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Abstract 18 

While human speech comprehension is thought to be an active process that involves 19 

top-down predictions, it remains unclear how predictive information is used to prepare 20 

for the processing of upcoming speech information. We aimed to identify the neural 21 

signatures of preparatory processing of upcoming speech. Participants selectively 22 

attended to one of two competing naturalistic, narrative speech streams, and a temporal 23 

response function method was applied to derive event-related-like neural responses 24 

from electroencephalographic data. Regression analysis revealed that neural signatures 25 

with latencies as early as -450 ms prior to speech onset were significantly correlated 26 

with speech comprehension performance. The preparatory process involved a 27 

distributed network. These preparatory signatures were attention dependent; activity 28 

prior to the attended speech was negatively correlated with comprehension performance, 29 

whereas the opposite was found for unattended speech. Our findings suggest that 30 

attention plays an important role in the preparation to process upcoming speech. 31 
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Introduction 38 

Humans are a powerful speech recognition system that can comprehend complex and 39 

rapidly changing human speech in challenging conditions, e.g., in a cocktail party 40 

scenario with multiple competing speech streams and high background noise. To 41 

achieve such a capacity, the human brain is equipped with neural architecture that is 42 

dedicated to bottom-up processing of perceived speech information, from the low-level 43 

acoustics, to the phoneme, syllable, and sentence levels (DeWitt & Rauschecker, 2012; 44 

Friederici, 2012; Hickok, 2012a; Pisoni & Luce, 1987; Verhulst, Altoè, & Vasilkov, 45 

2018). In recent years, increasing evidence has also suggested that human speech 46 

comprehension is an active process that involves top-down predictions (Arnal, Wyart, 47 

& Giraud, 2011; Federmeier, 2007; Fries, 2015; Hickok, Houde, & Rong, 2011; Kutas 48 

& Federmeier, 2011; Rao & Ballard, 1999; Tian, Ding, Teng, Bai, & Poeppel, 2018). In 49 

the cocktail party scenario, it is believed that a listener should continuously predict what 50 

their attended speaker is going to say next to efficiently understand the corresponding 51 

speech (Cherry, 1953; O’Sullivan et al., 2015; Zion Golumbic, Cogan, Schroeder, & 52 

Poeppel, 2013). These predictions supposedly inform the brain about the ‘what’ and 53 

‘when’ of upcoming speech information (Arnal & Giraud, 2012; Auksztulewicz et al., 54 

2018), which allows a listener to prepare for follow-up processing. 55 

Although the idea of top-down prediction in human speech comprehension is gaining 56 

popularity, it remains unclear how the brain uses predictive information to prepare for 57 

the processing of upcoming speech information. Understanding the preparatory process 58 

is essential because it reflects the influence of prediction on subsequent information 59 
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processing. Moreover, the available findings on prediction in speech are not sufficient 60 

to determine the neural mechanisms underlying preparation. For instance, the classic 61 

studies of active speech prediction have mainly focused on the neural activity in 62 

response to prediction errors. Event-related potential (ERP) components such as the 63 

N400 and P600 are frequently reported when the perceived word violates semantic and 64 

syntactic congruency of the preceding speech context, respectively (Kutas & 65 

Federmeier, 2011; Lau, Phillips, & Poeppel, 2008; Van Petten & Luka, 2012). These 66 

ERP components normally occur >400 ms after the presentation of the perceived speech, 67 

and so provide only indirect support for the preparatory process. Recent studies have 68 

also reported evidence of the brain’s pre-activation before the onset of the upcoming 69 

speech (DeLong, Urbach, & Kutas, 2005; Dikker & Pylkkänen, 2013; Söderström, 70 

Horne, Frid, & Roll, 2016; Söderström, Horne, Mannfolk, van Westen, & Roll, 2018); 71 

these pre-activations have been interpreted as ‘predictive’ because they have been found 72 

to be correlated with the relative likelihoods of the upcoming speech unit (e.g. words) 73 

in the continuous speech materials (e.g. sentences). However, this is still only indirect 74 

evidence for preparation, as these pre-activations have been represented by event-75 

related neural responses to the preceding speech unit that are informative about possible 76 

upcoming speech units. Direct neural evidence for the preparatory response should be 77 

derived from neural activity that is directly related to the processing of the upcoming 78 

speech information, and which occurs immediately before speech onset. 79 

While this direct evidence has not been investigated in the speech domain, several 80 

studies on general sensory processing have provided ample support for the existence of 81 
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such a preparatory process. For instance, pre-stimulus oscillatory activity has been 82 

reported to have a significant impact on subsequent perceptual consequences (Cao, 83 

Thut, & Gross, 2017; Galindo-Leon et al., 2019; Harris, Dux, & Mattingley, 2018; Kok, 84 

Mostert, & De Lange, 2017; Rassi, Wutz, Müller-Voggel, & Weisz, 2019). Moreover, 85 

synchronization within neural populations responsible for the specific sensory 86 

processing has been proposed to underlie preparation (Engel, Fries, & Singer, 2001; 87 

Galindo-Leon et al., 2019; Lakatos et al., 2009). Following on from this work, the 88 

present study investigated neural activity prior to the onset of upcoming speech 89 

information to identify possible neural signatures of the preparatory process. 90 

One crucial issue that needs to be considered is the possible dependence of the 91 

preparatory process on top-down selective attention. As attention regulates the 92 

processing of the input sensory information, it can be expected to affect prediction and 93 

consequently preparation. Indeed, recent studies have demonstrated the interplay 94 

between attention and prediction (Schröger, Kotz, & SanMiguel, 2015; Schröger, 95 

Marzecová, & Sanmiguel, 2015). Specifically, the magnitude of the prediction error-96 

related neural response has been shown to be magnified or reversed, depending on the 97 

attentional state (Auksztulewicz & Friston, 2015; Hisagi, Shafer, Strange, & Sussman, 98 

2015; Kok, Jehee, & de Lange, 2012; Marzecová, Widmann, SanMiguel, Kotz, & 99 

Schröger, 2017; Smout, Tang, Garrido, & Mattingley, 2019). Most of these studies have 100 

been conducted within the visual domain, with limited exploration in the auditory 101 

domain, let alone speech processing. Compared to vision, the fast temporal dynamics 102 

of auditory stimuli and speech signals require neuroimaging tools such as EEG that can 103 
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track online changes in neural activity with a high temporal resolution.  104 

