Here, the simultaneous correlation of ATAC-

seq, Hi-C, Capture Hi-C and nuclear RNA-seq data, in the same stimulated T-cells over 24 hours, allowed the 

assignment of functional enhancers to genes. We show how small magnitude changes in DNA interaction and 

activity dynamics are correlated with much larger changes to dynamics in gene expression and  that the 

strongest correlations are observed within 200 kb of promoters. Using rheumatoid arthritis as an exemplar T-cell 

mediated disease, we demonstrate interactions of expression quantitative trait locus SNPs with target genes and 

confirm assigned genes or show complex interactions for 20% of disease associated loci. Finally, we confirm one 

of the putative causal genes using CRISPR/Cas9.  

Introduction 

It is now well established that the vast majority of SNPs implicated in common complex diseases from genome-

wide association studies (GWAS) are found outside protein coding exons and are enriched in both cell type and 

stimulatory dependent regulatory regions1,2. The task of assigning these regulatory enhancers to their target 

genes is non-trivial. First, since they can act over long distances, often ‘skipping’ genes3. Second, they can 

behave differently dependent on cellular context4,5, including chronicity of stimulation6. To translate GWAS 

findings in complex disease genetics, one of the pivotal tasks is therefore to link the genetic changes that are 

associated with disease risk to genes, cell types and direction of effect. 

Popular methods to link these ‘disease enhancers’ to genes is to determine physical interactions, with methods 

such as Hi-C7, use quantitative trait analysis4 or exam correlated states8, with techniques such as ChIP-seq and 

ATAC-seq, linked to gene expression. The vast majority of these studies, to date, have investigated these 

epigenomic profiles at either discrete time points9,10 (e.g. baseline and/or after stimulation), and/or by 

combining data from different experiments (e.g. ATAC-seq and Hi-C)9.  

Over 100 genetic loci have been associated with rheumatoid arthritis (RA), a T-cell mediated autoimmune 

disease.  Of these, 14 loci have associated variants that are protein-coding and 13 have robust evidence through 

eQTL studies to implicate the target gene. The remainder are thought to map to regulatory regions, with so far 

unconfirmed gene targets, although we, and others, have previously shown interactions with disease implicated 

enhancers and putative causal genes3,11,12.  

Here we have combined simultaneously measured ATAC-seq, Hi-C, Capture Hi-C (CHi-C) and nuclear RNA-seq 

data in stimulated primary T cells (Fig. 1), to define the complex relationship between DNA activity, interactions 

and gene expression. We then go on to incorporate  fine-mapped associated variants from a T-cell driven 

complex genetic disease, and validate long range interactions with CRISPR/Cas9, to assign SNPs, genes and 

direction of effect to rheumatoid arthritis implicated loci. 
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Fig. 1 Schematic of the study design.  ATAC-seq, CHi-C and nuclear RNA-seq experiments were carried out for 

unstimulated and stimulated CD4+ T-cell samples at time 0 mins, 20 mins, 1 hr, 2 hrs, 4 hrs and 24 hrs. Time 

course profiles were created by aligning features (ATAC-seq peaks and CHi-C interactions) across time and 

counting reads supporting each feature at each time point.  

Results 

High-quality data from sequenced libraries 

A total of 116.7 ± 28.5 million reads per sample were mapped for RNA-seq by STAR13 with alignment rates over 

98% across six time points: 0 mins, 20 mins, 1 hr, 2 hrs, 4 hrs and 24 hrs after stimulation with CD3/CD28. A total 

of 76,359 ATAC-seq peaks were obtained for both stimulated and unstimulated conditions across the same six 

time points.  Among these peaks, 24,203 peaks are shared across all stimulated and unstimulated conditions, 

6,287 peaks are unique to unstimulated state (time 0 mins) and 45,869 peaks only appear after stimulation.  

74,583 peaks were retained with peak sizes within a 5-95 percentile range of 123 bp to 1414 bp after merging 

peaks across the six time points, with each peak appearing in at least one time point. A total of 7,081 baits were 

designed to capture 5,124 genes for CHi-C, among which 6,888 baits were successfully recovered with 97% on 

target.  On average, 90.9±20.2 million unique di-tags were generated from two individuals for five experimental 

time points: 0 mins (unstimulated), and then 20 mins, 1 hr, 4 hrs and 24 hrs. A total of 271,398 CHi-C 

interactions were generated from the time course data and interactions were retained as features when at least 
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one time point showed a significant interaction. Of these interactions, 94% occurred within the same 

chromosome and 57% were within 5 Mb distances of promoters.   

Data consistency with previous studies 

We compared our data with published datasets from the same cell-type and stimulation. Our CHi-C data,  both 

unstimulated or stimulated for 4 hrs, demonstrated good consistency with published data10 (Supplementary Fig. 

1a). When restricting all the interactions from both unstimulated and stimulated to those that share the same 

baits, we found 57% of interactions (27,794/48,581) to overlap (by at least 1 bp) between our study and 

previously identified interactions10 and this increases to 73% for interactions within 5 Mb of promoters 

(26,836/36,706) and 87% within 200 kb of promoters (8,367/9,631). This strongly suggests that the interactions 

between promoters and active enhancers within 200kb are consistent, robust and reproducible between 

studies. We found 18,162 genes with evidence of CD4+ T cell expression in at least one time point in our RNA-

seq dataset and these include 96% (4,903/5,124) of the genes included on the CHi-C design. We considered 

genes classified as “Persistent repressed”, “Early induced”, “Intermediate induced I”, “Intermediate induced II” 

and “Late induced” in a previous study4, and found that these genes exhibited similar patterns of expression in 

our RNA-seq data (Supplementary Figure 2e-i).  Comparison of our ATAC-seq data to CD4+ baseline 

(unstimulated) and 48 hrs after stimulation peaks from a similar dataset9 revealed strong concordance 

(Supplementary Table 2): 71% of peaks (21,549/30,403) from our unstimulated data overlapped with their 

baseline peaks9, while 75% of our peaks (22,911/30,593) at 24 hrs after stimulation overlapped with their peaks 

at 48 hrs after stimulation9. We also observed a similar magnitude increase in the number of ATAC-seq peaks for 

merged unstimulated and stimulated data.  

Chromatin conformation dynamics  

It is well established that gene expression changes with time after stimulation in CD4+ cells4 and we find similar 

changes to previous studies, with a range of dynamic expression profiles corresponding to genes activated early, 

intermediate or late, or repressed (Supplementary Fig. 2e-i). It is less well established how chromatin structure 

changes post stimulation, in the form of A/B compartments, topologically associating domains (TADs) and 

individual interactions, or how enhancer activity and open chromatin changes over time. 

