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Abstract

The cerebral metabolic rate of oxygen (CMRQO,) is an important indicator of brain function and
pathology. Knowledge about its magnitude is also required for proper interpretation of the blood oxy-
genation level dependent (BOLD) signal measured with functional MRI (fMRI). The ability to measure
CMRO, with high spatial and temporal accuracy is thus highly desired. Traditionally the estimation of
CMRO3 has been pursued with somewhat indirect approaches combining several different types of
measurements with mathematical modeling of the underlying physiological processes. Given the nu-
merous assumptions involved, questions have thus been raised about the accuracy of the resulting
CMRO,, estimates. The recent ability to measure the level of oxygen (pO,) in cortex with high spa-
tial resolution in in vivo conditions has provided a more direct way for estimating CMRO,. CMRO,
and pO- are related via the Poisson partial differential equation. Assuming a constant CMRO, and
cylindrical symmetry around the blood vessel providing the oxygen, the so-called Krogh-Erlang for-
mula relating the spatial pO, profile to a constant CMRO, value can be derived. This Krogh-Erlang
formula has previously been used to estimate the average CMRO- close to cortical blood vessels
based on pO,; measurements in rats.

Here we introduce a new method, the Laplace method, to provide spatial maps of CMRO, based
on the same measured pOs, profiles. The method has two key steps: First the measured pO, profiles
are spatially smoothed to reduce effects of spatial noise in the measurements. Next, the Laplace
operator (a double spatial derivative) in two spatial dimensions is applied on the smoothed pOs
profiles to obtain spatially resolved CMRO, estimates. The smoothing introduces a bias, and a
balance must be found where the effects of the noise are sufficiently reduced without introducing too
much bias. In this model-based study we explore this balance in situations where the ground truth,
that is, spatial profile of CMRO is preset and thus known, and the corresponding pO, profiles are
found by solving the Poisson equation, either numerically or by taking advantage of the Krogh-Erlang
formula. MATLAB code for using the Laplace method is provided.
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1 1. Introduction

2 The level of consumption of oxygen by metabolic processes, that is, the cerebral metabolic rate
s of oxygen (CMRQO,), is an important indicator of brain function and pathology. Further, knowledge
+ about the magnitude of the CMRO:. is also required for a proper interpretation of the blood oxygena-
5 tion level dependent (BOLD) signal measured in functional MRI (fMRI) studies [Buxton, 2010]. The
¢ ability to measure CMRO, with high spatial and temporal resolution in cortex is thus crucial. Tra-
7 ditionally the CMRO, has been estimated from several different types of measurements combined
s with mathematical modeling of the underlying physiological processes [Buxton, 2010]. Given the
9 numerous assumptions and experimental limitations typically involved, questions have been raised
10 about the accuracy of the estimates of the CMRO,, provided by these complex and somewhat indi-
11 rect approaches [Sakadzi¢ et al., 2016].

12 The possibility to optically measure the partial pressure of oxygen (pO,) around cortical blood
13 vessels with high spatial resolution in vivo [Sakadzi¢ et al., 2010] has provided a more direct way to
12 estimate the CMRO,. In Sakadzi¢ et al. [2016] they used measured pO- profiles around arterioles
15 in rats to estimate the average CMRO,, in the vessel’s vicinity, that is, within a radius of ~100 pm.
16 They based their estimates on the Krogh-Erlang formula relating the pO, to the CMROs in a cylinder
17 section around an arteriole providing the brain tissue with oxygen [Krogh, 1919; Goldman, 2008].

18 The fundamental equation relating the pO2 and the CMRO, is the Poisson equation

V2P(r) = M(r), (1)

19 where P(r) represents pO2, and M (r) is a measure of the local CMRO.. The Krogh-Erlang formula
20 (Equation 6) gives the solution to this partial differential equation, that is, the radial profile of P, for
21 the particular case where (i) the CMRO; (M (r)) is assumed to be a constant, and (i) all the oxygen
22 provided by the center arteriole is assumed to be consumed within a radial basin with radius R;. In
23 Sakadzi¢ et al. [2016], experimentally measured pO- profiles were fitted to this formula to provide
24 estimates for M (and thus CMRO).

25 The approach of Sakadzi¢ et al. [2016] is global in the sense that it fits the entire measured
2s profile P(r) to the Krogh-Erlang formula to obtain an estimate for the assumed constant value of M.
2z A more direct way to estimate M (r) from Equation 1, is to apply the Laplace operator V2 directly to
2s the measured P(r) to obtain a local measure of M (r). Unlike the Krogh-Erlang model approach,
29 this Laplace approach will provide a spatially resolved map of CMRO, estimates around the arte-
s rioles, based on the same pOs measurements. The method is thus not restricted to estimating an
a1 assumed constant value of M. Further, the Laplace method is not restricted to situations with ra-
32 dially symmetric pOs profiles as when a single arteriole provides all oxygen. The development and
a3 testing of the Laplace method are the topics of the present paper.

34 The double spatial derivatives in the Laplace operator make this Laplace method inherently very
35 sensitive to noise in the measured spatial pO, profiles. In order to have a practical method for
s CMRO, estimation, the pO- profiles must thus be spatially smoothed to reduce the effects of the
a7 hoise. Smoothing introduces a bias, that is, a systematic error in the estimates, and a balance must
s be found where the effects of the noise are sufficiently reduced without introducing too much bias.
s In the present model-based study we explore this balance by examining the accuracy of CMRO,
w0 estimates in situations where the ground truth, that is, spatial profile of M(r) is preset and thus


https://doi.org/10.1101/827865
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/827865; this version posted November 1, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

a1 known, and the corresponding profiles P(r) are found by solving Equation 1, either numerically or
42 by taking advantage of the Krogh-Erlang formula.

