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Abstract

The cerebral metabolic rate of oxygen (CMRO2) is an important indicator of brain function and
pathology. Knowledge about its magnitude is also required for proper interpretation of the blood oxy-
genation level dependent (BOLD) signal measured with functional MRI (fMRI). The ability to measure
CMRO2 with high spatial and temporal accuracy is thus highly desired. Traditionally the estimation of
CMRO2 has been pursued with somewhat indirect approaches combining several different types of
measurements with mathematical modeling of the underlying physiological processes. Given the nu-
merous assumptions involved, questions have thus been raised about the accuracy of the resulting
CMRO2 estimates. The recent ability to measure the level of oxygen (pO2) in cortex with high spa-
tial resolution in in vivo conditions has provided a more direct way for estimating CMRO2. CMRO2

and pO2 are related via the Poisson partial differential equation. Assuming a constant CMRO2 and
cylindrical symmetry around the blood vessel providing the oxygen, the so-called Krogh-Erlang for-
mula relating the spatial pO2 profile to a constant CMRO2 value can be derived. This Krogh-Erlang
formula has previously been used to estimate the average CMRO2 close to cortical blood vessels
based on pO2 measurements in rats.

Here we introduce a new method, the Laplace method, to provide spatial maps of CMRO2 based
on the same measured pO2 profiles. The method has two key steps: First the measured pO2 profiles
are spatially smoothed to reduce effects of spatial noise in the measurements. Next, the Laplace
operator (a double spatial derivative) in two spatial dimensions is applied on the smoothed pO2

profiles to obtain spatially resolved CMRO2 estimates. The smoothing introduces a bias, and a
balance must be found where the effects of the noise are sufficiently reduced without introducing too
much bias. In this model-based study we explore this balance in situations where the ground truth,
that is, spatial profile of CMRO2 is preset and thus known, and the corresponding pO2 profiles are
found by solving the Poisson equation, either numerically or by taking advantage of the Krogh-Erlang
formula. MATLAB code for using the Laplace method is provided.
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1. Introduction1

The level of consumption of oxygen by metabolic processes, that is, the cerebral metabolic rate2

of oxygen (CMRO2), is an important indicator of brain function and pathology. Further, knowledge3

about the magnitude of the CMRO2 is also required for a proper interpretation of the blood oxygena-4

tion level dependent (BOLD) signal measured in functional MRI (fMRI) studies [Buxton, 2010]. The5

ability to measure CMRO2 with high spatial and temporal resolution in cortex is thus crucial. Tra-6

ditionally the CMRO2 has been estimated from several different types of measurements combined7

with mathematical modeling of the underlying physiological processes [Buxton, 2010]. Given the8

numerous assumptions and experimental limitations typically involved, questions have been raised9

about the accuracy of the estimates of the CMRO2 provided by these complex and somewhat indi-10

rect approaches [Sakadžić et al., 2016].11

The possibility to optically measure the partial pressure of oxygen (pO2) around cortical blood12

vessels with high spatial resolution in vivo [Sakadžić et al., 2010] has provided a more direct way to13

estimate the CMRO2. In Sakadžić et al. [2016] they used measured pO2 profiles around arterioles14

in rats to estimate the average CMRO2 in the vessel’s vicinity, that is, within a radius of ∼100 µm.15

They based their estimates on the Krogh-Erlang formula relating the pO2 to the CMRO2 in a cylinder16

section around an arteriole providing the brain tissue with oxygen [Krogh, 1919; Goldman, 2008].17

The fundamental equation relating the pO2 and the CMRO2 is the Poisson equation18

∇2P (r) = M(r), (1)

where P (r) represents pO2, and M(r) is a measure of the local CMRO2. The Krogh-Erlang formula19

(Equation 6) gives the solution to this partial differential equation, that is, the radial profile of P , for20

the particular case where (i) the CMRO2 (M(r)) is assumed to be a constant, and (ii) all the oxygen21

provided by the center arteriole is assumed to be consumed within a radial basin with radius Rt. In22

Sakadžić et al. [2016], experimentally measured pO2 profiles were fitted to this formula to provide23

estimates for M (and thus CMRO2).24

The approach of Sakadžić et al. [2016] is global in the sense that it fits the entire measured25

profile P (r) to the Krogh-Erlang formula to obtain an estimate for the assumed constant value of M .26

A more direct way to estimate M(r) from Equation 1, is to apply the Laplace operator ∇2 directly to27

the measured P (r) to obtain a local measure of M(r). Unlike the Krogh-Erlang model approach,28

this Laplace approach will provide a spatially resolved map of CMRO2 estimates around the arte-29

rioles, based on the same pO2 measurements. The method is thus not restricted to estimating an30

assumed constant value of M . Further, the Laplace method is not restricted to situations with ra-31

dially symmetric pO2 profiles as when a single arteriole provides all oxygen. The development and32

testing of the Laplace method are the topics of the present paper.33

The double spatial derivatives in the Laplace operator make this Laplace method inherently very34

sensitive to noise in the measured spatial pO2 profiles. In order to have a practical method for35

CMRO2 estimation, the pO2 profiles must thus be spatially smoothed to reduce the effects of the36

noise. Smoothing introduces a bias, that is, a systematic error in the estimates, and a balance must37

be found where the effects of the noise are sufficiently reduced without introducing too much bias.38