Based on Hi-C matrices with resolutions of 40 kb, 1,230 TADs were recovered from our study with an average 

size of 983.2 kb. On average, 84% of TADs intersect between replicates and 80% of TADs intersect across 

different time points with reciprocal 90% region overlap, showing that most of the differences observed 

between the called TADs are due to experimental variation rather than conformational changes.  Interestingly, 

we do see that the percentage falls to 72% when comparing the TAD overlap before 24 hrs to 24 hrs, illustrating 

more substantial dynamic changes in TADs over longer times (Supplementary Table 3). Fig. 2b shows the 

Stratum adjusted Correlation Coefficient (SCC) between Hi-C datasets14 and shows a slight but significant 

reduction in correlation as the time separation of experiments increases, consistent with our observations 

regarding TADs.  
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Fig. 2 Illustration of Hi-C dynamics. a, Hi-C interaction matrix (100 kb resolution) of replicate 1 for chr1 at time 0 

mins (upper) with corresponding A/B compartments (lower), where red lines represent positons of SNPs. b, 

Correlation changes between Hi-C data with respect to differences between times, where the blue line is the 

fitted linear line for the correlation coefficients with grey area representing 95% confidence region of the linear 

fitting. c, Correlation changes of A/B compartments with respect to the differences between times, where the 

blue line and the shaded area share the same information as conveyed in plot b.  

We recovered 1,136 A compartments and 1,266 B compartments merged across the time course data, with the 

maximum compartment sizes being 39.5 Mb and 34.5 Mb, respectively. Fig. 2c shows the correlation between 

A/B compartment allocations, demonstrating a slight but significant reduction between experiments as time 

separation increases.  

These results are broadly consistent with other studies, demonstrating how the higher chromatin conformation 

states, in the form of A/B compartments and TADS, is largely invariant between cell types11. Here, we 

demonstrate similar levels of consistency in a single cell-type post stimulation. There was also, as expected7, a 

high degree of correlation between A/B compartments and marks of histone activity, such as H3K27ac, with A 

compartments overlapping histone marks of strong DNA activity (Supplementary Fig. 4a-c).  
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Fig. 3 Illustration of ATAC-seq time course profile dynamics. a, heatmap of ATAC-seq counts data for peaks 

showing evidence of temporal dynamics. b, ATAC-seq data correlation between first replicate and second 

replicate at time 1 hr. r is the Pearson Correlation coefficient. c, Clustering of ATAC-seq time course data using a 

Gaussian process mixture model. Significantly enriched DNA-binding MOTIFs in each peak (using static peaks are 

background) are labelled in each cluster. 

In contrast to the relative invariance of TADs and A/B compartments, our CHi-C data, analysing interactions 

between individual restriction fragments, showed a much greater degree of dynamics. We used the Bayesian 

Information Criterion (BIC)15 and a χ² test to compare a dynamic (Gaussian process) model to a static model16 for 

CHi-C interaction counts data across time. We found 24% (63,843/271,398) of CHi-C links with evidence of 
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change over time (BICdynamic < BICstatic) and 7.5% of interactions showed stronger evidence of change over time 

(20,224/271,398, χ² test, 𝑝 < 0.05), among which 24% (4,837/20,224) are within 200 kb of promoters. 

Open chromatin dynamics 

Our ATAC-seq time course data showed good correlations across replicates (Fig. 3b). We compared a dynamic 

(Gaussian process) and static model for ATAC-seq time course data to identify changes in open chromatin across 

time and found 11% (7,852/74,583) of ATAC-seq peaks with evidence of change over 24 hrs (BICdynamic < BICstatic) 

with 2,780 of these peaks showing stronger evidence of change (χ² test, 𝑝 < 0.05). A heatmap of ATAC-seq time 

course data (Fig. 3a) demonstrates six broad patterns of change (Fig.3c). Mapping Transcription Factor Binding 

Sites (TFBS) motifs under these broad clusters revealed a strong enrichment of transcription factors known to be 

important in CD4+ stimulation and differentiation. The AP-1 TFBS (e.g. BATF) motif was shown to be enriched in 

low to high activity, strong enrichment of ETS/RUNX1 TFBS was seen in models of high to low activity, and a 

strong enrichment of CTCF and BORIS motifs was observed in the models that demonstrated transient dynamics 

before returning to baseline after 24 hours. These findings match those reported in a previous study of ATAC-

seq data in CD4+ T cells stimulated with CD3/CD289. There it was demonstrated that AP-1/BATF motif was 

enriched in stimulated ATAC-seq peaks, ETS/RUNX in unstimulated cells and CTCF/BORIS motifs were detected 

under the ‘shared’ unstimulated and stimulated peaks, closely matching our findings.  

Correlating chromatin dynamics with gene expression 

We next went on to test whether these dynamic measures of DNA activity, interaction and expression exhibited 

any correlation between their time course profiles. Previous studies, using measurements of H3K27ac, Hi-C and 

expression across different cell types, demonstrated how subtle changes in contact frequency correlated with 

larger changes in active DNA and expression17. We wanted to determine the nature of this relationship in our 

data, from a single, activated cell type. We used a randomisation procedure to identify whether the number of 

correlations observed at a particular level could be considered significantly enriched (see Methods).  We show  

an enrichment for extreme correlations between ATAC-seq, CHi-C and RNA-seq datasets, particularly an 

enrichment for high positive correlations within a distance of 200 kb around promoters (Fig. 4a), suggesting that 

functional, interactive correlations are most common within ‘contact domains’, as supported by previous 

findings, where the median distance between H3K27ac loop anchors and interacting otherEnds (130 kb)5 and the 

median distance of cohesion constrained regulatory DNA-loops (185 kb)7 are typically within a ~200 kb range.   
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Fig 4. Illustrations of the correlations between ATAC-seq, CHi-C and RNA-seq time course profiles. a, Density 

plots of the Pearson correlation coefficients between ATAC-seq and CHi-C (labelled as corr_ATAC_CHiC), ATAC-

seq and gene (labelled as corr_ATAC_gene) and gene and CHi-C (labelled as corr_gene_CHiC) under various 

distance ranges around promoters. Distances ranges include those less than 5 Mb (labelled as <5Mb), between 1 

Mb and 5 Mb, between 500 kb and 1 Mb, between 200 kb and 500 kb,  and less than 200 kb. Black lines 

represent the density plots of the corresponding random background. b, Comparison of the log2 fold change 

between CHi-C and gene data for all dataset (upper) and those highly correlated ones with Pearson correlation 

coefficients between ATAC-seq, gene and CHi-C over 0.5 (lower). c, Comparison of the log2 fold change between 

ATAC-seq and gene data for all datasets (upper) and those highly correlated ones with Pearson correlation 

coefficients between ATAC-seq, gene and CHi-C over 0.5 (lower). 
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Boxplots of the log fold change in ATAC-seq, CHi-C and RNA-seq intensity in the highly correlated regions (Fig. 

4b,c) revealed how relatively small changes in both ATAC-seq and CHi-C intensity (~2 fold change) correlated 

with larger changes in expression (~5 fold change). This is consistent with similar patterns observed in different 

cell types17. 

Previous studies have indicated how i) using eQTL data, ~50% of ATAC-seq peaks are already active/poised 

before influencing gene expression18 , ii) using HiChIP data, expression can be correlated with either H3K27ac or 

interactions5, and iii) empirical ranking of enhancers by CRISPR corresponds most strongly when combining 

terms for interaction and activity19, all suggesting both interactions and activity have important roles in gene 

regulation. Examining the relationship of CHi-C interactions, DNA dynamics and expression in closer detail in our 

data with 200 kb distance between bait and otherEnd fragments revealed three broad patterns of dynamics 

associated with four clustered gene expression patterns (Supplementary Fig. 5): around 8% (469/5,939) of links 

were associated with dynamic ATAC-seq peaks only (Supplementary Fig. 5a,b), 32% (1,901/5,939) were 

associated with dynamic CHi-C interactions only (Supplementary Fig. 5c,d) and 6% (349/5,939) were associated 

with dynamics in both (Supplementary Fig. 5e,f). Our findings, together with previous studies, therefore suggest 

that both activity and interactions are independently important in gene regulation and that subtle change in 

interaction and ATAC-seq intensity has a larger effect on gene expression.  