43 The manuscript is organized as follows: In Section 2 we describe the Laplace method, the
4« methods used to provide model-based pO, profiles used in the testing, and the metrics used to
ss quantify the accuracy of the resulting estimates. In Section 3 we first illustrate the method and
s the necessary compromise between reducing noise and limiting bias when choosing the level of
47 spatial smoothing. Next, we systematically explore the accuracy of CMRO, estimates for a variety
s Of situations with different levels of noise, different grid sizes of the pO, measurement, and different
49 levels of smoothing. In these systematic explorations of the efficacy of the method, the simple
so  single-arteriole situation where the Krogh-Erlang formula gives the ground truth, is considered for
st simplicity. Later, we illustrate the use of the Laplace method on more complicated situations where
52 several arterioles provide the consumed oxygen, or the CMRO, varies with position. In Section 4
s3  we discuss the Laplace method and its further development and use.

s« 2. Methods

s 2.1. Forward modeling of oxygen consumption

56 The blood-tissue O4 transport is assumed to be caused by diffusion and is described mathe-
57 matically by the Poisson equation. Under steady-state conditions, that is, no time dependence of
ss  the oxygen partial pressure P, the relationship between this pressure and the net rate of oxygen
ss consumption s(r) in the tissue can be described by [Goldman, 2008; Sakadzi¢ et al., 2016]:

s(r)

VPO = Bai

(@)

s Where V? is the Laplace operator, D(r) is the diffusivity, and a(r) is the solubility of the medium.
st The equation can be written more compactly as

VZP(r) = M(r), (3)
62 Where
M(r) = D(‘i'()l(j(r)' (4)

&s Here, M(r) is a new position-dependent variable encapsulating the oxygen consumption in the
e+ neural tissue.

65 By introducing a characteristic length »* and a characteristic oxygen consumption M*, we can
e rewrite Equation 3 in a dimensionless form which is useful in the further analysis:

VZP(t) = M(#), (5)

e where # = r/r*, P = P/M*r*2, M = M/M*, and V2 is the Laplace operator in terms of the
es dimensionless position variables. In this dimensionless form, the number of model parameters is
eo effectively reduced by one, making the further analysis simpler.

70 Equation 3, and the dimensionless version in Equation 5, in principle describe the spatial profile
71 of the oxygen pressure for any set of oxygen sinks (metabolic consumption, M > 0) and sources


https://doi.org/10.1101/827865
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/827865; this version posted November 1, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

72 (oxygen provided by vessels, M < 0). The variable M (r) describes the net oxygen consumption,
73 thatis, the difference between oxygen sinks and sources at position r.

74 In general, both the oxygen pressure P(r) and the net oxygen consumption M (r) depend on
75 the position in three-dimensional space. However, in the present application we assume no axial
7 diffusion of oxygen, that is, no diffusion in the direction parallel to the blood vessel providing the
77 oxygen. Thus P(r) = P(z,y) and M (r) = M(x,y).

s 2.1.1. Krogh-Erlang model

78 In the well-known Krogh-Erlang model [Krogh, 1919], a cylindrical geometry, mimicking a straight
s0 segment of a blood vessel, was used to model the metabolic consumption of oxygen provided by
st capillaries in muscles. In Sakadzi¢ et al. [2016], the same model was used to study metabolic
g2 consumption of oxygen provided by arterioles in brain tissue. The model describes the blood vessel
s3 as a small cylinder with radius R..s supplying a tissue cylinder with radius R; with oxygen. The
s« further assumptions are (i) uniform consumption of oxygen in the tissue, that is, constant M outside
s the vessel, (i) no axial diffusion of oxygen, (iii) P = Pyes at Ryes, and (iv) no pressure gradient at the
ss surface of the tissue cylinder, that is, dP/dr = 0 at R;. With these four assumptions, the solution of
s7 Equation 3 is found to be

r
)
RVG‘S

1
P(r) = Pyes + ZM(T‘Q ~ R?

1
Ves) = 5 MR{In (6)
s for Ry > r > Ryes. This so-called Krogh-Erlang formula predicts the oxygen pressure P in the tissue
so as a function of the distance r from the vessel's center. For our application we set P(r) = Pis if

90 7 < Ryes.

91 Equation 6 can be written in dimensionless form as
. Pyes. if 7 < Ryes
P(7) =4 5 Lr(a2 _ P2 107 P2 7 e D > (7)
Pyes + 3 M (72 — R3.) — 5 MR In 7 if Rt > 7 > Ryes-

» Here we also have introduced Pyos = Poes/(M*r*2), 7 = r /1%, Ryes = Ryes/r* and R, = Ry /r*

o3 Further, the boundary condition dP/df = 0 for 7 = Ry is assumed.

s 2.1.2. FEniCS model
95 The Krogh-Erlang formula relates the oxygen consumption and the partial oxygen pressure un-
96 der very specific conditions. Another option is to solve Equation 5 numerically. This allows for the
o7 solutions for more general cases, such as a more complicated geometry with, for example, sev-
9s eral arterioles providing oxygen, or a variable oxygen consumption. We implemented Equation 5 in
99 the finite element software package FEnICS [Logg et al., 2012], and verified the implementation by
100 comparing the result to that of the Krogh-Erlang formula.

The FENnICS implementation solves the variational formulation of Equation 5: Let V' be a space

of test functions {v, ... vy} on the computational domain 2. We aim to find P such that

/VP-Vvi+Mvida:— VP -nds=0, Yo eV, (8)
Q [2)9]
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101 where 052 denotes the boundary of the domain, and n is a normal vector pointing out of the domain.
102 This variational form is obtained by multiplying Equation 5 with the test function v; and integrating
103 over €2, followed by integration by parts of the Laplacian term. Note that as we apply a fixed value
04 for P by the blood vessel and no pressure gradient at the boundary of the domain, the boundary
105 integral in Equation 8 vanishes.

