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Sleep serves disparate functions, most notably neural repair, metabolite clear-

ance and circuit reorganization, yet the relative importance of these functions

remains hotly debated. Here, we create a novel mechanistic framework for un-

derstanding and predicting how sleep changes during ontogeny (why babies

sleep twice as long as adults) and across phylogeny (why mice sleep roughly

five times that of whales). We use this theory to quantitatively distinguish be-

tween sleep used for neural reorganization versus repair. We conduct a com-

prehensive, quantitative analysis of human sleep using total sleep time, cere-
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bral metabolic rate, brain size, synaptic density, and REM sleep (used here

to also refer to Active Sleep in infants and children). Our findings reveal an

abrupt transition, between 2 and 3 years of age in humans. Specifically, our re-

sults show that differences in sleep across phylogeny and during late ontogeny

(after 2 or 3 years in humans) are primarily due to sleep functioning for repair

or clearance, while changes in sleep during early ontogeny (before 2 - 3 years

in humans) primarily support neural reorganization and learning. Moreover,

our analysis shows that neuroplastic reorganization occurs primarily in REM

sleep but not in NREM. In accordance with the developmental role of neuro-

plasticity, the percent of time spent in REM sleep is independent of brain size

across species but decreases dramatically as brain size grows through develop-

ment. Furthermore, the ratio of NREM sleep time to awake time emerges as

a new invariant across development. This developmental transition and fun-

damental shift across ontogeny and phylogeny suggests a complex interplay

between developmental and evolutionary constraints on sleep.

Introduction

The pervasiveness of sleep during development and throughout the animal kingdom suggests it

is a biological process that is necessary for survival. Although we spend approximately a third of

our life asleep, its explicit physiological and evolutionary function remains unclear with myriad

hypotheses having been postulated (1–28). Two of the leading hypotheses are that sleep enables

(i) the repair and clearance needed to correct and prevent neuronal damage (1–12, 29–32) and

(ii) the neural reorganization necessary for learning and synaptic homeostasis (13–21). These

hypotheses are compelling because neither of these processes can be easily achieved in waking

states and there is supporting empirical evidence that they occur during sleep.
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For instance, prolonged sleep deprivation can lead to death in rats (25), dogs (26), fruit

flies (27), and even humans (28). These extreme cases are believed to result from damage to

neuronal cells caused by metabolic processes that are not avoided or remedied because clearance

of damaging agents and repair occur primarily during sleep (6,29). Moreover, a recent hypothesis

related to neuronal damage from metabolic processes is that sleep drives metabolic clearance

from the brain (7). Because the brain lacks a penetrating lymphatic system, cerebrospinal fluid

recirculates through the brain and removes interstitial proteins (8, 9), likely through meningeal

lymphatics (33). Furthermore, the concentration of β−amyloid(Aβ) is higher in the awake state

than during sleep, suggesting that wakefulness is associated with producing (Aβ) (10, 11) while

sleep is associated with its clearance. This view is further supported by the 60% increase in

interstitial space associated with sleep (7).

There is also substantial and direct evidence that sleep promotes neuroplastic reorganization

(15) related to learning and consolidating memory and also regulates synaptic re-scaling. For

instance, neuron firing sequences that encode spatial maps learned during awake periods are

replayed during sleep (17, 34–38). In addition, sleep facilitates the growth of learning-associated

synapses and the homeostatic weakening and pruning of seldom-used synapses (6, 21). More

generally, two recent studies demonstrate that sleep regulates the cycling of proteins related to

synaptic functioning (39, 40).

Comparative, developmental, physiological, and human studies have all been fruitfully used

to address questions about the nature of sleep (1–28) and each has given different and often

complementary insights into its function (41). However, because data are seldom analyzed in

a way that connects them with mathematical models or quantitative predictions, conclusions

about the function of sleep have remained slow to evolve. In this context, we develop a general

theory for the function of sleep that provides a framework for addressing several fundamental

questions, such as: What are the relative roles of repair and reorganization during sleep, and do
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these change during ontogenetic development?