 

Fig. 5 Illustration of genomic interaction activities around MYC. a, Screenshot of the SNPs (dark green), ATAC-

seq peaks (red), RNA-seq (blue) and CHi-C interactions (green) around MYC at time 4 hrs. b, Time course profiles 

of ATAC-seq (left), CHi-C (middle) and RNA-seq (right) of the data associated with SNPs data around MYC. 
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Prioritisation of causal genes in RA loci 

We considered 80 loci previously associated with RA at genome-wide significance in European ancestry20,21. For 

each locus, we constructed a 99% credible set of SNPs that accounted for 99% of the probability of containing 

the causal variant. We find that 97% (2,131/2,192) of RA-associated variants from our 99% credible SNP set lie 

within A compartments across all times while 28 (1%) lie consistently within B compartments after stimulation. 

15 SNPs are found in regions that change between A and B over time. Of these 15 SNPs, we identified a set of 

RA-associated variants on chromosome 1, proximal to the TNFSF4 and TNFSF18 genes, that were initially 

contained within an inactive B compartment at 20 mins and were then found in an A compartment at 4 hrs 

(Supplementary Fig. 4d).  

We next investigated whether we could map RA GWAS implicated ATAC-seq peaks to genes, identify the likely 

causal SNPs within the peaks and determine a mechanism and direction of effect through the correlated 

expression data. We found that 42/100 GWAS loci contained ATAC-seq peaks with at least one associated SNP 

(66 associated SNPs) that interacted and correlated with the expression of 167 genes, an average of 2.5 genes 

per peak (Supplementary Table 6). Of these 42 loci, there are 17 where we either a) show correlated interaction 

of an eQTL with the target gene, b) confirm the assigned causal gene with correlated interaction of a RA ATAC-

seq peak or c) show that the locus is likely to be complex and suggest novel RA causal genes:  

i) Interactions confirmed with eQTLS. 29 RA loci contained 50 genes where the top eQTL variant for the gene was 

in the credible set of disease associated SNPs. Of these 50 genes, 41 (82%) were either located within the 

interval covered by the RA credible set, or interacted with the RA associated eQTL SNP (Supplementary Table 7). 

All eQTL SNPs fell within the same TAD as the target gene (maximum distance 500 kb), whilst of the 21 eQTL 

SNPs within 200 kb of the target gene, 15 (75%) demonstrated a correlated interaction. These interactions with 

known RA susceptibility SNPs support causal genes in 8 loci, including CD5, PXK, TPD52, IL6ST and CDK6, and also 

implicate a single interacting SNP/ATAC-seq peak for causality in each locus (Supplementary Table 7). 

ii) Confirming assigned genes. For 7 loci, our correlated, dynamic data provides the first biological evidence for 

the currently assigned gene (Supplementary Table 6). These genes include DDX6, PRKCH, RBPJ, PVT1 and ERBB2, 

with many interactions confirming genes up to 200 kb, and one over 800 kb (PVT1), from the associated SNP, but 

again interactions are always constrained within TADs.  These data have the ability to limit the number of 

putative causal SNPs/ATAC-seq peaks for each locus. For example, there are 18 SNPs within the 99% credible 

SNP set for the RBPJ locus, but this reduces to 2 SNPs within 2 ATAC-seq peaks that interact and correlate with 

gene expression (Supplementary Fig 6a). 

iii) Novel and complex gene regions. For a number of regions, we suggest complex or novel relationships 

between associated SNP regions and putative causal genes (Supplementary Table 6). On chromosome 10, an 

intronic region within the ARID5B gene, containing  SNP variants associated with RA, interacts with RTKN2, 

involved in the NFKB pathway, and containing nsSNPs associated with Asian RA22 (Supplementary Fig 6b) . 

Similarly on chromosome 3, a region with RA associated variants intergenic of EOMES interacts with AZI2 (an 

activator of NFKB), suggesting the region contains an enhancer that could potentially control two important 

genes in the T cell immune pathway (Supplementary Fig 6c). Two regions in particular provided insight into 

potential novel genes for RA. Two ATAC-seq peaks, containing 5 SNPs that are associated with RA on 
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chromosome 8, both interact with PVT1 and MYC1, situated some 450-800 kb away from these peaks (Fig. 5). 

Here we demonstrate a positive correlation between the ATAC-seq peak dynamics and gene expression for both 

PVT1 and MYC1 (r2=0.67 and 0.68 respectively). Interestingly, this ATAC-seq peak region has previously been 

demonstrated to be a key repressor of MYC1 gene expression, following a comprehensive CRISPRi screen in 

K562 erythroleukemia cells19. We therefore confirm this relationship between a distant regulatory region and 

MYC1 expression in primary T cells, highlighting the likelihood that this gene has a role in the susceptibility to 

RA. 

 

 

Fig. 6 Illustration of genomic interaction activities around FOXO1. a, Screenshot of the SNPs 

(dark green), ATAC-seq peaks (red), RNA-seq (blue) and Chi-C interactions (green) around FOXO1 

at time 4hr. b, Time course profiles of ATAC-seq (left), Chi-C (middle) and RNA-seq (right) of the 

data associated with SNPs data around FOXO1. 

Confirmation of correlated interaction with CRISPR/Cas9 

Finally we show how an ATAC-seq peak, containing a SNP associated with RA, intronic of the COG6 gene 

interacts with, and is correlated with the expression of, the FOXO1 gene located some 900 kb away (Fig  6). We 

wanted to investigate whether this dynamic ATAC-seq peak is functionally interacting with the FOXO1 promoter, 

a transcription factor involved in T cell development, and a gene that has previously been strongly implicated in 

RA through functional immune studies in patient samples23–26 . We used CRISPRa, with dCas9-p300, and the HEK 

cell line. Our results demonstrate that when we activate the COG6 intronic enhancer with this system and 

targeted gRNAs, not only do we observe a consistent increase in the COG6 mRNA expression itself, we obtain 
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robust, reproducible up regulation of FOXO1 gene expression (Fig. 7). Although the associated variant in this 

region is a strong eQTL for COG6, this CRISPR validation of the correlated interaction, DNA activity and 

expression data, alongside the previous immunological studies, imply that the associated enhancer may have 

diverse roles on a number of genes within this 1 Mb TAD region, and that GWAS implicated enhancers should 

not necessarily be assigned to single genes. 

 

Fig. 7 CRISPR dCAS9 activation (CRISPRa) targeting of an RA associated variant. The region around an 

associated RA variant (rs9603616) on chromosome 13 intronic of the COG6 genewas targeted in the HEK2937T 

cell line,  using p300 as the activator. a, Fold change (qPCR) affect on FOXO1 gene expression compared to 

negative control. b, Fold change (qPCR) affect on COG6 gene expression compared to negative control. 

