

1 Optimizing DNA extraction methods for Nanopore sequencing of
2 *Neisseria gonorrhoeae* direct from urine samples

3

4 Teresa L. Street,^a Leanne Barker,^a Nicholas D. Sanderson,^a James Kavanagh,^a Sarah
5 Hoosdally,^a Kevin Cole^b, Robert Newnham,^c Mathyruban Selvaratnam,^c Monique
6 Andersson,^c Martin J. Llewelyn,^b Justin O'Grady,^d Derrick W. Crook,^{a,e} David W. Eyre,^{a,e,f} the
7 GonFast Investigators Group.

8

9 The GonFast Investigators Group includes Joanna Rees^g, Emily Lord^g, Suneeta Soni^h, Celia
10 Richardson^h, Joanne Jessop^h, and Tanya Adams^h.

11

12 Nuffield Department of Clinical Medicine, University of Oxford, John Radcliffe Hospital,
13 Oxford, UK^a

14 Department of Microbiology and Infection, Royal Sussex County Hospital, Brighton, UK^b

15 Microbiology Laboratory, John Radcliffe Hospital, Oxford University Hospitals NHS
16 Foundation Trust, Oxford, UK^c

17 Quadram Institute Bioscience, Norwich Research Park, Norwich, UK^d

18 National Institute for Health Research Oxford Biomedical Research Centre, John Radcliffe
19 Hospital, Oxford, UK^e

20 Big Data Institute, University of Oxford, Oxford, UK^f

21 Oxfordshire Sexual Health Service, Oxford University Hospitals NHS Foundation Trust,

22 Oxford, UK^g

23 Brighton and Hove sexual health and contraception service, Royal Sussex County Hospital,

24 Brighton, UK^h

25

26

27 Running title: Nanopore sequencing *N. gonorrhoeae* direct from urine

28 Address correspondence to teresa.street@ndm.ox.ac.uk and david.eyre@bdi.ox.ac.uk.

29 **Abstract**

30 **Background.** Empirical gonorrhoea treatment at initial diagnosis reduces onward
31 transmission. However, increasing resistance to multiple antibiotics may necessitate waiting
32 for culture-based diagnostics to select an effective treatment. There is a need for same-day
33 culture-free diagnostics that identify infection and detect antimicrobial resistance.

34 **Methods.** We investigated if Nanopore sequencing can detect sufficient *N. gonorrhoeae*
35 DNA to reconstruct whole genomes directly from urine samples. We used *N. gonorrhoeae*
36 spiked urine samples and samples from gonorrhoea infections to determine optimal DNA
37 extraction methods that maximize the amount of *N. gonorrhoeae* DNA sequenced whilst
38 minimizing contaminating host DNA.

39 **Results.** In simulated infections the Qiagen UCP Pathogen Mini kit provided the highest ratio
40 *N. gonorrhoeae* to human DNA and the most consistent results. Depletion of human DNA
41 with saponin increased *N. gonorrhoeae* yields in simulated infections, but decreased yields
42 in clinical samples. In ten urine samples from men with symptomatic urethral gonorrhoea,
43 ≥87% coverage of an *N. gonorrhoeae* reference genome was achieved in all samples, with
44 ≥92% coverage breath at ≥10-fold depth in 7 (70%) samples. In simulated infections if ≥10⁴
45 CFU/ml of *N. gonorrhoeae* was present, sequencing of the large majority of the genome was
46 frequently achieved. *N. gonorrhoeae* could also be detected from urine in cobas PCR Media
47 tubes and from urethral swabs, and in the presence of simulated *Chlamydia* co-infection.

48 **Conclusion.** Using Nanopore sequencing of urine samples from men with urethral
49 gonorrhoea sufficient data can be obtained to reconstruct whole genomes in the majority of
50 samples without the need for culture.

52

53 **Introduction**

54 Multidrug resistant *N. gonorrhoeae* infection is a substantial public health threat.^{1,2} To
55 reduce the spread of antimicrobial resistance, empirical dual therapy with single-dose
56 azithromycin and ceftriaxone, the last two mainstream treatment options, is widely
57 recommended.² However, increasing azithromycin resistance potentially undermines this
58 approach leaving ceftriaxone empirical monotherapy as a last option,³ but with ceftriaxone
59 resistant cases recently reported in several countries worldwide.^{4,5}

60

61 Single dose gonorrhoea treatment at the point of initial diagnosis reduces onward
62 transmission.⁶ However, rising resistance rates can necessitate delays of up to several days
63 while culture-based susceptibility testing is performed to direct effective treatment,
64 potentially increasing transmission of resistant organisms. Therefore, there is a need for
65 same-day culture-free diagnostics that are able to confirm both the presence of infection
66 and detect antimicrobial resistance.⁷

67

68 Clinical metagenomics has the potential to detect *N. gonorrhoeae* and antimicrobial
69 resistance determinants via direct sequencing of all DNA present in a clinical sample.⁸
70 Previous studies have shown this is possible for *N. gonorrhoeae* using Illumina sequencing,⁹
71 but this approach is not suitable for rapid near-patient deployment. Furthermore, current
72 approaches are limited by obtaining sufficient pathogen DNA against a background of
73 human host DNA and DNA from other bacteria.¹⁰ A range of approaches have been used to
74 increase pathogen DNA yields, e.g. microbial enrichment via immunomagnetic separation¹¹

75 for sequencing *Chlamydia trachomatis* from urine, or capture of pathogen DNA after DNA
76 extraction using RNA baits.¹² Several commercial kits exist for selective depletion of human
77 DNA.¹⁰ Despite this, obtaining sufficient pathogen DNA for whole-genome reconstruction
78 from metagenomic sequencing remains challenging and the short reads generated by Illumina
79 sequencing makes it difficult to accurately assign resistance determinants to specific species in
80 metagenomic samples.

81

82 The Oxford Nanopore sequencing platform has the potential to overcome these challenges
83 and deliver *N. gonorrhoeae* and antimicrobial resistance detection in a benchtop format
84 that yields results within a few hours. The long-reads generated have the potential to link
85 antimicrobial resistance determinants accurately to given species as greater genetic context
86 is provided. Here we build on previous work applying Nanopore sequencing for diagnosis of
87 urinary tract infection¹³ and develop optimized laboratory protocols for sequencing *N.*
88 *gonorrhoeae* directly from patient urine samples.

89

90 Materials and Methods

91 Samples

92 Urine samples collected as part of routine clinical testing of patients at sexual health clinics
93 in Oxfordshire, UK were obtained from the Microbiology Laboratory of Oxford University
94 Hospitals and used for initial method development. Samples were tested for *N. gonorrhoeae*
95 and *C. trachomatis* using the BD Viper system with confirmatory testing for *N. gonorrhoeae*
96 undertaken using the BD Max platform (Becton Dickinson, Wokingham, Berkshire, UK).
97 Samples, that would otherwise have been discarded, were obtained for research use after
98 completion of routine testing.

99 Additionally, samples were collected from participants recruited at Sexual Health Clinics at
100 the Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, and Brighton and
101 Sussex University Hospitals NHS Trust. Male patients presenting with symptomatic urethritis
102 were eligible to participate and were recruited following informed consent. In this current
103 study, urine samples from participants recruited in Brighton were used to test the
104 performance of metagenomic sequencing in clinical infection. Urine samples were collected
105 into universal tubes containing boric acid (Medline Scientific, Chalgrove, Oxfordshire, UK),
106 and latterly also into cobas PCR Media tubes (Roche Molecular Systems, Pleasanton, CA,
107 USA), for stabilization during transportation to Oxford. Urethral swabs were collected and
108 placed into Sigma VCM preservation medium (MWE, Corsham, Wiltshire, UK). This study
109 was conducted with NHS Research Ethics approval (reference 19/EM/0029).

110 Human DNA depletion and microbial DNA extraction

111 To optimize laboratory methods for the selective extraction of high-quality, long-fragment
112 *N. gonorrhoeae* DNA directly from urine we tested 16 approaches: four DNA extraction
113 methods in combination with either no human cell/DNA depletion or one of three human
114 cell/DNA depletion protocols (Figure S1). For each approach, *N. gonorrhoeae* nucleic acid
115 amplification test (NAAT)-negative urines were spiked at 10^3 , 10^5 , 10^7 colony forming units
116 (CFU)/ml with a *N. gonorrhoeae* reference strain. Testing at each dilution was undertaken in
117 triplicate using three *N. gonorrhoeae* reference strains, WHO F, WHO V, and WHO X
118 (obtained from Public Health England's National Collection of Type Cultures), and a starting
119 urine volume of 3ml. Multiple negative urine samples were pooled to allow the same
120 baseline urine to be tested across each depletion and extraction protocol. The number of
121 CFU/ml present in each spike was initially determined using dilutions of a 0.5 McFarland

122 standard; the resulting dilutions were cultured at 37°C with 5% CO₂ for 24 hours on Lysed
123 GC Selective Agar (Oxoid, Basingstoke, Hampshire, UK), to enable the final *N. gonorrhoeae*
124 CFU/ml achieved to be measured.