106 2.1.3. Noise

107 We add additive Gaussian noise to the test data using the normrnd function in MATLAB. For
s each value P of oxygen partial pressure, whether it comes from the Krogh-Erlang equation or the
109 FENICS solution, we draw a random number Pnoisy from a Gaussian distribution with mean P and
1o standard deviation p, and replace P by this number.

m  2.2. Laplace estimator

112 Equation 5 says that given a data set of oxygen partial pressure P, M can be estimated by
ns taking the Laplacian of P. With dimensionless parameters we have

Mest (2, 9) = V2P (2, 7). (9)

s With P given on a square (or rectangular) grid with grid spacing d, the net oxygen consumption as
115 described by M can be estimated at grid positions by using the discrete finite difference approxima-
1e tion of the Laplace operator:

Pij+ P+ P+ Py — 4By

Mest(:i‘iu y]) = 622

(10)

117 Here the integers ¢ and j represent the grid positions, that is, z; = id and Uj = ja?.

118 In the present application, the MATLAB function del2 is used to compute this discrete finite
119 difference approximation of the Laplace operator. Note that in order to calculate the right-hand side
120 Of Equation 10, one must multiply the output from del2 by 4. Specifically, we use the command
121 4*del2(P,d) to calculate Mg (&, 7).

122 2.2.1. Smoothing
We reduce the adverse effects of noise in the oxygen pressure data by fitting a cubic smoothing
spline to the P data before we calculate the Laplacian. Here smoothing is carried out using the csaps
function in MATLAB’s Curve Fitting Toolbox. The csaps function takes a given data set P(ﬁc, y) and
generates a smoothing spline Psmooth(i, ¢) which minimizes

~ 2
1_(] ZZ [P xlvy] smooth(xuy])} +

=1 j=1
9P, C (0 Panoonn(@.9) |
// smooth(fr 9) n M dzdg. (11)
012

123 Here, n and m are the number of entries of & and y respectively, and ¢ is a smoothing parameter
124 between 0 and 1. This smoothing routine penalizes large spatial double-derivatives in the estimated
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125 pressure Prinootn With the penalty parameterized by the parameter q. ¢=0 corresponds to the case
126 With no smoothing, and increasing values of ¢ imply increasing smoothing. Note that the csaps
127 function in MATLAB takes p = 1 — ¢ as input argument, see MATLAB documentation. This MATLAB
128 function allows for giving more weights to some data points than others in the optimization. We keep
129 the weights identical to 1 for all data points in the present application.

130 The csaps function allows the smoothing spline Psmooth to be computed with higher resolution
131 than the spatial resolution of the measurements. This is convenient as it allows for a higher spatial
132 resolution in the maps of estimated M obtained from the discrete Laplace function del2. We here
133 refer to the grid spacing between the pressure data points as dyata, and the grid spacing of the
134 estimated pressure points Psmooth as ciest. In the smoothing function, CZest is set by inserting position
135 vectors for the estimation points Z.st and gest with this spacing. Likewise, Cidata is set by inserting
136 position vectors for the data points £ and ¢ with this spacing. Then Prinootn is estimated from the
137 recorded pressure by the following call of csaps:

Psmooth = CS&PS({@, j}» if)a (1 - Q)v {gest, fest})‘ (12)

138 In the present paper we keep a fixed small value of dests that is, ciest=0.001 . This value is set so small
139 that the error introduced from the discreteness of the Laplace estimator in Equation 10 is negligible
120 compared to other estimation errors.

11 2.2.2. Choice of smoothing parameter

142 The effect of the csaps smoothing function can be characterized by a smoothing length ch which
13 describes how much a spatial J-function is smeared out in space. By numerical exploration, we
124 found that this characteristic smoothing length depends on ¢ and daata through the relationship

dq = k(qddaa)"/*, (13)

115 where k is a constant.

146 This relationship was found numerically by smoothing a square single-entry matrix with one as
127 the center element, and the rest of the elements set to zero. The resulting spatially-smoothed 4-
s function was then plotted, for a fixed value of ddata and different values of ¢, as a function of the
129 distance r to the center point, as shown in Fig 1A. We then defined the characteristic length ciq to be
150 the distance from the center point at which the function value had fallen 50% compared to the center
151 value, see dotted lines in panel A. Panel B shows the dependence of the estimated ciq on q (for a
152 fixed cidata of 0.005). We observe that ch increases slowly with ¢, that is, when ¢ is increased by a
155 factor 104, c?q increases only by a factor 10. Fig 1C shows the smoothed J-function when instead
154 the value of ¢ is fixed, while ddata has different values. Again when c? is read out from the curve
155 and plotted as a function of ddata (panel D), we see that d increases slowly with ddata, that is, when
156 ddata is increased by a factor 10%, d increases only by a factor 10.