Discussion  

We have generated a unique, high quality, high value resource, correlating a range of dynamic data, to inform 

the assignment of regulatory regions to genes. Our analysis adds to the growing evidence that the relationship 

between enhancers and promoters is complex, that interactions are more strongly correlated within a distance 

of 200 kb, and that they are mostly constrained within TADs.   

Using CD4+ T-cells, stimulated with CD3/CD28, we analyse ATAC-seq, RNA-seq, Hi-C and CHi-C over 24 hours.  

We show that the conformation of the DNA at a higher structural level of A/B compartments27 and TADs28 

remains relatively constant throughout the stimulation time course. In contrast, DNA interactions at the level of 

discrete contacts, for example between open chromatin and gene promoters, is highly dynamic post stimulation, 

with over 30% of individual interactions showing some degree of change over 24 hours; however only a minority 

of these changes are correlated with a change in expression. Our results suggest ATAC-seq peaks are associated 

with 2.0 CHi-C interactions on average, with each gene making contact with on average 7.7 ATAC-seq peaks.  

Although this correlation can occur over large distances (up to 5 Mb in our data), it is strongly enriched within 

200 kb. We also demonstrate how subtle changes in both ATAC-seq and interaction intensity can have more 

marked effects on gene expression. Our data therefore suggests that, when assigning GWAS variants to putative 

causal genes that all genes within 200 kb, all within the TAD structure, and multiple causal genes, should be 

considered as candidates for functional validation. In addition, as a proof of principle, we have confirmed one 

novel, long range (~1 Mb) gene target using CRISPR/Cas9. 

We also implicate genes in RA associated loci not previously highlighted as likely causal from GWAS, most 

notably MYC and FOXO1.  MYC is a proto-oncogene transcription factor, involved in pro-proliferative pathways, 
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highly expressed in a wide range of cancers.  It has long been known that this gene is expressed in the RA 

synovium29,30, potentially playing a role in the invasiveness of these cells. More notably for our study, it has 

recently been demonstrated how a CD4+ T-cell subset from RA patients demonstrates higher autophagy, and 

that MYC is a central regulator of this pathway. Here it was suggested that autophagy could contribute to the 

survival of inflammatory T cells in patients, particularly a pathogenic-like lymphocyte (CPL) subset, found in 

inflamed joints and associated with disease activity. Similarly FOXO1 has long been established to be 

downregulated in both synovium and blood from RA patients, and is also correlated with disease activity25. 

FOXO1 is a transcription factor, thought to play a role in apoptosis and cell cycle regulation, where reduced 

expression in RA is suggested to have a role in the accumulation of fibroblasts in the disease synovium25. In our 

study, for both these genes with established biological mechanisms and expression patterns relevant to RA, we 

have demonstrated how genetic variants that lead to an increased risk of developing disease are physically 

linked and correlated with gene expression, providing evidence that these genes may be causal instigators in 

disease, and not simply on the pathways that are dysregulated in disease. 

Our results indicate that, first, both DNA activity and interaction intensity are independently important in the 

regulation of genes; second, since a minority of interactions correlate with gene expression, simply assigning 

target genes by interactions is too simplistic. Instead, other methods, such as the simultaneous measurement of 

DNA activity and expression data followed by CRISPR experimental validation, are required to confidently assign 

genes to GWAS implicated loci. Finally, we confirm that subtle changes in interaction intensity are correlated 

with much larger changes to gene expression. In combination our findings have important implications for fully 

exploiting GWAS data, assigning causal SNPs, genes, cell types and mechanism to trait associated loci, on the 

pathway to translating these findings into clinical benefit. 

Methods 

Isolation of CD4+ T-cells and stimulation time course  

Primary human CD4+ T-cells were collected from three healthy individuals with informed consent and with 

ethical approval (Nat Rep 99/8/84). Samples were isolated from PBMCs using an EasySep T-cell isolation kit 

(StemCell), plated in 6-well plates then stimulated with CD3/CD28 Dynabeads (Life Technologies) over a period 

of 24-hours, with samples removed at the appropriate time point and processed according to the experiment 

the cells would be used for.  Unstimulated samples were also prepared (t=0 sample).  For Hi-C experiments, 

CD4+ T-cells were harvested and fixed in formaldehyde, samples for RNA-seq (5 x 106 CD4+ T-cells) were stored 

in RNA CellProtect reagent before extraction, and samples for ATAC-seq (50,000 cells) were processed 

immediately.  ATAC-seq samples from three individuals were taken at time 0 mins, 20 mins, 1 hr, 2 hrs, 4 hrs and 

24 hrs. Two pooled nuclear RNA-seq replicates were taken at the same time points as ATAC-seq samples.  Two 

pooled Hi-C and CHi-C replicates were taken at 0 min, 20 min, 1 hr and 4 hrs and one sample for Hi-C and CHi-C 

was taken at 24 hrs, respectively. 

Library generation for CHi-C and Hi-C 

To generate libraries for Hi-C experiments, 8-10 x 106 CD4+ T-cells were harvested at the appropriate time point 

and formaldehyde crosslinking carried out as described in Belton et al31. Cells were washed in DMEM without 

serum then crosslinked with 2% formaldehyde for 10 minutes at room temperature. The crosslinking reaction 

was quenched by adding cold 1M glycine to a final concentration of 0.125M for five minutes at room 
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temperature, followed by 15 minutes on ice. Crosslinked cells were washed in ice cold PBS, the supernatant 

discarded and the pellets flash-frozen on dry ice and stored at -80oC. 

Hi-C libraries were prepared from fixed CD4+ T-cells from three individuals which were pooled at the lysis stage 

to give ~30 million cells. Cells were thawed on ice and re-suspended in 50ml freshly prepared ice-cold lysis 

buffer (10mM Tris-HCl pH 8, 10mM NaCl, 0.2% Igepal CA-630, one protease inhibitor cocktail tablet). Cells were 

lysed on ice for a total of 30 min, with 2x10 strokes of a Dounce homogeniser 5 min apart. Following lysis, the 

nuclei were pelleted and washed with 1.25xNEB Buffer 2 then re-suspended in 1.25xNEB Buffer 2 to make 

aliquots of 5-6x106 cells for digestion. Following lysis, libraries were digested using HindIII then prepared as 

described in van Berkum et al32 with modifications described in Dryden et al33. Final library amplification was 

performed on multiple parallel reactions from libraries immobilised on Streptavidin beads using 8 cycles of PCR 

if the samples were to be used for CHi-C, or 6 cycles for Hi-C.  Reactions were pooled post-PCR, purified using 

SPRI beads and the final libraries re-suspended in 30µl TLE.  Library quality and quantity was assessed by 

Bioanalyzer and KAPA qPCR prior to sequencing on an Illumina HiSeq2500 generating 100bp paired-end reads 

(Babraham sequencing facility). 

Solution hybridisation capture of Hi-C library 

Pre-CHi-C libraries corresponding to 750ng were concentrated in a Speedvac then re-suspended in 3.4μl water. 