125 Three human cell/DNA depletion methods were tested: differential centrifugation; saponin-
126 based differential lysis followed by nuclease digestion; and the MolYsis Basic5 kit (Molzym,
127 Bremen, Germany). Urine samples were also processed with no human DNA depletion, as a
128 negative control. Differential centrifugation was performed as previously described.¹³ The
129 bacterial cell pellet was washed with 1 ml PBS before proceeding to DNA extraction.
130 Saponin-based differential lysis and nuclease digestion was performed as previously
131 described.¹⁴ Human DNA depletion and enrichment of microbial DNA with the MolYsis
132 Basic5 kit was performed per the manufacturer's instructions.

133 The four DNA extraction methods assessed included mechanical lysis followed by ethanol
134 precipitation, as described previously;¹⁵ and the MagMAX Total Nucleic Acid Isolation kit
135 (ThermoFisher Scientific, Waltham, MA, USA); QIAamp UCP Pathogen Mini kit (Qiagen,
136 Hilden, Germany); and i-genomic Urine DNA Extraction Mini kit (iNtRON Bio, Burlington, MA,
137 USA), all performed following the manufacturer's instructions. Extracted DNA was purified
138 using AMPure XP solid-phase reversible immobilization (SPRI) beads (Beckman Coulter, High
139 Wycombe, UK), eluted in 26 µl of TE buffer and quantified using a Qubit 2.0 fluorometer
140 (Life Technologies, Paisley, UK).

141 PCR analysis of *N. gonorrhoeae* and human DNA
142 Quantitative real-time PCR (qPCR) was performed to determine the relative amounts of
143 both *N. gonorrhoeae* and human DNA in the DNA extracts from the initial laboratory
144 optimization methods. qPCR was performed on a Stratagene MX3005P QPCR System

145 (Agilent Technologies, Santa Clara, CA, USA) using Luna Universal Probe qPCR Master Mix
146 (New England Biolabs, Ipswich, MA, USA). Primers and probes were used to target the β -
147 actin gene for human DNA detection¹⁶ and the *porA* pseudogene for detection of *N.*
148 *gonorrhoeae* (papTM).¹⁷ Reactions were performed in 20 μ l with 2 μ l of template DNA, 0.4
149 μ M of each primer and 0.2 μ M of the probe. Cycling conditions were an initial denaturation
150 at 95 °C for 1 min, followed by 40 cycles of 95 °C denaturation for 15 s and 60 °C extension
151 for 30 s. *N. gonorrhoeae* genomic DNA, extracted from cultures of WHO F, WHO V and WHO
152 X reference strains, was diluted to 100,000 genome copies per μ l then serially diluted to 10
153 genome copies per μ l and used to create copy number standard curves. Human genomic
154 DNA (Promega, Madison, WI, USA) was diluted to 10,000 genome copies per μ l then serially
155 diluted to 10 genome copies per μ l and used to create a human DNA copy number standard
156 curve. Negative controls, replacing template DNA with water, were also performed. All qPCR
157 assays were performed in triplicate and the mean value used in analyses.

158 In-depth spiking and metagenomic whole genome sequencing
159 Using the optimal laboratory method determined in the spiking experiments, an extended
160 set of spiking experiments were performed to determine the limit of detection of this
161 protocol for *N. gonorrhoeae* DNA. 3 ml of *N. gonorrhoeae* NAAT-negative pooled urine, was
162 spiked with one of the WHO F, WHO V or WHO X *N. gonorrhoeae* reference strains, using
163 dilutions of a 0.5 McFarland standard, to target 10¹, 10², 10³, 10⁴, 10⁵ or 10⁶ CFU/ml, using
164 the three reference strains as replicates (n=19 including an un-spiked urine sample as a
165 negative control). DNA extracts were assessed for human and microbial DNA content by
166 metagenomic sequencing. Libraries were prepared for sequencing on an Oxford Nanopore
167 GridION (Oxford Nanopore Technologies (ONT), Oxford, UK) using the Rapid PCR Barcoding
168 kit (SQK-RPB004) (ONT), with modifications to the manufacturers' protocol as described by

169 Charalampous *et al.*¹⁴ Briefly, up to 10 ng of input DNA and 2.5 μ l of FRM (Fragmentation
170 Mix) were used in the fragmentation reaction with a final volume of 10 μ l. For samples that
171 were not able to achieve 10 ng, a total volume of 7.5 μ l was used in the fragmentation
172 reaction regardless of the quantity of DNA this represented. The PCR reaction was
173 performed in a double volume of 100 μ l, with 25 cycles and an elongation time of 6 minutes.
174 Post-PCR, DNA was purified with AMPure XP SPRI beads (Beckman Coulter, High Wycombe,
175 UK) and eluted in 10 μ l. Initially, all samples were sequenced individually on ONT FLO-
176 MIN106D (v.R9.4.1) flowcells regardless of the quantity of DNA after PCR. Subsequently,
177 only samples with amounts of DNA quantifiable by a Qubit fluorometer after PCR were
178 carried forwards for sequencing. Between 3 and 85 fmol of library were loaded per flowcell.
179 One sample was run per flow cell for all experiments.

180 DNA extraction in simulated co-infection
181 To assess sequencing in the presence of co-infection, Chlamydia NAAT-positive urine
182 collected from three patients was used. 10^2 and 10^4 CFU/ml of *N. gonorrhoeae* WHO F
183 reference strain was individually spiked into 3 ml of urine from each patient. This was
184 repeated for *N. gonorrhoeae* WHO X and WHO V and an un-spiked sample from each
185 patient was used as a negative control (n=18). Following spiking, each sample was split and
186 DNA was extracted with either the optimal extraction protocol of saponin-based differential
187 lysis and the QIAamp kit, or with saponin-based differential lysis followed by mechanical
188 lysis and ethanol precipitation (to ascertain whether it was possible to recover *N.*
189 *gonorrhoeae* and *C. trachomatis* DNA, and to assess any potential bias in DNA recovery
190 between the two methods). Human and microbial DNA content were assessed by
191 sequencing on an ONT GridION, as described above.

192 DNA extraction from NAAT-positive urine samples and urethral swabs
193 Samples from study participants were used to assess the real-world performance of our
194 methods in *N. gonorrhoeae* NAAT-positive urine samples from men with urethral
195 gonorrhoea infection. Clinical samples were tested with the FTD Gonorrhoea confirmation
196 NAAT assay (Fast Track Diagnostics, Sliema, Malta). DNA was extracted from 3 ml of urine
197 from ten individual participants using the QIAamp UCP Pathogen Mini kit (chosen on the
198 basis of the simulated infection experiments) with and without saponin-based human DNA
199 depletion. DNA was sequenced on an ONT GridION as described above, with the DNA
200 extracted from urine both with and without saponin multiplexed as a pair on a single
201 flowcell. Urine from four of the 10 individual participants was also collected into cobas PCR
202 Media tubes designed for diagnostic molecular *N. gonorrhoeae* and *C. trachomatis* testing.
203 DNA was extracted from 4 ml obtained from these tubes using the QIAamp kit (without
204 saponin treatment) and with or without a prior mechanical lysis step using bead beating as
205 previously described,¹⁵ with the resulting DNA extracts from a single sample multiplexed as
206 a pair on a single flowcell. Urethral swabs were obtained from nine of the participants and
207 stored in Sigma VCM preservation medium for transport. DNA was extracted from 3ml of
208 this medium, following vortexing for 30 seconds, using the QIAamp UCP Pathogen Mini kit
209 without saponin treatment and sequenced as described above with a single sample per
210 flowcell.