The present study aimed to identify neural signatures that directly reflect the 105 

preparatory processing of human speech. A 60-channel electroencephalogram (EEG) 106 

was recorded from participants while they listened to naturalistic narratives; this 107 

procedure is believed to be of high ecological validity and thus to provide necessary 108 

contextual information for the engagement of top-down prediction and therefore 109 

preparation (Federmeier, 2007; Friston, 2005; Jehee & Ballard, 2009; Rao & Ballard, 110 

1999). A cocktail party paradigm was used, whereby we introduced a complex 111 

perceptual environment that imposed further demands on prediction and preparation 112 

(Broderick, Anderson, Di Liberto, Crosse, & Lalor, 2018). To obtain the neural 113 

responses to continuous, naturalistic speech, we used a temporal response function 114 

(TRF) method, to derive event-related-like neural responses from EEG data, for both 115 

the attended and unattended speech streams in the cocktail party scenario (Crosse, Di 116 

Liberto, Bednar, & Lalor, 2016; Lalor, Pearlmutter, Reilly, McDarby, & Foxe, 2006). 117 

Following studies on the perceptual influence of pre-stimulus neural activities (Iemi et 118 

al., 2019; Rassi et al., 2019; Smith, Johnstone, & Barry, 2006), these TRF-based 119 

responses were analyzed for neural signatures related to speech comprehension 120 

performance, as measured by speech-content-related questionnaires. We considered 121 

that performance-relevant TRF-based responses before speech onset would be direct 122 

neural evidence for the preparatory process, as the comparison between the predicted 123 

and the actual perceived sensorial information cannot be performed during this period. 124 

Furthermore, our experimental design allows the investigation on the attention 125 
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dependence of preparatory speech processing. Specifically, regression analyses were 126 

employed with the TRF-based neural responses to attended and unattended speech 127 

streams as the independent variables, and speech comprehension performance as the 128 

dependent variable. Results revealed that neural signatures with latencies as early as -129 

450 ms prior to speech onset were significantly correlated with speech comprehension 130 

performance. A distributed network was involved in the preparatory process of speech 131 

comprehension. The preparatory activity to the attended speech was found to be 132 

negatively correlated with comprehension performance, whereas the opposite was 133 

found for unattended speech. Our findings suggest that attention plays an important role 134 

in the preparation to process upcoming speech. 135 

Results 136 

Twenty participants took part in 28 ‘cocktail party’ trials. In each trial, two narrative 137 

stories were presented simultaneously to both the left and the right ears and the 138 

participants were instructed to attend to one spatial side. Comprehension performance 139 

was evaluated by questionnaires about the story contents, which were implemented at 140 

the end of each story. There were two four-choice questions for the two simultaneously 141 

heard stories, respectively. The comprehension performance was significantly better for 142 

the 28 attended stories than for the 28 unattended stories (67.0±2.5% (standard error) 143 

vs. 36.0±1.6%; the four-choice chance level: 25%; t(19) = 10.95, p < .001). The 144 

participants reported a moderate level of attention (8.15±0.34 on a 10-point Likert scale) 145 

and attention difficulties (2.04±0.53 on a 10-point Likert scale). The accuracy for the 146 

attended story was significantly correlated with both the self-reported attention level (r 147 
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= .476, p = .043) and attention difficulty (r = -.677, p = .001). The self-reported story 148 

familiarity level was low for all the participants (0.86±0.22 on a 10-point Likert scale) 149 

and was not correlated with comprehension performance (r = -.224, p = .342). These 150 

results suggest that participants’ selective attention was effectively manipulated, as well 151 

as good reliability of the measured comprehension performance. Most importantly, 152 

there was a large inter-individual difference in the participant-wise average 153 

comprehension performance for the attended stories; the response accuracy varied from 154 

48.2% to 91.1%, which supports the feasibility of using these accuracy values as a 155 

behavioral indicator of comprehension-relevant neural signatures. 156 

The analysis workflow is shown in Figure 1. TRF-derived neural responses to the 157 

attended and unattended speech were calculated separately, at latencies of -500 ms to 158 

500 ms relative to speech onset. Responses within the -500–0 ms latency window are 159 

considered to represent preparatory activity, whereas responses within the 0–500 ms 160 

latency window reflect post-processing of the speech stream. These TRF responses also 161 

underwent time-frequency analysis, and the average single-trial amplitudes and inter-162 

trial phase-locking (ITPL) values were calculated. We hypothesized that this 163 

decomposition into amplitude and phase responses would yield more detailed insights 164 

into the underlying neural mechanisms of speech processing, as amplitude and phase 165 

have been proposed to play unique roles in networks underlying human cognition 166 

(Engel, Gerloff, Hilgetag, & Nolte, 2013; Fries, 2015; Klimesch, 2012). To achieve this, 167 

we established linear regression models with either amplitude or phase responses from 168 

both the attended and unattended TRFs as the independent variables, and 169 
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comprehension accuracy of the attended speech as the dependent variable. The TRF-170 

based amplitude and phase responses at different channels, latencies, and frequencies 171 

were used in separate regression models. We used regression analysis to take a full 172 

consideration of possible joint contributions from the attended and unattended TRFs, 173 

by deriving different regression coefficients respectively. The regression analyses were 174 

performed by treating each participant’s comprehension accuracy averaged over all the 175 

28 attended stories as the dependent variable. This provides a robust estimation of the 176 

comprehension performance, as only two four-choice questions were asked per 177 

attended story. In addition, this design could allow more flexibility in neural data 178 

analysis, e.g. exploring the inter-story variability in phase responses. 179 

Regression models were built separately for the neural responses at each channel-180 

latency-frequency bin. The regression R-values were obtained to reveal how well the 181 

regression models correlated with individual comprehension performance. Statistical 182 

analyses were performed based on these regression R-values using a nonparametric 183 

cluster-based permutation method (Maris & Oostenveld, 2007). Any significant results 184 

at a latency <0 ms were taken to indicate the neural correlates of preparation for 185 

upcoming speech information. We also calculated the mean of the regression coefficient, 186 

and drew the distribution for every cluster. 187 
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 188 

Figure 1. The analysis workflow  189 

(A) The experimental paradigm. Participants attended to one of two simultaneously 190 

presented naturalistic, narrative speech streams while 60-channel EEG was recorded. 191 

(B) EEG data analysis. Neural responses were characterized using a TRF-based 192 

modeling method. The TRF-based neural responses were then further subjected to a 193 

time-frequency analysis at the single-trial level and decomposed into single-trial 194 

amplitude and phase (by inter-trial phase locking, ITPL) responses based on the time-195 

frequency representations (denoted by ‘Amp’ and ‘ITPL’). This procedure was 196 

conducted for attended (Att-) and unattended (Unatt-) speech streams separately. (C) 197 

