

1 **GPSRdocker: A Docker-based Resource for Genomics, Proteomics and Systems biology**

2

3 **Piyush Agrawal^{1,2#}, Rajesh Kumar^{1,2#}, Salman Sadullah Usmani^{1,2#}, Anjali Dhall^{1#},**

4 **Sumeet Patiyal¹, Neelam Sharma¹, Harpreet Kaur^{1,2}, Vinod Kumar^{1,2}, Dilraj Kaur¹,**

5 **Shipra Jain¹, Akshara Pande¹, Sherry Bhalla¹, Gajendra P.S. Raghava^{1,2,*}**

6

7 ¹ Department of Computational Biology, Indraprastha Institute of Information Technology,
8 Delhi, India.

9 ² Bioinformatics Centre, CSIR-Institute of Microbial Technology, Chandigarh, India

10

11

12 [#] Equal contribution

13

14 * Corresponding authors

15

16 Gajendra P.S. Raghava, Head Department of Computational Biology, Indraprastha Institute
17 of Information Technology, New Delhi 110020, India, Phone: +91-11-2690744

18 **Abstract**

19 **Background:** In past number of web-based resources has been developed in the field of
20 Bioinformatics. These resources are heavily used by scientific community to provide solution
21 for challenges faced by experimental researchers particularly in the field of biomedical
22 sciences. There are number of challenges in utilizing full potential of these services that
23 includes internet speed, limits on computing power, and security of data. In order to enhance
24 utilities of these web-based assets, we developed a docker-based container that integrates
25 large number resources available in literature.

26 **Results:** This paper describes GPSRdocker a docker-based container developed for providing
27 wide-range of computational tools in the field of bioinformatics particularly in genomics,
28 proteomics and system biology. Majority of tools integrated in GPSRdocker are based on
29 web services developed at Raghava's group in last two decades. Broadly, these tools can be
30 categorized in three categories; i) general scripts, ii) supporting software and iii) major
31 standalone software. In order to facilitate students or developers working in the field of
32 bioinformatics, we developed general scripts in Perl and Python. These general-purpose
33 scripts serve as building block for any bioinformatics tools like computing
34 features/descriptors of a protein. Supporting software packages includes SCIKIT, WEKA,
35 SVM^{light}, and PSI-BLAST; these software packages allow one to develop/implement
36 bioinformatics software. Major Standalone software is core of this container which allows
37 predicting function/class of biomolecules. These tools can be classified broadly in following
38 categories; protein annotation, epitope-based vaccines, prediction of interaction and drug
39 discovery.

40 **Conclusion:** A docker-based container has been developed which can be easily run on any
41 operating system as well as it can be directly ported on cloud. Scripts can be run to build
42 pipelines for addressing problems at system level like prediction of vaccine candidate for a

43 pathogen. GPSRdocker including manual is available free for academic use from

44 <https://webs.iiitd.edu.in/gpsrdocker>.

45 1. Introduction

46 Numerous software packages, libraries and web based services have been developed by
47 bioinformaticians or computational biologist over the years. Only standalone software or
48 libraries has been developed in pre-internet era, most of them were free for public use;
49 mainly called domain software. Following archival sites have been created to maintain these
50 software packages; EMBL File Serve [1], IUBIO archive [2], BioCatalog [3] and PDSB [4].
51 Our group developed, first scientific program ELISAeq [5] in 1990, for computing
52 antigen/antibody concentration from ELISA data in GW-BASIC [6]. All these programs were
53 standalone programs, developed for DOS/Windows using programming various languages
54 like FORTRAN, PASCAL, C. These programs were distributed free for academic users via
55 floppy, CD or via email-server. Though these programs were user-friendly, but one needs to
56 have a hardware/software compatibility and knowledge of installation, in order to run these
57 programs. In the era of Internet (1995 onwards), most of developers start to develop web
58 based services. These web servers overcome limitations of standalone software packages
59 where user only need to have a computer with browser and access to internet.
60 In last two decades, a wide range of web based services have been developed by scientific
61 community particularly in the field of biology. Despite, numerous advantages of web based
62 technology it has its own limitations. One of the major limitation of in the era of genomics is
63 to predict function of all proteins or genes at genome level; transfer of huge data over internet
64 is time consuming and costly. In addition, service provides cannot meet the computation
65 requirement of user. Another concern is security of data, user do not wish to transfer
66 confidential data over Internet. In order to provide service to community one need to use old
67 technology of standalone software. There are number of challenges that include
68 compatibilities of codes, dependencies, versions of libraries, compilers. This is nearly
69 impossible for a user to install these software on their local machines. In order to overcome

70 above limitations, number of projects have been initiated to develop customize operating
71 system for free software in bioinformatics. These projects include BioLinux, VigyaanCD,
72 DNAlinux, NEBC Bio-Linux, Vlinux. These operating systems are mainly flavors of
73 Unix/Linux, like Ubuntu, Red Hat, Debian. A wide range of bioinformatics software
74 packages have been integrated in these packages. Despite numerous advantages of customize
75 operating systems, it consumes lot of computational resources.

76 In order to provide alternate to VMS, docker based and singularity based containers which
77 are light weight and requires minimum resources became popular. Using these available
78 container numbers of Bioinformatics pipelines have been developed (Eg. DNAP, NGSeasy,
79 LncPipe etc.). In this manuscript, we have developed GPSRdocker (docker based container)
80 that integrates bioinformatics software to perform various tasks. Most of the software in this
81 package are unique and not integrated in any container or VMS so far. These software's has
82 been developed at Raghava's group over the years and their webservers are available on the
83 webpage (<https://webs.iiitd.edu.in/gpsrdocker/>). This software would be useful for
84 researchers for developing various pipelines on their local machines.