211 Bioinformatics analysis
212 Nanopore sequences were basecalled using Guppy version 1.8.5 (ONT) and demultiplexed
213 with Porechop 0.2.4 (<https://github.com/rrwick/Porechop>) using the default settings. Reads
214 were taxonomically classified using Centrifuge¹⁸ using a database of NCBI RefSeq bacterial
215 and viral genomes submitted by August 10, 2018 and the human reference genome

216 (GRCh38). Reads classified as human were securely deleted prior to subsequent analyses.

217 During the study, to reduce the number of reads not assigned a barcode following

218 demultiplexing, sequenced data from samples obtained from participants were basecalled

219 and demultiplexed again using an updated version of Guppy (3.3.0+ef22818, ONT).

220 Basecalling was done with the HAC (“high accuracy”) model and recommended kit and

221 flowcell configurations. Barcode demultiplexing was done with default parameters. As all

222 human DNA sequenced was removed prior to repeat basecalling/demultiplexing, analyses of

223 the relative proportion of human to bacterial DNA sequenced are based on the data

224 demultiplexed with Porechop.

225 Classified reads were aligned to reference genomes using Minimap2¹⁹ and filtered to a

226 mapQ of 50 by samtools²⁰ as described in the CRuMPIT workflow²¹

227 (<https://gitlab.com/ModernisingMedicalMicrobiology/CRuMPIT>). CRuMPIT was used to

228 generate per species metrics for read numbers, bases, and coverage depth and breadth.

229 Within CRuMPIT the depth and breadth of the mapped reads were assessed using

230 samtools.²⁰ Additional plots were generated using the following python libraries: pandas,

231 seaborn and matplotlib. The proportion of the *Neisseria gonorrhoeae* NCCP11945

232 (Accession NC_011035.1) and *Chlamydia trachomatis* D/UW-3/CX (Accession NC_000117.1)

233 reference genomes covered at \geq 10-fold coverage is reported as a summary of the

234 proportion of the genome likely to have informative coverage given the inherent \sim 10% base

235 inaccuracy of ONT reads.

236 Data availability

237 Nanopore sequence read data generated from simulated and clinical infections are available

238 from NCBI/EBI under study accession number PRJEB35173.

239 **Results**

240 *N. gonorrhoeae* DNA extraction and human DNA depletion
241 The 4 DNA extraction methods tested in simulated infections yielded varying amounts of *N.*
242 *gonorrhoeae* DNA. For example, in *N. gonorrhoeae* NAAT-negative urines spiked with 10^5
243 CFU/ml of an *N. gonorrhoeae* reference strain, ethanol precipitation and the MagMAX kit
244 yielded higher amounts of *N. gonorrhoeae* DNA: samples contained a median (interquartile
245 range, IQR) of 695 (60-2020), 318 (68-595), 588 (16-1037), 180 (41-241) copies/ml of *porA*
246 across all human DNA depletion methods using ethanol precipitation, i-genomic, MagMAX
247 and QIAamp kits respectively. Figure S2A shows *porA* qPCR for all spike concentrations
248 tested. The amount of hands on time and total time taken for each of the four DNA
249 extraction methods and their approximate cost is shown in Table S1.

250 Across all DNA extraction methods, the MolYsis Basic5 kit or saponin-based differential lysis
251 successfully depleted the most human DNA when compared to the control samples without
252 human DNA depletion. The median (IQR) percentage of human DNA present before
253 treatment remaining after depletion was 0.3% (<0.1-0.7%) and 1.1% (0.4-2.3%) respectively.
254 Differential centrifugation did not lead to any observable depletion of human DNA, and
255 instead enriched for human DNA, 154% (108-277%) (Figure S2B).

256 Saponin-based differential lysis produced the highest ratio of *N. gonorrhoeae* to human DNA
257 across all the spikes and for all the DNA extraction protocols tested, with little observable
258 difference between the four extraction methods (Figure S2C). The QIAamp kit produced a
259 higher ratio of *N. gonorrhoeae* to human DNA at the lowest spiked amount and the most
260 consistent results overall. From these results and considering ease of sample processing
261 within the laboratory with each of the protocols tested, we chose to use the saponin-based

262 differential lysis and nuclease digestion followed by the QIAamp UCP Pathogen Mini Kit as
263 our laboratory method for subsequent experiments.

264 Limit of detection

265 For these experiments, the concentration of *N. gonorrhoeae* reference strain spikes
266 achieved ranged from approximately 10^1 to 10^6 CFU/ml (see supplementary Figure S3 for
267 comparison of target and actual spiking concentrations). Samples generated between 4 and
268 13 gigabases of taxonomically classified sequence data (with the exception of one sample
269 that failed library preparation and generated no sequence data). The majority of reads were
270 classified as bacterial in all samples sequenced (Figure 1A, see supplementary Figure S4 for a
271 breakdown of the most common bacterial species identified). There was no relationship
272 between the total number of bacterial reads and the concentration of the *N. gonorrhoeae*
273 spike. This reflects the high concentrations of background bacteria present, such that at low
274 spike concentrations the bacteria sequenced were predominantly other species, whereas at
275 higher spikes *N. gonorrhoeae* sequence dominated (Figure 1B). The proportion of reads
276 classified as human was <5% for all samples, and <1.5% for 10/18 samples. Bases classified
277 as *N. gonorrhoeae* were detected in all samples spiked at $\geq 10^3$ CFU/ml (Figure 1B). On
278 mapping, we observed coverage at ≥ 10 -fold to $\geq 75\%$ of the NCCP11945 reference genome
279 in all samples spiked with $\geq 10^4$ CFU/ml (Figure 1C). Samples spiked at $\geq 10^5$ CFU/ml achieved
280 a median (IQR) coverage breadth of 98% (97.2-98.1) of the *N. gonorrhoeae* reference
281 genome at an average coverage depth of 2730 (1133-4027). We observed reads classified as
282 *N. gonorrhoeae* in our un-spiked negative control urine sample, which mapped to <14% of
283 the whole reference genome at a depth of ≥ 10 -fold (Figure S5). However, no similar
284 contamination was seen in six subsequent negative urine sample sequences (Figure S6B).

285 Detection of *N. gonorrhoeae* in the presence of *Chlamydia trachomatis*
286 Our protocol also allowed direct detection of both *N. gonorrhoeae* and *C. trachomatis* DNA
287 in simulated co-infections. DNA from Chlamydia NAAT-positive urine spiked with *N.*
288 *gonorrhoeae* was extracted by using the QIAamp kit or mechanical lysis followed by ethanol
289 precipitation, both following saponin treatment. Approximately 1.2 to 12.5 gigabases of
290 taxonomically classified sequence data were generated from 16/18 samples sequenced: two
291 samples performed sub-optimally in the library preparation with <400 megabases
292 generated. The majority of reads classified as bacterial in all samples sequenced. The
293 proportion of reads classified as human was slightly higher than with the *C. trachomatis*/*N.*
294 *gonorrhoeae* NAAT-negative spiked urine, although <29% in all but one case (Figure S6A).
295 ≥94% of the *N. gonorrhoeae* genome was covered at ≥10-fold in 3 of 4 samples spiked at
296 ≥10⁴ CFU/ml, suggesting that although a greater proportion of the sequencing reads were
297 classified as human it is still possible to get both good breadth and depth of coverage of the
298 *N. gonorrhoeae* genome in the presence of co-infection and inflammatory cells within the
299 urine (Figure S6B). Bases classified as *C. trachomatis* were observed 12/18 of the Chlamydia
300 NAAT-positive spiked urine DNA extracts (derived from all 3 original urine samples, Figure
301 S6C). However, sufficient sequence data to cover the majority of a *C. trachomatis* reference
302 genome was only obtained in 5/18 extracts all from the same original urine sample (Figure
303 S6D). Additional species, including *Acinetobacter* spp. and *Streptococcus*
304 *pseudopneumoniae*, were identified in all three urines at high proportions (Figure S7), which
305 likely hindered recovery of *C. trachomatis*.
306 Sequencing speed
307 Figure 2 shows the sequencing time taken to achieve an estimated given fold coverage of
308 the reference genome for the 18 *N. gonorrhoeae* and *C. trachomatis* NAAT-negative urine

309 samples spiked with *N. gonorrhoeae* that were depicted in Figure 1. For samples spiked with
310 $\geq 10^4$ CFU/ml >20-fold coverage was typically achieved in ≤ 4 hours from starting sequencing.

311 Performance in *N. gonorrhoeae* infection

312 We extracted and sequenced DNA from ten individual *N. gonorrhoeae* NAAT-positive urine
313 samples using the QIAamp kit with and without prior human DNA depletion with saponin.