In the present model-based study we explore this balance by examining the accuracy of CMRO239

estimates in situations where the ground truth, that is, spatial profile of M(r) is preset and thus40
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known, and the corresponding profiles P (r) are found by solving Equation 1, either numerically or41

by taking advantage of the Krogh-Erlang formula.42

The manuscript is organized as follows: In Section 2 we describe the Laplace method, the43

methods used to provide model-based pO2 profiles used in the testing, and the metrics used to44

quantify the accuracy of the resulting estimates. In Section 3 we first illustrate the method and45

the necessary compromise between reducing noise and limiting bias when choosing the level of46

spatial smoothing. Next, we systematically explore the accuracy of CMRO2 estimates for a variety47

of situations with different levels of noise, different grid sizes of the pO2 measurement, and different48

levels of smoothing. In these systematic explorations of the efficacy of the method, the simple49

single-arteriole situation where the Krogh-Erlang formula gives the ground truth, is considered for50

simplicity. Later, we illustrate the use of the Laplace method on more complicated situations where51

several arterioles provide the consumed oxygen, or the CMRO2 varies with position. In Section 452

we discuss the Laplace method and its further development and use.53

2. Methods54

2.1. Forward modeling of oxygen consumption55

The blood-tissue O2 transport is assumed to be caused by diffusion and is described mathe-56

matically by the Poisson equation. Under steady-state conditions, that is, no time dependence of57

the oxygen partial pressure P , the relationship between this pressure and the net rate of oxygen58

consumption s(r) in the tissue can be described by [Goldman, 2008; Sakadžić et al., 2016]:59

∇2P (r) =
s(r)

D(r)α(r)
, (2)

where ∇2 is the Laplace operator, D(r) is the diffusivity, and α(r) is the solubility of the medium.60

The equation can be written more compactly as61

∇2P (r) = M(r), (3)

where62

M(r) ≡ s(r)

D(r)α(r)
. (4)

Here, M(r) is a new position-dependent variable encapsulating the oxygen consumption in the63

neural tissue.64

By introducing a characteristic length r∗ and a characteristic oxygen consumption M∗, we can65

rewrite Equation 3 in a dimensionless form which is useful in the further analysis:66

∇̂2P̂ (r̂) = M̂(r̂), (5)

where r̂ = r/r∗, P̂ = P/M∗r∗2, M̂ = M/M∗, and ∇̂2 is the Laplace operator in terms of the67

dimensionless position variables. In this dimensionless form, the number of model parameters is68

effectively reduced by one, making the further analysis simpler.69

Equation 3, and the dimensionless version in Equation 5, in principle describe the spatial profile70

of the oxygen pressure for any set of oxygen sinks (metabolic consumption, M > 0) and sources71
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(oxygen provided by vessels, M < 0). The variable M(r) describes the net oxygen consumption,72

that is, the difference between oxygen sinks and sources at position r.73

In general, both the oxygen pressure P (r) and the net oxygen consumption M(r) depend on74

the position in three-dimensional space. However, in the present application we assume no axial75

diffusion of oxygen, that is, no diffusion in the direction parallel to the blood vessel providing the76

oxygen. Thus P (r) = P (x, y) and M(r) = M(x, y).77

2.1.1. Krogh-Erlang model78

In the well-known Krogh-Erlang model [Krogh, 1919], a cylindrical geometry, mimicking a straight79

segment of a blood vessel, was used to model the metabolic consumption of oxygen provided by80

capillaries in muscles. In Sakadžić et al. [2016], the same model was used to study metabolic81

consumption of oxygen provided by arterioles in brain tissue. The model describes the blood vessel82

as a small cylinder with radius Rves supplying a tissue cylinder with radius Rt with oxygen. The83

further assumptions are (i) uniform consumption of oxygen in the tissue, that is, constant M outside84

the vessel, (ii) no axial diffusion of oxygen, (iii) P = Pves at Rves, and (iv) no pressure gradient at the85

surface of the tissue cylinder, that is, dP/dr = 0 at Rt. With these four assumptions, the solution of86

Equation 3 is found to be87

P (r) = Pves +
1

4
M(r2 −R2

ves)−
1

2
MR2

t ln
r

Rves
, (6)

for Rt ≥ r ≥ Rves. This so-called Krogh-Erlang formula predicts the oxygen pressure P in the tissue88

as a function of the distance r from the vessel’s center. For our application we set P (r) = Pves if89

r < Rves.90

Equation 6 can be written in dimensionless form as91

P̂ (r̂) =

{
P̂ves, if r < R̂ves

P̂ves + 1
4M̂(r̂2 − R̂2

ves)− 1
2M̂R̂2

t ln r̂
R̂ves

, if R̂t ≥ r ≥ R̂ves.
(7)

Here we also have introduced P̂ves = Pves/(M
∗r∗2), r̂ = r/r∗, R̂ves = Rves/r

∗ and R̂t = Rt/r
∗

92

Further, the boundary condition dP̂ /dr̂ = 0 for r̂ = R̂t is assumed.93

2.1.2. FEniCS model94

The Krogh-Erlang formula relates the oxygen consumption and the partial oxygen pressure un-95

der very specific conditions. Another option is to solve Equation 5 numerically. This allows for the96

solutions for more general cases, such as a more complicated geometry with, for example, sev-97

eral arterioles providing oxygen, or a variable oxygen consumption. We implemented Equation 5 in98

the finite element software package FEniCS [Logg et al., 2012], and verified the implementation by99

comparing the result to that of the Krogh-Erlang formula.100

The FEniCS implementation solves the variational formulation of Equation 5: Let V be a space
of test functions {v1, . . . vN} on the computational domain Ω. We aim to find P̂ such that∫

Ω
∇P̂ · ∇vi + M̂vi dx−

∫
∂Ω
∇P̂ · n ds = 0, ∀vi ∈ V, (8)
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where ∂Ω denotes the boundary of the domain, and n is a normal vector pointing out of the domain.101

This variational form is obtained by multiplying Equation 5 with the test function vi and integrating102

over Ω, followed by integration by parts of the Laplacian term. Note that as we apply a fixed value103

for P̂ by the blood vessel and no pressure gradient at the boundary of the domain, the boundary104

integral in Equation 8 vanishes.105

2.1.3. Noise106

We add additive Gaussian noise to the test data using the normrnd function in MATLAB. For107

each value P̂ of oxygen partial pressure, whether it comes from the Krogh-Erlang equation or the108