Comprehension performance. The participants completed a comprehension task after 198 

each speech comprehension trial. The average response accuracy over all trials per 199 

participant was taken as comprehension performance. (D) Regression analysis for 200 

comprehension performance-related neural responses. We established linear regression 201 

models with either amplitude or phase responses from both the attended and unattended 202 

TRFs as the independent variables, and comprehension accuracy of the attended speech 203 

as the dependent variable, for each channel-latency-frequency bin. The neural 204 

responses with significant regression model fitting are reported. We defined neural 205 

activity before 0 ms as preparatory processing and activity after 0 ms as post processing. 206 

 207 

Preparatory neural activities were correlated with speech comprehension 208 

performance 209 

The nonparametric cluster-based permutation analysis revealed a significant correlation 210 

between the multi-channel time-frequency representation of the TRFs and individual 211 

speech comprehension performance of the attended speech. This corresponded to six 212 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 1, 2019. ; https://doi.org/10.1101/827584doi: bioRxiv preprint 

https://doi.org/10.1101/827584
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 

 

 

 

clusters in the observed data (all, p < .05), as shown in Figure 2.  213 

There were four clusters with latencies prior to 0 ms, which suggested that the brain 214 

actively prepares for upcoming speech information. The earliest cluster (Prep-A) 215 

extended from around -450 ms to -300 ms, and spread from the theta to low beta range 216 

(6–18 Hz) over the right parietal region (permutation p = .005). The average prediction 217 

model within the cluster revealed a significant correlation between the predicted and 218 

the actual comprehension performance (r = .678, p = .001). The following cluster (Prep-219 

B) extended from around -400 ms to -350 ms, and spread from the alpha to beta range 220 

(12–25 Hz) over the left frontal region (permutation p = .030; model prediction r = .625, 221 

p = .003). There were two clusters with latencies around 0 ms. While Prep-C was based 222 

on amplitude responses, much like Prep-A and Prep-B, Prep-D was based on the ITPL. 223 

The amplitude cluster (Prep-C) extended from -50 ms to 0 ms, and spread from the 224 

alpha to low beta range (9–19 Hz) over the central-parietal region (permutation p = .015; 225 

model prediction r = .725, p < .001). The ITPL cluster (Prep-D) extended from -30 ms 226 

to 20 ms, and spread from the alpha to low beta range (10–17 Hz) over the right central 227 

region (permutation p = .002; model prediction r = .746, p < .001). 228 

There were also two clusters with latencies >0 ms. The first cluster (Post-E) occurred 229 

at 80–200 ms, and spread within the alpha range (7–9 Hz) over the right temporal region 230 

(permutation p = .035; model prediction r = .774, p < .001). The other cluster (Post-F) 231 

occurred at 180–300 ms, and spread from the theta to alpha range (4–11 Hz) over the 232 

central parietal region (permutation p = .008; model prediction r = .673, p = .001). 233 

These clusters were speech-following responses that likely reflect post processing of 234 
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the speech information for comprehension. 235 

 236 

Figure 2. Neural responses that were correlated with speech comprehension 237 

performance 238 

There are six clusters showing significant correlations with the comprehension 239 

performance of the attended speech, shown as six sub-plots. Each sub-plot is divided 240 

into five panels (A~E, labeled only in the upper left sub-plot titled ‘Prep-A’), as 241 

explained below.  242 

(A) Grand average topography of the regression R-values in the time windows of the 243 

significant clusters (depicted by the gray shadowed area in (D) and (E)). Black dots 244 

indicate the channels of interest included in these clusters. 245 

(B) Time-frequency profile of the R-values averaged over the channels of interest. The 246 

dashed red rectangles indicate the time and frequency of interest included in the clusters.  247 

(C) Scatter plots of the comprehension performance (y-axis) and the predicted values 248 

by the regression model averaged over all the channel-latency-frequency bins within 249 

the corresponding clusters (x-axis). Each dot represents an individual participant.  250 

(D) and (E) Response time courses of attended-TRF(D) and unattended-TRF(E). The 251 

three red (D) and green (E) lines of different darkness represent the averaged responses 252 

over the participants with comprehension performance of the attended speech ranking 253 

in the top, middle, and bottom tertiles (7, 6, and 7 participants, respectively). The 254 
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histograms illustrate the distribution of coefficients of the selected channel-latency-255 

frequency bins. The number displayed beside the histogram is the mean regression 256 

coefficient within the selected channel-latency-frequency bins.  257 

Preparatory activities were attention dependent 258 

The regression models for both attended and unattended responses revealed a joint 259 

contribution of the preparatory activities related to the attended and the unattended 260 

speech streams for the speech comprehension performance. For all six clusters, the 261 

mean regression coefficients within the selected channel-latency-frequency bins were 262 

significantly different from zero. For example, the mean of the coefficients for the 263 

attended and unattended activities of Prep-A were -0.018 and 0.032, respectively (the 264 

99% bootstrap confidence intervals for the attended activity: [-0.019, -0.016]; for 265 

unattended activity: [+0.030, +0.033]; for all means and distributions, see Fig. 2D and 266 

2E). Thus, both the attended and unattended activities significantly contributed to 267 

individual comprehension performance. By plotting the average TRF responses within 268 

the channel-latency-frequency of interest in these clusters for the participants with 269 

comprehension performance ranking in the top, middle, and bottom tertiles, we 270 

observed primarily reversed trends for the attended and unattended responses. 271 

Interestingly, reduced preparatory activities to the attended speech were seen for the 272 

top-performance tertile (corresponding to the negative mean coefficients), whereas the 273 

opposite effect was seen for the unattended speech (except for Prep-B, in which both 274 

mean coefficients were positive). The post-processing activities showed the reverse 275 

pattern, whereby participants with a better performance exhibited enhanced responses 276 

to the attended speech (as reflected by positive mean coefficients) and reduced 277 
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responses to the unattended speech (as reflected by negative mean coefficients). The 278 

99% bootstrap confidence intervals for the means of all the coefficients are provided in 279 

Table S1. 280 

We further computed partial correlations between these preparatory neural activities 281 

and the comprehension performance, while controlling for the post-processing neural 282 

activities (i.e., Post-E and Post-F). Prep-B and Prep-C had significant partial 283 

correlations with the comprehension performance (r = .610 and .560, p = .007 and .016, 284 

respectively), which is suggestive of a unique functional contribution to comprehension 285 

performance of the two preparatory neural responses. The partial correlations of Prep-286 