314 All samples sequenced contained detectable *N. gonorrhoeae* DNA. In contrast to simulated
315 infection, samples processed without saponin had higher yields of bacterial DNA (Figure 3)
316 and *N. gonorrhoeae* DNA (Figure 4). Without saponin, the number of bases per sample

317 classified as *N. gonorrhoeae* ranged from 2.6×10^7 to 8.8×10^8 , representing between 4% and
318 81% of total bacterial bases and corresponding to a median (IQR) [range] *N. gonorrhoeae*

319 genome coverage breadth of 99.0% (98.5-99.2%) [92.8-99.4%] at a by-sample-mean depth

320 of 76 (26-192) [11-384] (Figure 4). With saponin, the number of bases classified as *N.*

321 *gonorrhoeae* ranged from 7.8×10^3 to 1.8×10^8 , representing <0.01% to 41% of total bacterial

322 bases. The median (IQR) [range] *N. gonorrhoeae* genome coverage breadth was 5.9% (2.0-

323 22.2%) [0.3-98.9%] at an average depth of 3 (1-5) [1-77]. Therefore, while saponin was

324 effective a reducing the percentage of bases classified as human from a median 67% to 46%

325 (Figure 3) this was not sufficient to offset the detrimental effect on *N. gonorrhoeae* in

326 clinical samples.

327 Figure 5 shows the most commonly identified species across the five sample types (urethral

328 swabs, cobas sample tubes with and without mechanical lysis with beads, and urine samples

329 with and without saponin treatment). For 9 of the 10 urine samples processed without

330 saponin treatment *N. gonorrhoeae* was the most abundant species sequenced, with reads

331 classified as *N. lactamica* likely representing taxonomic misclassification of reads from *N.*

332 *gonorrhoeae*. Samples processed with saponin showed differential depletion of *N.*

333 *gonorrhoeae* relative to other bacteria.

334 The large majority of bacterial reads were from *N. gonorrhoeae* in most urethral swab and

335 cobas tube samples (Figure 5). However, these samples contained lower amounts of total

336 bacterial DNA sequence (Figure 3), resulting in fewer sequenced *N. gonorrhoeae* bases and

337 only limited coverage of the reference genome (Figure 4). Sequencing direct from cobas PCR

338 Media tubes, without mechanical lysis with beads, the number of *N. gonorrhoeae* bases

339 ranged from 3.7×10^6 to 8.7×10^7 , representing between 58% and 94% of total bacterial reads

340 and resulting in genome coverage from 74% to 97% at a per-sample-mean depth from 2 to

341 40. Results with mechanical lysis were similar. Similarly, the number of bases classified as *N.*

342 *gonorrhoeae* from urethral swabs ranged from 1.7×10^5 to 1.6×10^8 representing between

343 <0.01% and 91% of the total bacterial bases. The median (IQR) [range] genome coverage

344 breadth was 88.2% (50.1-94.8%) [5.3-99.1] and depth 3 (1-4) [1-70].

345 To provide a conservative approximation of the sequence data generated by running a urine

346 sample on a single flow cell we pooled reads obtained from the same flow cell from

347 sequencing the same urine sample processed with and without saponin (Figure 4C). At least

348 87% of the reference genome was covered by at least 1 read in all 10 samples and $\geq 95\%$ of

349 the reference genome in 8 samples. In 7 samples $\geq 92\%$ of the reference genome was

350 covered at a depth of ≥ 10 -fold. We explored predictors of successful sequencing (Table S2).

351 Within the limits of the small sample, there was no relationship between the percentage of

352 the reference genome with ≥ 10 -fold coverage and NAAT CT values, the time between

353 collection and processing, the concentration of DNA loaded on to the flowcell post

354 amplification, or the number of active flowcell pores at the start of sequencing (all

355 Spearman's rank $p>0.2$). In the 3 samples that did not achieve $\geq 92\%$ coverage at 10-fold
356 depth, one had high levels of contaminating bacteria DNA, sample 202 (*Porphyromonas*
357 *asaccharolytica*, Figure 5). In another, sample 303, the proportion of human reads was
358 higher than in other samples, e.g. without saponin, 99%, compared to a median (IQR) of
359 67% (51-90%). The final sample, 304, had a relatively poor sequence yield overall, the
360 barcode without saponin yielding only 0.1 Gb of data, compared to a per-barcode median of
361 1.4 (0.7-2.0) Gb.

362

363 Discussion

364 We demonstrate it is possible to extract sufficient quantities of *N. gonorrhoeae* DNA directly
365 from urine samples from men with symptomatic urethral gonorrhoea and to sequence to
366 achieve near complete reconstruction of the *N. gonorrhoeae* genome. It was possible to
367 achieve coverage of $\geq 87\%$ of the genome in all ten patient samples, and $\geq 92\%$ coverage
368 breath at ≥ 10 -fold coverage in 7 (70%) samples. Through simulated infections we
369 demonstrate that if *N. gonorrhoeae* is present at $\geq 10^4$ CFU/ml sequencing of the large
370 majority of its genome can be frequently achieved.

371 Our initial experiments with spiked *N. gonorrhoeae* NAAT-negative samples showed the four
372 DNA extraction methods tested were broadly comparable and potentially any could be
373 applied for sequencing direct from urine samples. However, we obtained contrasting results
374 from attempted human DNA depletion in simulated and actual infections. In simulated
375 infections, freshly cultured *N. gonorrhoeae* was spiked into urine samples and DNA
376 extracted; in this setting both saponin and the MolYsis kits improved *N. gonorrhoeae* DNA
377 yields by differentially depleting human DNA, the former to a greater extent. However, in

378 actual infections, *N. gonorrhoeae* appears to have been more susceptible to lysis by
379 saponin, possibly reflecting damage to *N. gonorrhoeae* cells in storage, transport and by
380 host inflammatory cells. This resulted in higher yields of *N. gonorrhoeae* DNA when saponin
381 treatment was omitted.

382 The depth and breadth of coverage of the *N. gonorrhoeae* genome achieved in the majority
383 of samples spiked with $\geq 10^4$ CFU/ml of *N. gonorrhoeae* and the *N. gonorrhoeae*-positive
384 clinical samples should make detection of antimicrobial resistance determinants possible, as
385 well as comparisons of genomes for transmission tracking. However, the relatively high per
386 base error rate of Nanopore sequencing means specific bioinformatic approaches are
387 required to produce a consensus genome without an unacceptable number of false variants.
388 This follow up work is an area of active research at present.

389 Initially when planning the study, we considered that contamination with human DNA
390 would be the principal technical challenge to be overcome. Although the clinical samples
391 from *N. gonorrhoeae* infection tested still contained human DNA, in the majority of samples
392 sufficient *N. gonorrhoeae* DNA was present for successful sequencing without specific
393 human DNA depletion. However, large amounts of human DNA present in one clinical
394 sample resulted in reduced genome coverage. Presence of high levels of other bacterial
395 species impaired the yield of pathogen DNA in simulated infections and in one of the
396 samples from clinical *N. gonorrhoeae* infection. For simulated infections this is likely
397 because this study relied on samples discarded after routine testing. As such, these samples
398 had typically spent several days at ambient temperature in transport and in the laboratory,
399 which allowed time for bacterial overgrowth to occur. This same issue was present in study
400 participant samples, albeit to a lesser extent, as samples from Brighton were couriered

401 overnight at ambient temperature to Oxford. The large amounts of DNA from other bacteria
402 in one of the clinical samples occurred despite the use of boric acid as an additive to reduce
403 growth. We also tested if collection of urine directly into an unselective cell lysis buffer
404 would prevent bacterial over-growth. This approach was successful in preventing
405 contamination with other bacterial DNA, however it also better preserved human DNA, such
406 that the total amount of bacterial DNA sequenced, and hence yield of *N. gonorrhoeae* DNA
407 was lower using this approach. *N. gonorrhoeae* DNA yields from urethral swabs were also
408 low, which may represent low numbers of organisms collected, particularly as obtaining
409 these swabs required a second urethral swab (in addition to that taken for routine culture),
410 which was potentially uncomfortable for participants.

411 Although our results provide a proof of principle, the applicability of sequencing in its
412 current form is also limited by the time taken to prepare samples for sequencing, this
413 requires up to 10 hours, largely due to the need for prolonged PCR amplification of very low
414 quantities of input DNA. Current reagent costs are also >\$400 per sample; while these could
415 be reduced by multiplexing multiple samples per flow cell this would reduce sensitivity.

