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18  Abstract

19  While human speech comprehension is thought to be an active process that involves
20  top-down predictions, it remains unclear how predictive information is used to prepare
21  for the processing of upcoming speech information. We aimed to identify the neural
22  signatures of preparatory processing of upcoming speech. Participants selectively
23 attended to one of two competing naturalistic, narrative speech streams, and a temporal
24 response function method was applied to derive event-related-like neural responses
25  from electroencephalographic data. Regression analysis revealed that neural signatures
26  with latencies as early as -450 ms prior to speech onset were significantly correlated
27  with speech comprehension performance. The preparatory process involved a
28  distributed network. These preparatory signatures were attention dependent; activity
29  prior to the attended speech was negatively correlated with comprehension performance,
30  whereas the opposite was found for unattended speech. Our findings suggest that

31  attention plays an important role in the preparation to process upcoming speech.

32
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38 Introduction

39  Humans are a powerful speech recognition system that can comprehend complex and
40  rapidly changing human speech in challenging conditions, e.g., in a cocktail party
41  scenario with multiple competing speech streams and high background noise. To
42  achieve such a capacity, the human brain is equipped with neural architecture that is
43  dedicated to bottom-up processing of perceived speech information, from the low-level
44  acoustics, to the phoneme, syllable, and sentence levels (DeWitt & Rauschecker, 2012;
45  Friederici, 2012; Hickok, 2012a; Pisoni & Luce, 1987; Verhulst, Altoé, & Vasilkov,
46 2018). In recent years, increasing evidence has also suggested that human speech
47  comprehension is an active process that involves top-down predictions (Arnal, Wyart,
48 & Giraud, 2011; Federmeier, 2007; Fries, 2015; Hickok, Houde, & Rong, 2011; Kutas
49 & Federmeier, 2011; Rao & Ballard, 1999; Tian, Ding, Teng, Bai, & Poeppel, 2018). In
50 the cocktail party scenario, it is believed that a listener should continuously predict what
51 their attended speaker is going to say next to efficiently understand the corresponding
52  speech (Cherry, 1953; O’Sullivan et al., 2015; Zion Golumbic, Cogan, Schroeder, &
53  Poeppel, 2013). These predictions supposedly inform the brain about the ‘what” and
54  ‘when’ of upcoming speech information (Arnal & Giraud, 2012; Auksztulewicz et al.,

55  2018), which allows a listener to prepare for follow-up processing.

56  Although the idea of top-down prediction in human speech comprehension is gaining
57  popularity, it remains unclear how the brain uses predictive information to prepare for
58  the processing of upcoming speech information. Understanding the preparatory process

59 is essential because it reflects the influence of prediction on subsequent information
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60  processing. Moreover, the available findings on prediction in speech are not sufficient
61  to determine the neural mechanisms underlying preparation. For instance, the classic
62  studies of active speech prediction have mainly focused on the neural activity in
63  response to prediction errors. Event-related potential (ERP) components such as the
64  N400 and P600 are frequently reported when the perceived word violates semantic and
65  syntactic congruency of the preceding speech context, respectively (Kutas &
66  Federmeier, 2011; Lau, Phillips, & Poeppel, 2008; Van Petten & Luka, 2012). These
67  ERP components normally occur >400 ms after the presentation of the perceived speech,
68  and so provide only indirect support for the preparatory process. Recent studies have
69  also reported evidence of the brain’s pre-activation before the onset of the upcoming
70 speech (DeLong, Urbach, & Kutas, 2005; Dikker & Pylkkénen, 2013; Soderstrom,
71 Horne, Frid, & Roll, 2016; S6derstrom, Horne, Mannfolk, van Westen, & Roll, 2018);
72 these pre-activations have been interpreted as ‘predictive’ because they have been found
73 to be correlated with the relative likelihoods of the upcoming speech unit (e.g. words)
74 in the continuous speech materials (e.g. sentences). However, this is still only indirect
75 evidence for preparation, as these pre-activations have been represented by event-
76  related neural responses to the preceding speech unit that are informative about possible
77  upcoming speech units. Direct neural evidence for the preparatory response should be
78  derived from neural activity that is directly related to the processing of the upcoming

79  speech information, and which occurs immediately before speech onset.

80  While this direct evidence has not been investigated in the speech domain, several

81  studies on general sensory processing have provided ample support for the existence of
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82  such a preparatory process. For instance, pre-stimulus oscillatory activity has been
83 reported to have a significant impact on subsequent perceptual consequences (Cao,
84  Thut, & Gross, 2017; Galindo-Leon et al., 2019; Harris, Dux, & Mattingley, 2018; Kok,
85  Mostert, & De Lange, 2017; Rassi, Wutz, Miiller-Voggel, & Weisz, 2019). Moreover,
86  synchronization within neural populations responsible for the specific sensory
87  processing has been proposed to underlie preparation (Engel, Fries, & Singer, 2001;
88  Galindo-Leon et al., 2019; Lakatos et al., 2009). Following on from this work, the
89  present study investigated neural activity prior to the onset of upcoming speech

90 information to identify possible neural signatures of the preparatory process.

91  One crucial issue that needs to be considered is the possible dependence of the
92  preparatory process on top-down selective attention. As attention regulates the
93  processing of the input sensory information, it can be expected to affect prediction and
94  consequently preparation. Indeed, recent studies have demonstrated the interplay
95  Dbetween attention and prediction (Schroger, Kotz, & SanMiguel, 2015; Schroger,
96 Marzecova, & Sanmiguel, 2015). Specifically, the magnitude of the prediction error-
97 related neural response has been shown to be magnified or reversed, depending on the
98  attentional state (Auksztulewicz & Friston, 2015; Hisagi, Shafer, Strange, & Sussman,
99  2015; Kok, Jehee, & de Lange, 2012; Marzecova, Widmann, SanMiguel, Kotz, &
100  Schréger, 2017; Smout, Tang, Garrido, & Mattingley, 2019). Most of these studies have
101  been conducted within the visual domain, with limited exploration in the auditory
102  domain, let alone speech processing. Compared to vision, the fast temporal dynamics

103  of auditory stimuli and speech signals require neuroimaging tools such as EEG that can
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104  track online changes in neural activity with a high temporal resolution.