FEniCS solution, we draw a random number P̂ noisy from a Gaussian distribution with mean P̂ and109

standard deviation σ̂P, and replace P̂ by this number.110

2.2. Laplace estimator111

Equation 5 says that given a data set of oxygen partial pressure P̂ , M̂ can be estimated by112

taking the Laplacian of P̂ . With dimensionless parameters we have113

M̂est(x̂, ŷ) = ∇̂2P̂ (x̂, ŷ). (9)

With P̂ given on a square (or rectangular) grid with grid spacing d̂, the net oxygen consumption as114

described by M̂ can be estimated at grid positions by using the discrete finite difference approxima-115

tion of the Laplace operator:116

M̂est(x̂i, ŷj) =
P̂i+1,j + P̂i−1,j + P̂i,j+1 + P̂i,j−1 − 4P̂i,j

d̂2
. (10)

Here the integers i and j represent the grid positions, that is, x̂i = id̂ and ŷj = jd̂.117

In the present application, the MATLAB function del2 is used to compute this discrete finite118

difference approximation of the Laplace operator. Note that in order to calculate the right-hand side119

of Equation 10, one must multiply the output from del2 by 4. Specifically, we use the command120

4*del2(P̂ , d̂) to calculate M̂est(x̂, ŷ).121

2.2.1. Smoothing122

We reduce the adverse effects of noise in the oxygen pressure data by fitting a cubic smoothing
spline to the P̂ data before we calculate the Laplacian. Here smoothing is carried out using the csaps
function in MATLAB’s Curve Fitting Toolbox. The csaps function takes a given data set P̂ (x̂, ŷ) and
generates a smoothing spline P̂smooth(x̂, ŷ) which minimizes

(1− q)
n∑
i=1

m∑
j=1

[
P̂ (x̂i, ŷj)− P̂smooth(x̂i, ŷj)

]2
+

q

∫∫ (∂2P̂smooth(x̂, ŷ)

∂x̂2

)2

+

(
∂2P̂smooth(x̂, ŷ)

∂ŷ2

)2
 dx̂ dŷ. (11)

Here, n and m are the number of entries of x̂ and ŷ respectively, and q is a smoothing parameter123

between 0 and 1. This smoothing routine penalizes large spatial double-derivatives in the estimated124
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pressure P̂smooth with the penalty parameterized by the parameter q. q=0 corresponds to the case125

with no smoothing, and increasing values of q imply increasing smoothing. Note that the csaps126

function in MATLAB takes p = 1− q as input argument, see MATLAB documentation. This MATLAB127

function allows for giving more weights to some data points than others in the optimization. We keep128

the weights identical to 1 for all data points in the present application.129

The csaps function allows the smoothing spline P̂smooth to be computed with higher resolution130

than the spatial resolution of the measurements. This is convenient as it allows for a higher spatial131

resolution in the maps of estimated M obtained from the discrete Laplace function del2. We here132

refer to the grid spacing between the pressure data points as d̂data, and the grid spacing of the133

estimated pressure points P̂smooth as d̂est. In the smoothing function, d̂est is set by inserting position134

vectors for the estimation points x̂est and ŷest with this spacing. Likewise, d̂data is set by inserting135

position vectors for the data points x̂ and ŷ with this spacing. Then P̂smooth is estimated from the136

recorded pressure by the following call of csaps:137

P̂smooth = csaps({ŷ, x̂}, P̂ , (1− q), {ŷest, x̂est}). (12)

In the present paper we keep a fixed small value of d̂est, that is, d̂est=0.001. This value is set so small138

that the error introduced from the discreteness of the Laplace estimator in Equation 10 is negligible139

compared to other estimation errors.140

2.2.2. Choice of smoothing parameter141

The effect of the csaps smoothing function can be characterized by a smoothing length d̂q which142

describes how much a spatial δ-function is smeared out in space. By numerical exploration, we143

found that this characteristic smoothing length depends on q and d̂data through the relationship144

d̂q = k(qd̂data)1/4, (13)

where k is a constant.145

This relationship was found numerically by smoothing a square single-entry matrix with one as146

the center element, and the rest of the elements set to zero. The resulting spatially-smoothed δ-147

function was then plotted, for a fixed value of d̂data and different values of q, as a function of the148

distance r to the center point, as shown in Fig 1A. We then defined the characteristic length d̂q to be149

the distance from the center point at which the function value had fallen 50% compared to the center150

value, see dotted lines in panel A. Panel B shows the dependence of the estimated d̂q on q (for a151

fixed d̂data of 0.005). We observe that d̂q increases slowly with q, that is, when q is increased by a152

factor 104, d̂q increases only by a factor 10. Fig 1C shows the smoothed δ-function when instead153

the value of q is fixed, while d̂data has different values. Again, when d̂q is read out from the curve154

and plotted as a function of d̂data (panel D), we see that d̂q increases slowly with d̂data, that is, when155

d̂data is increased by a factor 104, d̂q increases only by a factor 10.156

The detailed value of the constant k in Equation 13 is not critical for our purpose. We set it by157

reading out the value for d̂q from the graph for the case with d̂data = 5 · 10−3 and q = 5 · 10−4 as158

shown with a blue line in Fig 1E. The readout value, d̂q ≈ 5.6 · 10−2, was then used to calculate k159

from Equation 13. After rounding to one decimal, this gave k = 1.4.160
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Figure 1: Choice of smoothing parameter in csaps. The effect of the smoothing function csaps is characterized by
a smoothing length d̂q which is related to the smoothing factor q and the spatial spacing d̂ through Equation 13. We
found this relationship by smoothing a two-dimensional spatial δ-function using different values of q and d̂, and plot the
result as a function of the distance r̂ from the position of the δ-function. Panels A and C show the normalized smoothed
δ-function (δsmooth(r̂)) for different values of q (d̂ fixed) and d̂ (q fixed), respectively. The characteristic smoothing length
d̂q is defined as the distance corresponding to δsmooth = 0.5 (dotted lines) and is plotted as a function of q and d̂ in panels
B and D, respectively. In panel E we demonstrate how different sets of q and d̂-values correspond to the same d̂q, that is,
the same smoothing effect.
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Thus, given d̂data and a chosen value of d̂q, we can find which q to use in csaps in Equation 12161

through the following formula:162

q =

(
d̂q

1.4

)4
1

d̂data

. (14)