85

86

87

88 **2. Implementation**

89 Docker provides a platform to perform operating system level virtualization or
90 containerization. In brief, it provides a platform to develop, employ and run applications
91 within a flexible and lightweight container. Containers are basically a software package,
92 which are isolated from each other and pack their own configuration files, tools and libraries.
93 All the containers can be interconnected for ease communication through well-defined

94 channels and are actually run by a single operating system kernel. Containers are launched
95 by running an image, which specify their precise contents. An image is basically the
96 executable package constituting essentials needed to run a software i.e. code, libraries,
97 configuration files and environment variables. GPSRdocker is a docker-based container that
98 provides a resource on Genomics, Proteomics and System Biology. Concisely, GPSRdocker,
99 is based on docker suite where customized container of all our webservers are available. User
100 can run GPSRdocker on their machine using following steps

101 1. Install the docker into your system and create account at docker hub.
102 2. Make sure the docker is running before installing GPSRdocker.
103 3. Type following command install: **docker pull raghavagps/gpsrdocker**
104 4. Run docker on your machine using command: **docker run -i -t raghavagps/gpsrdocker**
105 5. Above step allow to work in docker image, now user can install software packages using
106 command “**/gpsr/gpsr_install.pl**”. This will allow to users to install packages and
107 provides instruction to run these software packages.

108 Complete manual on GPSRdocker is available from its web site
109 <https://webs.iiitd.edu.in/gpsrdocker/> , user may read manual to install and run software
110 packages.

111

112 **2.1. General Scripts**

113 In this section, we have described small programs developed at our group to generate features
114 which can be used as building block to develop complex prediction modules. These programs
115 are different from existing software libraries or modules like BioPERL, BioPython, as user
116 should have programming skills in order to use these modules/subroutines. In GPSR 2.0
117 package we have developed small programs, which can be run by any person with minimal

118 knowledge of programming skills. Following are important programs included in this
119 package used to generate features for developing prediction models from protein and
120 DNA/RNA sequences. These programs are developed in PERL and Python following the set
121 standards. In order to run these codes, user needs to have Python 3.0 or above version
122 installed in their system.

123

124 **Table 1: List of the scripts along with their purpose incorporated in the GPSRdocker.**

Program	Purpose	Program	Purpose
<i>pro2aac</i>	Amino Acid composition	<i>pro2dpc</i>	Dipeptide composition
<i>pro2tpc</i>	Tripeptide composition	<i>fasta2sfasta</i>	FASTA to single fasta format
<i>blast_similarity</i>	To perform BLAST	<i>motif2bin</i>	Binary input from the multifasta motif file
<i>add_cols</i>	Add columns of two files	<i>col2svm</i>	Generate SVM ^{light} input format file
<i>col_mult</i>	Multiply each column of input file with a number	<i>col_mult_sel</i>	Multiply selective columns with a number
<i>col_avg</i>	Average column of two files	<i>col_ext</i>	Extract selective columns from a file
<i>col_corr</i>	Correlation co-efficient between two column	<i>perl col_rem</i>	Remove selective columns from a file
<i>col_sig</i>	Significance of columns in two column files	<i>seq2pssm_imp</i>	Compute PSSM matrix in column format without any normalization
<i>pssm_n1</i>	To normalize pssm	<i>pssm_n2</i>	Normalize pssm profile based

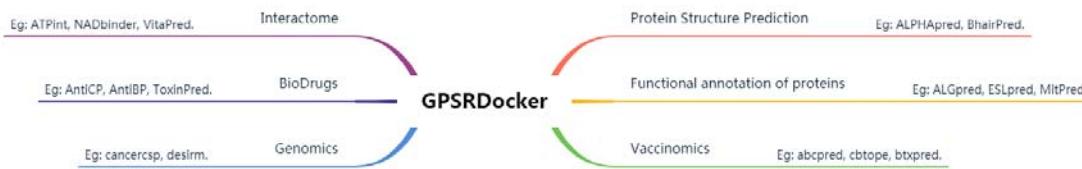
	profile based on Eqn: $1/(1+e^{-x})$		on Eqn: $(\text{numb} - \text{min})/(\text{max} - \text{min})$
<i>pssm_n3</i>	Normalize pssm profile based on Eqn: $(\text{numb} - \text{min}) * 100 / (\text{max} - \text{min})$	<i>pssm_n4</i>	Normalize pssm profile based on Eqn: $1/(1+e^{-(x/100)})$
<i>pssm_comp</i>	Compute PSSM composition (400)	<i>pssm_smooth</i>	Design smooth pssm profile for plot
<i>pssm2pat</i>	To generate patterns of given size from PSSM matrix	<i>seq2motif</i>	Create motifs by sliding window of user defined length with option of adding terminal X

125

126 **2.2. Supporting Software**

127

128 We utilized service of various software for developing and implementing our software. These
129 supporting software include PSI-BLAST [7], CD-HIT [8], LPC [9], PSIPRED [10], machine
130 learning packages like scikit-learn [11], SVM^{light} [12], SNNS [13], WEKA [14]. These
131 software were used for data processing, developing dataset, performing alignment, removing
132 redundancy among sequences, developing machine learning models and implementing them.


133

134 **2.3. Standalone Packages**

135

136 In this section, we are describing various standalone prediction packages developed in our
137 group. For the ease of user we have classified this section into broad six categories such as 1)

138 Protein Structure Prediction; 2) Functional annotation of proteins; 3) Vaccinomics; 4)
139 Genomics: Genome annotation and application; 5) BioDrugs: Biomolecules based
140 therapeutics; 6) Interactome: Biomolecular based therapeutics. We have categorized our
141 prediction packages in these classes.

142

143 **Fig 1: This figure shows various types of standalone packages in GPSR Docker.**

144

145 **2.3.1. Protein Structure Prediction:**

146

147 Protein structure is traditionally determined using X-Ray crystallography, NMR spectroscopy
148 and Cryo-electron microscopy. These methods are accurate but have certain limitations such
149 as labor intensive, higher cost, etc. In order to bridge this gap, computational biologist have
150 come up with *in silico* methods. *In silico* protein structure prediction is usually done by three
151 methods (i) Homology Modelling; (ii) Threading based and (iii) ab initio method. In this
152 section, we have described various methods developed by our group to predict 2D and 3D
153 protein structure based on above principles. Described below are servers which can predict
154 alpha turn, beta turns, gamma turns, phi-psi angle in protein, tertiary structure of proteins and
155 peptides, etc.