105 The present study aimed to identify neural signatures that directly reflect the
106  preparatory processing of human speech. A 60-channel electroencephalogram (EEG)
107  was recorded from participants while they listened to naturalistic narratives; this
108  procedure is believed to be of high ecological validity and thus to provide necessary
109  contextual information for the engagement of top-down prediction and therefore
110  preparation (Federmeier, 2007; Friston, 2005; Jehee & Ballard, 2009; Rao & Ballard,
111 1999). A cocktail party paradigm was used, whereby we introduced a complex
112 perceptual environment that imposed further demands on prediction and preparation
113 (Broderick, Anderson, Di Liberto, Crosse, & Lalor, 2018). To obtain the neural
114  responses to continuous, naturalistic speech, we used a temporal response function
115  (TRF) method, to derive event-related-like neural responses from EEG data, for both
116  the attended and unattended speech streams in the cocktail party scenario (Crosse, Di
117 Liberto, Bednar, & Lalor, 2016; Lalor, Pearlmutter, Reilly, McDarby, & Foxe, 2006).
118  Following studies on the perceptual influence of pre-stimulus neural activities (Iemi et
119  al.,, 2019; Rassi et al., 2019; Smith, Johnstone, & Barry, 2006), these TRF-based
120  responses were analyzed for neural signatures related to speech comprehension
121  performance, as measured by speech-content-related questionnaires. We considered
122 that performance-relevant TRF-based responses before speech onset would be direct
123 neural evidence for the preparatory process, as the comparison between the predicted
124 and the actual perceived sensorial information cannot be performed during this period.

125  Furthermore, our experimental design allows the investigation on the attention
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126  dependence of preparatory speech processing. Specifically, regression analyses were
127  employed with the TRF-based neural responses to attended and unattended speech
128  streams as the independent variables, and speech comprehension performance as the
129  dependent variable. Results revealed that neural signatures with latencies as early as -
130 450 ms prior to speech onset were significantly correlated with speech comprehension
131  performance. A distributed network was involved in the preparatory process of speech
132 comprehension. The preparatory activity to the attended speech was found to be
133  negatively correlated with comprehension performance, whereas the opposite was
134  found for unattended speech. Our findings suggest that attention plays an important role

135  in the preparation to process upcoming speech.

136 Results

137 Twenty participants took part in 28 ‘cocktail party’ trials. In each trial, two narrative
138  stories were presented simultaneously to both the left and the right ears and the
139  participants were instructed to attend to one spatial side. Comprehension performance
140  was evaluated by questionnaires about the story contents, which were implemented at
141 the end of each story. There were two four-choice questions for the two simultaneously
142 heard stories, respectively. The comprehension performance was significantly better for
143  the 28 attended stories than for the 28 unattended stories (67.0+£2.5% (standard error)
144 vs. 36.0£1.6%; the four-choice chance level: 25%; #(19) = 10.95, p < .001). The
145  participants reported a moderate level of attention (8.15+0.34 on a 10-point Likert scale)
146  and attention difficulties (2.04+0.53 on a 10-point Likert scale). The accuracy for the

147 attended story was significantly correlated with both the self-reported attention level (»
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148 = .476, p = .043) and attention difficulty (» = -.677, p = .001). The self-reported story
149  familiarity level was low for all the participants (0.86+0.22 on a 10-point Likert scale)
150  and was not correlated with comprehension performance (» = -.224, p = .342). These
151  results suggest that participants’ selective attention was effectively manipulated, as well
152 as good reliability of the measured comprehension performance. Most importantly,
153  there was a large inter-individual difference in the participant-wise average
154  comprehension performance for the attended stories; the response accuracy varied from
155  48.2% to 91.1%, which supports the feasibility of using these accuracy values as a

156  behavioral indicator of comprehension-relevant neural signatures.

157  The analysis workflow is shown in Figure 1. TRF-derived neural responses to the
158  attended and unattended speech were calculated separately, at latencies of -500 ms to
159 500 ms relative to speech onset. Responses within the -500-0 ms latency window are
160  considered to represent preparatory activity, whereas responses within the 0-500 ms
161  latency window reflect post-processing of the speech stream. These TRF responses also
162  underwent time-frequency analysis, and the average single-trial amplitudes and inter-
163  trial phase-locking (ITPL) values were calculated. We hypothesized that this
164  decomposition into amplitude and phase responses would yield more detailed insights
165  into the underlying neural mechanisms of speech processing, as amplitude and phase
166  have been proposed to play unique roles in networks underlying human cognition
167  (Engel, Gerloff, Hilgetag, & Nolte, 2013; Fries, 2015; Klimesch, 2012). To achieve this,
168  we established linear regression models with either amplitude or phase responses from

169  both the attended and unattended TRFs as the independent wvariables, and
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170  comprehension accuracy of the attended speech as the dependent variable. The TRF-
171  based amplitude and phase responses at different channels, latencies, and frequencies
172 were used in separate regression models. We used regression analysis to take a full
173 consideration of possible joint contributions from the attended and unattended TRFs,
174 by deriving different regression coefficients respectively. The regression analyses were
175  performed by treating each participant’s comprehension accuracy averaged over all the
176 28 attended stories as the dependent variable. This provides a robust estimation of the
177  comprehension performance, as only two four-choice questions were asked per
178  attended story. In addition, this design could allow more flexibility in neural data

179  analysis, e.g. exploring the inter-story variability in phase responses.