416 Our results also highlight another current limitation of metagenomic sequencing, the
417 potential for contamination, particularly as the approach relies on non-selective
418 amplification of all DNA present. In one of our seven negative control urine samples around
419 15% of the *N. gonorrhoeae* reference genome was covered at high depth, however the
420 coverage was very uneven (Figure S5). This partial coverage of the reference genome may
421 have arisen from contamination with PCR amplicons. This reinforces the need for
422 metagenomic sequencing based studies to include appropriate negative controls.
423 Additionally, confirmation of the presence of *N. gonorrhoeae* may also require achieving

424 coverage of a substantial proportion of the reference genome, and further metagenomic
425 sequencing studies of patients with and without *N. gonorrhoeae* infection are required to
426 assess this and determine thresholds for robustly identifying infection.

427 The focus of this manuscript was to optimize laboratory methods, which we have
428 successfully achieved. This work provides a firm foundation for developing bioinformatic
429 methods for confirming the presence of *N. gonorrhoeae* and resistance gene identification
430 using Nanopore data. If this can be achieved, same-day metagenomic diagnosis of
431 gonorrhoea infection and antimicrobial resistance is likely to be possible.

432

433 Acknowledgements

434 The authors thank the microbiology laboratory staff of Oxford University Hospitals NHS
435 Foundation Trust and the Royal Sussex County Hospital, Brighton for providing assistance
436 with sample collection.

437

438 Declaration of interests

439 JO has received consumables, research funding and conference expenses from Oxford
440 Nanopore Technologies. No author has a conflict of interest to declare.

441

442 Funding

443 This work was funded by the Centers for Disease Control and Prevention, under Broad
444 Agency Award FY2018-OADS-01.

445 **Figure legends**

446 **Figure 1. *N. gonorrhoeae* simulated infections: limit of detection using Nanopore**

447 **sequencing.** Panel A shows the proportion of sequenced reads classified as human, bacterial
448 or viral. Panel B shows the proportion of bacterial bases classified as *N. gonorrhoeae*, and
449 panel C the proportion of the NCCP11945 *N. gonorrhoeae* reference genome covered at
450 ≥ 10 -fold depth. For WHO V (orange markers) the actual spike concentration achieved was
451 lower than the target (see Figure S3).

452

453 **Figure 2. Sequencing speed in 18 *N. gonorrhoeae* and *C. trachomatis* NAAT-negative urine
454 samples spiked with *N. gonorrhoeae*.** The actual spiking concentration achieved is rounded
455 to the nearest order of magnitude for the purposes of the legend. Estimated coverage is
456 calculated as the number of bases of *N. gonorrhoeae* DNA sequenced divided by the length
457 of the reference genome.

458

459 **Figure 3. Performance in clinical samples positive for *N. gonorrhoeae*: yield of bacterial,
460 human and viral DNA sequenced.** Results from 10 participants are shown, including where
461 available reads obtained from a urethral swab, a urine sample collected into a cobas lysis
462 buffer (processed with and without mechanical lysis with beads), and a urine sample
463 collected in a universal container with a boric acid additive processed with and without
464 treatment with saponin. The plot shown was generated using sequence data demultiplexed
465 with Porechop, after which human reads were securely deleted. To reduce the proportion of

466 reads without an assigned barcode arising with Porechop, samples were re-basecalled and
467 demultiplexed using Guppy for subsequent analysis.

468

469 **Figure 4. Performance in clinical samples positive for *N. gonorrhoeae*: coverage breadth**
470 **and depth.** Panel A shows the mean coverage depth achieved for samples processed by one
471 the five methods tested, i.e. the total number of bases of sequence generated divided by
472 the length of the NCCP11945 *N. gonorrhoeae* reference genome. Panel B shows the
473 proportion of the NCCP11945 *N. gonorrhoeae* reference genome covered by at least one
474 read. Panel C uses combined data from urine samples treated with and without saponin to
475 represent the NCCP11945 *N. gonorrhoeae* reference genome coverage from sequencing a
476 single urine sample on a flowcell.

477

478 **Figure 5. Performance in clinical samples positive for *N. gonorrhoeae*: relative proportions**
479 **of species sequenced per sample.** The z-score, denoted by shade, for each taxon is the
480 number of standard deviations above the mean number of bases per taxon for each sample.

481

482

483

484

485 References

486 1 Newman L, Rowley J, Vander Hoorn S, *et al.* Global Estimates of the Prevalence and Incidence
487 of Four Curable Sexually Transmitted Infections in 2012 Based on Systematic Review and
488 Global Reporting. *PLoS One* 2015; **10**: e0143304.

489 2 Unemo M. Current and future antimicrobial treatment of gonorrhoea – the rapidly evolving
490 *Neisseria gonorrhoeae* continues to challenge. *BMC Infect Dis* 2015; **15**: 364.

491 3 Fifer H, Saunders J, Soni S, Sadiq T, Fitzgerald M. British Association for Sexual Health and HIV
492 national guideline for the management of infection with *Neisseria gonorrhoeae* (2019).
493 <https://www.bashhguidelines.org/media/1208/gc-2019.pdf> (accessed May 28, 2019).

494 4 Eyre DW, Town K, Street T, *et al.* Detection in the United Kingdom of the *Neisseria*
495 *gonorrhoeae* FC428 clone, with ceftriaxone resistance and intermediate resistance to
496 azithromycin, October to December 2018. *Eurosurveillance* 2019; **24**: 1900147.

497 5 Eyre DW, Sanderson ND, Lord E, *et al.* Gonorrhoea treatment failure caused by a *Neisseria*
498 *gonorrhoeae* strain with combined ceftriaxone and high-level azithromycin resistance,
499 England, February 2018. *Eurosurveillance* 2018; **23**: 364.

500 6 Workowski KA, Bolan GA, Prevention C for DC and. Sexually transmitted diseases treatment
501 guidelines, 2015. *MMWR*. 2015; **64**: 1–137.

502 7 Thakur SD, Parmar NR, Dillon J-AR. Time to Develop Standardized Molecular Diagnostics for
503 the Simultaneous Detection of *Neisseria gonorrhoeae* and its Antimicrobial Resistance. *Sex*
504 *Transm Dis* 2018; **45**: 316–8.

505 8 Chiu CY, Miller SA. Clinical metagenomics. *Nat Rev Genet* 2019; **20**: 341.

506 9 Graham RMA, Doyle CJ, Jennison A V. Epidemiological typing of *Neisseria gonorrhoeae* and
507 detection of markers associated with antimicrobial resistance directly from urine samples

508 10 using next generation sequencing. *Sex Transm Infect* 2017; **93**: 65–7.

509 11 Bachmann NL, Rockett RJ, Timms VJ, Sintchenko V. Advances in Clinical Sample Preparation
510 for Identification and Characterization of Bacterial Pathogens Using Metagenomics. *Front
511 Public Heal* 2018; **6**: 363.

512 12 Seth-Smith HMB, Harris SR, Skilton RJ, *et al.* Whole-genome sequences of *Chlamydia
513 trachomatis* directly from clinical samples without culture. *Genome Res* 2013; **23**: 855–66.

514 13 Christiansen MT, Brown AC, Kundu S, *et al.* Whole-genome enrichment and sequencing of
515 *Chlamydia trachomatis* directly from clinical samples. *BMC Infect Dis* 2014; **14**: 591.

516 14 Schmidt K, Mwaigwisya S, Crossman LC, *et al.* Identification of bacterial pathogens and
517 antimicrobial resistance directly from clinical urines by nanopore-based metagenomic
518 sequencing. *J Antimicrob Chemother* 2017; **72**: 104–14.

519 15 Charalampous T, Kay GL, Richardson H, *et al.* Nanopore metagenomics enables rapid clinical
520 diagnosis of bacterial lower respiratory infection. *Nat Biotech* 2019; **37**: 783–792.

521 16 Street TL, Sanderson ND, Atkins BL, *et al.* Molecular diagnosis of orthopaedic device infection
522 direct from sonication fluid by metagenomic sequencing. *J Clin Microbiol*. 2017; **55**:2334–
523 2347.

524 17 Herrera LJ, Raja S, Gooding WE, *et al.* Quantitative analysis of circulating plasma DNA as a
525 tumor marker in thoracic malignancies. *Clin Chem* 2005; **51**: 113–8.