156

157 **Table 2: List of Protein Structure Prediction software incorporated in the GPSRdocker.**

Sr.	Server Name	Description	Category

No.		#
1	<u>ALPHApred</u> [15]	Neural network based method for predicting alpha-turn in a protein.
2	<u>Ar_NHpred</u> [16]	Identification of aromatic-backbone NH interaction in protein residues.
3	<u>BetaTPred2</u> [17]	Statistical-based method for predicting Beta Turns in a protein.
4	<u>BhairPred</u> [18]	Prediction of beta hairpins in proteins using ANN and SVM techniques.
5	<u>SARpred</u> [19]	A neural network based method predicts the real value of surface accessibility.
6	<u>TBBpred</u> [20]	A webserver for the prediction of transmembrane Beta barrel regions in a given protein sequence.

158 # 1: Protein Structure Prediction; 2: Functional annotation of proteins; 3: Vaccinomics; 4:

159 Genomics; 5: BioDrugs; 6: Interactome.

160

161 **2.3.2. Functional annotation of proteins:**

162

163 Proteins are key components in various biological processes. Protein interactions with other
164 molecules in a biological system are responsible for signaling pathways, up regulation/down
165 regulation of processes etc. Alteration or mutation in a protein sequence can lead to altered
166 protein function, growth of various diseases, etc. Due to advancement in next generation
167 sequencing techniques, large number of genome projects has been sequenced providing pool
168 of protein sequences. However, functional annotation of these proteins is yet to be unfolded.

169 Our group has developed number of tools to predict the function of proteins.

170

171 **Table 3: List of Protein Functional annotation software incorporated in the**
172 **GPSRdocker.**

Sr. No.	Server Name	Description	Category[#]
1	<u>ALGpred</u> [21]	Prediction of allergenic proteins and mapping of IgE epitopes in antigens.	2; 3
2	<u>ChemoPred</u> [22]	A server to predict chemokines and their receptor	2
3	<u>ESLpred</u> [23]	Subcellular localization of the eukaryotic proteins using	2
4	<u>ESLpred2</u> [24]	Advanced method for subcellular localization of eukaryotic proteins.	2
5	<u>GPCRpred</u> [25]	Prediction of families and superfamilies' of G-protein coupled receptors (GPCR).	2
6	<u>GPCRsclass</u> [26]	This webserver predicts amine type of G-protein coupled receptors	2
7	<u>GSTpred</u> [27]	SVM-based method for predicting Glutathione S-transferase protein.	2
8	<u>HSLpred</u> [28]	Prediction of subcellular localization of human proteins with high accuracy	2
9	<u>MitPred</u> [29]	Prediction of mitochondrial proteins using SVM and hidden Markov model.	2
10	<u>Nppred</u> [30]	A webserver for the prediction of nuclear proteins.	2

11	<u>Nrpred</u> [31]	A SVM based method for the classification of nuclear receptors	2
12	<u>PFMpred</u> [32]	Predicting mitochondrial proteins of malaria parasite <i>Plasmodium falciparum</i> .	2
13	<u>PSEApred</u> [33]	Prediction of <i>Plasmodium</i> Secretory and Infected Erythrocyte Associated Proteins.	2
14	<u>PSLpred</u> [34]	Predict subcellular localization of prokaryotic proteins.	2
15	<u>RNApred</u> [35]	A webserver for the prediction of RNA binding proteins.	2
16	<u>RSLpred</u> [36]	A method for the subcellular localization prediction of rice proteins.	2
17	<u>SRTpred</u> [37]	A method for the classification of protein sequence as secretory or non-secretory protein.	2
18	<u>Tbpred</u> [38]	A webserver that predicts four subcellular localization of mycobacterial proteins.	2
19	<u>tRNAmod</u> [39]	Prediction of post transcriptional modifications in transfer-RNA (tRNA) sequence.	2

173 # 1: Protein Structure Prediction; 2: Functional annotation of proteins; 3: Vaccinomics; 4:

174 Genomics; 5: BioDrugs; 6: Interactome.

175

176 2.3.3. Vaccinomics

177

178 Vaccinomics combines immunogenetics and immunogenomics with systems biology and
179 immune profiling, to aid in understanding personalized or precision medicine. Vaccinomics is

180 to comprehend biological immune system response towards vaccine-induced immunity of an
181 individual. This paves the way for scientific community to design effective vaccines against
182 hypervariable or resistant pathogens. Below are the tools developed by our group, which
183 helps in development, administration and monitorization of potential vaccines.

184

185 **Table 4: List of Vaccinomics software incorporated in the GPSRdocker.**

Sr. No.	Server Name	Description	Category[#]
1	<u>abcpred</u> [40]	Mapping of B-cell epitope(s) in an antigen sequence, using artificial neural network.	3
2	<u>bcepred</u> [40]	Prediction of linear B-cell epitopes, using Physico-chemical properties.	3
3	<u>btxpred</u> [41]	Prediction of bacterial toxins.	3
4	<u>cbtope</u> [42]	Conformational B-cell Epitope prediction.	3
5	<u>ifnepitope</u> [43]	Prediction and designing interferon-gamma inducing epitopes.	3
6	<u>igpred</u> [44]	Prediction of antibody specific B-cell epitope.	3
7	<u>il10pred</u> [45]	Prediction of Interleukin-10 inducing peptides.	3
8	<u>il4pred</u> [46]	In silico platform for designing and discovering of Interleukin-4 inducing peptides.	3
9	<u>lbtope</u> [47]	Prediction of linear B-cell epitopes.	3
10	<u>pcleavage</u> [48]	Identification of proteasomal cleavage sites in a protein sequence.	3
11	<u>propred</u> [49]	Prediction of MHC Class-II binding regions in an antigen sequence.	3

12	<u>propred1</u> [50]	Prediction of promiscuous MHC Class-I binders.	3
13	<u>tappedred</u> [51]	Prediction of binding affinity of peptides toward the TAP transporter.	3
14	<u>vaxinpad</u> [52]	Designing of peptide based vaccine adjuvant.	3
15	<u>cancer_pred</u> [53]	Prediction of the cancer lectins.	3
16	<u>rnapin</u> [54]	Prediction of Protein Interacting Nucleotides (PINs) in RNA sequences.	3; 6

186 # 1: Protein Structure Prediction; 2: Functional annotation of proteins; 3: Vaccinomics; 4:

187 Genomics; 5: BioDrugs; 6: Interactome.

188

189 **2.3.4. Genomics: Genome annotation and application**

190

191 With the advent of genomics era and next generation sequencing technologies,
192 bioinformaticians have developed various tools for sequencing, assembling, structural and
193 functional annotation of genomes. The sequencing data is increasing exponentially, and is
194 available in public domain for analysis. Therefore, there is a need to develop tools which can
195 effectively search, analyze and infer genomic information. In this direction, our group has
196 developed many tools listed below:

197

198 **Table 5: List of Genomics software incorporated in the GPSRdocker.**

Sr. No.	Server Name	Description	Category [#]
1	<u>cancercsp</u> [55]	Gene expression-based biomarkers for discriminating early and late stage of clear cell renal cancer.	4, 3

2	<u>cancerspp</u> [56]	Prediction and analysis of primary and metastatic tumor of SKCM using signature genes expression data.	4, 3
3	<u>cancerfsp</u> [57]	Gene expression-based biomarkers for discriminating early and late stage of Papillary Thyroid Carcinoma (PTC).	3
4	<u>desirm</u> [58]	Designing of highly efficient siRNA with minimum mutation approach.	4, 3

199 # 1: Protein Structure Prediction; 2: Functional annotation of proteins; 3: Vaccinomics; 4:

200 Genomics; 5: BioDrugs; 6: Interactome.

201

202 2.3.5. BioDrugs: Biomolecules based therapeutics

203

204 BioDrugs also known as “bioactive drugs” are released in gastrointestinal tract by living
205 orally administered recombinant microorganisms. These microorganisms are responsible for
206 bioconversion or biosynthesis in the digestive environment. Bioactive drugs in model
207 organisms like bacteria, yeasts etc. is a tedious and cost intensive experimental design.
208 Chemoinformatics is the study of chemicals using various chemical databases, quantitative-
209 structure activity relationship (QSAR), prediction of chemical properties or spectral. It plays
210 a significant role in efficient drug discovery and development process. It has become an
211 integral part of research in various fields like biochemistry, molecular biology, chemical
212 genomics, bioinformatics etc. To facilitate this various bioinformatics tools have been
213 developed which integrate experimentally validated data and used them to design new drugs.
214 Our group has developed number of software's to screen potential biodrugs in silico.

215

216 **Table 6: List of Biodrugs software incorporated in the GPSRdocker.**

Sr. No.	Server Name	Description	Category [#]
1	<u>AntiCP</u> [59]	Prediction and design of anticancer peptides.	5
2	<u>AHTpin</u> [60]	Designing and virtual screening of antihypertensive peptides.	5
3	<u>AntiBP</u> [61]	Mapping of antibacterial peptides in a protein sequence.	5
4	<u>AntiBP2</u> [62]	Advanced server for predicting antibacterial peptides with high precision.	5
5	<u>CellPPD</u> [63]	Computer-aided Designing of efficient cell penetrating peptides.	5
6	<u>TumorHPD</u> [64]	Server dedicated for designing tumor homing peptides.	5
7	<u>HemoPI</u> [65]	Prediction and virtual screening of hemolytic peptides.	5
8	<u>ToxinPred</u> [66]	An in silico method, which is developed to predict and design toxic/non-toxic peptides.	5, 2, 3
9	<u>VICMPpred</u> [67]	Prediction of Virulence factors, Information molecule, Cellular process and Metabolism molecule in the Bacterial proteins.	5, 2
10	<u>NeuroPIpred</u> [68]	Predict peptide as a neuropeptide or non neuropeptide.	5
11	<u>AntiTbPred</u> [69]	To predict peptides with bactericidal activity against Mycobacterium species.	5

217 # 1: Protein Structure Prediction; 2: Functional annotation of proteins; 3: Vaccinomics; 4:
218 Genomics; 5: BioDrugs; 6: Interactome.

219

220 **2.3.6. Interactome: Biomolecular based therapeutics**

221

222 Molecular interactions among biomolecules inside a cell are known as “Interactome”.
223 Interactomics is the study of molecular interactions among proteins or small molecules and
224 their consequences in the cell. These Bio-molecules could be proteins, nucleic acids,
225 carbohydrates and lipid molecules. Interactomics could aid in identifying disease
226 development and alteration in molecular mechanism of disease state. Below are few tools
227 developed in our group to study interaction among biomolecules.

228

229 **Table 7: List of Interactome software incorporated in the GPSRdocker.**

Sr. No.	Server Name	Description	Category [#]
1	ATPint [70]	Identification of ATP binding sites in ATP-binding proteins.	6
2	GlycoEP [71]	Prediction of C-, N- and O-glycosylation site in eukaryotic proteins.	6,2
3	GlycoPP [72]	Prediction of potential N-and O-glycosites in prokaryotic proteins.	6,2
4	GTPbinder [73]	Identification of GTP binding residue in protein sequences.	6,2
5	NADbinder [74]	Prediction of NAD binding proteins and their interacting residues.	6,2

6	<u>Pprint</u> [75]	ANN based method for identification of RNA-interacting residues in a protein.	6
7	<u>PreMieR</u> [76]	Identification of mannose interacting residues (MIRs) in protein sequences.	6
8	<u>VitaPred</u> [77]	Identification of different class of vitamin interacting residues in a protein.	6
9	SAMBinder [78]	A webserver for predict SAM interacting residue in a given protein sequence.	6

230 # 1: Protein Structure Prediction; 2: Functional annotation of proteins; 4:

231 Genomics; 5: BioDrugs; 6: Interactome.

232

233 **3. Applications of GPSR Docker**

234

235 In this paper, we have launched GPSRdocker, which brings together various standalone
236 versions of web servers developed by our group in various fields of bioinformatics. In this
237 package we have tried to bring various open source software's to serve scientific community
238 in a user friendly manner. GPSRdocker provides number of applications in our scientific filed
239 and these applications are discussed below in detail.

240

241 **(i) Development of Novel Therapeutic Pipelines:** This is one of the biggest advantage of
242 this docker container which provides an option to the user for developing new therapeutic
243 pipelines. In the past decades, number of viruses and bacterial strains have been evolved
244 which required immediate treatment to prevent their outbreak. User can implement different
245 software present in the package for designing novel vaccine and drugs. User can utilize the
246 genome of the new strains to identify the various epitopes (B-cell, T-cell and A-cell) which

247 can be used as potential vaccine candidates. ZikaVR [79], EbolaVCR [80] and VacTarBac
248 [81] are few examples of such type of pipelines.