180  Regression models were built separately for the neural responses at each channel-
181  latency-frequency bin. The regression R-values were obtained to reveal how well the
182  regression models correlated with individual comprehension performance. Statistical
183  analyses were performed based on these regression R-values using a nonparametric
184  cluster-based permutation method (Maris & Oostenveld, 2007). Any significant results
185 at a latency <0 ms were taken to indicate the neural correlates of preparation for
186  upcoming speech information. We also calculated the mean of the regression coefficient,

187  and drew the distribution for every cluster.
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189  Figure 1. The analysis workflow

190  (A) The experimental paradigm. Participants attended to one of two simultaneously
191  presented naturalistic, narrative speech streams while 60-channel EEG was recorded.
192 (B) EEG data analysis. Neural responses were characterized using a TRF-based
193  modeling method. The TRF-based neural responses were then further subjected to a
194  time-frequency analysis at the single-trial level and decomposed into single-trial
195  amplitude and phase (by inter-trial phase locking, ITPL) responses based on the time-
196  frequency representations (denoted by ‘Amp’ and ‘ITPL’). This procedure was
197  conducted for attended (Att-) and unattended (Unatt-) speech streams separately. (C)
198  Comprehension performance. The participants completed a comprehension task after
199  each speech comprehension trial. The average response accuracy over all trials per
200 participant was taken as comprehension performance. (D) Regression analysis for
201  comprehension performance-related neural responses. We established linear regression
202  models with either amplitude or phase responses from both the attended and unattended
203  TRFs as the independent variables, and comprehension accuracy of the attended speech
204 as the dependent variable, for each channel-latency-frequency bin. The neural
205 responses with significant regression model fitting are reported. We defined neural
206  activity before 0 ms as preparatory processing and activity after 0 ms as post processing.

207

208  Preparatory neural activities were correlated with speech comprehension

209  performance

210  The nonparametric cluster-based permutation analysis revealed a significant correlation
211 between the multi-channel time-frequency representation of the TRFs and individual

212 speech comprehension performance of the attended speech. This corresponded to six
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213 clusters in the observed data (all, p <.05), as shown in Figure 2.

214  There were four clusters with latencies prior to 0 ms, which suggested that the brain
215  actively prepares for upcoming speech information. The earliest cluster (Prep-A)
216  extended from around -450 ms to -300 ms, and spread from the theta to low beta range
217 (6-18 Hz) over the right parietal region (permutation p = .005). The average prediction
218  model within the cluster revealed a significant correlation between the predicted and
219  the actual comprehension performance (»=.678, p =.001). The following cluster (Prep-
220  B) extended from around -400 ms to -350 ms, and spread from the alpha to beta range
221 (12-25 Hz) over the left frontal region (permutation p = .030; model prediction » = .625,
222 p=.003). There were two clusters with latencies around 0 ms. While Prep-C was based
223 on amplitude responses, much like Prep-A and Prep-B, Prep-D was based on the ITPL.
224 The amplitude cluster (Prep-C) extended from -50 ms to 0 ms, and spread from the
225 alphato low beta range (9—19 Hz) over the central-parietal region (permutation p =.015;
226  model prediction » =.725, p <.001). The ITPL cluster (Prep-D) extended from -30 ms
227  to 20 ms, and spread from the alpha to low beta range (10—17 Hz) over the right central

228  region (permutation p =.002; model prediction » =.746, p <.001).

229  There were also two clusters with latencies >0 ms. The first cluster (Post-E) occurred
230  at 80-200 ms, and spread within the alpha range (7-9 Hz) over the right temporal region
231  (permutation p = .035; model prediction » =.774, p <.001). The other cluster (Post-F)
232 occurred at 180-300 ms, and spread from the theta to alpha range (4-11 Hz) over the
233 central parietal region (permutation p = .008; model prediction » = .673, p = .001).

234 These clusters were speech-following responses that likely reflect post processing of
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235 the speech information for comprehension.
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237 Figure 2. Neural responses that were correlated with speech comprehension
238  performance

239  There are six clusters showing significant correlations with the comprehension
240  performance of the attended speech, shown as six sub-plots. Each sub-plot is divided
241  into five panels (A~E, labeled only in the upper left sub-plot titled ‘Prep-A’), as
242 explained below.

243 (A) Grand average topography of the regression R-values in the time windows of the
244  significant clusters (depicted by the gray shadowed area in (D) and (E)). Black dots
245  indicate the channels of interest included in these clusters.

246  (B) Time-frequency profile of the R-values averaged over the channels of interest. The
247  dashed red rectangles indicate the time and frequency of interest included in the clusters.

248  (C) Scatter plots of the comprehension performance (y-axis) and the predicted values
249 by the regression model averaged over all the channel-latency-frequency bins within
250 the corresponding clusters (x-axis). Each dot represents an individual participant.

251 (D) and (E) Response time courses of attended-TRF(D) and unattended-TRF(E). The
252  three red (D) and green (E) lines of different darkness represent the averaged responses
253  over the participants with comprehension performance of the attended speech ranking
254  in the top, middle, and bottom tertiles (7, 6, and 7 participants, respectively). The
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255  histograms illustrate the distribution of coefficients of the selected channel-latency-
256  frequency bins. The number displayed beside the histogram is the mean regression
257  coefficient within the selected channel-latency-frequency bins.

258  Preparatory activities were attention dependent

259  The regression models for both attended and unattended responses revealed a joint
260  contribution of the preparatory activities related to the attended and the unattended
261  speech streams for the speech comprehension performance. For all six clusters, the
262  mean regression coefficients within the selected channel-latency-frequency bins were
263  significantly different from zero. For example, the mean of the coefficients for the
264  attended and unattended activities of Prep-4 were -0.018 and 0.032, respectively (the
265  99% bootstrap confidence intervals for the attended activity: [-0.019, -0.016]; for
266  unattended activity: [+0.030, +0.033]; for all means and distributions, see Fig. 2D and
267  2E). Thus, both the attended and unattended activities significantly contributed to
268  individual comprehension performance. By plotting the average TRF responses within
269  the channel-latency-frequency of interest in these clusters for the participants with
270  comprehension performance ranking in the top, middle, and bottom tertiles, we
271  observed primarily reversed trends for the attended and unattended responses.
272 Interestingly, reduced preparatory activities to the attended speech were seen for the
273  top-performance tertile (corresponding to the negative mean coefficients), whereas the
274 opposite effect was seen for the unattended speech (except for Prep-B, in which both
275 mean coefficients were positive). The post-processing activities showed the reverse
276  pattern, whereby participants with a better performance exhibited enhanced responses