526 18 Whiley DM, Sloots TP. Comparison of three in-house multiplex PCR assays for the detection
527 of *Neisseria gonorrhoeae* and *Chlamydia trachomatis* using real-time and conventional
528 detection methodologies. *Pathology* 2005; **37**: 364–70.

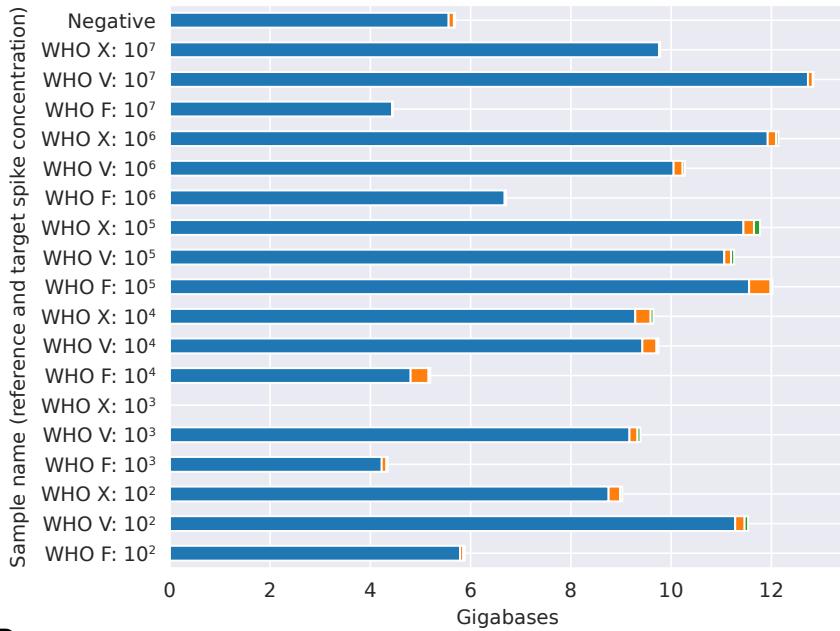
529 19 Kim D, Song L, Breitwieser FP, Salzberg SL. Centrifuge: rapid and sensitive classification of
530 metagenomic sequences. *Genome Res* 2016; **26**: 1721–9.

531 19 Li H. Minimap2: pairwise alignment for nucleotide sequences. 2017; published online Aug 4.

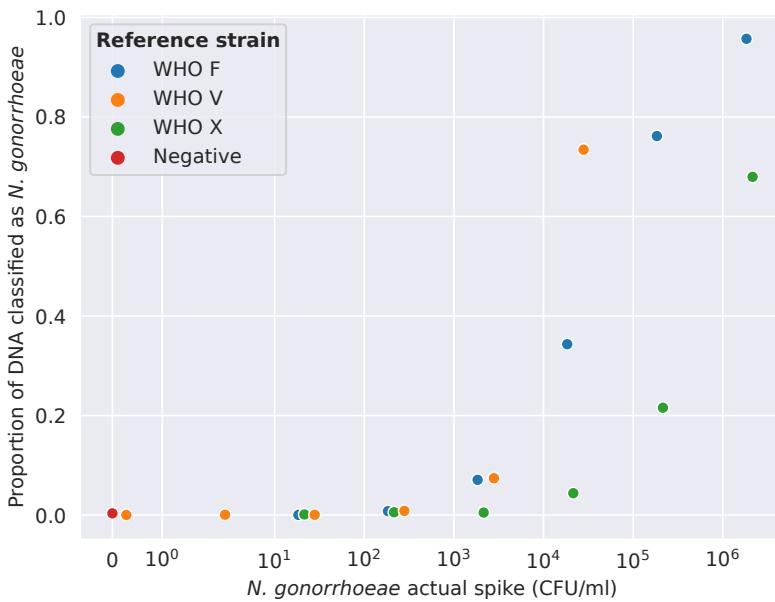
532 <https://arxiv.org/abs/1708.01492>.

533 20 Li H, Handsaker B, Wysoker A, *et al.* The Sequence Alignment/Map format and SAMtools.

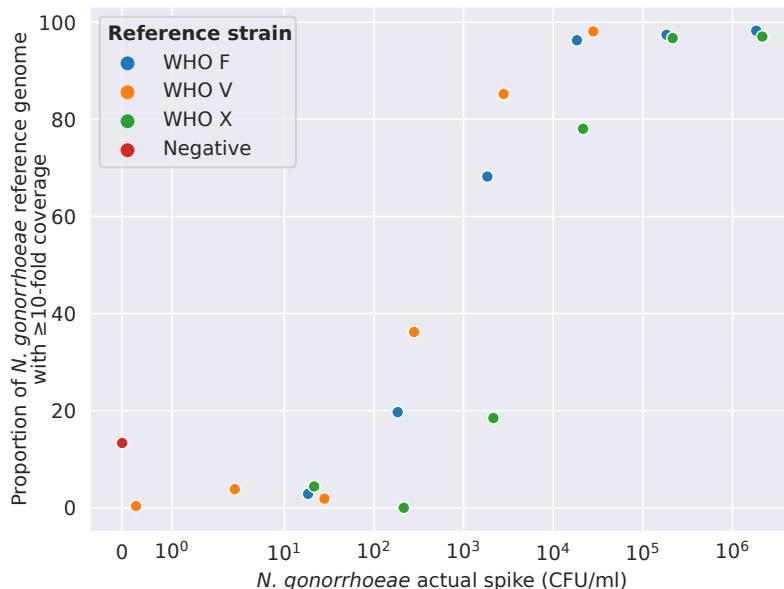
534 *Bioinformatics* 2009; **25**: 2078–9.

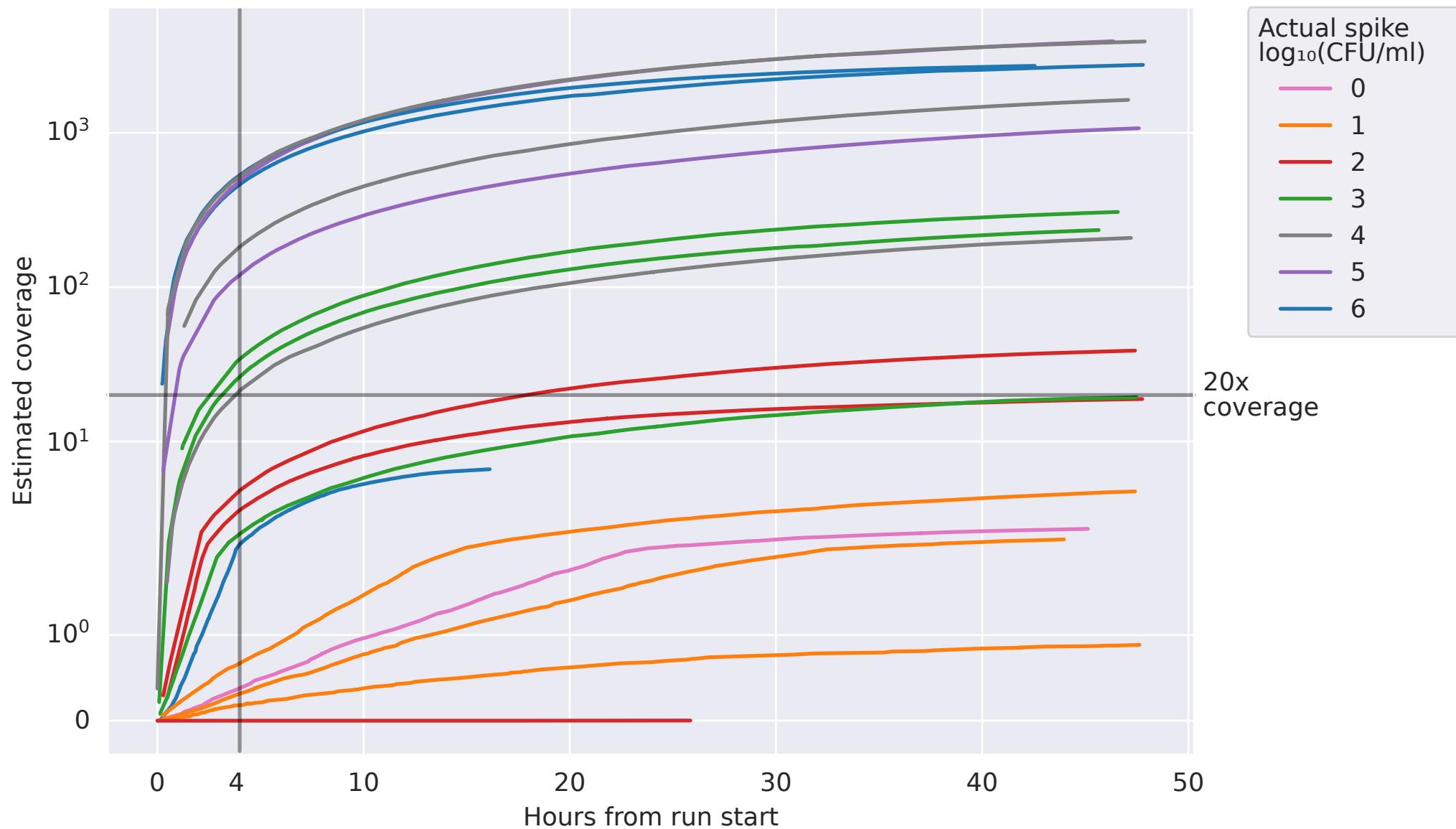

535 21 Sanderson ND, Street TL, Foster D, *et al.* Real-time analysis of nanopore-based metagenomic