This equation tells us that if, say, d̂data increases from 5 ·10−3 to 1 ·10−2, then q must decrease from163

q = 5 · 10−4 to about q = 2.6 · 10−4 to keep the same smoothing effect, that is, give the same value164

d̂q. The dotted orange line in Fig 1E illustrates that this is indeed the case.165

2.2.3. Performance Measures of the Laplace Estimator166

In order to evaluate the performance of the Laplace estimator, we test it on ground-truth data and167

calculate its bias, precision, and accuracy. As precision and accuracy measures we use standard168

deviation (SD) and root mean square error (RMSE). The mathematical definitions of these measures169

are170

bias =
1

N

N∑
j=1

(M̂est,j − M̂), (15)

171

SD =

√√√√ 1

N

N∑
j=1

(M̂est,j − M̂est)2, (16)

and172

RMSE =

√√√√ 1

N

N∑
j=1

(M̂est,j − M̂)2, (17)

where N is the number of ground-truth samples and M̂est,j is the jth estimate of M̂ .173

The RMSE combines both bias and precision as its squared value MSE is equal to the standard174

deviation squared plus the bias squared: MSE = SD2 + bias2 [Wasserman, 2013].175

3. Results176

3.1. Illustration of Laplace estimation method177

The principle of the Laplace method for estimation of the net oxygen consumption M(r) from178

measurements of the partial pressure P (r) of oxygen is illustrated in Fig 2. In this example we179

assume the spatial profile of the oxygen pressure to follow the Krogh-Erlang formula in Equation 6,180

mimicking the situation where a single arteriole is the source of the oxygen, and the oxygen con-181

sumption M is constant around the arteriole.182

Panel A shows the pressure profile in the radial directions as described by this formula with183

example parameters chosen to be in qualitative agreement with example data from Sakadžić et al.184

[2016], that is, Pves = 80 mmHg, M = 10−3 mmHgµm−2, Rves = 6 µm, and Rt = 200 µm. Panel185

C shows a contour plot of this pressure profile in the two spatial dimensions. Here dimensionless186

parameters (cf. Methods) are used with r∗ = 141 µm and the convenient choice M∗ = M so that187

the maximal pressure Pves corresponds to P̂ves ≈ 4.1 and M̂ = 1. We show the pressure profile in a188

square window with side lenghts of 282 µm so that the dimensionless position coordinates extends189
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Figure 2: Illustration of Laplace estimation method. Panels A and B show examples of ground-truth pO2 profiles
calculated using the Krogh-Erlang formula in Equation 7, with (panel A) and without noise (panel B). Panel C and E show
the corresponding 2D representations of these pressure data sets, and panel G shows a data set where smoothing has
been applied. Panel D, F and H show estimated Ms calculated from the pO2 data in panel C, E and G, respectively.
Parameter values: All panels: Pves = 80 mmHg, Rves = 6 µm, Rt = 200 µm, M = 10−3 mmHgµm−2. For panels A,B:
ddata = 1 µm. For panel B: σ̂P = 0.001 mmHg. For panels C–H: d̂data = 0.007, r∗ = 141 µm, M∗ = M . For panels
E–H: σ̂P = 5 · 10−4. For panels G,H: d̂est = 0.001, d̂q = 0.04.
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from -1 to 1 along the x̂ and ŷ axes. With this choice, the corners of the square correspond to a190

radial distance equal to R̂t, the radius of the tissue cylinder.191

The problem of CMRO2 estimation now corresponds to estimating M at the different spatial192

positions inside the square window based on these recordings. Panel D shows the estimated M193

(in units of M∗) found by using the Laplace estimator in Equation 10 on the data in panel C. In this194

example the dimensionless distance between the grid points at which the pressure is ‘recorded’ is195

set to d̂ = 0.007, corresponding to a physical grid-point distance of about 1 µm. It is seen that some196

distance away from the vessel, the estimator predicts M̂ very close to 1, that is, M ' M∗, as it197

should.198

However, close to the vessel, that is, for r̂ & R̂ves, clearly incorrect values of M̂ are estimated.199

One obvious reason is that the discrete Laplace estimator in Equation 10 will be inaccurate when200

one or more of the grid points used in the estimation is inside the vessel. Here the pressure P is not201

described by Equation 6 and is instead assumed constant so that ∇2P 6= M , cf. Equation 3. For202

the present example a more important reason is that immediately outside the vessel, the pressure203

profile drops sharply (due to the last term in the Krogh-Erlang formula in Equation 6) so that the204

discrete Laplace estimator becomes inaccurate when the grid-point distance d̂ is too large. The205

‘flower-like’ symmetric pattern of this estimation error in panel D reflects the cartesian symmetry of206

the estimator in Equation 10. This discretization error can be reduced by reducing the value of d̂.207

Panel D in Fig 2 illustrates that if the experimental recordings were noiseless, the Laplace es-208

timator in Equation 10 could be used directly on the oxygen pressure data, at least if the grid of209

recordings are finely spaced. This would apply for any distribution of vessels as long as the estimator210