277  to the attended speech (as reflected by positive mean coefficients) and reduced
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278  responses to the unattended speech (as reflected by negative mean coefficients). The
279 99% bootstrap confidence intervals for the means of all the coefficients are provided in

280  Table S1.

281  We further computed partial correlations between these preparatory neural activities
282  and the comprehension performance, while controlling for the post-processing neural
283  activities (i.e., Post-E and Post-F). Prep-B and Prep-C had significant partial
284  correlations with the comprehension performance (»=.610 and .560, p =.007 and .016,
285  respectively), which is suggestive of a unique functional contribution to comprehension
286  performance of the two preparatory neural responses. The partial correlations of Prep-
287 A and Prep-D with the comprehension performance failed to reach significance (r = .32
288 and .44, p = .189 and .068, respectively). Nevertheless, as these preparatory activities
289  occurred substantially earlier than the post-processing activities, the non-significant
290 results do not necessarily undermine the importance of these responses, but rather
291  indicate there to be shared neural mechanisms for preparation and post-processing.
292  Indeed, both the spectral and spatial signatures of Prep-A and Post-F largely overlapped,
293  and Prep-D and Post-E shared similar spatial patterns. In support of these observations,
294  significant correlations were found between Prep-A4 and Post-F (r =. 648, p = .002) and
295  between Prep-D and Post-E (r = .672, p = .001). The pairwise correlations between all
296  six clusters are shown in Table S2, and the partial correlation results are shown in Table

297  S3.

298
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299  Attention modulation was reflected by post-onset processing: replication of

300 previous TRF-based studies

301  Several previous studies have employed a similar paradigm to investigate the
302  attentional modulation of speech processing (Broderick et al., 2018; Mirkovic, Debener,
303 Jaeger, & Vos, 2015; O’Sullivan et al., 2015). In these studies, the attentional
304 modulation effect was operationalized as the difference between TRF responses to
305 attended and unattended speech, whereas the present study focused on neural signatures
306 that were associated with speech comprehension performance. To replicate their
307 findings, we computed the attention-related neural activities according to these

308  previous studies.

309 To this end, a cluster-based permutation analysis was performed to search for
310  differences between the TRF-based neural responses to the attended and unattended
311  speech, based on the multichannel time-frequency responses of either amplitude or
312  phase responses. Selective attention resulted in significant differences the neural
313  activities related to the attended and unattended speech streams, as represented by an
314  amplitude-based cluster and a phase-based cluster. Both clusters had latencies well after
315 0 ms. Compared to the unattended speech, the attended speech was associated with a
316  larger amplitude response at 50—180 ms at 5—13 Hz over the parietal region (p = .018)
317  and a stronger ITPL at 100-260 ms at 4-8 Hz over the left-central parietal region (p
318 = .028). None of the clusters, however, were significantly correlated with speech

319  comprehension performance (» = -.110 and -.187, p = .646 and .431).
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321  Figure 3. Attention-related neural responses were not correlated with speech
322  comprehension performance

323  There are two clusters showing significant difference between attended and unattended
324  speech streams. Each sub-plot is divided into four panels (A~D, labeled only in the
325  upper sub-plot), as explained below.

326  (A) Grand average topography of #-values on the difference between the attended and
327  unattended responses in the time windows of the significant clusters (depicted by the
328  gray shadowed area in (C)). Black dots represent the channels of interest.

329  (B) Time-frequency profile of the #-values averaged over the channels of interest. The
330 dashed red rectangles indicate the time and frequency of interest included in the clusters.

331 (C) Grand average time courses of the attended (red) and unattended (green) TRF
332 responses averaged over the channels and frequencies of interest. Gray shaded areas
333  indicate the time windows of interest.

334 (D) Scatter plots of the comprehension performance (y-axis) and the response
335  differences averaged over all channel-latency-frequency bins within the corresponding
336 clusters (x-axis). Each dot represents one participant.

337

338 Discussion

339  The present study aimed to identify neural signatures that directly reflect preparatory

340  processing of upcoming speech. We used naturalistic narrative speech materials in a
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341  selective attention paradigm using a TRF-based approach for modeling the neural
342  activity, and observed preparatory neural activities before the onset of speech power
343  envelope fluctuations. These preparatory activities were correlated with the
344  comprehension performance of individual participants, with latencies as early as -450
345  ms. The preparatory process involved spatially distributed brain areas, taking the form
346  of an amplitude response rather than phase synchronization, with the most relevant
347  frequencies within the alpha and beta ranges. There was also an interplay between
348  attention and preparation, whereby preparatory activities to the attended and the
349  unattended speech contributed to comprehension performance, but with opposite
350  mechanisms. Our results provide direct neural evidence for how the brain prepares for

351  the processing of upcoming speech.

352  Before detailed discussions, it is necessary to state that our assumption for a preparatory
353  process is based on the observation that the TRF-based neural activities prior to speech
354  onset were significantly correlated with comprehension performance. Recent TRF-
355 Dbased studies using naturalistic stimuli have reported reasonable latencies that
356 resembled their ERP counterparts for describing selective auditory attention (~200 ms)
357  (Mirkovic et al., 2015; O’Sullivan et al., 2015), semantic violation processing (~400
358 ms) (Broderick et al., 2018), and visual working memory (200400 ms) (Huang, Jia,
359 Han, & Luo, 2018). Although our findings have mainly focused the window of < 0 ms,
360 these studies support the rationale of using the TRF-based responses to reflect the time
361 course of information processing in general. Therefore, the pre-onset latencies observed

362 in the present study can be considered to represent a preparatory state that precedes
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363  speech processing.