249

250 **(ii) Cancer Risk stage prediction:** The suite also comprises of packages like CancerCSP
251 [55] which provides user to identify the potential biomarkers using gene expression data and
252 predict the possible risk stage of a cancer patient. This will help user to start treatment faster.

253

254 **(iii) Annotating large amount of protein sequences:** The image provides number of
255 methods developed for predicting small molecule binding site in the protein sequence. The
256 ligand includes ATP, GTP, NAD, FAD and SAM. These are important ligands used
257 previously for designing drugs. User can annotate the protein function for its protein
258 sequences by predicting the interacting site of these small ligands. Also, user can predict
259 whether the protein sequence of their interest in nucleic acid binding (DNA & RNA),
260 whether they are allergen proteins, etc. Packages like ESLpred2 [24], PSLpred [34] allows
261 user to predict the subcellular localization of their proteins sequence.

262

263 **(iv) Designing novel therapeutic peptides:** Number of packages have been incorporated
264 into this docker image for designing various types of peptide therapeutics. User can design
265 novel antimicrobial peptides such as antibacterial peptides, antifungal peptides, cell
266 penetrating peptides, hemolytic peptides, antiangiogenic peptides, anticancer peptides,
267 toxicity predicting peptides, chemically modified cell penetrating peptides, chemically
268 modified antimicrobial peptide, etc.

269

270 **(v) Easy to use on large dataset:** One of the main problems with the web-based services is
271 that they are not able to process after a certain limit and size of the dataset. GPSRdocker

272 allows user to implement and use the same service on the large dataset without any issue of
273 file size and space. User needs to check the space availability of its local machine and
274 thereafter can use the package the way he wants too.

275

276 **(vi) Data security:** Data security is one of the majors concerned nowadays. User can use the
277 standalone service for securing its data and without providing any personal details. Also user
278 can store any amount of data in the image without any loss of information by following the
279 standard protocols while working in the docker container. User can also keep the data safe by
280 saving the data in another image.

281

282 **(vii) No internet requirement:** internet availability is prerequisite for accessing the web
283 based service. However, in case of docker standalone package, there is no requirement of the
284 internet once the image is pulled on the local machine. User can work anywhere in the
285 container without the internet presence.

286

287 **(viii) Comprehensive resource of software:** GPSRdocker provides a comprehensive
288 resource of software related to different field of science such as immunoinformatic, protein
289 structure and function annotation, cheminformatics, bio drugs, vaccine designing, genomics,
290 etc. To the best of author's knowledge there is no such platform developed previously which
291 comprises of more than 60 standalone version of the software. Therefore, this package will be
292 very useful to the researchers both working in the wet lab as well as in dry lab. The package
293 could be useful to various pharmaceutical companies as well as to the students who are
294 starting their career in the area of bioinformatics.

295

296 **4. Conclusion**

297 GPSRdocker is a user friendly docker based container developed by our group which can be
298 used to run standalone versions of various web servers. At present, GPSRdocker contains
299 around 65 standalone software of the web servers developed by our group which are highly
300 cited in the literature. Each server included in this container is used to address various
301 questions in the field of computational biology. Aim of developing GPSRdocker is to
302 integrate various freely available resources on a platform which is compatible with all type of
303 operating systems. With the rapid advancement in the field of bioinformatics, there is a need
304 to implement cloud based technologies such as Docker to make resources easily accessible to
305 the users. The only limitation of this work is that it includes software developed specifically
306 in our group only. However, there are various other useful bioinformatics containers
307 available in market. We are working to include all the possible general bioinformatics
308 modules as well as other new bioinformatics web servers in GPSRdocker version2.

309

310 **Acknowledgements**

311 Authors are thankful to funding agencies Department of Biotechnology (DBT) and
312 Department of Science and Technology (DST-INSPIRE) and Council of Scientific and
313 Industrial Research (CSIR), Govt. of India and Indraprastha Institute for Information
314 Technology for financial support and fellowships.

315

316 **Author contribution**

317 PA, SP, AD, NS, AP, RK, VK and DK developed the python codes. PA, SSU, RK, AD, SP,
318 NS, HK, VK, DK, SJ, and AP developed the standalone versions of the software. PA, SSU,
319 AD, SP, NS, DK, SJ and VK developed the tables and figure. RK and VK developed the
320 website and manual was written by PA, SSU and GPSR. PA, SJ, HK, and GPSR wrote the
321 manuscript. GPSR conceived the idea and coordinated the project. All authors read and

322 approved the final paper.