536 sequencing from infected orthopaedic devices 06 Biological Sciences 0604 Genetics 06

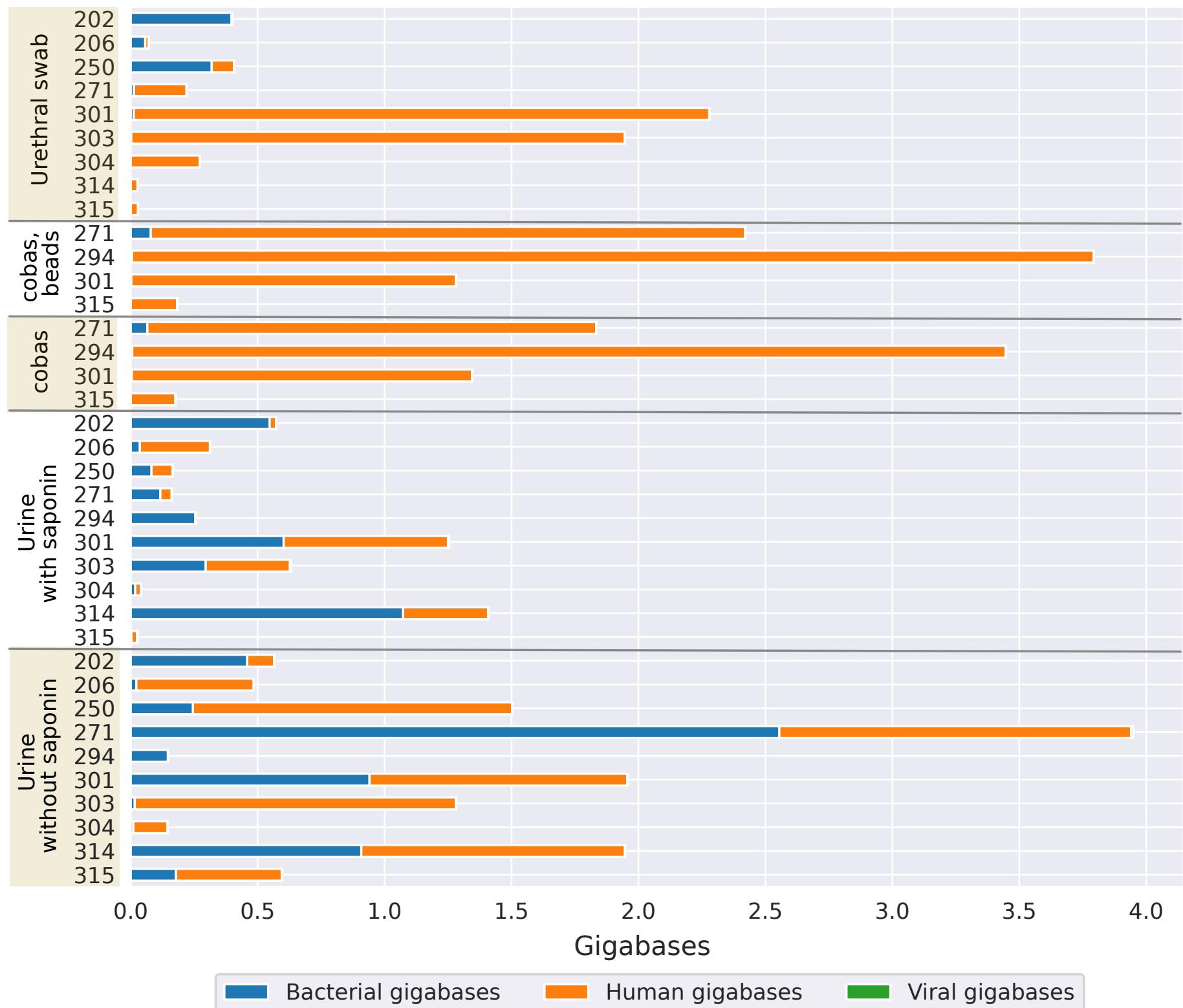

537 Biological Sciences 0605 Microbiology. *BMC Genomics* 2018; **19**. DOI:10.1186/s12864-018-