364  Preparatory activities involve a distributed neural network

365 To prepare for the processing of upcoming speech information, multiple neural
366  signatures with different time, space, and frequency characteristics were identified,
367  which is indicative of the engagement of multi-center neural networks for active speech
368  perception. We did not base our analysis on preselected regions of interest, and so our
369 results provide a complete overview of all activities for preparation. Notably, one
370  preparatory cluster was found to be located over the left frontal region (Prep-B), which
371  supports the popular notion of a left-lateralized frontal network for top-down speech
372 prediction (Federmeier, 2007; Hickok, 2012b). Previous studies that have reported
373  involvement of the left frontal region in prediction have focused on post-processing of
374  either violations of linguistic congruency (e.g. the MMN and N400 responses; (Kutas
375 & Hillyard, 1984; Lau et al., 2008; Szewczyk & Schriefers, 2018) or contextual speech
376  cues (Dikker & Pylkkdnen, 2013; Soderstrom et al., 2016). However, our results
377  indicate that this region plays an active role in preparation of speech processing, with

378 latencies of ~400 ms before speech onset.

379  Furthermore, the preparatory process was broadly distributed beyond the left frontal
380 region, including the parietal (Prep-A), central-parietal (Prep-C), and right central
381  (Prep-D) regions. The central-parietal responses could be related to the predictive
382  processing of speech meaning, and could recruit a mechanism that is similar to that

383  underlying the classical central-parietal N400 response (Federmeier, 2007; Lau et al.,
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384  2008; Szewczyk & Schriefers, 2018). The right-lateralized finding (i.e., Prep-D),
385 however, may indicate a possible functional contribution of the right hemisphere to
386 prediction. Some studies have suggested that the right hemisphere is engaged in
387  language processing, primarily during complex narratives (Brownell HH, Michel D,
388 Powelson J, & Gardner H, 1983; George, Kutas, Martinez, & Sereno, 1999; Robertson
389 et al., 2000). As naturalistic speech materials used in the present study were likely to
390  engage speech processing at all levels, our results demonstrate the involvement of a

391  distributed neural network for the preparation of naturalistic speech processing.

392  Higher frequency neural activity for preparation and lower frequency activity for

393  post-processing

394  The neural mechanisms of the preparatory process were investigated using a time-
395 frequency analysis of the TRF-based neural activity. Similarly to recent TRF-based
396  studies, we observed attention-related neural responses (Mirkovic, Bleichner, De Vos,
397 & Debener, 2016; Mirkovic et al., 2015; O’Sullivan et al., 2015), with the peak attention
398 effect represented by theta and alpha oscillatory activities at 100-200 ms post-stimulus
399 onset over the frontal regions. Similarly, the comprehension-related post-onset
400  processing was mainly reflected in lower frequency bands from theta to low alpha
401  bands, as has been frequently reported in previous speech literatures (Ding & Simon,
402  2014; Giraud & Poeppel, 2012; Luo & Poeppel, 2007). In contrast, the comprehension-
403  related pre-onset neural signatures were in a higher frequency range, mainly within the
404  alpha and beta bands. This observation is in accordance with recent studies on pre-

405  stimulus ERPs in sensory perception, in which pre-stimulus alpha-band activity was
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406  found to be significantly correlated with post-stimulus perception, especially in the
407  visual modalities (Bauer, Stenner, Friston, & Dolan, 2014; Milton & Pleydell-Pearce,
408  2016; Rohenkohl & Nobre, 2011; van Ede, Jensen, & Maris, 2010). These results have
409  been interpreted for a functional role of alpha band for a top-down inhibitory
410 mechanism to achieve the preparatory process. Meanwhile, several studies have
411  suggested that beta-band power reflects updating the content of a prediction (Bauer et
412 al., 2014; Sedley et al., 2016), as well as maintenance of ongoing cognitive context
413  (Engel & Fries, 2010). Accordingly, the pre-onset alpha and beta activity in our study
414  may reflect inhibitory of unattended speech and maintain the expectation in speech
415  preparatory processing (Kayser, Ince, Gross, & Kayser, 2015; Keitel, Gross, & Kayser,
416  2018). Taken together, these results suggest possibly of distinct functional roles of
417  neural activity at different frequency bands for speech processing, with alpha- or
418  higher-band activity reflecting top-down speech preparation, and the lower-frequency

419  activity reflecting post-stimulus processing.

420 In addition, three out of the four preparatory activities took the form of an amplitude
421  response rather than ITPL, including the earliest activities (Prep-A and Prep-B). At a
422  first glance, our observation may seem to be inconsistent with the popular view on the
423  functional roles of amplitude and phase responses, as phase synchronization is
424  frequently suggested to reflect the coordination of long-distance neuron communication
425 and therefore more likely to reflect top-down regulation of sensory information
426  processing (Engel et al., 2001, 2013; Galindo-Leon et al., 2019; Klimesch, 2012;

427  Lakatos et al., 2009; Salinas & Sejnowski, 2001; Sauseng et al., 2007; Schyns, Thut, &
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428  Gross, 2011; Zhang, Hong, Gao, & Rdder, 2017). Nevertheless, as the preparation
429  process reflects the usage of top-down predictive information for facilitated speech
430  processing rather than prediction per se, it is likely that these preparatory activities
431  mainly exhibited the actual implementation of prediction in speech-processing-specific
432  brain regions. In support of such a hypothesis, the distributed neural network indeed
433  covered the typical speech processing regions. Therefore, the amplitude-based
434  preparatory activities could be the result of localized speech-related information
435  processing as proposed in previous studies on general sensory processing (Engel et al.,
436  2001; Klimesch, Sauseng, & Hanslmayr, 2007; Mathewson et al., 2011; Zhang et al.,
437 2017). These activities could be related to the processing of the contextual information
438  relevant for the upcoming speech and thus provide the basis for the enhanced
439  comprehension performance. As limited previous studies have addressed the
440  dissociation between amplitude and phase responses, further work is necessary to

441  elucidate this issue.