Hybridisation of SureSelect custom capture libraries to Hi-C libraries was carried out using Agilent SureSelectXT 

reagents and protocols. Post-capture amplification was carried out using 8 cycles of PCR from streptavidin beads 

in multiple parallel reactions, then pooled and purified using SPRI beads. Library quality and quantity was 

assessed by Bioanalyzer and KAPA qPCR prior to sequencing on an Illumina HiSeq2500 generating 100 bp paired-

end reads (Babraham sequencing facility). 

Defining regions of association for bait design 

All independent lead disease-associated SNPs for RA were selected from both the fine-mapped Immunochip 

study20 and a trans-ethnic GWAS meta-analysis21. This resulted in a total of 138 distinct variants associated with 

RA after exclusion of HLA-associated SNPs. Associated regions were defined by selecting all SNPs in LD with the 

lead disease-associated SNP (r2>=0.8; 1000 Genomes phase 3 EUR samples; May 2013). In addition to the SNP 

associations, credible SNP set regions were defined for the Immunochip array at a 95% confidence level. 

Target Enrichment Design 

Capture oligos (120 bp; 25-65% GC, <3 unknown (N) bases) were designed to selected gene promoters (defined 

as the restriction fragments covering at least 500bp 5’ of the transcription start site (TSS)) using a custom Perl 

script within 400 bp but as close as possible to each end of the targeted HindIII restriction fragments and 

submitted to the Agilent eArray software (Agilent) for manufacture. Genes were selected as follows: all genes 

within 1Mb upstream and downstream of associated RA SNPs from Eyre et al20 and Okada et al21 as previously 

described; all gene promoters showing evidence of interacting with an associated region in our previous CHi-C 

study using GM12878 and Jurkat cell lines; all genes contained within the KEGG pathways for “NF-kappa B 

signalling”, “Antigen processing and presentation”, “Toll-like receptor signalling”, “T cell receptor signalling” and 

“Rheumatoid arthritis”; all genes showing differential expression in CD4+ T-cells after stimulation with anti-

CD3/anti-CD28; all genes from Ye et al4 within the ‘Early induced’, ‘Intermediate induced I’ and ‘Intermediate 
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induced II’ categories; and all genes from the Ye et al4 NanoString panel. Additionally control regions targeting 

the HBA, HOXA and MYC loci were included for quality control purposes. 

Library generation for RNA-seq 

Nuclear RNA-seq was used to quantify nascent transcription to determine changes through time. Five million 

CD4+ T-cells were harvested, stored in Qiagen RNAprotect solution and the nuclear RNA isolated using a Qiagen 

RNeasy kit and quantified. Samples were either pooled in equal amounts (same individuals as for Hi-C to create 

matched samples), or processed individually to give duplicate samples.  Libraries for RNA-seq were prepared 

using the NEB Next Ultra Directional RNA-seq reagents and protocol using 100ng of nuclear RNA as Input. Each 

library was sequenced on half a lane of an Illumina HiSeq2500 generating 100bp paired-end reads (Babraham 

sequencing facility). 

Library generation for ATAC-seq 

ATAC-seq libraries were generated from 50,000 CD4+ T-cells from three individual samples using the protocol 

detailed in Buenrostro et al34 using the Illumina Nextera DNA Sample Preparation Kit. Each library was 

sequenced on half a lane of an Illumina HiSeq2500 generating 100 bp paired-end reads (Babraham sequencing 

facility). 

Hi-C data processing 

Hi-C data were mapped to GRCh38 by HiCUP35. The maximum and minimum di-tag lengths were set to 800 and 

150, respectively. HOMER36  Hi-C protocol was applied to Hi-C bam file and normalized Hi-C matrices were 

generated by analyzeHiC command from HOMER with resolution of 40,000bp (analyzeHiC –res 40000 –balance). 

TADs were generated by the command findTADsAndLoops.pl (-res 40000). A/B compartments were generated 

by runPCA.pl (-res 40000) followed by findHiCCompartments.pl with the default parameters to generate 

compartments A and –opp parameters to generate compartments B.   

CHi-C data processing 

CHi-C data were mapped to GRCh38 by HiCUP. The maximum and minimum di-tag lengths were set to 800 and 

150, respectively. CHiCAGO37  was applied to each bam file with the CHiCAGO score set to 0.  Counts data for 

each interaction were extracted from the .rds files generated by CHiCAGO.  Time course interactions were 

concatenated. Those interactions with at least one time point having CHiCAGO score over 5 were kept.  Bait-to-

bait interactions were registered as two interactions with either side defined as ‘bait’ or ‘otherEnd’.    

ATAC-seq data processing 

Individual ATAC-seq reads data were mapped to GRCh38 by Bowtie238 (with option -x 2000) and reads with 

length less than 30 were filtered by SAMtools39. Duplications were removed by Picard 

(https://broadinstitute.github.io/picard/). The three replicated bam files at each time point were merged by 

SAMtools.  MACS240 was applied on each merged bam file to call peaks (with option --nomodel --extsize 200 --

shift 100). Peaks generated from each time point were merged by Diffbind41 with default parameter to form the 

time course profile for ATAC-seq peaks. .  

RNA-seq data processing 
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RNA-seq data were mapped to GRCh38 by STAR13 with default parameters. Counts data for exons and introns 

were generated by DEXSeq42. Individual counts data from each time point were combined to form the time 

course gene expression data. Exons and introns counts data were summed to get the gene expression data for 

each gene at each time point, respectively. Genes with the sum of counts data across the six time points less 

than 10 were removed in each replicate.  Only genes that have expressions in both replicates were kept. 18,162 

genes remained after this processing.   

Linking CHi-C, ATAC-seq and RNA-seq time course data 

CHi-C time course data were linked to RNA-seq time course data with baits design specifying the mapping 

between baits and genes. ATAC-seq peaks residing at an otherEnd fragment were correlated with CHi-C 

interactions originating from that specific otherEnd fragment to different baits. Averaged data from replicates 

were used in correlation analysis. Pearson correlation coefficients between the connected CHi-C, gene and 

ATAC-seq time course data were calculated, respectively. Background random correlation tests were carried out 

by randomly picking up relevant time course data within the targeted dataset without any restrictions and 

calculating their Pearson correlation coefficients accordingly.     

Gaussian process test for dynamic time course data 

Time course data were fitted by a Gaussian process regression model16 with a Radial Basis Function (RBF) kernel 

plus a white noise kernel (dynamic model) and a pure white noise kernel (static model), respectively. BIC was 

calculated for the dynamic model and flat model, respectively.  

𝐵𝐼𝐶 = 𝑘𝑙𝑛(𝑛) − 2ln⁡(𝐿̂) 

 where k is the number of parameters used in the specified model, n is the sample size and 𝐿̂ is the maximized 

likelihood for the model. Models with smaller BIC are favoured for each time course profile.  Those with smaller 

BICs in dynamic models were classified as time-varying.  A more stringent χ² test with degree of freedom (df) of 

1 was also applied to the Loglikelihood Ratio (LR) statistics, with  ⁡𝐿𝑅 = −2ln⁡(𝐿̂RBF − 𝐿̂STATIC)⁡ , where 𝐿̂RBF 

and 𝐿̂STATIC are the maximized likelihoods for the Gaussian process model and a static model, respectively.  A p 

value of 0.05 was deemed significant.  