157 The detailed value of the constant k in Equation 13 is not critical for our purpose. We set it by
158 reading out the value for ch from the graph for the case with czdata =5-10%andqg=5-10"%as
159 shown with a blue line in Fig 1E. The readout value, ch ~ 5.6 - 1072, was then used to calculate k
10 from Equation 13. After rounding to one decimal, this gave k£ = 1.4.
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Figure 1: Choice of smoothing parameter in csaps. The effect of the smoothing function csaps is characterized by
a smoothing length dq which is related to the smoothing factor ¢ and the spatial spacing d through Equation 13. We
found this relationship by smoothing a two-dimensional spatial d-function using different values of ¢ and d, and plot the
result as a function of the distance 7 from the position of the §-function. Panels A and C show the normalized smoothed
d-function (0smootn (7)) for different values of ¢ (cZ fixed) and d (g fixed), respectively. The characteristic smoothing length
Jq is defined as the distance corresponding to dsmooth = 0.5(dotted lines) and is plotted as a function of ¢ and din panels
B and D, respectively. In panel E we demonstrate how different sets of ¢ and d-values correspond to the same ciq, that is,
the same smoothing effect.
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161 Thus, given ddata and a chosen value of ciq, we can find which ¢ to use in csaps in Equation 12

12 through the following formula:
A\ 4
g [da) L (14)
1.4 ddata

163 This equation tells us that if, say, cidata increases from 5-1073 to 1- 1072, then ¢ must decrease from
e g=5-10""1to about ¢ = 2.6 - 10~* to keep the same smoothing effect, that is, give the same value
165 dq. The dotted orange line in Fig 1E illustrates that this is indeed the case.

166 2.2.3. Performance Measures of the Laplace Estimator

167 In order to evaluate the performance of the Laplace estimator, we test it on ground-truth data and
168 calculate its bias, precision, and accuracy. As precision and accuracy measures we use standard
1eo deviation (SD) and root mean square error (RMSE). The mathematical definitions of these measures
170 are

N
, 1 - ¢
bias = Z;(Mesw —~ M), (15)
=
171
1. -
SD = | 7 2 (Mests — Mest)?, (16)
7=1
172 and
| N
_ Y A2
RMSE = N;(Mestg M) 3 (17)

173 where N is the number of ground-truth samples and Mesm is the jth estimate of M.
174 The RMSE combines both bias and precision as its squared value MSE is equal to the standard
175 deviation squared plus the bias squared: MSE = SD? + bias? [Wasserman, 2013].

176 3. Results

177 3.1. lllustration of Laplace estimation method

178 The principle of the Laplace method for estimation of the net oxygen consumption M (r) from
179 measurements of the partial pressure P(r) of oxygen is illustrated in Fig 2. In this example we
180 assume the spatial profile of the oxygen pressure to follow the Krogh-Erlang formula in Equation 6,
181 mimicking the situation where a single arteriole is the source of the oxygen, and the oxygen con-
1.2 sumption M is constant around the arteriole.

183 Panel A shows the pressure profile in the radial directions as described by this formula with
184 €xample parameters chosen to be in qualitative agreement with example data from Sakadzi¢ et al.
185 [2016], that is, Pyes = 80 mmHg, M = 1073 mmHgum =2, Ryes = 6 um, and R, = 200 um. Panel
188 G shows a contour plot of this pressure profile in the two spatial dimensions. Here dimensionless
17 parameters (cf. Methods) are used with »* = 141 ym and the convenient choice M* = M so that
188 the maximal pressure P, corresponds to Pves ~ 4.1 and M = 1. We show the pressure profile in a
189 square window with side lenghts of 282 um so that the dimensionless position coordinates extends
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Figure 2: lllustration of Laplace estimation method. Panels A and B show examples of ground-truth pO2 profiles
calculated using the Krogh-Erlang formula in Equation 7, with (panel A) and without noise (panel B). Panel C and E show
the corresponding 2D representations of these pressure data sets, and panel G shows a data set where smoothing has
been applied. Panel D, F and H show estimated M calculated from the pO2 data in panel C, E and G, respectively.
Parameter values: All panels: Pyes = 80 mmHg, Ryes = 6 um, Ry = 200 um, M = 10~ mmHgum 2. For panels A,B:
ddata = 1 pm. For panel B: 6p = 0.001 mmHg. For panels C—H: ddata = 0.007, 7* = 141 um, M* = M. For panels
E-H: 6p = 5- 10~ For panels G,H: dest = 0.001, dy = 0.04.
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190 from -1 to 1 along the & and ¢ axes. With this choice, the corners of the square correspond to a
191 radial distance equal to Ry, the radius of the tissue cylinder.

192 The problem of CMRO- estimation now corresponds to estimating M at the different spatial
153 positions inside the square window based on these recordings. Panel D shows the estimated M
194 (in units of M™) found by using the Laplace estimator in Equation 10 on the data in panel C. In this
195 example the dimensionless distance between the grid points at which the pressure is ‘recorded’ is
e settod = 0.007, corresponding to a physical grid-point distance of about 1 um. It is seen that some
197 distance away from the vessel, the estimator predicts M very close to 1, thatis, M ~ M*, as it
198 should.

199 However, close to the vessel, that is, for # > Rves, clearly incorrect values of M are estimated.
200 One obvious reason is that the discrete Laplace estimator in Equation 10 will be inaccurate when
201 one or more of the grid points used in the estimation is inside the vessel. Here the pressure P is not
202 described by Equation 6 and is instead assumed constant so that V2P # M, cf. Equation 3. For
203 the present example a more important reason is that immediately outside the vessel, the pressure
204 profile drops sharply (due to the last term in the Krogh-Erlang formula in Equation 6) so that the
205 discrete Laplace estimator becomes inaccurate when the grid-point distance d is too large. The
206 ‘flower-like’ symmetric pattern of this estimation error in panel D reflects the cartesian symmetry of
207 the estimator in Equation 10. This discretization error can be reduced by reducing the value of d.
208 Panel D in Fig 2 illustrates that if the experimental recordings were noiseless, the Laplace es-
200 timator in Equation 10 could be used directly on the oxygen pressure data, at least if the grid of
210 recordings are finely spaced. This would apply for any distribution of vessels as long as the estimator
211 Megt N Equation 10 is used sufficiently far away from oxygen-delivering blood vessels. Experimental
212 pressure data will always contain noise, however, and panel B shows the pressure profile when an
213 additive Gaussian noise P, with zero mean and standard deviation cp = 0.001 mmHg is added to
214 the pressure signal in panel A. When Mg in Equation 10 is applied on the dimensionless version
215 of these data (panel E), the estimated values of M are wildly inaccurate (panel F). Not only does
216 the estimated values of M have much larger magnitudes than the true value of M =1, they also
217 have both signs and vary strongly between neighboring grid positions (that is, between neighboring
218 pixels in the panel image). These poor estimates reflect that the double-derivative operation of the
219 Laplacian estimator corresponds to a high-pass spatial filtering which effectively amplifies the effects
220 Of the noise in the pressure recordings.