A and Prep-D with the comprehension performance failed to reach significance (r = .32 287 

and .44, p = .189 and .068, respectively). Nevertheless, as these preparatory activities 288 

occurred substantially earlier than the post-processing activities, the non-significant 289 

results do not necessarily undermine the importance of these responses, but rather 290 

indicate there to be shared neural mechanisms for preparation and post-processing. 291 

Indeed, both the spectral and spatial signatures of Prep-A and Post-F largely overlapped, 292 

and Prep-D and Post-E shared similar spatial patterns. In support of these observations, 293 

significant correlations were found between Prep-A and Post-F (r =. 648, p = .002) and 294 

between Prep-D and Post-E (r = .672, p = .001). The pairwise correlations between all 295 

six clusters are shown in Table S2, and the partial correlation results are shown in Table 296 

S3.  297 

 298 
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Attention modulation was reflected by post-onset processing: replication of 299 

previous TRF-based studies 300 

Several previous studies have employed a similar paradigm to investigate the 301 

attentional modulation of speech processing (Broderick et al., 2018; Mirkovic, Debener, 302 

Jaeger, & Vos, 2015; O’Sullivan et al., 2015). In these studies, the attentional 303 

modulation effect was operationalized as the difference between TRF responses to 304 

attended and unattended speech, whereas the present study focused on neural signatures 305 

that were associated with speech comprehension performance. To replicate their 306 

findings, we computed the attention-related neural activities according to these 307 

previous studies. 308 

To this end, a cluster-based permutation analysis was performed to search for 309 

differences between the TRF-based neural responses to the attended and unattended 310 

speech, based on the multichannel time-frequency responses of either amplitude or 311 

phase responses. Selective attention resulted in significant differences the neural 312 

activities related to the attended and unattended speech streams, as represented by an 313 

amplitude-based cluster and a phase-based cluster. Both clusters had latencies well after 314 

0 ms. Compared to the unattended speech, the attended speech was associated with a 315 

larger amplitude response at 50–180 ms at 5–13 Hz over the parietal region (p = .018) 316 

and a stronger ITPL at 100–260 ms at 4–8 Hz over the left-central parietal region (p 317 

= .028). None of the clusters, however, were significantly correlated with speech 318 

comprehension performance (r = -.110 and -.187, p = .646 and .431). 319 
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 320 

Figure 3. Attention-related neural responses were not correlated with speech 321 

comprehension performance 322 

There are two clusters showing significant difference between attended and unattended 323 

speech streams. Each sub-plot is divided into four panels (A~D, labeled only in the 324 

upper sub-plot), as explained below. 325 

(A) Grand average topography of t-values on the difference between the attended and 326 

unattended responses in the time windows of the significant clusters (depicted by the 327 

gray shadowed area in (C)). Black dots represent the channels of interest.  328 

(B) Time-frequency profile of the t-values averaged over the channels of interest. The 329 

dashed red rectangles indicate the time and frequency of interest included in the clusters.  330 

(C) Grand average time courses of the attended (red) and unattended (green) TRF 331 

responses averaged over the channels and frequencies of interest. Gray shaded areas 332 

indicate the time windows of interest.  333 

(D) Scatter plots of the comprehension performance (y-axis) and the response 334 

differences averaged over all channel-latency-frequency bins within the corresponding 335 

clusters (x-axis). Each dot represents one participant. 336 

 337 

Discussion 338 

The present study aimed to identify neural signatures that directly reflect preparatory 339 

processing of upcoming speech. We used naturalistic narrative speech materials in a 340 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 1, 2019. ; https://doi.org/10.1101/827584doi: bioRxiv preprint 

https://doi.org/10.1101/827584
http://creativecommons.org/licenses/by-nc-nd/4.0/


16 

 

 

 

selective attention paradigm using a TRF-based approach for modeling the neural 341 

activity, and observed preparatory neural activities before the onset of speech power 342 

envelope fluctuations. These preparatory activities were correlated with the 343 

comprehension performance of individual participants, with latencies as early as -450 344 

ms. The preparatory process involved spatially distributed brain areas, taking the form 345 

of an amplitude response rather than phase synchronization, with the most relevant 346 

frequencies within the alpha and beta ranges. There was also an interplay between 347 

attention and preparation, whereby preparatory activities to the attended and the 348 

unattended speech contributed to comprehension performance, but with opposite 349 

mechanisms. Our results provide direct neural evidence for how the brain prepares for 350 

the processing of upcoming speech. 351 

Before detailed discussions, it is necessary to state that our assumption for a preparatory 352 

process is based on the observation that the TRF-based neural activities prior to speech 353 

onset were significantly correlated with comprehension performance. Recent TRF-354 

based studies using naturalistic stimuli have reported reasonable latencies that 355 

resembled their ERP counterparts for describing selective auditory attention (~200 ms) 356 

(Mirkovic et al., 2015; O’Sullivan et al., 2015), semantic violation processing (~400 357 

ms) (Broderick et al., 2018), and visual working memory (200–400 ms) (Huang, Jia, 358 

Han, & Luo, 2018). Although our findings have mainly focused the window of < 0 ms, 359 

these studies support the rationale of using the TRF-based responses to reflect the time 360 

course of information processing in general. Therefore, the pre-onset latencies observed 361 

in the present study can be considered to represent a preparatory state that precedes 362 
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speech processing. 363 

Preparatory activities involve a distributed neural network 364 

To prepare for the processing of upcoming speech information, multiple neural 365 

signatures with different time, space, and frequency characteristics were identified, 366 

which is indicative of the engagement of multi-center neural networks for active speech 367 

perception. We did not base our analysis on preselected regions of interest, and so our 368 

results provide a complete overview of all activities for preparation. Notably, one 369 

preparatory cluster was found to be located over the left frontal region (Prep-B), which 370 

supports the popular notion of a left-lateralized frontal network for top-down speech 371 

prediction (Federmeier, 2007; Hickok, 2012b). Previous studies that have reported 372 

involvement of the left frontal region in prediction have focused on post-processing of 373 

either violations of linguistic congruency (e.g. the MMN and N400 responses; (Kutas 374 