M̂est in Equation 10 is used sufficiently far away from oxygen-delivering blood vessels. Experimental211

pressure data will always contain noise, however, and panel B shows the pressure profile when an212

additive Gaussian noise Pσ with zero mean and standard deviation σP = 0.001 mmHg is added to213

the pressure signal in panel A. When M̂est in Equation 10 is applied on the dimensionless version214

of these data (panel E), the estimated values of M̂ are wildly inaccurate (panel F). Not only does215

the estimated values of M̂ have much larger magnitudes than the true value of M̂ = 1, they also216

have both signs and vary strongly between neighboring grid positions (that is, between neighboring217

pixels in the panel image). These poor estimates reflect that the double-derivative operation of the218

Laplacian estimator corresponds to a high-pass spatial filtering which effectively amplifies the effects219

of the noise in the pressure recordings.220

The high-frequency noise in the estimated M̂ can be reduced by the use of spatial smoothing,221

that is, low-pass filtering, of the pressure data P̂ prior to application of M̂est. While the smoothed222

pressure profile P̂smooth in panel G at first glance does not appear to be very different from the223

unsmoothed pressure in panel E, the effect of the smoothing on the estimated M is dramatic (panel224

H). With the choice of smoothing used in this example (see figure caption for details), quite accurate225

estimates of M̂ are found for a large region of the area around the central vessel (light-colored226

regions of panel H). However, the smoothing procedure results in large estimation errors in a sizable227

region around the blood vessel as well as close to the edges of the square data set.228

As illustrated in this section, suitable smoothing of the oxygen partial pressure data before using229

the Laplace estimator M̂est may dramatically improve the estimation accuracy. However, the choice230

of smoothing is critical: too little low-pass smoothing will not remove enough of the high-frequency231

spatial noise, too much smoothing will smooth away spatial information in the pressure signal and232

give poor estimates of M for this reason. Next, we will investigate this dilemma in more detail.233
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3.2. Noise removal vs. bias234

Fig 3 illustrates the dilemma when choosing the right level of low-pass smoothing of the oxygen235

pressure data P before using the Laplace estimator in Equation 10. In the smoothing, the quantity236

described in Equation 11 was minimized to penalize sharp variations in Psmooth while at the same237

time fitting the ‘experimental’ data P . The level of smoothing is set by the smoothing length dq (or238

d̂q in dimensionless units) which is related to the smoothing parameter used in the presently used239

MATLAB function csaps via Equation 13 in Methods. This smoothing length describes how much a240

point (that is, a two-dimensional spatial δ-function) will be smeared out in space. Thus the larger dq241

is, the more the pressure profile will be smeared out or smoothed.242

To quantify the performance of the estimator we use the three performance measures bias,243

standard deviation (SD), and root mean square error (RMSE). The bias (Equation 15) measures the244

systematic error in the estimator Mest introduced by the smoothing (and discreteness of data points)245

whether the data is noisy or not. It can be evaluated from noiseless data (that is, with Pσ=0), and the246

results for different values of smoothing are shown in the panels in the left column of Fig 3 (panels A,247

D, G, J). In the case of no smoothing (d̂q=0, panel A) the only bias comes from the discreteness of248

the grid of data points, and a non-zero bias is only observed close to the vessel. With a small amount249

of smoothing (d̂q=0.02, panel D), the bias around the vessel is increased. For d̂q=0.04 (panel G)250

and d̂q=0.08 (panel J) this tendency of increased bias with increasing d̂q is continued, and some251

bias is also observed close to the edges of the square. For the largest smoothing depicted in panel252

J, about one-third or so of the estimation square has a bias with a magnitude larger than 100%.253

The standard deviation (SD, Equation 16) measures the precision or the error in the estimation254

due to the presence of noise. This measure obviously depends on the level of noise Pσ, and in255

the present example in Fig 3 a Gaussian noise with a standard deviation of σ̂P = 5 · 10−4 is used.256

With r∗=141 µm and M∗ = 10−3 mmHg/µm2 as in Fig 2 this corresponds to a noise level of257

σP ≈ 0.01 mmHg. The SD for different amounts of smoothing is shown in the middle column of258

Fig 3 (panels B, E, H, K). Three observations of note are that (i) the SD of the estimates is extremely259

large when no smoothing is applied (d̂q=0), (ii) the SD decreases with increasing d̂q, and (iii) unlike260

for the bias, the SD has similar values at the different positions.261

An essential feature of the SD is that it is proportional to the standard deviation of the noise in262

the pressure σ̂P. Thus if σ̂P was doubled to 0.001, the SDs in panels B, E, and H would be doubled263

as well.264

The accuracy of the estimator Mest is measured by the root mean square error (RMSE, Equa-265

tion 17) which incorporates both the bias and the precision (SD) through the relation266

RMSE =
√

bias2 + SD2 . (18)

This measure describes the total statistical uncertainty of the estimates when Mest is applied on267

individual data sets. The bias increases with increasing d̂q (panels A, D, G, J) while the SD instead268

decreases with increasing d̂q (panels B, E, H, K). One would thus expect a suitable intermediate269

value of d̂q to give the smallest RMSE. For the example in Fig 3 we indeed see that of the values270

of d̂q considered, the intermediate value d̂q=0.04 (panel I) offers the best compromise between bias271

and noise removal and gives the smallest RMSE. For this value of d̂q the RMSE is smaller than 25%272