221 The high-frequency noise in the estimated M can be reduced by the use of spatial smoothing,
222 that is, low-pass filtering, of the pressure data P prior to application of Mest. While the smoothed
223 pressure profile psmooth in panel G at first glance does not appear to be very different from the
22¢ Unsmoothed pressure in panel E, the effect of the smoothing on the estimated M is dramatic (panel
225 H). With the choice of smoothing used in this example (see figure caption for details), quite accurate
2s estimates of M are found for a large region of the area around the central vessel (light-colored
227 regions of panel H). However, the smoothing procedure results in large estimation errors in a sizable
228 region around the blood vessel as well as close to the edges of the square data set.

229 As illustrated in this section, suitable smoothing of the oxygen partial pressure data before using
230 the Laplace estimator Mg may dramatically improve the estimation accuracy. However, the choice
231 of smoothing is critical: too little low-pass smoothing will not remove enough of the high-frequency
232 spatial noise, too much smoothing will smooth away spatial information in the pressure signal and
233 give poor estimates of M for this reason. Next, we will investigate this dilemma in more detail.
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224 3.2. Noise removal vs. bias

235 Fig 3 illustrates the dilemma when choosing the right level of low-pass smoothing of the oxygen
236 pressure data P before using the Laplace estimator in Equation 10. In the smoothing, the quantity
237 described in Equation 11 was minimized to penalize sharp variations in Py,,o0tn While at the same
28 time fitting the ‘experimental’ data P. The level of smoothing is set by the smoothing length d,, (or
239 ch in dimensionless units) which is related to the smoothing parameter used in the presently used
20 MATLAB function csaps via Equation 13 in Methods. This smoothing length describes how much a
241 point (that is, a two-dimensional spatial -function) will be smeared out in space. Thus the larger d,
242 i, the more the pressure profile will be smeared out or smoothed.

243 To quantify the performance of the estimator we use the three performance measures bias,
244 Standard deviation (SD), and root mean square error (RMSE). The bias (Equation 15) measures the
245 systematic error in the estimator M., introduced by the smoothing (and discreteness of data points)
246 Whether the data is noisy or not. It can be evaluated from noiseless data (that is, with P,=0), and the
247 results for different values of smoothing are shown in the panels in the left column of Fig 3 (panels A,
28 D, G, J). In the case of no smoothing (dq=0, panel A) the only bias comes from the discreteness of
2¢9  the grid of data points, and a non-zero bias is only observed close to the vessel. With a small amount
250 Of smoothing (ch=0.02, panel D), the bias around the vessel is increased. For ch=0.04 (panel G)
251 and ciq=0.08 (panel J) this tendency of increased bias with increasing c?q is continued, and some
252 bias is also observed close to the edges of the square. For the largest smoothing depicted in panel
253 J, about one-third or so of the estimation square has a bias with a magnitude larger than 100%.

254 The standard deviation (SD, Equation 16) measures the precision or the error in the estimation
255 due to the presence of noise. This measure obviously depends on the level of noise P,, and in
256 the present example in Fig 3 a Gaussian noise with a standard deviation of 6p = 5 - 10~ is used.
257 With 7*=141 ym and M* = 102 mmHg/um? as in Fig 2 this corresponds to a noise level of
28 op ~ 0.01 mmHg. The SD for different amounts of smoothing is shown in the middle column of
29 Fig 3 (panels B, E, H, K). Three observations of note are that (i) the SD of the estimates is extremely
260 large when no smoothing is applied (dq=0), (i) the SD decreases with increasing ch, and (iii) unlike
261 for the bias, the SD has similar values at the different positions.

262 An essential feature of the SD is that it is proportional to the standard deviation of the noise in
263 the pressure 6p. Thus if 6p was doubled to 0.001, the SDs in panels B, E, and H would be doubled
264 as well.

265 The accuracy of the estimator M.y is measured by the root mean square error (RMSE, Equa-
266 tion 17) which incorporates both the bias and the precision (SD) through the relation

RMSE = v/bias? + SD?. (18)

267 This measure describes the total statistical uncertainty of the estimates when M. is applied on
26s individual data sets. The bias increases with increasing ch (panels A, D, G, J) while the SD instead
260 decreases with increasing c?q (panels B, E, H, K). One would thus expect a suitable intermediate
270 value of ciq to give the smallest RMSE. For the example in Fig 3 we indeed see that of the values
a7 Of ciq considered, the intermediate value ciq=0.04 (panel 1) offers the best compromise between bias
222 and noise removal and gives the smallest RMSE. For this value of dq the RMSE is smaller than 25%
273 for almost all positions except for a region around the blood vessel.
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Figure 3: lllustration of noise removal vs bias. Bias is computed from Equation 15 for the case without noise 6p = 0 so
that a single estimate of M. is sufficient, that is N=1in Equation 15. SD is computed from Equation 16 with 10* estimates
of Mest, that is, N = 10. In the computatlon of SD and RMSE, 6p = 5 - 10~*. All performance measures are given
as the percentage of the ground truth value M = 1. Note also that the MATLAB routlne csaps is used also for the case
without smoothing (d =0) with ¢=0 inserted in Equation 12. Other parameter values: daata = 0.007, Pues = 80 mmHg,
Ryes = 6 pm, Ry = 200 pm, M = 1072 mmHgum™2, r* = 141 ym, M* = M.
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274 The large RMSE close to the blood vessel even for the ‘best’ choice of dq in panel | reflects the
275 large bias in these positions (panel G).