An important quantitative observation is that sleep times systematically decrease with body

mass across mammals (42, 43). Moreover, the fraction of time spent in REM sleep (also referred

to as active sleep) does not change with brain or body mass (42). Since increasing body mass

strongly correlates with decreasing mass-specific metabolic rate (i.e., metabolic rate per unit

mass) and therefore to a decreasing rate of cellular damage, this strongly suggests that less sleep

time is needed for repair and maintenance in larger animals. These empirical observations led

two of us (42) to develop a quantitative mechanistic theory for understanding the origins and

function of sleep across species based on the central role played by metabolism in both damage

and repair. This work suggested novel analyses of the empirical data on brain size and brain

metabolic rate, both of which depend non-linearly on body size, and showed that both brain size

and brain metabolic rate are better predictors of sleep time than body size. This provided strong

evidence that sleep is primarily associated with repair of the brain rather than with the other

parts of the body. Specifically, we predicted that the ratio of sleep time to awake time should

decrease with brain size as a power law whose exponent is −1
4
, and consequently that it should

decrease with body weight with an exponent of −1
6
, both in good agreement with data. The

scaling exponent of−1
4

for brain size corresponds to the same scaling as mass-specific metabolic

rate in the brain. The theory also provides a quantitative understanding for why the proportion of

REM sleep does not change with either brain or body mass.

The major focus of this paper is to address the intriguing question as to whether these general

relationships for sleep times remain valid during growth, implying that ontogeny recapitulates

phylogeny, or whether new patterns emerge during development reflecting a different dynamical

origin for sleep? More pointedly, during both development and across species, sleep times

systematically decrease with brain and body size. But do they do so at similar rates, and are they

attributable to the same underlying dynamics? If new patterns emerge, what do those patterns
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reveal about neurological development and the growth of the brain? To answer these questions,

we derive a quantitative ontogenetic sleep model across species that combines both ontogeny

and phylogeny in a single framework, and use this model to guide the analysis of human sleep

data from birth to adult. We compare our new findings with previous empirical and theoretical

results for how sleep changes across phylogeny to ask if explanations for why a mouse sleeps

roughly five times more than a whale can also be used to explain why babies sleep roughly twice

as long as adults.

Although previous studies focus on total sleep time, and how it is partitioned between REM

and NREM, and how these change during growth (44, 45), we are unaware of any systematic

quantitative mechanistic models for how or why these change as children grow. Here, we

combine the most comprehensive published data on sleep throughout human development and

across species with a new mechanistic model to elucidate the function of sleep, reveal how it

dramatically changes during early growth, and show how this is related to brain development.

In the following section, we develop a framework for modeling neural repair/metabolite

clearance and reorganization during sleep, and show how brain metabolic rate depends on the

number of synaptic connections between neurons. Moreover, we propose a general quantitative

model for how sleep time changes with brain mass ontogenetically. Next, we describe the sources

and collection of our data as well as the statistical and numerical methods for how the data were

analyzed. We collate and integrate data for total sleep time, REM sleep time, brain weight,

body weight, cerebral metabolic rate, and synaptic density based on a systematic review of the

literature. The resulting dataset spans from 0-15 years of age and cumulatively represents about

400 data points. We then use the empirical data to discover patterns of sleep during ontogeny,

compare them with phylogenetic patterns, and test predictions from our theoretical framework.

In so doing, we:

1. develop distinct quantitative theories for both neural repair/clearance and neural reorgani-
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zation,

2. use extensive human sleep and brain data from birth to adult to cleanly test and discriminate

among theories,

3. provide strong evidence of a remarkably sharp transition in the purpose of sleep at about

2.4 years of age from the purpose of sleep being primarily for neural reorganization that

occurs during the Active Sleep/REM cycle in early development to sleep being primarily

for neural repair and metabolite clearance in late development.

Finally, we explain our conclusions and discuss remaining questions and future directions.

1 Framework for predicting sleep times and testing sleep func-
tions

Our conceptual, quantitative framework for how sleep changes as brains increase in size and age

through development is grounded in key hypotheses about the dominant function of sleep being

for neural repair/clearance and/or reorganization. We explain simple mathematical equivalencies

that lead to specific, baseline predictions for scaling exponents that encapsulate how ratios of

REM, NREM, and total sleep times change with brain size.