& Hillyard, 1984; Lau et al., 2008; Szewczyk & Schriefers, 2018) or contextual speech 375 

cues (Dikker & Pylkkänen, 2013; Söderström et al., 2016). However, our results 376 

indicate that this region plays an active role in preparation of speech processing, with 377 

latencies of ~400 ms before speech onset.  378 

Furthermore, the preparatory process was broadly distributed beyond the left frontal 379 

region, including the parietal (Prep-A), central-parietal (Prep-C), and right central 380 

(Prep-D) regions. The central-parietal responses could be related to the predictive 381 

processing of speech meaning, and could recruit a mechanism that is similar to that 382 

underlying the classical central-parietal N400 response (Federmeier, 2007; Lau et al., 383 
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2008; Szewczyk & Schriefers, 2018). The right-lateralized finding (i.e., Prep-D), 384 

however, may indicate a possible functional contribution of the right hemisphere to 385 

prediction. Some studies have suggested that the right hemisphere is engaged in 386 

language processing, primarily during complex narratives (Brownell HH, Michel D, 387 

Powelson J, & Gardner H, 1983; George, Kutas, Martinez, & Sereno, 1999; Robertson 388 

et al., 2000). As naturalistic speech materials used in the present study were likely to 389 

engage speech processing at all levels, our results demonstrate the involvement of a 390 

distributed neural network for the preparation of naturalistic speech processing. 391 

Higher frequency neural activity for preparation and lower frequency activity for 392 

post-processing 393 

The neural mechanisms of the preparatory process were investigated using a time-394 

frequency analysis of the TRF-based neural activity. Similarly to recent TRF-based 395 

studies, we observed attention-related neural responses (Mirkovic, Bleichner, De Vos, 396 

& Debener, 2016; Mirkovic et al., 2015; O’Sullivan et al., 2015), with the peak attention 397 

effect represented by theta and alpha oscillatory activities at 100–200 ms post-stimulus 398 

onset over the frontal regions. Similarly, the comprehension-related post-onset 399 

processing was mainly reflected in lower frequency bands from theta to low alpha 400 

bands, as has been frequently reported in previous speech literatures (Ding & Simon, 401 

2014; Giraud & Poeppel, 2012; Luo & Poeppel, 2007). In contrast, the comprehension-402 

related pre-onset neural signatures were in a higher frequency range, mainly within the 403 

alpha and beta bands. This observation is in accordance with recent studies on pre-404 

stimulus ERPs in sensory perception, in which pre-stimulus alpha-band activity was 405 
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found to be significantly correlated with post-stimulus perception, especially in the 406 

visual modalities (Bauer, Stenner, Friston, & Dolan, 2014; Milton & Pleydell-Pearce, 407 

2016; Rohenkohl & Nobre, 2011; van Ede, Jensen, & Maris, 2010). These results have 408 

been interpreted for a functional role of alpha band for a top-down inhibitory 409 

mechanism to achieve the preparatory process. Meanwhile, several studies have 410 

suggested that beta-band power reflects updating the content of a prediction (Bauer et 411 

al., 2014; Sedley et al., 2016), as well as maintenance of ongoing cognitive context 412 

(Engel & Fries, 2010). Accordingly, the pre-onset alpha and beta activity in our study 413 

may reflect inhibitory of unattended speech and maintain the expectation in speech 414 

preparatory processing (Kayser, Ince, Gross, & Kayser, 2015; Keitel, Gross, & Kayser, 415 

2018). Taken together, these results suggest possibly of distinct functional roles of 416 

neural activity at different frequency bands for speech processing, with alpha- or 417 

higher-band activity reflecting top-down speech preparation, and the lower-frequency 418 

activity reflecting post-stimulus processing. 419 

In addition, three out of the four preparatory activities took the form of an amplitude 420 

response rather than ITPL, including the earliest activities (Prep-A and Prep-B). At a 421 

first glance, our observation may seem to be inconsistent with the popular view on the 422 

functional roles of amplitude and phase responses, as phase synchronization is 423 

frequently suggested to reflect the coordination of long-distance neuron communication 424 

and therefore more likely to reflect top-down regulation of sensory information 425 

processing (Engel et al., 2001, 2013; Galindo-Leon et al., 2019; Klimesch, 2012; 426 

Lakatos et al., 2009; Salinas & Sejnowski, 2001; Sauseng et al., 2007; Schyns, Thut, & 427 
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Gross, 2011; Zhang, Hong, Gao, & Röder, 2017). Nevertheless, as the preparation 428 

process reflects the usage of top-down predictive information for facilitated speech 429 

processing rather than prediction per se, it is likely that these preparatory activities 430 

mainly exhibited the actual implementation of prediction in speech-processing-specific 431 

brain regions. In support of such a hypothesis, the distributed neural network indeed 432 

covered the typical speech processing regions. Therefore, the amplitude-based 433 

preparatory activities could be the result of localized speech-related information 434 

processing as proposed in previous studies on general sensory processing (Engel et al., 435 

2001; Klimesch, Sauseng, & Hanslmayr, 2007; Mathewson et al., 2011; Zhang et al., 436 

2017). These activities could be related to the processing of the contextual information 437 

relevant for the upcoming speech and thus provide the basis for the enhanced 438 

comprehension performance. As limited previous studies have addressed the 439 

dissociation between amplitude and phase responses, further work is necessary to 440 

elucidate this issue. 441 

Attention dependence of the preparatory neural signatures 442 

The neural mechanisms of the preparatory process were further explored by inspecting 443 

their relationship with attention. We further decomposed neural activity into amplitude 444 

and phase responses. Specifically, our findings of the earliest preparation-related 445 

amplitude modulation (Prep-A) in the alpha and beta bands support the recent reports 446 

of beta power reduction during temporal prediction (Arnal & Giraud, 2012; Nobre & 447 

Van Ede, 2018); in high-performing participants, comprehension performance was 448 

associated with reduced amplitudes in response to attended speech and enhanced 449 
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amplitudes in response to unattended speech (i.e., the positive and negative regression 450 

coefficients as displayed in Fig. 2D and 2E). Similar patterns were also seen for Prep-451 

C and Prep-D (ITPL in this case). The reduced amplitude responses and ITPL could 452 

reflect a well-prepared state for processing upcoming attended speech (Bauer et al., 453 