27e  3.3. Choice of smoothing length d

277 As illustrated in the previous section, a key question when using the Laplace estimator in Equa-
27 tion 10 is the choice of the level of smoothing, or more specifically, the choice of the smoothing
7o length dq. This will not only depend on the noise level, but also the spatial resolution of the exper-
280 imental pressure data as described by the grid-point distance dg.t»- Since the bias is independent
281 of the noise level, and the SD is linearly proportional to the standard deviation op of the noise, it is
2.2 convenient to first explore the interplay between d, and dqat, for the bias and SD separately.

283 In Fig 4 we show how the bias varies with dq.¢, and d, for three choices of parameter values of
200 each: dgaia=0.0035, 0.007, 0.014 (here corresponding to physical grid-point distances of approxi-
255 mately 0.5 um, 1 um, and 2 um, respectively), a?q=0, 0.02, 0.04 (corresponding to physical smooth-
286 ing lengths of approximately 0 um, 3 um, and 6 um, respectively). For the case with no smoothing
2s7 (panels A, D, G), we observe that the bias increases with increasing ddata- This illustrates that the
288 error due to the discreteness of the Laplace estimator is sensitive t0 dg.» €ven when deg is set to
289 @ very small number (Ciest = 0.001, cf. Methods). This is not surprising because decreasing the
200 grid-point distances from ddata to dest means that we estimate P at a denser grid of points than what
201 is directly available in the data. With smoothing added (two rightmost columns of panels), the bias
202 increases, and the larger the value of Jq, the larger the bias. (Note the difference in color scales in
203 figure.)

294 In Fig 5 we correspondingly show how the SD (standard deviation) varies with dqat, and d, for
25 the same set of parameters as in Fig 4 for a fixed level of noise in the pressure data 6p = 5 - 1074,
206 Here the most important feature is that the SD is strongly reduced with increased smoothing, that is,
207 increasing d, (from left to right). For the smoothed cases (two rightmost columns) we also observe
208 that SD increases with increasing dgaga-

299 Fig 6 shows the RMSE, computed from Equation 18, for the example bias and SD shown in
a0 Fig 4 and Fig 5, respectively. For the smoothed cases (two right columns) we observe that the
a0t RMSE always increases with the CZdata- Thus with the noise level fixed, it is (unsurprisingly) always
sz advantageous to have a dense recording grid. For the noise level in this example we see that the
303 choice dq=0.02 (second column) gives a good estimate for czdata=0.0035, that is, low RMSE, for large
304 parts of the estimation window. For ddata=0.007 and especially czdata=0.01 4 the SD is not sufficiently
sos reduced, and the RMSE is overall high. For the case with a larger smoothing (ch=0.04, third column)
ss the SD is much reduced for all values of CZdata- However, the region with large bias around the vessel
307 IS increased, and the spatial region in which small values of RMSE are shrunken.

308 Note that the SD results in Fig 5 and the RMSE results in Fig 6 only pertain to the particular
w0 noise level used in the example, that is, 6p = 5 - 10~%. However, the SD is proportional to the
a0 noise level, so a doubling of 6p to 6p = 0.001 would simply double the SD from what is shown in
s Fig 5. RMSE results analogous to Fig 6 for other noise levels can thus be obtained by use of this
sz SD scaling relationship in combination with Equation 18.

a3 3.4. Estimation of CMROs, for other example situations

314 In the examples above we have applied the Laplace estimator to the situation with (i) a constant
a5 value of the M and (ii) a single vessel providing the oxygen so that the pressure profile is described

13


https://doi.org/10.1101/827865
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/827865; this version posted November 1, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

dqy =0 dy = 0.02 dq = 0.04
10 1 -1 0 1 -1 0 1
A1 - B . C ;
I 2 ~
(S op o - @ @
<.§O -

0.007
(e
#*
&

ddata

0.014
(@)
®
&

ddata

Q © QO © .0 QN0 N D QN O N D
N SN S &5 RN

Figure 4: Bias for different smoothing. Bias computed from Equation 15 and given as the percentage of the ground
truth value M = 1. There was no noise added to the pressure data so that a single estimate of M. is sufficient, that
is N=1 in Equation 15. Parameter values: Pyes = 80 mmHg, Ryes = 6 pm, Ry = 200 pm, M = 1073 mmHgum™2,

r* =141 um, M* = M.
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Figure 5: Standard deviation (SD) for different smoothing - fixed noise level. Standard deviation (SD) computed from
Equation 16 with N = 10*. Values are given as the percentage of the ground truth value M =1. (Note that the grid-like
pattern visible in some of the panels is a numerical artifact resulting from the application of the MATLAB routine csaps.)
Parameter values: 6p = 5-107%, Pyes = 80 mmHg, Ryes = 6 um, Ry, = 200 um, M = 102 mmHgum 2, r* = 141 um,
M* = M.
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(RMSE) computed from Equation 17 for the bias and standard deviations (SD) shown in Figures 4 and 5, respectively.
Values are given as the percentage of the ground truth value M = 1.
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sie by the Krogh-Erlang formula in Equation 6. For these examples an alternative approach could be
a7 to estimate M using a ‘Krogh-estimator’, that is fitting the Krogh-Erlang formula directly to recorded
s1s  data [Sakadzi¢ et al., 2016]. In other situations where, for example, M varies with position or several
a9 nearby vessels provide the oxygen so that the circular symmetry assumed in the Krogh-Erlang
320 formula is absent, such a Krogh estimator will not be applicable. However, the Laplace estimator
321 does not assume a constant M or any particular arrangement of the oxygen-providing vessels and
322 can be applied also here.