1.1 Theory of sleep for neural repair

We previously constructed a mathematical theory that focused on neural repair in adult brains and

empirically tested a suite of predictions for how characteristic times for sleep change with brain

and body size across species (42). The theory, which we first briefly review, has been supported

by investigations in recent years (7). It has long been postulated, and there is increasing empirical

and theoretical evidence favoring it, that neural repair or clearance of metabolic wastes is an

important function of sleep (7, 46). One theory, for instance, suggests that sleep plays the role
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of regulating oxidative stress in the brain by restoring and repairing neurons damaged by this

oxidative stress (47). It has also been found that the production of oxidating agents in the brain

during awake time promotes sleep (48–51). Recently, in the zebrafish it was found that chromatin

movement, supporting remodeling and repair, happens only during sleep (29).

The basis of our theory is that the total amount of damage incurred and/or the accumulation

of damaging agents during wakefulness must be reversed or counteracted by repair during sleep.

Unlike other organs, it is crucial for the continuing functionality of the entire organism that

neurological damage be faithfully repaired. The total damage that is generated during awake

time is proportional to the mass-specific metabolic rate of the brain, Bb, (effectively, the average

metabolic rate of a cell) multiplied by the total time awake, tA. To counteract this, the total

amount of repair or clearance accomplished during sleep is the power density, PR, allocated to

repair or clearance during sleep multiplied by the total brain volume Vb(∝Mb) and total sleep

time, tS . Assuming that nearly all damage must be repaired or cleared in order for the brain to

continue to function normally and with high fidelity throughout growth and adulthood, the total

damage or accumulation of damaging agents must be balanced by the total repair or clearance.

This leads to
tS
tA

=
c

PR

Bb

Mb

∝ Bb

Mb

∝Mα−1
b (1)

where c is a constant that incorporates the efficiency of repair processes together with the fraction

of metabolic rate that leads to damage via free radicals, metabolic waste, or vessel damage. PR

is a local, cellular quantity and is assumed to be independent of body or brain size. Consequently,

the predicted scaling exponent for sleep times is completely determined by the scaling of brain

metabolic rate, Bb ∝Mα
b and therefore by its scaling exponent, α. For simplicity, we have here

also assumed that all damage or accumulation of damaging agents occurs during wakefulness and

that all repair and clearance occurs during sleep. This theory can straightforwardly be generalized

to include damage during sleep and thereby to show that the dominant scaling relationships do
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not change. Indeed, this leads to an estimate that damage rates during sleep are about 1/3 of

those during wakefulness (42).

Eq. (1) predicts that the ratio of sleep time to awake time follows a simple power-law

relationship, which is well supported below by data. Indeed, the theory predicts that sleep time,

tS , by itself does not obey pure power-law behavior with respect to brain size. Rather, it is the

ratios of sleep to awake times or REM times that do (Supp. Info. 1). Because of this functional

form, traditional plots in the literature for either tS or ln(tS) versus ln(Mb) are predicted to have

much greater variance than for corresponding ratios and, more importantly, to be much more

difficult to interpret.

Another key prediction of this theory based on neural repair is the invariance of the fraction

of REM sleep
tR
tS
∝M0

b (2)

This pattern strongly holds across species. (42). Consequently, testing whether it remains valid

during development will help reveal whether sleep during growth is primarily driven by neural

repair or by some other function such as neural reorganization.

1.2 Theory of sleep for neural reorganization

During early development the brain is undergoing extensive changes in size, architecture, and

cellular makeup. One of the major changes is in synaptic plasticity, which is greatest during

early development after which it declines to a baseline adult level (52). This corresponds to

neural reorganization, somato-cortical pathway development, and pruning that underlie the

experience-dependent plasticity and learning necessary for adult behavior (53). Sleep is required

for the consolidation and optimization of learning and governs underlying synaptic processes

including synapse formation, sizing, and pruning (20, 21).

We now develop the theory for those aspects of neural reorganization related to sleep by
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focusing on the fundamental need to process information. Analogous to the theory for repair, the

basis of the theory is an accounting and balancing of the rate of information being sensed by the

body with the rate at which it is being processed by the brain. A key component of this model is

that the amount of information needed to be processed is sensed through the entire body because

stimuli are received from all parts of the body via pain, heat, cold, pressure, etc. On the other

hand, the number of inputs that can be processed is constrained by the brain and its metabolic rate,

Bb, because the central nervous system is where the neural reorganization is occurring and where

the information encountered by the peripheral nervous system is incorporated through synaptic

structures for memory and learning. This crucial insight that information input is associated

with the entire body, whereas its processing is localized in the brain, leads to a mismatch in the

scaling of all of the sleep processes because brain size and brain metabolic rate scale non-linearly

and differently with both body size and whole body metabolic rate, B (Supp. Info. 2 and (41)).