2014; Chao, Takaura, Wang, Fujii, & Dehaene, 2018; Jensen & Mazaheri, 2010). The 454 

neural activities related to the unattended speech were also correlated with speech 455 

performance, but with opposite effects. Thus, the different modulation effects could 456 

contribute towards an enlarged activity difference between the neural activities to the 457 

attended and the unattended speech, for an efficient processing and thus comprehension 458 

of the attended speech information. 459 

Interestingly, although the neural activities related to both the attended and the 460 

unattended speech also jointly contributed to comprehension performance at the post-461 

processing stage (Post-E and Post-F), a reversed pattern was observed as compared to 462 

the preparatory stage. In participants with better performances, performance was 463 

associated with enhanced responses to the attended speech and reduced responses to 464 

the unattended speech. This reversed pattern is in accordance with the classical view 465 

on attention modulation, and reflects enhanced processing to attended information and 466 

suppressed processing to unattended information (Carrasco, 2011; Luck, Woodman, & 467 

Vogel, 2000). The sharp contrast between the preparatory and the post-processing 468 

processing stages supports the idea that there is an interplay between preparation and 469 

attention. While our results are in line with previous research that has reported there to 470 

be an interaction between attention and prediction (Friston, 2009; Kok, Rahnev, Jehee, 471 
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Lau, & de Lange, 2012; Smout et al., 2019), we provide further evidence on how such 472 

interactions could affect behavior (i.e., comprehension). Namely, given that the 473 

preparatory process supposedly reflects how prediction is implemented to facilitate 474 

information processing, our results imply that attended speech may be favored by the 475 

predictive or preparatory mechanism. Indeed, the neural activity associated with the 476 

attended speech was inhibited during the preparatory stage, but enhanced during the 477 

post processing stage, both mechanisms have been linked to more efficient processing 478 

by previous studies (Rohenkohl & Nobre, 2011; Rommers, Dickson, Norton, Wlotko, 479 

& Federmeier, 2017; Smith et al., 2006).  480 

This study has some limitations that should be noted. The present study used the speech 481 

power envelope as the reference signal from which the TRF models were derived, 482 

which could reflect the speech information at all linguistic levels due to the highly 483 

redundant information shared across levels (Daube, Ince, & Gross, 2019; Di Liberto, 484 

O’Sullivan, & Lalor, 2015). While such an operation has the advantage of providing a 485 

general overview about preparatory processing, further investigations are necessary to 486 

differentiate possible contributions at different linguistic levels (Broderick et al., 2018; 487 

Di Liberto et al., 2015). Meanwhile, caution must be taken when interpreting the timing 488 

of the preparatory activities. While the preparatory activity as early as 450 ms before 489 

speech onset could be the result of an optimized utilization of the rich contextual 490 

information provided by the naturalistic speech materials, such timings may be 491 

dependent upon the materials per se. Further studies are necessary to investigate the 492 

possible material dependence of these timings, for instance, by employed an extended 493 
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amount of speech materials. In addition, an inter-individual level regression analysis 494 

method was chosen, as the average comprehension questionnaire accuracies across all 495 

stories within each participant was believed to provide a more reliable estimation the 496 

speech comprehension performance than the single-trial accuracies. Thus, our results 497 

do not necessarily imply that the observed neural signatures reflect the participants’ 498 

trait-like, stable speech processing style. Alternatively, it could be more plausible to 499 

consider these neural signatures to reflect a more or less efficient speech processing 500 

state. More theoretical and empirical research is needed to clarify the underlying 501 

mechanisms. 502 

Summary 503 

We found that individual participants’ comprehension performance was significantly 504 

correlated with neural responses as early as -450 ms relative to speech onset. A widely 505 

distributed brain network was involved in the preparatory process. Higher-frequency 506 

activity in the alpha and beta bands were more closely related to top-down processing, 507 

while lower-frequency activity was more closely associated with post processing. 508 

Neural activities related to both the attended and the unattended speech contributed to 509 

the comprehension performance, but with distinct mechanisms. Attended speech was 510 

more efficiently processed when neural activity was inhibited in the preparatory stage 511 

and enhanced during post processing, whereas the opposite effects were observed for 512 

unattended speech. Our study provides a mechanistic description of how the brain 513 

prepares to process upcoming speech information. 514 
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Materials and Methods  515 

Ethics statement 516 

The study was conducted in accordance with the Declaration of Helsinki and was 517 

approved by the local Ethics Committee of Tsinghua University. Written informed 518 

consent was obtained from all participants. 519 

Experimental model and participant details 520 

Twenty college students (10 female; mean age: 24.7 years; range: 20–43 years) from 521 

Tsinghua University participated in the study as paid volunteers. All participants were 522 

native Chinese speakers, reported having normal hearing, and had normal or corrected-523 

to-normal vision.  524 

Data acquisition and pre-processing 525 

EEG was recorded from 60 electrodes (FP1/2, FPZ, AF3/4, F7/8, F5/6, F3/4, F1/2, FZ, 526 

FT7/8, FC5/6, FC3/4, FC1/2, FCZ, T7/8, C5/6, C3/4, C1/2, CZ, TP7/8, CP5/6, CP3/4, 527 

CP1/2, CPZ, P7/8, P5/6, P3/4, P1/2, PZ, PO7/8, PO5/6, PO3/4, POZ, Oz, and O1/2), 528 

which were referenced to a common average, with a forehead ground at Fz. A 529 

NeuroScan amplifier (SynAmp II, NeuroScan, Compumedics, USA) was used to record 530 

EEG at a sampling rate of 1000 Hz. Electrode impedances were kept below 10 kOhm 531 

for all electrodes. 532 

The recorded EEG data were first notch filtered to remove the 50 Hz powerline noise, 533 

bandpass filtered to 0.5–40 Hz and then subjected to an artifact rejection procedure 534 
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using independent component analysis. Independent components (ICs) with large 535 

weights over the frontal or temporal areas, together with a corresponding temporal 536 

course showing eye movement or muscle movement activities, were removed. The 537 

remaining ICs were then back-projected onto the scalp EEG channels, reconstructing 538 

the artifact-free EEG signals. Around 4–9 ICs were rejected per participant. 539 

Next, the EEG data were segmented into 28 trials according to the markers representing 540 

speech onsets. The analysis window for each trial extended from 5 to 55 s (duration: 50 541 

s) to avoid the onset and the offset of the stories. 542 

Stimuli 543 

The speech stimuli were recorded from two male speakers using the microphone of an 544 

iPad2 mini (Apple Inc., Cupertino, CA) at a sampling rate of 44,100 Hz. The speakers 545 

were college students from Tsinghua University, who had more than four years of 546 

professional training in broadcasting. Both speakers were required to tell 28 1-min 547 

narrative stories in Mandarin Chinese; the stories were either those about daily-life 548 

topics recommended by the experimenter and told by the speaker improvising on their 549 

own (14 stories), or those selected from the National Mandarin Proficiency Test (14 550 

stories). The speakers were presented with the recommended topic or story materials 551 

on the computer screen. They were allowed to prepare for as long as required before 552 

telling the story (usually ~3 min). When they were ready, the speakers pressed the 553 