323

324 **Funding**

325 This work was supported by J. C. Bose Fellowship, Department of Science and Technology,

326 India.

327

328 **References:**

329

- 330 1. Stoehr PJ, Omond RA. The EMBL Network File Server. *Nucleic Acids Res.* 1989;17: 331 6763–4. Available: <http://www.ncbi.nlm.nih.gov/pubmed/2780308>
- 332 2. IUBio-Archive | re3data.org [Internet]. [cited 2 May 2019]. Available: 333 <https://www.re3data.org/repository/r3d100010090>
- 334 3. Bhagat J, Tanoh F, Nzuobontane E, Laurent T, Orlowski J, Roos M, et al. 335 BioCatalogue: a universal catalogue of web services for the life sciences. *Nucleic 336 Acids Res.* 2010;38: W689–94. doi:10.1093/nar/gkq394
- 337 4. Raghava GPS. PDSB: Public Domain Software in Biology. *Biotech Softw Internet 338 Rep.* 2001;2: 154–156. doi:10.1089/152791601753204313
- 339 5. Raghava GP, Joshi AK, Agrewala JN. Calculation of antibody and antigen 340 concentrations from ELISA data using a graphical method. *J Immunol Methods.* 341 1992;153: 263–4. Available: <http://www.ncbi.nlm.nih.gov/pubmed/1517598>
- 342 6. Inman D, Albrecht B. The GW-BASIC reference [Internet]. Osborne McGraw-Hill; 343 1990. Available: <https://dl.acm.org/citation.cfm?id=103255>
- 344 7. PSIBLAST [Internet]. [cited 2 May 2019]. Available: 345 <http://www.biology.wustl.edu/gcg/psiblast.html>
- 346 8. Li W, Godzik A. Cd-hit: a fast program for clustering and comparing large sets of 347 protein or nucleotide sequences. *Bioinformatics.* 2006;22: 1658–9. 348 doi:10.1093/bioinformatics/btl158
- 349 9. Sobolev V, Sorokine A, Prilusky J, Abola EE, Edelman M. Automated analysis of 350 interatomic contacts in proteins. *Bioinformatics.* 1999;15: 327–32. Available: 351 <http://www.ncbi.nlm.nih.gov/pubmed/10320401>
- 352 10. McGuffin LJ, Bryson K, Jones DT. The PSIPRED protein structure prediction server. 353 *Bioinformatics.* 2000;16: 404–5. Available: 354 <http://www.ncbi.nlm.nih.gov/pubmed/10869041>
- 355 11. About us — scikit-learn 0.20.3 documentation [Internet]. [cited 2 May 2019]. 356 Available: <https://scikit-learn.org/stable/about.html>
- 357 12. Joachims T. Learning to classify text using support vector machines [Internet]. Kluwer 358 Academic Publishers; 2002. Available: 359 <http://www.cs.cornell.edu/people/tj/svmtcatbook/>
- 360 13. Zell A, Mache N, Hübner R, Mamier G, Vogt M, Schmalzl M, et al. SNNS (Stuttgart 361 Neural Network Simulator). Springer, Boston, MA; 1994. pp. 165–186. 362 doi:10.1007/978-1-4615-2736-7_9
- 363 14. Smith TC, Frank E. Introducing Machine Learning Concepts with WEKA. *Methods 364 Mol Biol.* 2016;1418: 353–78. doi:10.1007/978-1-4939-3578-9_17
- 365 15. Kaur H, Raghava GPS. Prediction of alpha-turns in proteins using PSI-BLAST profiles

366 and secondary structure information. *Proteins.* 2004;55: 83–90.
367 doi:10.1002/prot.10569

368 16. Kaur H, Raghava GPS. Role of evolutionary information in prediction of aromatic-
369 backbone NH interactions in proteins. *FEBS Lett.* 2004;564: 47–57.
370 doi:10.1016/S0014-5793(04)00305-9

371 17. Kaur H, Raghava GPS. Prediction of beta-turns in proteins from multiple alignment
372 using neural network. *Protein Sci.* 2003;12: 627–34. doi:10.1110/ps.0228903

373 18. Kumar M, Bhasin M, Natt NK, Raghava GPS. BhairPred: prediction of beta-hairpins
374 in a protein from multiple alignment information using ANN and SVM techniques.
375 *Nucleic Acids Res.* 2005;33: W154–9. doi:10.1093/nar/gki588

376 19. Garg A, Kaur H, Raghava GPS. Real value prediction of solvent accessibility in
377 proteins using multiple sequence alignment and secondary structure. *Proteins.*
378 2005;61: 318–24. doi:10.1002/prot.20630

379 20. Natt NK, Kaur H, Raghava GPS. Prediction of transmembrane regions of beta-barrel
380 proteins using ANN- and SVM-based methods. *Proteins.* 2004;56: 11–8.
381 doi:10.1002/prot.20092

382 21. Saha S, Raghava GPS. AlgPred: prediction of allergenic proteins and mapping of IgE
383 epitopes. *Nucleic Acids Res.* 2006;34: W202–9. doi:10.1093/nar/gkl343

384 22. Lata S, Raghava GPS. Prediction and classification of chemokines and their receptors.
385 *Protein Eng Des Sel.* 2009;22: 441–4. doi:10.1093/protein/gzp016

386 23. Bhasin M, Raghava GPS. ESLpred: SVM-based method for subcellular localization of
387 eukaryotic proteins using dipeptide composition and PSI-BLAST. *Nucleic Acids Res.*
388 2004;32: W414–9. doi:10.1093/nar/gkh350

389 24. Garg A, Raghava GPS. ESLpred2: improved method for predicting subcellular
390 localization of eukaryotic proteins. *BMC Bioinformatics.* 2008;9: 503.
391 doi:10.1186/1471-2105-9-503

392 25. Bhasin M, Raghava GPS. GPCRpred: an SVM-based method for prediction of families
393 and subfamilies of G-protein coupled receptors. *Nucleic Acids Res.* 2004;32: W383–9.
394 doi:10.1093/nar/gkh416

395 26. Bhasin M, Raghava GPS. GPCRsclass: a web tool for the classification of amine type
396 of G-protein-coupled receptors. *Nucleic Acids Res.* 2005;33: W143–7.
397 doi:10.1093/nar/gki351

398 27. Mishra NK, Kumar M, Raghava GPS. Support vector machine based prediction of
399 glutathione S-transferase proteins. *Protein Pept Lett.* 2007;14: 575–80. Available:
400 <http://www.ncbi.nlm.nih.gov/pubmed/17627599>

401 28. Garg A, Bhasin M, Raghava GPS. Support vector machine-based method for
402 subcellular localization of human proteins using amino acid compositions, their order,
403 and similarity search. *J Biol Chem.* 2005;280: 14427–32.
404 doi:10.1074/jbc.M411789200

405 29. Kumar M, Verma R, Raghava GPS. Prediction of mitochondrial proteins using support
406 vector machine and hidden Markov model. *J Biol Chem.* 2006;281: 5357–63.
407 doi:10.1074/jbc.M511061200

408 30. Kumar M, Raghava GPS. Prediction of nuclear proteins using SVM and HMM
409 models. *BMC Bioinformatics.* 2009;10: 22. doi:10.1186/1471-2105-10-22

410 31. Bhasin M, Raghava GPS. Classification of nuclear receptors based on amino acid
411 composition and dipeptide composition. *J Biol Chem.* 2004;279: 23262–6.
412 doi:10.1074/jbc.M401932200

413 32. Verma R, Varshney GC, Raghava GPS. Prediction of mitochondrial proteins of
414 malaria parasite using split amino acid composition and PSSM profile. *Amino Acids.*
415 2010;39: 101–10. doi:10.1007/s00726-009-0381-1

416 33. Verma R, Tiwari A, Kaur S, Varshney GC, Raghava GP. Identification of proteins
417 secreted by malaria parasite into erythrocyte using SVM and PSSM profiles. *BMC*
418 *Bioinformatics*. 2008;9: 201. doi:10.1186/1471-2105-9-201