A core question is whether synaptic plasticity and information processing are occurring

during just one or both of the two main stages of sleep, NREM and REM. Studies show that both

are important for learning and memory, although their relative roles remain a topic of intense

debate (54–58). Evidence suggests that REM may be more associated with local circuit changes

reflecting memory consolidation (59) while during NREM global synaptic homeostasis and

inter-region memory transfer may dominate (20, 60). Other evidence (58, 61, 62) suggests that

synaptic pruning and reconnection primarily take place during REM sleep, while other results

and arguments have posited that NREM sleep is when pruning and reorganizing occur (56).

Given this controversy, we derive separate predictions assuming either the primacy of REM

or NREM sleep for neural reorganization. Consequently, our theory provides a quantitative test

and a means for distinguishing between these two opposing hypotheses for the importance of

REM versus NREM sleep by analyzing developmental sleep data. For simplicity, we present our

equations in terms of REM sleep, since the NREM predictions are obtained by simply swapping
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NREM for REM everywhere in the following equations.

Assuming (i) that local neural reorganization associated with changes in synaptic density

primarily occurs during REM sleep, (ii) that idealized synaptogenesis occurs uniformly across

the brain, and (iii) that information exchange is directly tied to energy use, we relate the amount

of information sensed by the body during wakefulness when the organism is being exposed to

myriad stimuli to the amount being processed by the brain during sleep.

Defining ∆EI→σ as the energy needed to convert a unit of information acquired by sensory

systems to synaptic changes in the brain, and fI as the fraction of the total metabolic rate required

for sensing that information, then information is being transmitted to the brain at a rate given

by (fIB)/∆EI→σ. Consequently, the total amount of information generated while awake is

proportional to (fIBtA)/∆EI→σ.

This information has to be processed during sleep by synapses (63). On average, each synapse

processes information at a rate ν that, like all processes directly linked to brain metabolism, is

expected to scale inversely with its mass-specific metabolic rate Bb/Mb. That is, inversely with

cellular metabolic rate (42). Assuming first that local synaptic changes occur during REM sleep,

tR, the total information processed is (NσtRν) ∝ (NσBbtR/Mb), where Nσ is the total number

of synapses in the brain. We neglect terms related to synapses being formed and pruned within

that same sleep-wake cycle because this number will be very small over such a relatively short

time scale. Finally, equating the information processed during sleep with information sensed

while awake and rearranging terms, we have

tR
tA
∝ fI

∆EI→σ

BMb

BbNσ

(3)

To determine how this ratio scales with brain and body size, we first recognize that the

parameters fI and ∆EI→σ represent energies and percentages that are typically invariant with

respect to size, in contrast to the scaling of biological rates and times (64–67). To express our
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result in terms of brain size, Mb, we note that across species (42) and throughout development

(Fig. S1) brain size scales nonlinearly with body size as approximatelyMb ∝M3/4, so combining

this with the canonical allometric relationship for whole body metabolic rate, B ∝M3/4 (valid

through ontogeny), gives B ∝ Mb. In the following section, we further argue that Nσ ∝ Bb,

thereby predicting the scaling of the ratio of REM sleep time to awake time:

tR
tA
∝ M2

b

B2
b

∝M
2(1−α)
b (4)

where α is the scaling exponent that relates brain metabolic rate to brain size. This can be

re-expressed in terms of the ratio of REM sleep time to total sleep time (which is invariant across

species (42)):

tR
tS
∝ tR
tA

tA
tS
∝M

2(1−α)
b

tA
tS

(5)

Thus, an empirical determination of how the ratio tA/tS scales with brain size provides a

prediction for the fraction of time spent in REM sleep across development. As we shall show

below, these relationships provide a good description of the data and an important test of the

theory. Furthermore, by simply switching NREM sleep time, tNR, with REM sleep time, tR,

in the above equations, we also have the prediction for the complementary case that assumes

the primacy of NREM sleep for neural reorganization and information processing. This will be

dramatically different and distinguishable from the predictions for REM sleep, hence providing

a clear indication for when these processes occur during the sleep cycle.