323 3.4.1. Spatially varying CMRO4

324 To illustrate the applicability of the Laplace estimator to the situation with varying M, we consider
325 in Fig 7 the situation where a single vessel provides the oxygen, but where the CMRO, parameter
a6 M is four times larger in the upper half-plane than in the lower half-plane. Here the solution of the
32z Poisson equation in Equation 3 must be found numerically, and in panel A we illustrate the oxygen
a8 pressure profile found using the FEniCS numerical solver (see Methods). While panel A shows
a9 the pressure profile without any added noise, panel B correspondingly shows a 2D colormap of the
30  same pressure profile when noise has been added. In both panels we, as expected, observe that
331 pressure is higher in the lower half-plane where the oxygen consumption, that is, M, is smallest so
a2 that the pressure profile decays more slowly with distance from the vessel.

333 When using the Laplace estimator on the noise-free data in Fig 7A, we obtain excellent estimates
s Of M, that is, Mes = 2 in the upper half-plane and M.s; ~ 0.5 in the lower half-plane (panel C).
ass  We only observe sizable errors in the immediate vicinity of the vessel, errors stemming from the
s  discreteness of the pressure data used in the estimation (cidata = 0.007). Further, when using the
a7 Laplace estimator on a smoothed version of the data in Fig 7B, we still obtain good estimates of M
s some distance away from the vessel. This is in accordance with the low values for the RMSE found
a3 for suitable smoothing of noisy pressure data for the case with constant M in Fig 6.

a0 3.4.2. Several vessels providing oxygen
341 An example of a situation where many nearby vessels contribute with oxygen is shown in Fig 8.
a2 Again no analytical solution of the pressure profile is available, and the Poisson equation is instead
a3 computed by means of FEniCS. As observed in the left panel, the circular symmetry of the pressure
a4 profile is broken around the vessel, but the Laplace estimator is still able to accurately estimate M
a5 except close to the vessels (right panel).

as 3.5. Estimation of spatially-averaged M

347 So far we have used the Laplace estimator to estimate spatial maps of CMRO5 consumptions,
as that is, spatial maps of estimated M. The Laplace estimator can give accurate estimates as long
a9 as the noise level is not too large, but the estimates of M in the immediate vicinity of the oxygen-
30 releasing blood vessels are typically inaccurate due to the bias introduced by the smoothing proce-
351 dure.

352 In situations where the oxygen pressure data is too noisy to give reliable spatially resolved maps
ss3  Of estimated M, one can still obtain estimates of spatially-averaged values of M (as when estimating
s« CMROs based on fitting the Krogh-Erlang model in Equation 6 to experimental data [Sakadzi¢ et al.,
sss  2016]). The obvious procedure for estimating such average values Mc oy iS to take the spatial
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Figure 7: Estimation of M with spatially varying CMRO-. Laplace estimation of M for the case with a single oxygen-
releasing vessel in the center with a larger CMRO, in the upper half plane (M=2) than in the lower half-plane (1/=0.5).
The ground-truth pOs, profile was calculated using the FEniCS numerical solver (see Methods). A: lllustration of pressure
profile for the case without noise (6p = 0). B: lllustration of pressure profile in A with noise added (6p = 0.0005). C:
Estimated M from the noise-less profile in A without use of smoothing. D: Estimated M from the profile in B (where noise
is present) with use of smoothing (Jq=0.04). Other parameter values: daata=0.007, Pyes = 80 mmHg, Ryes = 6 pum,
r*=141 pm, M* = 1073,
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Figure 8: Estimation of 1/ with several vessels providing oxygen. Example of Laplace estimation for a situation where
three vessels release oxygen into the tissue. The ground-truth pO, profile was calculated using the FEniCS numerical
solver (see Methods). Here P,.s is set to 80 mmHg, 70 mmHg, and 50 mmHg for the vessel on the left, lower right,
and upper right, respectively, while Ry is set to 6 um for all vessels. Noise is added to the pressure profile in panel A
(6p = 0.0005), and dq=0.04 is used in the smoothing to provide the estimates of M in panel B. Other parameter values:
data=0.007, M = 10~ 3mmHgum~2, r*=141 um, M* = M.

s average over spatially resolved values of Mg, that is
1N
Mest,av — N Z; Mest(ri)' (1 9)
1=

57 The SD of Mg ay is then expected to be a factor /N reduced compared to the SD for the spatially
ss  resolved estimates Mg (r).

359 The bias is not reduced by such an averaging procedure, however. To reduce the effects of
a0 smoothing-induced bias, one possible procedure is to take the average of M only for positions
31 outside a circular region around the oxygen-delivering vessel. As illustrated in Fig 9A this can
s2 reduce the bias in the M oy substantially. Larger values of the smoothing length ciq give larger
33 regions of large bias around the vessel (Fig 4). Thus larger areas around the vessel, parameterized
se4 by the diameter deut, Should be removed from the averaging sum in Equation 19 to keep the bias
ss small. This removal of area from the averaging sum implies a smaller value for N in Equation 19
ss and thus a larger value of SD of M »v. Again, a compromise between the bias and the SD must
37 be found to get the most accurate estimate.