442  Attention dependence of the preparatory neural signatures

443  The neural mechanisms of the preparatory process were further explored by inspecting
444 their relationship with attention. We further decomposed neural activity into amplitude
445  and phase responses. Specifically, our findings of the earliest preparation-related
446  amplitude modulation (Prep-A4) in the alpha and beta bands support the recent reports
447  of beta power reduction during temporal prediction (Arnal & Giraud, 2012; Nobre &
448  Van Ede, 2018); in high-performing participants, comprehension performance was

449  associated with reduced amplitudes in response to attended speech and enhanced
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450  amplitudes in response to unattended speech (i.e., the positive and negative regression
451  coefficients as displayed in Fig. 2D and 2E). Similar patterns were also seen for Prep-
452  C and Prep-D (ITPL in this case). The reduced amplitude responses and ITPL could
453  reflect a well-prepared state for processing upcoming attended speech (Bauer et al.,
454  2014; Chao, Takaura, Wang, Fujii, & Dehaene, 2018; Jensen & Mazaheri, 2010). The
455  neural activities related to the unattended speech were also correlated with speech
456  performance, but with opposite effects. Thus, the different modulation effects could
457  contribute towards an enlarged activity difference between the neural activities to the
458  attended and the unattended speech, for an efficient processing and thus comprehension

459  of the attended speech information.

460  Interestingly, although the neural activities related to both the attended and the
461  unattended speech also jointly contributed to comprehension performance at the post-
462  processing stage (Post-E and Post-F), a reversed pattern was observed as compared to
463  the preparatory stage. In participants with better performances, performance was
464  associated with enhanced responses to the attended speech and reduced responses to
465  the unattended speech. This reversed pattern is in accordance with the classical view
466  on attention modulation, and reflects enhanced processing to attended information and
467  suppressed processing to unattended information (Carrasco, 2011; Luck, Woodman, &
468  Vogel, 2000). The sharp contrast between the preparatory and the post-processing
469  processing stages supports the idea that there is an interplay between preparation and
470  attention. While our results are in line with previous research that has reported there to

471  be an interaction between attention and prediction (Friston, 2009; Kok, Rahnev, Jehee,
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472  Lau, & de Lange, 2012; Smout et al., 2019), we provide further evidence on how such
473  interactions could affect behavior (i.e., comprehension). Namely, given that the
474  preparatory process supposedly reflects how prediction is implemented to facilitate
475  information processing, our results imply that attended speech may be favored by the
476  predictive or preparatory mechanism. Indeed, the neural activity associated with the
477  attended speech was inhibited during the preparatory stage, but enhanced during the
478  post processing stage, both mechanisms have been linked to more efficient processing
479 by previous studies (Rohenkohl & Nobre, 2011; Rommers, Dickson, Norton, Wlotko,

480 & Federmeier, 2017; Smith et al., 2006).

481  This study has some limitations that should be noted. The present study used the speech
482  power envelope as the reference signal from which the TRF models were derived,
483  which could reflect the speech information at all linguistic levels due to the highly
484  redundant information shared across levels (Daube, Ince, & Gross, 2019; Di Liberto,
485  O’Sullivan, & Lalor, 2015). While such an operation has the advantage of providing a
486  general overview about preparatory processing, further investigations are necessary to
487  differentiate possible contributions at different linguistic levels (Broderick et al., 2018;
488  Di Liberto et al., 2015). Meanwhile, caution must be taken when interpreting the timing
489  of the preparatory activities. While the preparatory activity as early as 450 ms before
490  speech onset could be the result of an optimized utilization of the rich contextual
491  information provided by the naturalistic speech materials, such timings may be
492  dependent upon the materials per se. Further studies are necessary to investigate the

493  possible material dependence of these timings, for instance, by employed an extended
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494  amount of speech materials. In addition, an inter-individual level regression analysis
495  method was chosen, as the average comprehension questionnaire accuracies across all
496  stories within each participant was believed to provide a more reliable estimation the
497  speech comprehension performance than the single-trial accuracies. Thus, our results
498  do not necessarily imply that the observed neural signatures reflect the participants’
499 trait-like, stable speech processing style. Alternatively, it could be more plausible to
500 consider these neural signatures to reflect a more or less efficient speech processing
501  state. More theoretical and empirical research is needed to clarify the underlying

502 mechanisms.

503 Summary

504  We found that individual participants’ comprehension performance was significantly
505 correlated with neural responses as early as -450 ms relative to speech onset. A widely
506  distributed brain network was involved in the preparatory process. Higher-frequency
507 activity in the alpha and beta bands were more closely related to top-down processing,
508 while lower-frequency activity was more closely associated with post processing.
509  Neural activities related to both the attended and the unattended speech contributed to
510  the comprehension performance, but with distinct mechanisms. Attended speech was
511  more efficiently processed when neural activity was inhibited in the preparatory stage
512 and enhanced during post processing, whereas the opposite effects were observed for
513  unattended speech. Our study provides a mechanistic description of how the brain

514  prepares to process upcoming speech information.
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515 Materials and Methods

516  Ethics statement

517  The study was conducted in accordance with the Declaration of Helsinki and was
518 approved by the local Ethics Committee of Tsinghua University. Written informed

519  consent was obtained from all participants.

520 Experimental model and participant details

521  Twenty college students (10 female; mean age: 24.7 years; range: 20—43 years) from
522  Tsinghua University participated in the study as paid volunteers. All participants were
523  native Chinese speakers, reported having normal hearing, and had normal or corrected-

524  to-normal vision.

525  Data acquisition and pre-processing

526 EEG was recorded from 60 electrodes (FP1/2, FPZ, AF3/4, ¥7/8, F5/6, ¥3/4, F1/2, FZ,
527  FT7/8, FC5/6, FC3/4, FC1/2, FCZ, T7/8, C5/6, C3/4, C1/2, CZ, TP7/8, CP5/6, CP3/4,
528  CP1/2, CPZ, P7/8, P5/6, P3/4, P1/2, PZ, PO7/8, PO5/6, PO3/4, POZ, Oz, and O1/2),
529  which were referenced to a common average, with a forehead ground at Fz. A
530  NeuroScan amplifier (SynAmp II, NeuroScan, Compumedics, USA) was used to record
531  EEG at a sampling rate of 1000 Hz. Electrode impedances were kept below 10 kOhm

532  for all electrodes.