1.3 Developmental changes in cerebral metabolic rate, synapses, and white
matter

The theory for neural repair and reorganization developed above is fundamentally driven by the

brain’s metabolic rate. In order to make the scaling relationships for sleep fully predictive, the

only remaining unknown is the scaling exponent, α, that relates brain metabolic rate to brain
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size. Across species, the brain can be treated as a nearly autonomous organ with its own vascular

system supplied primarily by a single carotid artery, much in the same way that the vascular

system of the entire body is supplied through a single aorta. Following the theoretical derivation

of the scaling relationship of metabolic rate for the whole body, this predicts Bb ∝ M
3/4
b ,

consistent with data for mature mammals (42, 68).

However, during early ontogeny the brain is undergoing rapid changes in size and synaptoge-

nesis that require a relaxation of the power optimization and other constraints that determine how

metabolic rate scales with size for mature organisms (69). Therefore, the canonical theory for the

scaling of metabolic rate needs to be reformulated for the brain to recognize that ontogeny may

not recapitulate phylogeny. Neural signaling and computation in the brain are extremely costly,

accounting for 80− 90% of its metabolic expenditure (70–72). These signals and computations

are implemented through patterns of neuronal synaptic connectivity. It is therefore natural

to focus on the number of synapses as a major driver of brain metabolic rate rather than the

number of neurons (52). The primary function of these connections is to regulate electrical

signals through axons that transmit information through neural networks to gather and process

information, in order to learn and react (73). Crucially, as the number of synapses quickly

increases in early development, they bring along associated increases in glial cells that are also

highly metabolically active. Following this initial increase in the number of synapses, they are

subsequently pruned away as part of the process of learning and reorganization in a way that is

consistent with the Hebbian maxim that neurons that fire together, wire together (74).

Consequently, cerebral metabolic rate at early developmental stages is proportional to the

total number of synapses already present plus the rate at which energy needs to be supplied to

grow new ones. This is consistent with prior work showing the invariance of cerebral metabolic

rate per synapse across development for mammals (72). Since most neurons in the adult brain

are already present at or soon after birth, with only an extremely slow increase in their number
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during development and adulthood (75), the metabolic rate devoted to existing synapses at any

given time is much greater than that needed to create new ones.

The increase in the number of synapses after birth largely represents the wiring together

of pre-existing neurons, further emphasizing the dependence of changes in metabolic rate on

synapse number rather than neuron number.

As a result, we predict that the metabolic rate of the brain should scale approximately linearly

with the total number of synapses or, equivalently, that its mass-specific metabolic rate should

scale linearly with synaptic density. Additionally, after birth the increase in brain mass derives

largely from the increase in glial cell and neuronal spine mass within grey matter and through the

myelination of axons within white matter (76). The primary function of glial cells is to support

synaptic activity (77), so increases in white matter are driven by increasing synaptic demand.

Analogously, increases in myelination reflect the need for increased speed and bandwidth of

axonal information transfer as the number of synapses per axon increases. Hence, we expect

synapse number to scale approximately linearly with white matter volume, Vw:

Bb ∝ Nσ ∝ Vw ∝Mα
b (6)

Intriguingly, previous studies across species have shown that the volume of white matter

increases superlinearly (scaling exponent > 1) with that of gray matter, Vg, across species (78).

If a similar result holds during development, which we test below, this would predict superlinear

scaling (α > 1) for brain metabolic rate with brain size. This result means that brain metabolic

rate per gram of tissue or per cell is actually increasing during development, in marked contrast

to all other scaling relationships between metabolic rate and brain or body size.

The reconciliation between such a superlinear scaling across development and a sublinear

allometric scaling across species can be understood in two ways. First, in adults the number of

connections scales linearly with the number of neurons across species, representing a roughly
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constant adult synaptic density that is realized after pruning is complete (79). Second, for adults

the number of neurons in the brain scales non-linearly and approximately as the 3/4 power with

brain size across species (80).