for almost all positions except for a region around the blood vessel.273
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Figure 3: Illustration of noise removal vs bias. Bias is computed from Equation 15 for the case without noise σ̂P = 0 so
that a single estimate of M̂est is sufficient, that isN=1 in Equation 15. SD is computed from Equation 16 with 104 estimates
of M̂est, that is, N = 104. In the computation of SD and RMSE, σ̂P = 5 · 10−4. All performance measures are given
as the percentage of the ground truth value M̂ = 1. Note also that the MATLAB routine csaps is used also for the case
without smoothing (d̂q=0) with q=0 inserted in Equation 12. Other parameter values: d̂data = 0.007, Pves = 80 mmHg,
Rves = 6 µm, Rt = 200 µm, M = 10−3 mmHgµm−2, r∗ = 141 µm, M∗ =M .
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The large RMSE close to the blood vessel even for the ‘best’ choice of d̂q in panel I reflects the274

large bias in these positions (panel G).275

3.3. Choice of smoothing length dq276

As illustrated in the previous section, a key question when using the Laplace estimator in Equa-277

tion 10 is the choice of the level of smoothing, or more specifically, the choice of the smoothing278

length dq. This will not only depend on the noise level, but also the spatial resolution of the exper-279

imental pressure data as described by the grid-point distance ddata. Since the bias is independent280

of the noise level, and the SD is linearly proportional to the standard deviation σP of the noise, it is281

convenient to first explore the interplay between dq and ddata for the bias and SD separately.282

In Fig 4 we show how the bias varies with ddata and dq for three choices of parameter values of283

each: d̂data=0.0035, 0.007, 0.014 (here corresponding to physical grid-point distances of approxi-284

mately 0.5 µm, 1 µm, and 2 µm, respectively), d̂q=0, 0.02, 0.04 (corresponding to physical smooth-285

ing lengths of approximately 0 µm, 3 µm, and 6 µm, respectively). For the case with no smoothing286

(panels A, D, G), we observe that the bias increases with increasing d̂data. This illustrates that the287

error due to the discreteness of the Laplace estimator is sensitive to ddata even when dest is set to288

a very small number (d̂est = 0.001, cf. Methods). This is not surprising because decreasing the289

grid-point distances from d̂data to d̂est means that we estimate P̂ at a denser grid of points than what290

is directly available in the data. With smoothing added (two rightmost columns of panels), the bias291

increases, and the larger the value of d̂q, the larger the bias. (Note the difference in color scales in292

figure.)293

In Fig 5 we correspondingly show how the SD (standard deviation) varies with ddata and dq for294

the same set of parameters as in Fig 4 for a fixed level of noise in the pressure data σ̂P = 5 · 10−4.295

Here the most important feature is that the SD is strongly reduced with increased smoothing, that is,296

increasing dq (from left to right). For the smoothed cases (two rightmost columns) we also observe297

that SD increases with increasing ddata.298

Fig 6 shows the RMSE, computed from Equation 18, for the example bias and SD shown in299

Fig 4 and Fig 5, respectively. For the smoothed cases (two right columns) we observe that the300

RMSE always increases with the d̂data. Thus with the noise level fixed, it is (unsurprisingly) always301

advantageous to have a dense recording grid. For the noise level in this example we see that the302

choice d̂q=0.02 (second column) gives a good estimate for d̂data=0.0035, that is, low RMSE, for large303

parts of the estimation window. For d̂data=0.007 and especially d̂data=0.014 the SD is not sufficiently304

reduced, and the RMSE is overall high. For the case with a larger smoothing (d̂q=0.04, third column)305

the SD is much reduced for all values of d̂data. However, the region with large bias around the vessel306

is increased, and the spatial region in which small values of RMSE are shrunken.307

Note that the SD results in Fig 5 and the RMSE results in Fig 6 only pertain to the particular308

noise level used in the example, that is, σ̂P = 5 · 10−4. However, the SD is proportional to the309

noise level, so a doubling of σ̂P to σ̂P = 0.001 would simply double the SD from what is shown in310

Fig 5. RMSE results analogous to Fig 6 for other noise levels can thus be obtained by use of this311

SD scaling relationship in combination with Equation 18.312

3.4. Estimation of CMRO2 for other example situations313

In the examples above we have applied the Laplace estimator to the situation with (i) a constant314

value of the M and (ii) a single vessel providing the oxygen so that the pressure profile is described315
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Figure 4: Bias for different smoothing. Bias computed from Equation 15 and given as the percentage of the ground
truth value M̂ = 1. There was no noise added to the pressure data so that a single estimate of M̂est is sufficient, that
is N=1 in Equation 15. Parameter values: Pves = 80 mmHg, Rves = 6 µm, Rt = 200 µm, M = 10−3 mmHgµm−2,
r∗ = 141 µm, M∗ =M .
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Figure 5: Standard deviation (SD) for different smoothing - fixed noise level. Standard deviation (SD) computed from
Equation 16 with N = 104. Values are given as the percentage of the ground truth value M̂ = 1. (Note that the grid-like
pattern visible in some of the panels is a numerical artifact resulting from the application of the MATLAB routine csaps.)
Parameter values: σ̂P = 5 ·10−4, Pves = 80 mmHg, Rves = 6 µm, Rt = 200 µm, M = 10−3 mmHgµm−2, r∗ = 141 µm,
M∗ =M .

15

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 1, 2019. ; https://doi.org/10.1101/827865doi: bioRxiv preprint 

https://doi.org/10.1101/827865
http://creativecommons.org/licenses/by-nc-nd/4.0/


-1 0 1
d̂q = 0

-1

0

1

d̂
d
a
ta

=
0.

00
35

A
-1 0 1

d̂q = 0.02

B
-1 0 1

d̂q = 0.04

C

-1

0

1

d̂
d
a
ta

=
0.