533  The recorded EEG data were first notch filtered to remove the 50 Hz powerline noise,

534  bandpass filtered to 0.5-40 Hz and then subjected to an artifact rejection procedure
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535 using independent component analysis. Independent components (ICs) with large
536  weights over the frontal or temporal areas, together with a corresponding temporal
537  course showing eye movement or muscle movement activities, were removed. The
538 remaining ICs were then back-projected onto the scalp EEG channels, reconstructing

539 the artifact-free EEG signals. Around 4-9 ICs were rejected per participant.

540  Next, the EEG data were segmented into 28 trials according to the markers representing
541  speech onsets. The analysis window for each trial extended from 5 to 55 s (duration: 50

542 s) to avoid the onset and the offset of the stories.

543  Stimuli

544  The speech stimuli were recorded from two male speakers using the microphone of an
545  iPad2 mini (Apple Inc., Cupertino, CA) at a sampling rate of 44,100 Hz. The speakers
546  were college students from Tsinghua University, who had more than four years of
547  professional training in broadcasting. Both speakers were required to tell 28 1-min
548  narrative stories in Mandarin Chinese; the stories were either those about daily-life
549  topics recommended by the experimenter and told by the speaker improvising on their
550  own (14 stories), or those selected from the National Mandarin Proficiency Test (14
551  stories). The speakers were presented with the recommended topic or story materials
552  on the computer screen. They were allowed to prepare for as long as required before
553  telling the story (usually ~3 min). When they were ready, the speakers pressed the
554  SPACE key on the computer keyboard and the recording began with the presentation

555  of three consecutive pure-tone beep sounds at 1000 Hz (duration: 1000 ms; inter-beep
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556  interval: 1500 ms). The beep sounds served as the event marker to synchronize the
557  speech audios in the main experiment, in which two speech streams were presented
558  simultaneously. The speakers were asked to start speaking as soon as the third beep had
559  ended (within around 3 sec). The speakers were allowed to start the recording again if
560 the audio did not meet the requirements of either the experimenter or the speakers
561  themselves (which mainly concerned speech coherence). The actual speaking time per

562  story ranged from 51 to 76 sec.

563  Two four-choice questions per story were then prepared by the experimenter and two
564  college students who were familiar with comprehension performance assessment.
565  These questions and the corresponding choices concerned story details that required
566  significant attentional efforts. For instance, one question following a story about one’s
567  hometown was, “What is the most dissatisfying thing about the speaker’s hometown?
568  (HEMHR AN FR & BN HENMTAET?)”, and the four choices were A) There is no
569  heating in winter; B) There are no hot springs in summer; C) There is no fruit in autumn;
570 D) There are no flowers in spring (A. £KZES, B. ERXER, C. MEKEKRE; D.
571 FH X% & ). Both the speech audio and corresponding questions are available for

572  downloads.

573  Experimental procedure

574  The main experiment consisted of 4 blocks of 7 trials. During each trial, two speech
575  streams were played simultaneously to the left and right ears. The two speech streams

576  within each trial were from the two different speakers to facilitate selective attention.
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577  Considering the possible duration difference between the two audio streams, the trial
578 ended after the longer speech audio had ended. Each trial began when participants
579  pressed the SPACE key on the computer keyboard. Participants were instructed which
580 side to attend to by plain text (“Please pay attention to the [LEFT/RIGHT]”) displayed
581  on the computer screen. A white fixation cross was also displayed throughout the trial.
582  The speech stimuli were played immediately after the keypress, and were preceded by
583 the three beep sounds to allow participants to prepare. At the end of each trial, four
584  questions (two for each story) were presented sequentially in a random order on the
585  computer screen, and the participants made their choices using the computer keyboard.
586  After completing these questions, participants scored their attention level of the
587  attended stream, the experienced difficulty of performing the attention task, and the
588  familiarity with the attended material using three 10-point Likert scales. Throughout
589  the trial, participants were required to maintain visual fixation on the fixation cross
590  while listening to the speech and to minimize eye blinks and all other motor activity.
591  We recommended that participants take a short break (of around 1 min) after every trial

592  within one block, and a long break (no longer than 10 min) between blocks.

593  The to-be-attended side was fixed within each block (two blocks for attending to the
594 left side and two for attending to the right side). Within each block, the speaker identity
595 remained unchanged for the left and right sides. In this way, the to-be-attended spatial
596  side and the corresponding speaker identity were balanced within the participant, with
597  seven trials per side for both speakers. The assignment of the stories to the four blocks

598  was randomized across the participants.
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599  The experiment was carried out in a sound-attenuated, dimly lit, and electrically
600  shielded room. The participants were seated in a comfortable chair in front of a 19.7-
601  inch Lenovo LT2013s Wide LCD monitor. The viewing distance was approximately 60
602 cm. The experimental procedure was programmed in MATLAB using the
603  Psychophysics Toolbox 3.0 extensions (Brainard & Brainard, 1997). The speech stimuli
604  were delivered binaurally via an air-tube earphone (Etymotic ER2, Etymotic Research,
605 Elk Grove Village, IL, USA) to avoid possible electromagnetic interferences from
606  auditory devices. The volume of the audio stimuli was adjusted to be at a comfortable
607  level that was well above the auditory threshold. Furthermore, the speech stimuli
608  driving the earphone were used as an analog input to the EEG amplifier through one of
609 its bipolar inputs together with the EEG recordings. In this way, the audio and the EEG
610 recordings were precisely synchronized, with a maximal delay of Ims (at a sampling

611  rate of 1000 Hz).