ATAC-seq data clustering and MOTIF searching 

 A more inclusive threshold of LR<-1 was applied to ATAC-seq peaks prior to clustering, which leaves 16% 

(12,215/74,583) ATAC-seq dynamical peaks, among which 9,680 were outside promoter regions ([+500bp,-

1000bp] around genes). These ATAC-seq peaks were clustered using a Gaussian Process mixture model43. 

MOTIFs for each cluster were searched by findMotifGenome.pl (-mask –len 5,6,7,8,9,10,11,12 –size given) from 

HOMER with remaining peak data being used as background data.   

Construction of 99% credible SNP sets for RA loci 

We considered 80 loci attaining genome-wide significance for RA in the European ancestry component of the 

most recently published trans-ethnic GWAS meta-analysis21, after excluding the MHC. For each locus, we 

calculated the reciprocal of an approximate Bayes’ factor in favour of association for each SNP by Wakefield’s 

approach44, given by 
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√
𝑉

V + 𝜔
exp⁡[

𝜔𝛽2

2V(V + 𝜔)
]
𝐿

⁡ 

where β and V denote the estimated log odds ratio (log-OR) and corresponding variance from the European 

ancestry component of the meta-analysis. The parameter ω denotes the prior variance in allelic effects, taken 

here to be 0.04. The posterior probability of causality for the SNP is then obtained by dividing the Bayes’ factor 

by the total of Bayes’ factors for all SNPs across the locus. The 99% credible set for each locus was then 

constructed by: (i) ranking all SNPs according to their Bayes’ factor; and (ii) including ranked SNPs until their 

cumulative posterior probability of causality attained or exceeded 0.99. 

CRISPR activation using dCas9-p300 

Cell lines 

HEK293T cells (clontech) were cultured in high glucose-containing Dulbecco’s modified Eagle’s medium (DMEM; 

Sigma) supplemented with 10% FBS and 1% penicillin streptomycin at 37oC/5% C02 and kept below passage 15. 

Generation of the dCas9-p300 cell line and delivery of guides 

HEK293T cells were first transduced lentivirally with the pLV-dCas9-p300-p2A-PuroR expression vector (addgene 

#83889) and were selected with 2ug/ml of puromycin and grown for a week before being banked as a cell line.  

A second round of lentiviral transduction was done to introduce the guide RNA (gRNA) using the vector 

pLK05.sgRNA.EFS.GFP (addgene #57822) and cells were doubly selected using both a maintenance selection of 

puromycin and sorted for the top 60% cells expressing GFP. 

Guide RNAs 

All guide RNAs were cloned into the guide delivery vector pLK05.sgRNA.EFS.GFP (addgene #57822) and are listed 

Table 1. A negative control guide Scr2 (AACAGTCGCGTTTGCGACT) is a scrambled guide sequence for comparison 

of gene expression that is not expected to target any known genes in the genome. A positive control guide IL1RN 

(CATCAAGTCAGCCATCAGC) was included, this is a guide directed to the transcription start site of the promoter 

of the IL1RN gene that has been previously shown to increase expression of the IL1RN gene substantially45. For 

the COG6/FOX01 locus three guides (TGGGGACTATCTAGCTGCT; AGGGCCTTATAATGTAGT; 

AGTCATCCTGGAGCACAGAGG) were pooled simultaneously in equimolar amounts to target the active enhancer 

marked by H3K27ac in proximity to the lead GWAS variant rs7993214. 

Lentivirus production 

The day before transduction HEK293T cells were seeded at a density of 1E07 per transfer vector in 15cm plates 

in a volume of 20ml of DMEM 10% FBS without P/S. Each of the transfer vectors, together with packaging 

plasmids pmDLg/pRRE (#12251) and pRSV-REV (#12253) along with envelope plasmid pMD2.G (#12259), were 

combined to a total of 12ug at a ratio of 4:2:1:1, respectively in 2ml of serum free DMEM w/o phenol red. 

PEI 1mg/ml was batch tested and added at a ratio of 6:1 PEI: DNA. The solution was briefly vortexed and 

incubated at room temperature for 15 minutes. Following this the solution was added dropwise to the cells. 

Flasks were rocked gently in a circular motion to distribute the precipitates, and then returned to the incubator. 

24 hours later fresh growth medium was added of DMEM with 10% FBS and 1% P/S. The viral supernatant was 

collected 72 hours after transduction, cleared by centrifugation at 1500rpm for 5 minutes at 4⁰C and then 
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passed through a 0.45um pore PVDF Millex-HV (Millipore). Lentivirus was aliquoted and stored at -80⁰C for 

future use. 

Transduction of HEK293T p300 cell line with the gRNAs 

300,000 dCas9-p300-HEK 293T cells were plated onto 6 well plates in triplicate for each gRNA. 24 hours later the 

medium was changed to DMEM 10% FBS without penicillin streptomycin. 1ml of each gRNA generated lentivirus 

was added to each well of 300,000 HEK293T cells cultured in DMEM supplemented with 10% FBS in triplicate. 24 

hours later the medium was changed to DMEM containing 10% FBS and 1% penicillin streptomycin. Cells were 

grown up for 5 days and then sorted for the top 60% of cells expressing GFP using flow cytometry.  

RNA extraction and qPCR 

When confluent 2E06 cells were spun down at 400xg for 5 minutes and washed in PBS. RNA was extracted using 

the RNeasy mini kit (Qiagen) according to manufacturer’s instructions and the genomic DNA removal step was 

included. 100ng of RNA for each sample was used in a single RNA-to-Ct reaction (Thermofisher) to assay gene 

expression. Taqman assays FOX01 (Hs00231106_m1), COG6 (Hs01037401_m1) and IL1RN (hs00893626_m1) 

were used alongside housekeeping genes YWHAZ (Hs01122445_g1) and TBP (hs00427620_m1) for 

normalisation. 

Data analysis 

Delta-delta CT analysis was carried out using the Scr2 generated dCas9-p300 HEK293T cells as the control and 

normalised against the YWHAZ and TBP housekeeping genes. The data was analysed in graph pad using one-way 

ANOVA. 

Data availability 

Raw sequencing data and processed counts data for ATAC-seq, RNA-seq, CHi-C and Hi-C  that support the 

findings of this study have been deposited in National Center for Biotechnology Information’s Gene Expression 

Omnibus and are accessible through GEO Series accession number GSE138767 

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE138767). 

Code availability 

Scripts to reproduce the analysis and figures in this study are available on github 

https://github.com/ManchesterBioinference/IntegratingATAC-RNA-HiC/ . 
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All healthy samples were collected with informed consent under ethics agreement MREC 99/8/84. 
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1. Capture Hi-C 

One pooled sample Capture Hi-C (CHi-C) dataset was collected and sequenced at times: 0 mins, 20 mins, 1 hr and 

4 hrs. Another pooled sample CHi-C dataset was sequenced at the same times as well as an additional 24 hr time-

point. The CHi-C sequence data were mapped to GRCh38 using HiCUP1. The maximum and minimum di-tag 

lengths were set to 800 and 150, respectively. CHiCAGO2  was applied to each bam file with the CHiCAGO score 

set to 0.  Counts data for each interaction were extracted from the .rds files generated by CHiCAGO.  Interactions 

occurring at different time points (time 0 mins, 20 mins, 1 hr, 4 hrs and 24 hrs) were combined to create a 

complete set of all interactions and these were associated with counts for each time-point. Those interactions 

with at least one time point having CHiCAGO score over 5 were kept for further analysis. Bait-to-bait interactions 

are registered as two interactions with either side defined as “bait” or “otherEnd”. 271,398 interactions were 
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generated this way, among which 17,196 interactions were trans-interactions and 254,202 interactions were cis-

interactions. 6,888 baits and 121,656 otherEnds were involved in these interactions. CHi-C interactions occurring 

at either time 0 mins, time 4 hrs or both were extracted and compared to the interactions from Burren et al3.  