368 This compromise is illustrated in Fig 9B—G. Panel B shows the spatially resolved RMSE for a
a9 case with low noise corresponding with no smoothing applied (cf. left column of Fig 6). Here the
a0 noise level is so low that even without smoothing, the SD of M .y becomes less than 1% for
o all averaging areas considered, that is, all choices of dgy; (cf. ch=0 in panel C). With smoothing
a2 applied, the SD of Mt o becomes even smaller, much less than 0.1% (panel C). We also note that
a3 the SD is largest for the largest value of deut, reflecting that here the averaging area (and thus N
a74 in Equation 19) is the smallest. The corresponding RMSE is shown in panel D. For this low-noise
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lllustration of accuracy of the estimation of spatially-averaged M for

different values of the diameter d.. of the circular disc removed from the average in Equation 19. N = 1000 has been

used in the estimation of the standard deviation (Equation 16).
Pyes = 80 mmHg,

Ryes = 6 pm, Ry = 200 pm, M = 10~3 mmHgpm ™2, r* = 141 pm, M*

Other parameter values: All panels: daata = 0.035,
= M. For panel A: 6p = 0.

For panels B-D: 6p = 5 - 10~*. For panels E-G: 6p = 5 - 1072, Jq = 0.1. Note that for figure clarity, only the circles
corresponding to d..t=0.1, 0.2, and 0.5 are shown in panels B and E.
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a5 situation, there is nothing to gain by doing smoothing when estimating Mct »v. The lowest RMSEs
a7e are obtained for ciq ~ 0 since smoothing reduces the accuracy of the estimates due to the bias
a7 introduced (cf. panel A).

a7s The situation with a much higher noise level (6p a factor 100 larger, that is, 6p = 5 - 1072) is
a7e - shown in panels E-G. The spatially resolved RMSE using a smoothing factor of a?q=0.1 is seen to
a0 give large lobes with high RMSE values around the vessel (panel E). Moreover, the typical RMSE
se1  value outside the lobe region is about 120%. The SD of M. oy (panel F) is seen to be on the
sz order of 50% for the case without smoothing (ch=0), and a smaller RMSE can thus be obtained with
33 smoothing applied (panel G). The smallest RMSE, less than ~10%, is obtained for czq ~ 0.1 and
st deys = 0.3.

385 This high-noise example illustrates how accurate estimates of M,, can be obtained even when
sss the spatially resolved estimates for M have a large uncertainty. With the parameter values used
sz here, thatis, M* = 1072 mmHgum~2 and r* = 141 um, a 6p of 5 - 10~2 corresponds to a physical
s noise level op of ~ 1 mmHg. (Here we have used that op = épM*r*?, cf. Equation 5.) For
a9 comparison, the corresponding partial oxygen pressure at the vessel surface in this example would
a0 be Pyes = 80 mmHg.

391 4. Discussion

392 In the present paper we have introduced a new method, the Laplace method, to provide spatially
393 resolved maps of CMRO, estimates based on spatial measurements of pO, [Sakadzi¢ et al., 2010,
s« 2016]. The method has two key steps: (i) spatial smoothing of measured pO, profiles followed by (ii)
ses application of double spatial derivatives in two spatial dimensions, that is, a Laplace operator. This
sss method is an alternative to the Krogh-Erlang method where a spatially averaged value of CMRO: is
37 Obtained around arterioles assuming circular symmetry [Sakadzi¢ et al., 2016].

ss  4.1. Improvement of Laplace method

399 The double spatial-derivative operation inherent in the Laplace approach is inherently sensitive to
a0 spatial noise, and the choice of a suitable smoothing method is thus essential for obtaining accurate
a0r  CMRO, estimates. The ideal smoothing method should reduce the effects of this spatial noise
a2 Without introducing large biases in the resulting estimates.

403 Here we for convenience used the MATLAB smoothing function csaps which is publicly available
a4 and easy to use. csaps minimizes the functional in Equation 11 and thus penalizes large double
s0s spatial derivatives in the estimation of a smoothed pressure profile. Since CMRO;, or more precisely
a6 the variable M in Equation 3, is proportional to double spatial derivatives, this smoothing method ef-
a7 fectively penalizes large magnitudes of M and thus introduces an unwanted bias. A better approach
a8 would have been to instead penalize changes in the spatial derivatives of M, that is, third spatial
a9 derivatives in the pressure. However, at present such a smoothing routine was not available to us.
410 While csaps allows for different weighting of different spatial positions in the smoothing process,
a1 the weighting functions are restricted to be spatially separable in the « and y directions. For the
a2 present application this limitation is not optimal as it would be preferable to include all positions
a3 except in a small region in and around the vessel, in the optimization inherent in the smoothing
s14 routine.

21


https://doi.org/10.1101/827865
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/827865; this version posted November 1, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

415 An obvious next step would thus be to test the accuracy of the Laplace method with a differ-
a6 ent smoothing method that (i) penalizes third spatial derivatives of the pressure and (ii) allows for
+17  arbitrary choices of weight functions in the functional to be minimized. In particular, it would be
a8 interesting to explore to what extent such a smoothing could reduce the size and magnitude of the
s19  lobes of large bias seen around the vessel center in Fig 4. The present MATLAB scripts, which can
220 be found online at https://github.com/CINPLA/CMRO2estimation, are designed to allow for an easy
421 change of smoothing method when they become available.

a2 4.2. Use of Laplace method

423 Experimental data with less noise from better dyes and better acquisition systems will improve
a24 estimation accuracy [Sakadzi¢ et al., 2016], but the accuracy of spatially resolved CMRO,, estimates
225 will still be limited by the spatial noise of experimentally recorded pO, profiles. Pooling of spatially-
w26 resolved estimates (as described in Equation 19) will always improve the accuracy, but this will be
227 at the expense of spatial resolution. This trade-off can be investigated within the Laplace method
428 Using the scripts accompanying this paper. Estimation accuracy can be studied systematically with
a0 model-based ground-truth data (either based on the Krogh-Erlang model or based on FEniCS com-
430 putations) using the same grid density and noise levels as in the experimental situation of interest.
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