612  Temporal response function modeling

613  The neural responses to the speech stimuli were characterized using a temporal
614  response function (TRF)-based modeling method. The TRF response describes the
615  impulse response to fluctuations of an input signal, and is based on system identification
616  theories (Crosse et al., 2016; Lalor et al., 2006). We used the power envelope of the
617  speech signal as the input signal required by TRF, which has been demonstrated to be
618 a valid index by which to extract speech-related neural responses (Bednar & Lalor,
619  2018; Broderick et al., 2018; Ding & Simon, 2012; Huang et al., 2018; Mirkovic et al.,

620  2015; O’Sullivan et al., 2015).
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621  Prior to the modeling, the preprocessed EEG signals were re-referenced to the average
622  ofall scalp channels and then downsampled to 128 Hz. Likewise, the power envelopes
623  of the speech signals were obtained using a Hilbert transform and then downsampled
624  to the same sampling rate of 128 Hz. When denoting the downsampled EEG signals
625 from channel i, trial £ as R(i,¢) and the input speech power envelope as S(?), the

626  corresponding neural response TRF;, can be formulated as follows:

627  Where * represents the convolution operator. The latency in the neural response models
628  (TRF;x) was set to vary from -1000 ms to 1000 ms post-stimulus to provide sufficient
629  data for the planned latency of -500 ms to 500 ms in the following time-frequency

630  analysis.

631  The TRF modeling analysis was performed on each EEG channel for each trial per
632  participant. TRF models were calculated for attended and unattended speech processing
633  separately using the corresponding speech streams as the input signal. It should be noted
634  that we did not consider the input lateralization for the TRF models, as the observed
635  behaviorally related findings were insensitive to the physical origin of the speech audios,
636  but rather likely to reflect the lateralization of the human speech network. Figure S3
637  provides the topographical information of our main results; it is similar to Figure 2, but
638 all results were calculated separately for speech stimuli from the left and right sides.
639  The topographies were comparable, even for the highly lateralized responses (e.g.,

640  Prep-B and Post-E).
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641 The TRF-based neural responses were then further subjected to a time-frequency
642  analysis at the single-trial level. The TRF temporal profile was transformed using the
643  Hanning taper (2-cycle time window; for example, FWHM = 2 sec for 1 Hz wavelet)
644  at each time sample from -500 ms to 500 ms, with frequencies ranging from 1 to 30 Hz
645 at 1-Hz increments. Both single-trial amplitude and phase were recorded and denoted
646  as TRF{},( (t,f) and TRFIZ « (T, ), where t represents TRF latency relative to the onset

647  of speech power envelope fluctuations, and f represents the TRF frequency.

648  Given the number of trials denoted by N, the TRF-based single-trial amplitude and

649  phase responses were calculated as follows:
N
M=) TREAE @

N
ITPLy(x, ) = | ZkzleXp(i \TRFf (5, f) /N 3)

650 A large-amplitude value indicates a neural response of high magnitude across all trials,
651  and the phase-related ITPL value varies between 0 and 1; 0 refers to a situation in which
652  the phase responses of different trials are uniformly distributed between 0 and 2711, and

653 1 means the phase responses from all trials are entirely locked to a fixed phase angle.

654  These phase and amplitude responses were further transformed into z-scores within the
655 -500 ms to 500 ms time window for each channel separately per participant. These z-

656  scores were then used for the cross-participant statistical analyses.

657 The TRF analysis was conducted in MATLAB using the Multivariate Temporal

658  Response Function (mTRF) toolbox (Crosse et al., 2016). All the other EEG processing
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659  procedures, as well as the statistical analyses, were conducted using the FieldTrip

660  toolbox (Oostenveld, Fries, Maris, & Schoffelen, 2011).
661  Quantification and statistical analysis

662 The extracted TRF-based amplitude and phase responses were used as independent
663  variables into a regression model to predict the speech comprehension performance of
664  the attended speech at the participant level (denoted by CompreScore). Given that we
665 aimed to explore the neural correlates of speech comprehension, we built different
666  regression models for amplitude and phase responses, for each EEG channel (i) at
667  individual latency (1) and frequency (f) separately. Nevertheless, the responses to the
668  attended and unattended speech streams were incorporated into the same regression

669 model, as follows:

CompreScore = a, - Afttended( £) 4 q, - AYnattended (g “4)

CompreScore = ay - ITPL{™"¥% (1, ) + o - ITPLY™H™ (7, ) (5)

670  Statistical analysis was performed to examine the significance of these regression
671  model predictions over all channel-latency-frequency bins by computing the regression
672  R-values. Nonparametric cluster-based permutation analysis was applied to control for
673  multiple comparisons. In this procedure, neighboring channel-latency-frequency bins
674  with an uncorrected p-value below 0.01 were combined into clusters, for which the sum
675  of correlational z-statistics corresponding to the regression R-values were obtained. A

676  null-distribution was created through permutations of data across participants (n = 1000
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677  permutations), which defines the maximum cluster-level test statistics and corrected p-

678  values for each cluster.

679  We also examined the coefficients of the regression. We calculated the distribution and
680 the mean of every selected channel-latency-frequency bin. We also calculated 99%

681  regression coefficient confidence intervals using the bootstrap method for every cluster.

682  To investigate the attention modulation effect, we performed paired t-tests on the TRF-
683  based neural activities related to the attended speech versus the unattended speech. Both
684  amplitude and ITPL were included in the analysis. A similar cluster-based permutation
685  was used to control for the multiple comparison problem (p < .01 as the threshold, n =

686 1000 permutations).

687

688  Supporting information

Prep-A Prep-B Prep-C Prep-D Follow-E Follow-F

" & Y 4
© @

A.Combined

B.Left

| @
&

C.Right

@
YOC

690  Fig S1. Topographies of the six responses as shown in Figure 2 (A) and calculated

689

691  separately for the speech stimuli delivered to the left side (B) and the right side (C) only.

692
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Table S1: Cls of all Clusters

Att Unatt

Prep-A [-0.019, -0.016]

Prep-B

Prep-C [-0.016, -0.009]

Prep-D [-0.010, -0.006]

Post-E [-0.041, -0.035]

Post-F [-0.033, -0.029]
693

Table S2: Pairwise Correlation between all clusters
Prep-A Prep-B Prep-C Prep-D Post-E

Prep-B .589*x

Prep-C 421 439

Prep-D 480+ 408 486+

Post-E 596#* 361 AT74* B72%x

Post-F 648+* 378 483+ 562+* 646%*

*% p<01

* p<.05
694

Table S3: Partial correlation
Partial-r p

Prep-A 323 189

Prep-B .560 016~

Prep-C 610 007~

Prep-D 439 .068

* p<.05
695

696
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