Comparisons for interactions originating from the two works under varied distance thresholds between bait and 

otherEnd fragments are shown in Supplementary Fig. 1a.  It is clear that the closer the bait to otherEnd 

interactions are, the higher percentage of interactions are common between our experiments and experiments 

from Burren et al3. The top 24 clusters of the CHi-C interaction count time course data are illustrated in 

Supplementary Fig. 1b, showing varied and highly dynamic patterns of response. 

 

 

Supplementary Fig. 1 CHi-C quality check and time profile illustration. a, Number of interactions interacted and 

remained between our work and work from Burren et al3 under different distance thresholds: “ NONE”, “<5Mb”, 

“<1Mb”, “<500kb”, “<200kb” representing range of distances to promoters considered. b, Largest 24 clusters of 

the time course profiles of CHi-C interactions within 5 Mb of promoters, using k-means clustering. 

2. RNA-seq data 

Two pooled sample RNA-seq time courses were collected at times 0 mins, 20 mins, 1 hr, 2 hrs, 4 hrs and 24 hrs. 

Reads were mapped to GRCh38 by STAR4 with default parameters. Counts data for exons and introns were 

generated using DEXSeq5. Exon and intron counts for the same genes show good correlations (Supplementary 

Fig. 2a-b).  Gene counts data were generated by adding up exon and intron counts data for the same genes, 

which also correlated well between replicates (Supplementary Fig. 2c). Individual counts data from each time 

point were combined to form the time course gene expression data. Genes with the sum of counts data across 

the six time points less than 10 were removed in each replicate. Counts data from each replicate were merged 

to form the time course gene expression data used for clustering and correlation with other datasets. Only 

genes that showed expression in both replicates were kept. 18,162 genes were remained after these processing 
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steps.  Gene expression data were normalized by DESeq26.  A histogram of the correlations between the two 

replicates across time is shown in Supplementary Fig. 2d, where 69% genes have correlations over 0.5. Gene  

 

Supplementary Fig. 2 Illustration of RNA-seq time profiles. a, Scatter plot between natural logscaled exon and 

intron counts data of  replicate 1 at time 0 mins. r is the Pearson correlation coefficient. b, Scatter plot between 

natural log scaled exon and intron counts data of replicate 2 at time 0 mins. c, Scatter plot between natural 

logscaled gene counts data of replicate 1 and replicate 2 at time 0 mins. d, Histogram of the correlations 

between the two RNA-seq replicates used in this study. e-i, Time course profiles of gene sets as categorized in Ye 

et al7. Grey lines represent normalized gene expression and blue lines represent the mean of the data in each 

dataset. Errorbars are ± std of the data in each plot. 
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expression data were compared to the data from Ye et al7, where similar experiments were carried out up to 

time 72 hrs. Time course profiles of the gene expression of the five categorized gene sets from Ye et al7, including 

‘Early induced’, ‘Intermediate induced I’, ‘Intermediate induced II’, ‘Persistent repressed’ and “Late induced”, are 

shown in Supplementary Fig. 2e-i. Our data show similar patterns to those in Ye et al7. 

3. ATAC-seq data 

Three replicated ATAC-seq time series were collected at times 0 mins, 20 mins, 1 hr, 2 hrs, 4 hrs and 24 hrs and 

mapped to GRCh38 by Bowtie28 (with option -x 2000) with reads of length less than 30 bp filtered out using 

SAMtools9. Duplicates were removed by Picard (https://broadinstitute.github.io/picard/). The three replicated 

bam files at each time point were merged by SAMtools. Macs210 was applied on each merged bam file to call 

peaks (with option --nomodel --extsize 200 --shift 100) .  Supplementary Table 1 is the number of peaks identified 

for each time point.  

 

To align ATAC-seq datasets across time, the peaks generated from each time point were merged by Diffbind11 

(with option minOverlap=1) and 76,359 peaks were obtained in the end with an average size of 488.32 bp.  The 

distribution of the peak sizes are shown in Supplementary Fig. 3a.  

ATAC-seq peaks were annotated using ChIPpeakAnno12  (Supplementary Fig 3b). Peaks that lie in the Promoter 

region (22.9%) were removed in the downstream analysis in order to focus on enhancer-associated peaks. 

Supplementary Table 2 compares the peaks from our data and those peaks from Gate et al13. Due to different 

experiment setup, there are some discrepancies between the peaks from these two sources. However, the 

majority of peaks from our data are within the peaks from Gate et al13. 

 

Supplementary Table 1. Number of peaks called by MACS2 on each merged bam file at 

six time points. 

Time Points  0 mins 20 mins 1 hr 2 hrs 4 hrs 24 hrs 

Number of peaks 30,403 27,793 47,823 22,664 43,537 30,593 

 

Supplementary Table 2 Comparison of peaks located in our data and peak data from Gate et al13. 

  0 min vs 0 min  24 hrs vs 48 hrs merged vs merged 

Number of intersecting peaks 21,549 22,911 39,021 

Number of peaks only in our data 8,854 7,682 35,740 

Number of peaks only in [13] 14,926 29,182 24,279 
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Supplementary Fig 3 ATAC-seq peak size histogram and peak annotations. a, Histogram of ATAC-seq peak sizes; 

b, Piechart of the annotations of the ATAC-seq peak data.  

 

4. Hi-C data 

One pooled sample Hi-C time course was collected at times 0 mins, 20 mins, 1 hr and 4 hrs. Another pooled 

sample Hi-C time course was collected at these times and an additional time of 24 hrs. Hi-C data were mapped to 

GRCh38 by HiCUP1 and then converted to HOMER14 format by scripts provided in HiCUP. The maximum and 

minimum di-tag lengths were set to 800 and 150, respectively. HOMER was applied the mapped Hi-C data 

(analyzeHiC –res 40000 -balance) and 1,230 distinct TADs were discovered across all 5 time points.  

Supplementary Table 3 shows percentages of the interactions of TADs across different time points within and 

between replicates with reciprocal 90% region overlap. 
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5. A/B compartments 

A/B compartments were found by HOMER with command runPCA.pl  (with option –res 40000) followed by 

findHICCompartments.pl to find A compartments or findHICCompartments.pl  –opp to find B compartments, 

respectively. 1,136 A compartments and 1,266 B compartments were discovered. Supplementary Tables 4 and 5 

shows percentages of the A and B compartment across different time points within and between replicates with 

reciprocal 90% coverage. Chromosome positions of A/B compartments were converted to bed files and 

visualised in the UCSC browser15 (Supplementary Figure 4). 