1.4 Dramatic phase transition in sleep function related to brain develop-
ment

As discussed below, a major transition in brain development (81, 82) and growth occurs around

2 to 3 years old in humans that is associated with the stabilization of synaptic growth and

connectivity (52, 79, 83–85). In our theory sleep is inextricably linked with brain development,

function, and metabolic rate. Consequently, we predict a sharp and dramatic transition in the

scaling of sleep function at about this age. Such a transition reflects a fundamental change

in brain development that occurs shortly after the peak in synaptic density when connectivity

patterns in the brain begin to stabilize and sleep function shifts from being dominated by neural

reorganization towards neural repair and maintenance. Indeed, because the fraction of REM

sleep is predicted to change with size in the regime when neural reorganization dominates but be

invariant for neural repair, we might expect a classic phase transition, analogous to when water

freezes to ice. Mathematically, this would reveal itself as a discontinuity in the first derivative in

the fit. Below we present an analysis of the data to confirm this remarkable prediction and show

that it occurs at about 2.4 years old. To our knowledge, this sharp transition in sleep function, its

simultaneity with the transition in rates of synaptogenesis and synapse density, and the associated

scaling behavior have neither been previously predicted nor documented. This is remarkable

given that this shift likely signals a profound shift in the function of sleep and the behavior of

sleep processes.
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2 Methods

2.1 Empirical Data

To conduct empirical tests of the predictions of our models, we surveyed the literature for

available data on sleep times, REM sleep times, brain size, brain metabolic rate, body size, body

metabolic rate, and other relevant factors for humans during growth from birth to adulthood.

Altogether, compiled data contain about 400 points, mostly corresponding to an age range of

0-15 years. The study of Galland et al. (44) contained 105 data points for sleep times of humans

from ages 0 to 12 years. The study took data from multiple individuals and provided error bars

on sleep times as the mean ± 1.96 standard deviations to approximate 95% confidence intervals.

Further data (40 data points) were obtained from Dekaban et al. (86) for brain weight for 0 to

20 year olds. Because we do not consider the effects of gender differences, we combine these

data by calculating the mean of the female and male brain weights and body weights. Data

for the percentage of REM sleep time across ontogeny and before 18 years old were found in

Roffwarg et al. (45). In addition, sleeping metabolic rate (SMR) values from 0 to 1 year old

are taken from Reichman et al. (87). They performed repeated measurements of SMR at 1.5, 3,

6, 9 and 12 months of age in 43 healthy infants. To better test for connections between white

matter, synaptic densities, and cerebral metabolic rate, we also use ontogenetic data for cerebral

metabolic rate (28 data points) and synaptic density (12 data points) for 0 to 15 years old from

Feinberg et al. (52), as well as data for white-matter and grey-matter volume (88) from 0 to about

3 years old. Because numerical values or tabular data were rarely published for these studies,

the software DataThief was used to collect data from graphs. Moreover, when combining two

different datasets, if the ages were not completely aligned, we used interpolation to obtain values

at the same age.
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2.2 Data Analysis

To illuminate patterns in these data, we test for relationships between sleep time, brain size, and

metabolic rate in humans. More specifically, we analyze the data from these different sources

by constructing plots, calculating correlations between variables, and measuring slopes and

exponents to test if empirical values match our theoretical predictions.

We focus our analysis on ages 0 to 12 years old because the data show that the relevant

variables mostly stabilize after 12 years old. In doing our analysis, we note that this period

itself can be split into two distinct regimes and discuss how the relative roles of repair/clearance

and reorganization shift during this time. By dividing the data into two separate regimes, the

logarithmic plots closely follow a straight line for each of these two regimes. Because biological

and physical changes are typically continuous, we require that the line before and the line after

the transition connect to each other in a continuous fashion. We first choose this intersection

point (x0, y0), and we then use two lines y = k1(x− x0) + y0 and y = k2(x− x0) + y0 to fit the

data. We determine the best value of k1 and k2 as well as the intersection point (x0, y0) through

a minimization of the sum of the squared errors (SSE) (see Supp. Info. 3).