00
7

D E F

-1

0

1

d̂
d
a
ta

=
0
.0

14

G H I

105 100 20

Figure 6: Root mean square error (RMSE) for different smoothing - fixed noise level. Root mean square error
(RMSE) computed from Equation 17 for the bias and standard deviations (SD) shown in Figures 4 and 5, respectively.
Values are given as the percentage of the ground truth value M̂ = 1.
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by the Krogh-Erlang formula in Equation 6. For these examples an alternative approach could be316

to estimate M using a ‘Krogh-estimator’, that is fitting the Krogh-Erlang formula directly to recorded317

data [Sakadžić et al., 2016]. In other situations where, for example, M varies with position or several318

nearby vessels provide the oxygen so that the circular symmetry assumed in the Krogh-Erlang319

formula is absent, such a Krogh estimator will not be applicable. However, the Laplace estimator320

does not assume a constant M or any particular arrangement of the oxygen-providing vessels and321

can be applied also here.322

3.4.1. Spatially varying CMRO2323

To illustrate the applicability of the Laplace estimator to the situation with varyingM , we consider324

in Fig 7 the situation where a single vessel provides the oxygen, but where the CMRO2 parameter325

M is four times larger in the upper half-plane than in the lower half-plane. Here the solution of the326

Poisson equation in Equation 3 must be found numerically, and in panel A we illustrate the oxygen327

pressure profile found using the FEniCS numerical solver (see Methods). While panel A shows328

the pressure profile without any added noise, panel B correspondingly shows a 2D colormap of the329

same pressure profile when noise has been added. In both panels we, as expected, observe that330

pressure is higher in the lower half-plane where the oxygen consumption, that is, M , is smallest so331

that the pressure profile decays more slowly with distance from the vessel.332

When using the Laplace estimator on the noise-free data in Fig 7A, we obtain excellent estimates333

of M , that is, M̂est ≈ 2 in the upper half-plane and M̂est ≈ 0.5 in the lower half-plane (panel C).334

We only observe sizable errors in the immediate vicinity of the vessel, errors stemming from the335

discreteness of the pressure data used in the estimation (d̂data = 0.007). Further, when using the336

Laplace estimator on a smoothed version of the data in Fig 7B, we still obtain good estimates of M̂337

some distance away from the vessel. This is in accordance with the low values for the RMSE found338

for suitable smoothing of noisy pressure data for the case with constant M̂ in Fig 6.339

3.4.2. Several vessels providing oxygen340

An example of a situation where many nearby vessels contribute with oxygen is shown in Fig 8.341

Again no analytical solution of the pressure profile is available, and the Poisson equation is instead342

computed by means of FEniCS. As observed in the left panel, the circular symmetry of the pressure343

profile is broken around the vessel, but the Laplace estimator is still able to accurately estimate M̂344

except close to the vessels (right panel).345

3.5. Estimation of spatially-averaged M346

So far we have used the Laplace estimator to estimate spatial maps of CMRO2 consumptions,347

that is, spatial maps of estimated M . The Laplace estimator can give accurate estimates as long348

as the noise level is not too large, but the estimates of M in the immediate vicinity of the oxygen-349

releasing blood vessels are typically inaccurate due to the bias introduced by the smoothing proce-350

dure.351

In situations where the oxygen pressure data is too noisy to give reliable spatially resolved maps352

of estimatedM , one can still obtain estimates of spatially-averaged values ofM (as when estimating353

CMRO2 based on fitting the Krogh-Erlang model in Equation 6 to experimental data [Sakadžić et al.,354

2016]). The obvious procedure for estimating such average values Mest,av is to take the spatial355
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Figure 7: Estimation of M with spatially varying CMRO2. Laplace estimation of M for the case with a single oxygen-
releasing vessel in the center with a larger CMRO2 in the upper half plane (M̂=2) than in the lower half-plane (M̂=0.5).
The ground-truth pO2 profile was calculated using the FEniCS numerical solver (see Methods). A: Illustration of pressure
profile for the case without noise (σ̂P = 0). B: Illustration of pressure profile in A with noise added (σ̂P = 0.0005). C:
Estimated M from the noise-less profile in A without use of smoothing. D: Estimated M from the profile in B (where noise
is present) with use of smoothing (d̂q=0.04). Other parameter values: d̂data=0.007, Pves = 80 mmHg, Rves = 6 µm,
r∗=141 µm, M∗ = 10−3.
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Figure 8: Estimation ofM with several vessels providing oxygen. Example of Laplace estimation for a situation where
three vessels release oxygen into the tissue. The ground-truth pO2 profile was calculated using the FEniCS numerical
solver (see Methods). Here Pves is set to 80 mmHg, 70 mmHg, and 50 mmHg for the vessel on the left, lower right,
and upper right, respectively, while Rves is set to 6 µm for all vessels. Noise is added to the pressure profile in panel A
(σ̂P = 0.0005), and d̂q=0.04 is used in the smoothing to provide the estimates of M in panel B. Other parameter values:
d̂data=0.007, M = 10−3mmHgµm−2, r∗=141 µm, M∗ =M .

average over spatially resolved values of Mest, that is356

Mest,av =
1

N

N∑
i=1

Mest(ri). (19)

The SD of Mest,av is then expected to be a factor
√
N reduced compared to the SD for the spatially357

resolved estimates Mest(r).358

The bias is not reduced by such an averaging procedure, however. To reduce the effects of359

smoothing-induced bias, one possible procedure is to take the average of M only for positions360

outside a circular region around the oxygen-delivering vessel. As illustrated in Fig 9A this can361

reduce the bias in the Mest,av substantially. Larger values of the smoothing length d̂q give larger362

regions of large bias around the vessel (Fig 4). Thus larger areas around the vessel, parameterized363

by the diameter d̂cut, should be removed from the averaging sum in Equation 19 to keep the bias364

small. This removal of area from the averaging sum implies a smaller value for N in Equation 19365

and thus a larger value of SD of Mest,av. Again, a compromise between the bias and the SD must366

be found to get the most accurate estimate.367

This compromise is illustrated in Fig 9B–G. Panel B shows the spatially resolved RMSE for a368

case with low noise corresponding with no smoothing applied (cf. left column of Fig 6). Here the369