419 34. Bhasin M, Garg A, Raghava GPS. PSLpred: prediction of subcellular localization of
420 bacterial proteins. *Bioinformatics*. 2005;21: 2522–4.
421 doi:10.1093/bioinformatics/bti309

422 35. Kumar M, Gromiha MM, Raghava GPS. SVM based prediction of RNA-binding
423 proteins using binding residues and evolutionary information. *J Mol Recognit.*
424 2011;24: 303–13. doi:10.1002/jmr.1061

425 36. Kaundal R, Raghava GPS. RSLpred: an integrative system for predicting subcellular
426 localization of rice proteins combining compositional and evolutionary information.
427 *Proteomics*. 2009;9: 2324–42. doi:10.1002/pmic.200700597

428 37. Garg A, Raghava GPS. A machine learning based method for the prediction of
429 secretory proteins using amino acid composition, their order and similarity-search. In
430 *Silico Biol.* 2008;8: 129–40. Available:
431 <http://www.ncbi.nlm.nih.gov/pubmed/18928201>

432 38. Rashid M, Saha S, Raghava GP. Support Vector Machine-based method for predicting
433 subcellular localization of mycobacterial proteins using evolutionary information and
434 motifs. *BMC Bioinformatics*. 2007;8: 337. doi:10.1186/1471-2105-8-337

435 39. Panwar B, Raghava GPS. Prediction of uridine modifications in tRNA sequences.
436 *BMC Bioinformatics*. 2014;15: 326. doi:10.1186/1471-2105-15-326

437 40. Saha S, Raghava GPS. Prediction of continuous B-cell epitopes in an antigen using
438 recurrent neural network. *Proteins*. 2006;65: 40–8. doi:10.1002/prot.21078

439 41. Saha S, Raghava GPS. BTXpred: prediction of bacterial toxins. *In Silico Biol.* 2007;7:
440 405–12. Available: <http://www.ncbi.nlm.nih.gov/pubmed/18391233>

441 42. Ansari HR, Raghava GP. Identification of conformational B-cell Epitopes in an
442 antigen from its primary sequence. *Immunome Res.* 2010;6: 6. doi:10.1186/1745-
443 7580-6-6

444 43. Dhanda SK, Vir P, Raghava GPS. Designing of interferon-gamma inducing MHC
445 class-II binders. *Biol Direct*. 2013;8: 30. doi:10.1186/1745-6150-8-30

446 44. Gupta S, Ansari HR, Gautam A, Open Source Drug Discovery Consortium GP,
447 Raghava GPS. Identification of B-cell epitopes in an antigen for inducing specific
448 class of antibodies. *Biol Direct*. 2013;8: 27. doi:10.1186/1745-6150-8-27

449 45. Nagpal G, Usmani SS, Dhanda SK, Kaur H, Singh S, Sharma M, et al. Computer-
450 aided designing of immunosuppressive peptides based on IL-10 inducing potential. *Sci*
451 *Rep.* 2017;7: 42851. doi:10.1038/srep42851

452 46. Dhanda SK, Gupta S, Vir P, Raghava GPS. Prediction of IL4 inducing peptides. *Clin*
453 *Dev Immunol*. 2013;2013: 263952. doi:10.1155/2013/263952

454 47. Singh H, Ansari HR, Raghava GPS. Improved method for linear B-cell epitope
455 prediction using antigen's primary sequence. Schönbach C, editor. *PLoS One*. 2013;8:
456 e62216. doi:10.1371/journal.pone.0062216

457 48. Bhasin M, Raghava GPS. Pcleavage: an SVM based method for prediction of
458 constitutive proteasome and immunoproteasome cleavage sites in antigenic sequences.
459 *Nucleic Acids Res.* 2005;33: W202-7. doi:10.1093/nar/gki587

460 49. Singh H, Raghava GP. ProPred: prediction of HLA-DR binding sites. *Bioinformatics*.
461 2001;17: 1236–7. Available: <http://www.ncbi.nlm.nih.gov/pubmed/11751237>

462 50. Singh H, Raghava GPS. ProPred1: prediction of promiscuous MHC Class-I binding
463 sites. *Bioinformatics*. 2003;19: 1009–14. Available:
464 <http://www.ncbi.nlm.nih.gov/pubmed/12761064>

465 51. Bhasin M, Raghava GPS. Analysis and prediction of affinity of TAP binding peptides

466 using cascade SVM. *Protein Sci.* 2004;13: 596–607. doi:10.1110/ps.03373104

467 52. Nagpal G, Chaudhary K, Agrawal P, Raghava GPS. Computer-aided prediction of
468 antigen presenting cell modulators for designing peptide-based vaccine adjuvants. *J
469 Transl Med.* 2018;16: 181. doi:10.1186/s12967-018-1560-1

470 53. Kumar R, Panwar B, Chauhan JS, Raghava GP. Analysis and prediction of
471 cancerlectins using evolutionary and domain information. *BMC Res Notes.* 2011;4:
472 237. doi:10.1186/1756-0500-4-237

473 54. Panwar B, Raghava GPS. Identification of protein-interacting nucleotides in a RNA
474 sequence using composition profile of tri-nucleotides. *Genomics.* 2015;105: 197–203.
475 doi:10.1016/j.ygeno.2015.01.005

476 55. Bhalla S, Chaudhary K, Kumar R, Sehgal M, Kaur H, Sharma S, et al. Gene
477 expression-based biomarkers for discriminating early and late stage of clear cell renal
478 cancer. *Sci Rep.* 2017;7: 44997. doi:10.1038/srep44997

479 56. Bhalla S, Kaur H, Dhall A, Raghava GPS. Prediction and analysis of skin cancer
480 progression using genomics profiles of patients. *bioRxiv.* Cold Spring Harbor
481 Laboratory; 2018; 393454. doi:10.1101/393454

482 57. Bhalla S, Kaur H, Kaur R, Sharma S, Raghava GPS. Expression based biomarkers and
483 models to classify early and late stage samples of Papillary Thyroid Carcinoma.
484 *bioRxiv.* Cold Spring Harbor Laboratory; 2018; 393975. doi:10.1101/393975

485 58. Ahmed F, Raghava GPS. Designing of highly effective complementary and mismatch
486 siRNAs for silencing a gene. Preiss T, editor. *PLoS One.* 2011;6: e23443.
487 doi:10.1371/journal.pone.0023443