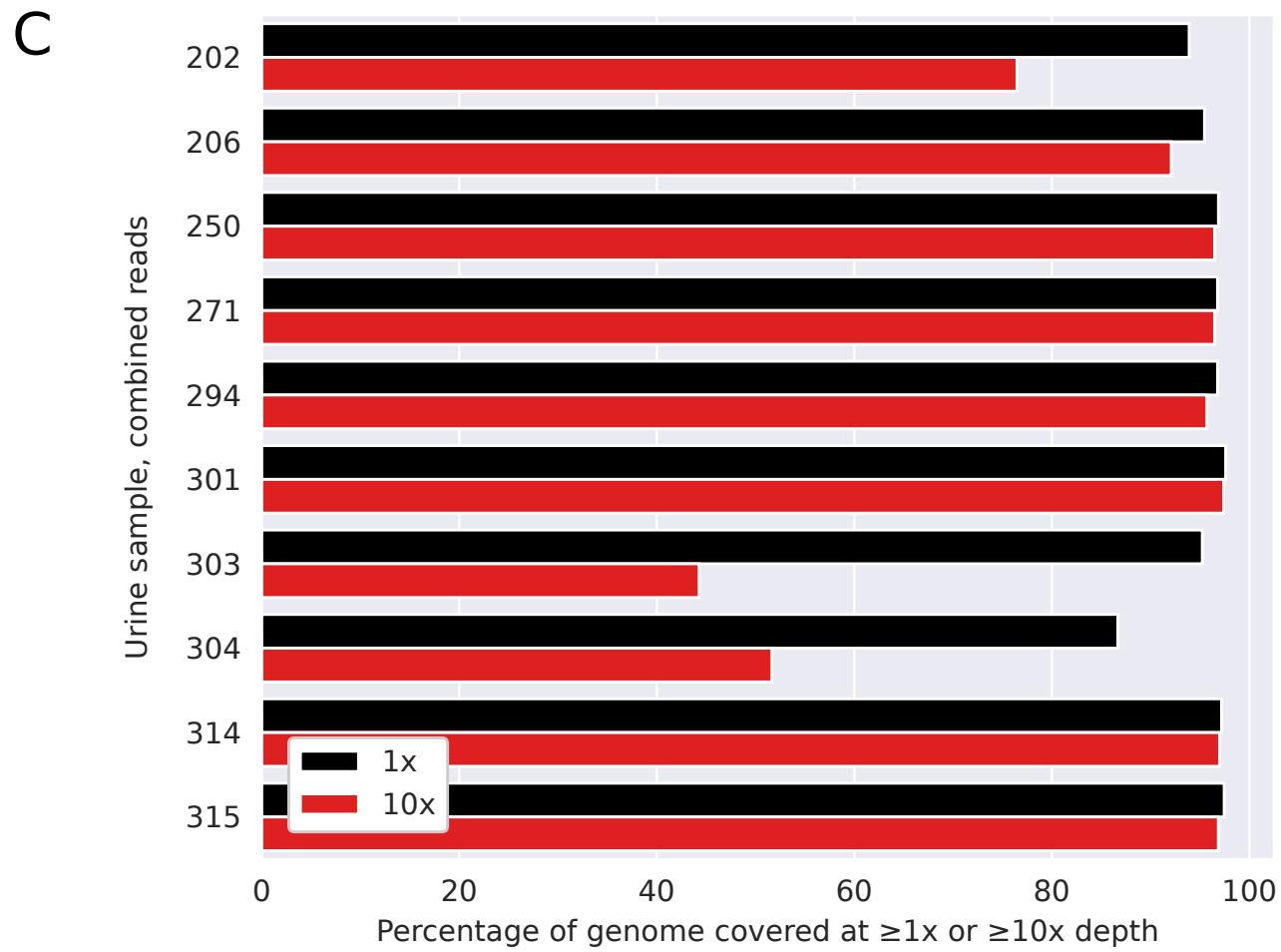
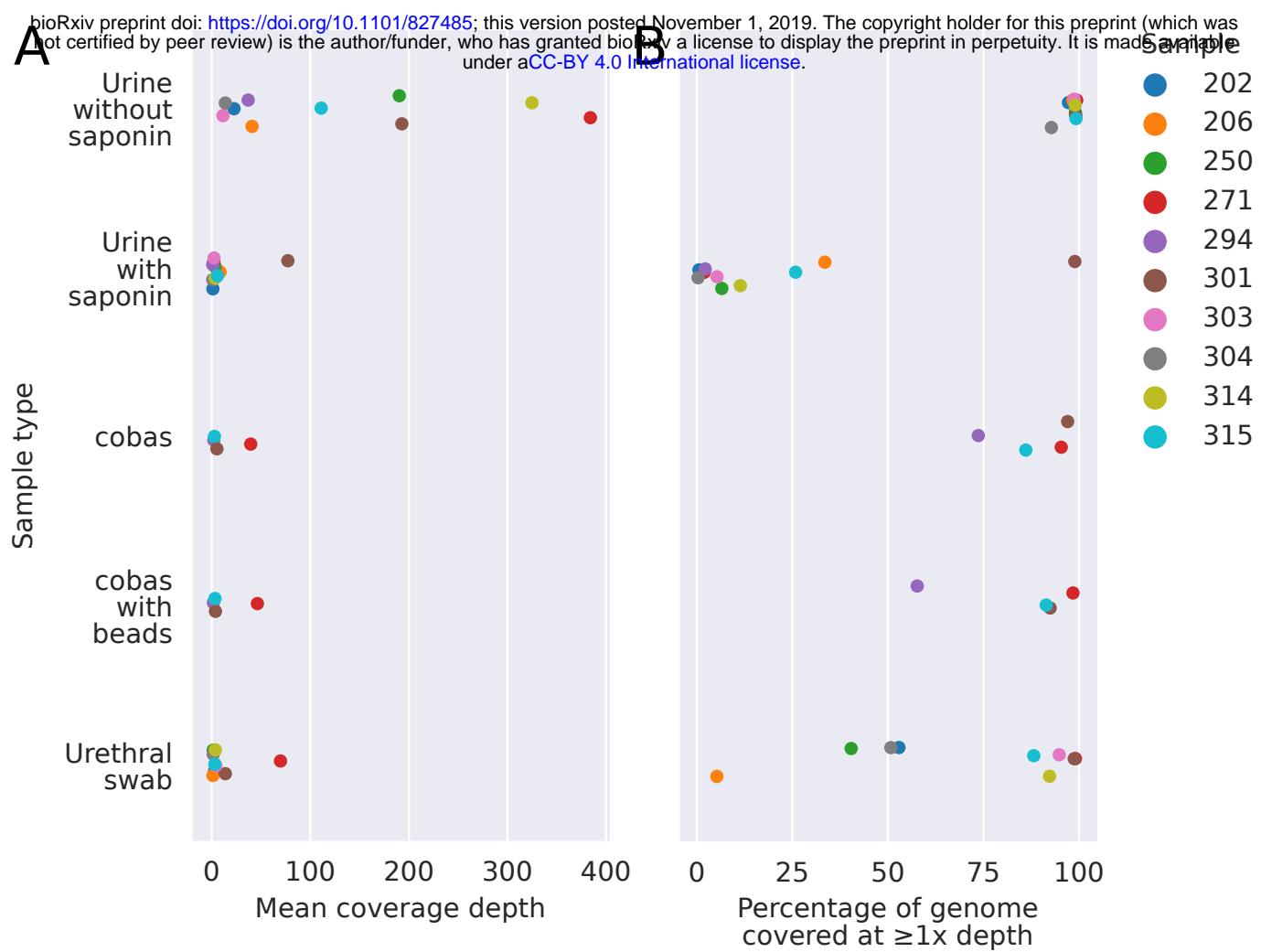
538 5094-y.

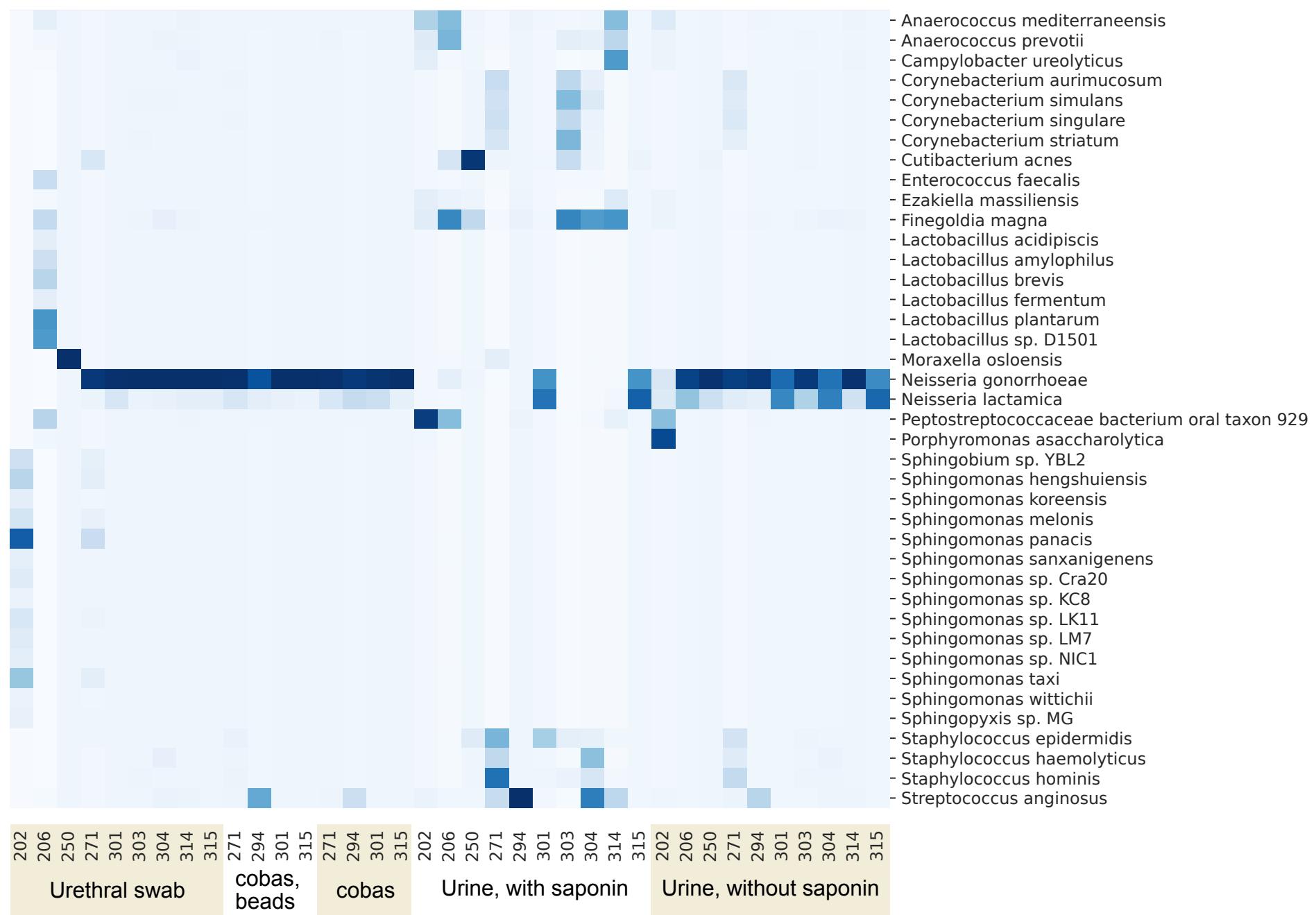

539



B





C



Sample type and identifier

Sample type and identifier