noise level is so low that even without smoothing, the SD of Mest,av becomes less than 1% for370

all averaging areas considered, that is, all choices of d̂cut (cf. d̂q=0 in panel C). With smoothing371

applied, the SD of Mest,av becomes even smaller, much less than 0.1% (panel C). We also note that372

the SD is largest for the largest value of d̂cut, reflecting that here the averaging area (and thus N373

in Equation 19) is the smallest. The corresponding RMSE is shown in panel D. For this low-noise374
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Figure 9: Estimation of spatially-averaged M . Illustration of accuracy of the estimation of spatially-averaged M for
different values of the diameter d̂cut of the circular disc removed from the average in Equation 19. N = 1000 has been
used in the estimation of the standard deviation (Equation 16). Other parameter values: All panels: d̂data = 0.035,
Pves = 80 mmHg, Rves = 6 µm, Rt = 200 µm, M = 10−3 mmHgµm−2, r∗ = 141 µm, M∗ = M . For panel A: σ̂P = 0.
For panels B-D: σ̂P = 5 · 10−4. For panels E-G: σ̂P = 5 · 10−2, d̂q = 0.1. Note that for figure clarity, only the circles
corresponding to d̂cut=0.1, 0.2, and 0.5 are shown in panels B and E.
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situation, there is nothing to gain by doing smoothing when estimating Mest,av. The lowest RMSEs375

are obtained for d̂q ≈ 0 since smoothing reduces the accuracy of the estimates due to the bias376

introduced (cf. panel A).377

The situation with a much higher noise level (σ̂P a factor 100 larger, that is, σ̂P = 5 · 10−2) is378

shown in panels E–G. The spatially resolved RMSE using a smoothing factor of d̂q=0.1 is seen to379

give large lobes with high RMSE values around the vessel (panel E). Moreover, the typical RMSE380

value outside the lobe region is about 120%. The SD of Mest,av (panel F) is seen to be on the381

order of 50% for the case without smoothing (d̂q=0), and a smaller RMSE can thus be obtained with382

smoothing applied (panel G). The smallest RMSE, less than ∼10%, is obtained for d̂q ≈ 0.1 and383

d̂cut = 0.3.384

This high-noise example illustrates how accurate estimates of Mav can be obtained even when385

the spatially resolved estimates for M have a large uncertainty. With the parameter values used386

here, that is, M∗ = 10−3 mmHgµm−2 and r∗ = 141 µm, a σ̂P of 5 · 10−2 corresponds to a physical387

noise level σP of ≈ 1 mmHg. (Here we have used that σP = σ̂PM
∗r∗2, cf. Equation 5.) For388

comparison, the corresponding partial oxygen pressure at the vessel surface in this example would389

be Pves = 80 mmHg.390

4. Discussion391

In the present paper we have introduced a new method, the Laplace method, to provide spatially392

resolved maps of CMRO2 estimates based on spatial measurements of pO2 [Sakadžić et al., 2010,393

2016]. The method has two key steps: (i) spatial smoothing of measured pO2 profiles followed by (ii)394

application of double spatial derivatives in two spatial dimensions, that is, a Laplace operator. This395

method is an alternative to the Krogh-Erlang method where a spatially averaged value of CMRO2 is396

obtained around arterioles assuming circular symmetry [Sakadžić et al., 2016].397

4.1. Improvement of Laplace method398

The double spatial-derivative operation inherent in the Laplace approach is inherently sensitive to399

spatial noise, and the choice of a suitable smoothing method is thus essential for obtaining accurate400

CMRO2 estimates. The ideal smoothing method should reduce the effects of this spatial noise401

without introducing large biases in the resulting estimates.402

Here we for convenience used the MATLAB smoothing function csaps which is publicly available403

and easy to use. csaps minimizes the functional in Equation 11 and thus penalizes large double404

spatial derivatives in the estimation of a smoothed pressure profile. Since CMRO2, or more precisely405

the variable M in Equation 3, is proportional to double spatial derivatives, this smoothing method ef-406

fectively penalizes large magnitudes of M and thus introduces an unwanted bias. A better approach407

would have been to instead penalize changes in the spatial derivatives of M , that is, third spatial408

derivatives in the pressure. However, at present such a smoothing routine was not available to us.409

While csaps allows for different weighting of different spatial positions in the smoothing process,410

the weighting functions are restricted to be spatially separable in the x and y directions. For the411

present application this limitation is not optimal as it would be preferable to include all positions412

except in a small region in and around the vessel, in the optimization inherent in the smoothing413

routine.414
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An obvious next step would thus be to test the accuracy of the Laplace method with a differ-415

ent smoothing method that (i) penalizes third spatial derivatives of the pressure and (ii) allows for416

arbitrary choices of weight functions in the functional to be minimized. In particular, it would be417

interesting to explore to what extent such a smoothing could reduce the size and magnitude of the418

lobes of large bias seen around the vessel center in Fig 4. The present MATLAB scripts, which can419

be found online at https://github.com/CINPLA/CMRO2estimation, are designed to allow for an easy420

change of smoothing method when they become available.421

4.2. Use of Laplace method422

Experimental data with less noise from better dyes and better acquisition systems will improve423

estimation accuracy [Sakadžić et al., 2016], but the accuracy of spatially resolved CMRO2 estimates424

will still be limited by the spatial noise of experimentally recorded pO2 profiles. Pooling of spatially-425

resolved estimates (as described in Equation 19) will always improve the accuracy, but this will be426

at the expense of spatial resolution. This trade-off can be investigated within the Laplace method427

using the scripts accompanying this paper. Estimation accuracy can be studied systematically with428

model-based ground-truth data (either based on the Krogh-Erlang model or based on FEniCS com-429

putations) using the same grid density and noise levels as in the experimental situation of interest.430
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