488 59. Kumar S, Li H. In Silico Design of Anticancer Peptides. *Methods Mol Biol.*
489 2017;1647: 245–254. doi:10.1007/978-1-4939-7201-2_17

490 60. Kumar R, Chaudhary K, Singh Chauhan J, Nagpal G, Kumar R, Sharma M, et al. An
491 in silico platform for predicting, screening and designing of antihypertensive peptides.
492 *Sci Rep.* 2015;5: 12512. doi:10.1038/srep12512

493 61. Lata S, Sharma BK, Raghava GPS. Analysis and prediction of antibacterial peptides.
494 *BMC Bioinformatics.* 2007;8: 263. doi:10.1186/1471-2105-8-263

495 62. Lata S, Mishra NK, Raghava GPS. AntiBP2: improved version of antibacterial peptide
496 prediction. *BMC Bioinformatics.* 2010;11 Suppl 1: S19. doi:10.1186/1471-2105-11-
497 S1-S19

498 63. Gautam A, Chaudhary K, Kumar R, Sharma A, Kapoor P, Tyagi A, et al. In silico
499 approaches for designing highly effective cell penetrating peptides. *J Transl Med.*
500 2013;11: 74. doi:10.1186/1479-5876-11-74

501 64. Sharma A, Kapoor P, Gautam A, Chaudhary K, Kumar R, Chauhan JS, et al.
502 Computational approach for designing tumor homing peptides. *Sci Rep.* 2013;3: 1607.
503 doi:10.1038/srep01607

504 65. Chaudhary K, Kumar R, Singh S, Tuknait A, Gautam A, Mathur D, et al. A Web
505 Server and Mobile App for Computing Hemolytic Potency of Peptides. *Sci Rep.*
506 2016;6: 22843. doi:10.1038/srep22843

507 66. Gupta S, Kapoor P, Chaudhary K, Gautam A, Kumar R, Open Source Drug Discovery
508 Consortium GPS, et al. In silico approach for predicting toxicity of peptides and
509 proteins. Patterson RL, editor. *PLoS One.* 2013;8: e73957.
510 doi:10.1371/journal.pone.0073957

511 67. Saha S, Raghava GPS. VICMpred: an SVM-based method for the prediction of
512 functional proteins of Gram-negative bacteria using amino acid patterns and
513 composition. *Genomics Proteomics Bioinformatics.* 2006;4: 42–7. doi:10.1016/S1672-
514 0229(06)60015-6

515 68. Agrawal P, Kumar S, Singh A, Raghava GPS, Singh IK. NeuroPIpred: a tool to

516 predict, design and scan insect neuropeptides. *Sci Rep.* 2019;9: 5129.
517 doi:10.1038/s41598-019-41538-x

518 69. Usmani SS, Bhalla S, Raghava GPS. Prediction of Antitubercular Peptides From
519 Sequence Information Using Ensemble Classifier and Hybrid Features. *Front*
520 *Pharmacol.* 2018;9: 954. doi:10.3389/fphar.2018.00954

521 70. Chauhan JS, Mishra NK, Raghava GPS. Identification of ATP binding residues of a
522 protein from its primary sequence. *BMC Bioinformatics.* 2009;10: 434.
523 doi:10.1186/1471-2105-10-434

524 71. Chauhan JS, Rao A, Raghava GPS. In silico platform for prediction of N-, O- and C-
525 glycosites in eukaryotic protein sequences. E Tosatto SC, editor. *PLoS One.* 2013;8:
526 e67008. doi:10.1371/journal.pone.0067008

527 72. Chauhan JS, Bhat AH, Raghava GPS, Rao A. GlycoPP: a webserver for prediction of
528 N- and O-glycosites in prokaryotic protein sequences. Burchell JM, editor. *PLoS One.*
529 2012;7: e40155. doi:10.1371/journal.pone.0040155

530 73. Chauhan JS, Mishra NK, Raghava GPS. Prediction of GTP interacting residues,
531 dipeptides and tripeptides in a protein from its evolutionary information. *BMC*
532 *Bioinformatics.* 2010;11: 301. doi:10.1186/1471-2105-11-301

533 74. Ansari HR, Raghava GPS. Identification of NAD interacting residues in proteins.
534 *BMC Bioinformatics.* 2010;11: 160. doi:10.1186/1471-2105-11-160

535 75. Kumar M, Gromiha MM, Raghava GPS. Prediction of RNA binding sites in a protein
536 using SVM and PSSM profile. *Proteins.* 2008;71: 189–94. doi:10.1002/prot.21677

537 76. Agarwal S, Mishra NK, Singh H, Raghava GPS. Identification of mannose interacting
538 residues using local composition. Tramontano A, editor. *PLoS One.* 2011;6: e24039.
539 doi:10.1371/journal.pone.0024039

540 77. Panwar B, Gupta S, Raghava GPS. Prediction of vitamin interacting residues in a
541 vitamin binding protein using evolutionary information. *BMC Bioinformatics.*
542 2013;14: 44. doi:10.1186/1471-2105-14-44

543 78. Agrawal P, Mishra G, Raghava GPS. SAMbinder: A web server for predicting SAM
544 binding residues of a protein from its amino acid sequence. *bioRxiv. Cold Spring*
545 *Harbor Laboratory;* 2019; 625806. doi:10.1101/625806

546 79. Gupta AK, Kaur K, Rajput A, Dhanda SK, Sehgal M, Khan MS, et al. ZikaVR: An
547 Integrated Zika Virus Resource for Genomics, Proteomics, Phylogenetic and
548 Therapeutic Analysis. *Sci Rep.* 2016;6: 32713. doi:10.1038/srep32713

549 80. Dhanda SK, Chaudhary K, Gupta S, Brahmachari SK, Raghava GPS. A web-based
550 resource for designing therapeutics against Ebola Virus. *Sci Rep.* 2016;6: 24782.
551 doi:10.1038/srep24782

552 81. Nagpal G, Usmani SS, Raghava GPS. A Web Resource for Designing Subunit Vaccine
553 Against Major Pathogenic Species of Bacteria. *Front Immunol.* 2018;9: 2280.
554 doi:10.3389/fimmu.2018.02280

555