SPACE key on the computer keyboard and the recording began with the presentation 554 

of three consecutive pure-tone beep sounds at 1000 Hz (duration: 1000 ms; inter-beep 555 
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interval: 1500 ms). The beep sounds served as the event marker to synchronize the 556 

speech audios in the main experiment, in which two speech streams were presented 557 

simultaneously. The speakers were asked to start speaking as soon as the third beep had 558 

ended (within around 3 sec). The speakers were allowed to start the recording again if 559 

the audio did not meet the requirements of either the experimenter or the speakers 560 

themselves (which mainly concerned speech coherence). The actual speaking time per 561 

story ranged from 51 to 76 sec.  562 

Two four-choice questions per story were then prepared by the experimenter and two 563 

college students who were familiar with comprehension performance assessment. 564 

These questions and the corresponding choices concerned story details that required 565 

significant attentional efforts. For instance, one question following a story about one’s 566 

hometown was, “What is the most dissatisfying thing about the speaker’s hometown? 567 

(推测讲述人对于家乡最不满意的地方在于?)”, and the four choices were A) There is no 568 

heating in winter; B) There are no hot springs in summer; C) There is no fruit in autumn; 569 

D) There are no flowers in spring (A. 冬天没暖气；B. 夏天没温泉；C. 秋天没水果；D. 570 

春天没鲜花). Both the speech audio and corresponding questions are available for 571 

downloads.  572 

Experimental procedure 573 

The main experiment consisted of 4 blocks of 7 trials. During each trial, two speech 574 

streams were played simultaneously to the left and right ears. The two speech streams 575 

within each trial were from the two different speakers to facilitate selective attention. 576 
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Considering the possible duration difference between the two audio streams, the trial 577 

ended after the longer speech audio had ended. Each trial began when participants 578 

pressed the SPACE key on the computer keyboard. Participants were instructed which 579 

side to attend to by plain text (“Please pay attention to the [LEFT/RIGHT]”) displayed 580 

on the computer screen. A white fixation cross was also displayed throughout the trial. 581 

The speech stimuli were played immediately after the keypress, and were preceded by 582 

the three beep sounds to allow participants to prepare. At the end of each trial, four 583 

questions (two for each story) were presented sequentially in a random order on the 584 

computer screen, and the participants made their choices using the computer keyboard. 585 

After completing these questions, participants scored their attention level of the 586 

attended stream, the experienced difficulty of performing the attention task, and the 587 

familiarity with the attended material using three 10-point Likert scales. Throughout 588 

the trial, participants were required to maintain visual fixation on the fixation cross 589 

while listening to the speech and to minimize eye blinks and all other motor activity. 590 

We recommended that participants take a short break (of around 1 min) after every trial 591 

within one block, and a long break (no longer than 10 min) between blocks. 592 

The to-be-attended side was fixed within each block (two blocks for attending to the 593 

left side and two for attending to the right side). Within each block, the speaker identity 594 

remained unchanged for the left and right sides. In this way, the to-be-attended spatial 595 

side and the corresponding speaker identity were balanced within the participant, with 596 

seven trials per side for both speakers. The assignment of the stories to the four blocks 597 

was randomized across the participants. 598 
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The experiment was carried out in a sound-attenuated, dimly lit, and electrically 599 

shielded room. The participants were seated in a comfortable chair in front of a 19.7-600 

inch Lenovo LT2013s Wide LCD monitor. The viewing distance was approximately 60 601 

cm. The experimental procedure was programmed in MATLAB using the 602 

Psychophysics Toolbox 3.0 extensions (Brainard & Brainard, 1997). The speech stimuli 603 

were delivered binaurally via an air-tube earphone (Etymotic ER2, Etymotic Research, 604 

Elk Grove Village, IL, USA) to avoid possible electromagnetic interferences from 605 

auditory devices. The volume of the audio stimuli was adjusted to be at a comfortable 606 

level that was well above the auditory threshold. Furthermore, the speech stimuli 607 

driving the earphone were used as an analog input to the EEG amplifier through one of 608 

its bipolar inputs together with the EEG recordings. In this way, the audio and the EEG 609 

recordings were precisely synchronized, with a maximal delay of 1ms (at a sampling 610 

rate of 1000 Hz).  611 

Temporal response function modeling 612 

The neural responses to the speech stimuli were characterized using a temporal 613 

response function (TRF)-based modeling method. The TRF response describes the 614 

impulse response to fluctuations of an input signal, and is based on system identification 615 

theories (Crosse et al., 2016; Lalor et al., 2006). We used the power envelope of the 616 

speech signal as the input signal required by TRF, which has been demonstrated to be 617 

a valid index by which to extract speech-related neural responses (Bednar & Lalor, 618 

2018; Broderick et al., 2018; Ding & Simon, 2012; Huang et al., 2018; Mirkovic et al., 619 

2015; O’Sullivan et al., 2015). 620 
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Prior to the modeling, the preprocessed EEG signals were re-referenced to the average 621 

of all scalp channels and then downsampled to 128 Hz. Likewise, the power envelopes 622 

of the speech signals were obtained using a Hilbert transform and then downsampled 623 

to the same sampling rate of 128 Hz. When denoting the downsampled EEG signals 624 

from channel i, trial k as R(i,t) and the input speech power envelope as S(t), the 625 

corresponding neural response TRFi,k can be formulated as follows: 626 

 𝑅(𝑖, 𝑡) = 𝑇𝑅𝐹𝑖,𝑘 ∗ 𝑆(𝑡) (1) 

Where * represents the convolution operator. The latency in the neural response models 627 

(TRFi,k) was set to vary from -1000 ms to 1000 ms post-stimulus to provide sufficient 628 

data for the planned latency of -500 ms to 500 ms in the following time-frequency 629 

analysis.  630 

The TRF modeling analysis was performed on each EEG channel for each trial per 631 

participant. TRF models were calculated for attended and unattended speech processing 632 

separately using the corresponding speech streams as the input signal. It should be noted 633 

that we did not consider the input lateralization for the TRF models, as the observed 634 

behaviorally related findings were insensitive to the physical origin of the speech audios, 635 

but rather likely to reflect the lateralization of the human speech network. Figure S3 636 

provides the topographical information of our main results; it is similar to Figure 2, but 637 

all results were calculated separately for speech stimuli from the left and right sides. 638 