 

Supplementary Table 3 Percentages of the intersection of TADS across and within replicates. 

Data shown at (Tm,Tn) represents the percentage of the number of intersected TADs between 

data taken at time Tm and time Tn over the number of TADs in the data at Tn. 

 T01 T02 T201 T202 T1H1 T1H2 T4H1 T4H2 T24H1 

T01 1 84.2% 85.8% 85.5% 83.0% 84.4% 80.8% 80.5% 74.0% 

T02 83.1% 1 81.8% 85.0% 79.3% 83.0% 78.1% 79.2% 72.9% 

T201 84.0% 81.2% 1 87.3% 86.4% 84.1% 81.9% 79.4% 72.9% 

T202 82.3% 83.0% 85.4% 1 81.5% 84.6% 79.2% 78.5% 72.2% 

T1H1 81.5% 77.9% 86.7% 83.5% 1 82.5% 81.7% 77.7% 71.6% 

T1H2 82.3% 81.2% 83.3% 85.8% 82.2% 1 81.2% 82.6% 73.1% 

T4H1 79.0% 76.7% 81.4% 79.9% 81.1% 80.9% 1 85.4% 75.5% 

T4H2 78.3% 77.2% 78.3% 79.5% 76.9% 81.8% 84.9% 1 75.7% 

T24H1 69.2% 69.5% 69.9% 70.6% 68.6% 71.2% 74.2% 73.9% 1 

 

Supplementary Table 4 Percentages of the intersection of compartment As across and within 

replicates. Data shown at (Tm,Tn) represents the percentage of the intersected compartment As 

between data taken at time Tm and time Tn over the compartment As in the data at Tn. 

 T01 T02 T201 T202 T1H1 T1H2 T4H1 T4H2 T24H1 

T01 1 97.3% 98.5% 97.7% 98.5% 97.8% 98.2% 97.3% 97.7% 

T02 96.8% 1 97.5% 97.2% 96.8% 97.5% 97.0% 97.1% 97.4% 

T201 97.5% 96.9% 1 96.6% 98.1% 97.6% 98.2% 96.4% 97.5% 

T202 97.6% 97.6% 97.5% 1 98.0% 98.2% 97.8% 97.9% 97.2% 

T1H1 97.4% 96.4% 97.8% 97.0% 1 97.7% 98.0% 97.2% 97.0% 

T1H2 95.2% 95.7% 96.3% 95.8% 96.5% 1 97.1% 96.7% 96.8% 

T4H1 95.5% 95.4% 96.8% 95.6% 96.7% 97.1% 1 96.3% 97.8% 

T4H2 95.5% 95.8% 95.6% 96.3% 96.8% 97.4% 97.3% 1 97.6% 

T24H1 89.7% 89.5% 90.2% 89.7% 89.6% 90.6% 91.8% 90.8% 1 
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Supplementary Fig 4 UCSC genome browser plots of chromatin structure, overlaid with epigenomic features 

and RA associated variants. a-c, Exemplar plots from chromosomes 2, 4 and 8 of A/B compartments (A 

compartments black; B compartments grey) called in at 3 time points (0, 4hrs and 24hrs ) in duplicate T cells, 

compared to public layered H3K27ac. d, A/B compartments on Chr1 around the TNFSF18 and TNFSF4 gene 

region. RA associated variants go from a largely inactive B region at 0hrs, through to an active A compartment at 

24hrs. 
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6. ATAC-seq data clustering and MOTIF search 

ATAC-seq data residing outside promoter regions, with loglikelihood ratio (LR, see main paper Methods) 

between a dynamic and static model over 1, were clustered using a hierarchical Gaussian Process mixture 

model16. MOTIFs for these clusters were searched by findMotifsGenome.pl from HOMER (-len 

5,6,7,8,9,10,11,12,13 –size given) with ATAC-seq data with 𝐵𝐼𝐶RBF > 𝐵𝐼𝐶NOISE  (static peaks) as background 

data.  

7. Correlations between ATAC-seq, CHi-C and gene 

For ATAC-seq peaks sitting inside otherEnd fragments, the correlations between ATAC-seq time course, CHi-C 

time course and RNA-seq time course related to interacted baits are examined. Clusters between genes, CHi-C 

and ATAC-seq within the distance range of 200 kb of promoters under dynamical or stationary scenarios are 

shown in Supplementary Fig. 5a-f, respectively. 

Supplementary Table 5 Percentages of the intersection of compartment Bs across and within 

replicates. Data shown at (Tm,Tn) represents the percentage of the intersected compartment Bs 

between data taken at time Tm and time Tn over the compartment Bs in the data at Tn.   

 T01 T02 T201 T202 T1H1 T1H2 T4H1 T4H2 T24H1 

T01 1 95.9% 96.8% 97.8% 97.6% 96.6% 94.9% 96.2% 92.4% 

T02 94.2% 1 93.6% 96.0% 94.9% 95.9% 92.6% 94.2% 89.8% 

T201 97.6% 96.2% 1 98.0% 97.6% 97.0% 95.7% 96.5% 93.1% 

T202 95.5% 96.1% 94.9% 1 95.9% 96.2% 93.3% 95.5% 90.6% 

T1H1 96.9% 96.1% 95.8% 97.4% 1 97.2% 95.0% 96.5% 91.4% 

T1H2 94.7% 96.1% 94.4% 96.3% 96.3% 1 93.7% 95.9% 90.6% 

T4H1 96.0% 94.7% 96.0% 95.9% 97.1% 96.2% 1 97.2% 94.2% 

T4H2 94.7% 94.8% 94.1% 96.0% 96.2% 96.4% 94.6% 1 92.1% 

T24H1 92.6% 92.0% 92.3% 92.7% 92.8% 92.9% 93.8% 94.0% 1 
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Supplementary Fig. 5  Clusters of gene expression, ATAC-seq counts and CHi-C data within 200 kb of promoters. 

a,b: Clusters with only ATAC-seq peaks are dynamical; c,d, Clusters with only CHi-C data are dynamical; e,f: 

Clusters with both ATAC-seq and CHi-C data are dynamical. 
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Supplementary Fig. 6 Illustration of genomic interaction activities around three RA associated loci. Screenshots 

of the SNPs (dark green), ATAC-seq peaks (red), RNA-seq (blue) and CHi-C interactions (green). a, RBPJ loci, 

demonstrating how both interactions between the associated SNPs/gene promoter, and ATAC-seq intensity 

increase in magnitude over time (0, 20mins, 1hr, 2hr, 24hr, top to bottom) b, ARID5B_RTKN2 loci, demonstrating 

strong interactions between the region intronic of ARID5B and RTKN2. c, EOMES_AZI2 loci demonstrating strong 

interactions between the region intronic of EOMES and AZI2. 
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Supplementary Table 6 ALL RA loci. Table of all ATAC-seq peaks containing a SNP in the 99% credible set for RA, 

the promoters they interact with and the correlation between ATAC-seq activity, interaction strength and gene 

expression. Included as excel spreadsheet.  

Supplementary Table 7 RA loci with eQTL evidence. Table of all ATAC-seq peaks containing a SNP in the 99% 

credible set for RA, the promoters they interact with and the eQTL evidence for the interaction. Included as excel 

spreadsheet. 
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