The topographies were comparable, even for the highly lateralized responses (e.g., 639 

Prep-B and Post-E).  640 
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The TRF-based neural responses were then further subjected to a time-frequency 641 

analysis at the single-trial level. The TRF temporal profile was transformed using the 642 

Hanning taper (2-cycle time window; for example, FWHM = 2 sec for 1 Hz wavelet) 643 

at each time sample from -500 ms to 500 ms, with frequencies ranging from 1 to 30 Hz 644 

at 1-Hz increments. Both single-trial amplitude and phase were recorded and denoted 645 

as TRF𝑖,𝑘
𝐴 (𝜏, 𝑓) and TRF𝑖,𝑘

𝑃 (𝜏, 𝑓), where τ represents TRF latency relative to the onset 646 

of speech power envelope fluctuations, and f represents the TRF frequency. 647 

Given the number of trials denoted by N, the TRF-based single-trial amplitude and 648 

phase responses were calculated as follows:  649 

 A𝑖(𝜏, 𝑓) =∑ 𝑇𝑅𝐹𝑖,𝑘
𝐴 (𝜏, 𝑓)

𝑁

𝑘=1
 (2) 

 ITPL𝑖(𝜏, 𝑓) = |∑ exp⁡(𝑗 ∙ 𝑇𝑅𝐹𝑖,𝑘
𝑃 (𝜏, 𝑓)

𝑁

𝑘=1
|/𝑁 (3) 

A large-amplitude value indicates a neural response of high magnitude across all trials, 650 

and the phase-related ITPL value varies between 0 and 1; 0 refers to a situation in which 651 

the phase responses of different trials are uniformly distributed between 0 and 2π, and 652 

1 means the phase responses from all trials are entirely locked to a fixed phase angle.  653 

These phase and amplitude responses were further transformed into z-scores within the 654 

-500 ms to 500 ms time window for each channel separately per participant. These z-655 

scores were then used for the cross-participant statistical analyses. 656 

The TRF analysis was conducted in MATLAB using the Multivariate Temporal 657 

Response Function (mTRF) toolbox (Crosse et al., 2016). All the other EEG processing 658 
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procedures, as well as the statistical analyses, were conducted using the FieldTrip 659 

toolbox (Oostenveld, Fries, Maris, & Schoffelen, 2011).  660 

Quantification and statistical analysis  661 

The extracted TRF-based amplitude and phase responses were used as independent 662 

variables into a regression model to predict the speech comprehension performance of 663 

the attended speech at the participant level (denoted by CompreScore). Given that we 664 

aimed to explore the neural correlates of speech comprehension, we built different 665 

regression models for amplitude and phase responses, for each EEG channel (i) at 666 

individual latency (τ) and frequency (f) separately. Nevertheless, the responses to the 667 

attended and unattended speech streams were incorporated into the same regression 668 

model, as follows: 669 

 𝐶𝑜𝑚𝑝𝑟𝑒𝑆𝑐𝑜𝑟𝑒 = 𝛼1 ∙ A𝑖
𝐴𝑡𝑡𝑒𝑛𝑑𝑒𝑑(𝜏, 𝑓) + 𝛼2 ∙ A𝑖

𝑈𝑛𝑎𝑡𝑡𝑒𝑛𝑑𝑒𝑑(𝜏, 𝑓) (4) 

 𝐶𝑜𝑚𝑝𝑟𝑒𝑆𝑐𝑜𝑟𝑒 = 𝛼1 ∙ 𝐼𝑇𝑃𝐿𝑖
𝐴𝑡𝑡𝑒𝑛𝑑𝑒𝑑(𝜏, 𝑓) + 𝛼2 ∙ 𝐼𝑇𝑃𝐿𝑖

𝑈𝑛𝑎𝑡𝑡𝑒𝑛𝑑𝑒𝑑(𝜏, 𝑓) (5) 

Statistical analysis was performed to examine the significance of these regression 670 

model predictions over all channel-latency-frequency bins by computing the regression 671 

R-values. Nonparametric cluster-based permutation analysis was applied to control for 672 

multiple comparisons. In this procedure, neighboring channel-latency-frequency bins 673 

with an uncorrected p-value below 0.01 were combined into clusters, for which the sum 674 

of correlational t-statistics corresponding to the regression R-values were obtained. A 675 

null-distribution was created through permutations of data across participants (n = 1000 676 
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permutations), which defines the maximum cluster-level test statistics and corrected p-677 

values for each cluster. 678 

We also examined the coefficients of the regression. We calculated the distribution and 679 

the mean of every selected channel-latency-frequency bin. We also calculated 99% 680 

regression coefficient confidence intervals using the bootstrap method for every cluster.  681 

To investigate the attention modulation effect, we performed paired t-tests on the TRF-682 

based neural activities related to the attended speech versus the unattended speech. Both 683 

amplitude and ITPL were included in the analysis. A similar cluster-based permutation 684 

was used to control for the multiple comparison problem (p < .01 as the threshold, n = 685 

1000 permutations).  686 

 687 

Supporting information 688 

 689 

Fig S1. Topographies of the six responses as shown in Figure 2 (A) and calculated 690 

separately for the speech stimuli delivered to the left side (B) and the right side (C) only. 691 

 692 
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Table S1:  CIs of all Clusters 

  Att Unatt 

Prep-A [-0.019, -0.016]  [+0.030, +0.033]  

Prep-B [+0.002,+0.007]  [+0.036, +0.040] 

Prep-C [-0.016, -0.009] [+0.035, +0.040] 

Prep-D [-0.010, -0.006] [+0.040, +0.045]  

Post-E [+0.044, +0.049] [-0.041, -0.035] 

Post-F [+0.009, +0.013] [-0.033, -0.029] 

 693 

Table S2: Pairwise Correlation between all clusters 

 Prep-A Prep-B Prep-C Prep-D Post-E 

Prep-B .589**     

Prep-C .421 .439    

Prep-D .480* .408 .486*   

Post-E .596** .361 .474* .672**  

Post-F .648** .378 .483* .562** .646** 

** p<.01      

 * p<.05      

 694 

Table S3:  Partial correlation 

  Partial-r p 

Prep-A .323  .189  

Prep-B .560  .016*  

Prep-C .610  .007* 

Prep-D .439  .068  

* p<.05   

 695 

 696 
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