3 Results

Brain metabolic rate is fundamental to our theories of sleep for neural repair and for neural

reorganization. We thus begin by analyzing our collected dataset to determine the scaling

relationships between brain metabolic rate, total number of synapses, volume of white matter,

and brain size (see Eq. (6)). These will be used to test our predictions and determine the exponent,

α, needed to complete the quantitative predictions for sleep times expressed in Eqs. (1-5). We

divide the analysis of sleep data into two distinct sleep phases based on the predicted and

statistically determined transition that occurs between 2 and 3 years of age. Fig. (1) shows three
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plots that evaluate our main predictions for these quantities in the early development phase prior

to this transition.
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Figure 1: A. Plot of the logarithm of cerebral metabolic rate versus the logarithm of brain mass before transition
with measured slope 1.60. B. Plot of the logarithm of number of synapses versus the logarithm of brain mass before
transition with measured slope 1.23. C. Plot of the logarithm of white matter volume versus the logarithm of brain
mass before transition with measured slope 1.21.

i) Fig. (1A) shows a logarithmic plot of the brain’s sleeping metabolic rate versus its mass.

This reveals a remarkable superlinear behavior with an exponent, α = 1.60± 0.40, confirming

our prediction of superlinear scaling based on the scaling of white and grey matter. Most notably,
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it runs strongly counter to all the normal patterns of allometric scaling relationships across

species that are invariably sublinear (i.e., with exponents <1) (65–67, 89–91). This results from

the brain becoming increasingly energetically more costly during development and stands in

marked contrast to the energetics of all other tissues and organs in the body where economies

of scale dominate. In that case, the larger the organism (or organ) the less metabolic power

is required per unit mass of tissue. Superlinear scaling, on the other hand, means exactly the

opposite: the larger the organism (or, in this case, the brain) the more metabolic power is required

per unit mass of tissue or per cell.

ii) Fig. (1B) shows a similar logarithmic plot for the number of synapses versus brain mass.

The number of synapses is simply the product of synaptic density, ρσ - usually measured with

respect to a local section of grey matter volume - and the volume of grey matter in the brain,

Vg: Nσ = ρσVg. Fig. (1B and Supp. Info. 4) yields a scaling exponent of 1.23± 0.09, which is

consistent with our prediction, Eq. (6), from the scaling of brain metabolic rate as well as with

the scaling of white matter with grey matter across species.

iii) Lastly, we evaluate our predictions based on a much more comprehensively measured

property, namely the volume of white matter as a function of brain mass. Fig. (1C) shows a plot

for this relationship that reveals a scaling exponent of 1.21±0.08, consistent with our predictions

and the other two estimates of α.

These results show that the value of the superlinear exponent α is in the range from 1.20 to

1.60. We now use this in Eqs. (1-5) to predict how sleep time ratios, such as tS/tA and tR/tS ,

scale with brain and body size. Recall that the predictions depend on whether sleep function

is dominated by neural repair or neural reorganization. If it is based on neural repair, Eq. (1)

predicts that tS/tA scales with an exponent between 0.20 and 0.60, and that the fraction of

REM sleep (tR/tS) is invariant with respect to brain mass. In contrast, if neural reorganization

dominates, we predict from (4) that tR/tA scales with an exponent between -1.20 and -0.40 if
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driven primarily by REM sleep, whereas if it is driven primarily by NREM sleep, tNR/tA scales

with an exponent between -1.20 and -0.40. This provides a remarkably clean test for discerning

between different underlying mechanisms for sleep, and whether they occur during REM or

NREM sleep.

In Fig. (2) we analyze data and provide strong statistical evidence for the existence and

sharpness of the transition from early to late development. To identify the location of the

transition and measure its sharpness, we focus on two independent measures of sleep that are

related to total sleep time and the NREM/REM sleep trade-off, tS/tA and tNR/tA. To determine

the transition point in brain mass for each of these sleep ratios, we choose all possible break

points in the data for Mb and calculate the corresponding Sum of Squared Errors (SSE) of the

residuals from the two best fit straight lines on either side of each possible break point. As

observed in Fig. (2), there are unique and sharp minima at almost exactly the same value of Mb

in both plots, corresponding to the same age in development. Based on these results, we identify

the transition point to be at 2.4 years old, consistent with the age range of 2 to 3 years old that

corresponds to many known transitions in brain development (81–84, 92).

In Fig. (3) we present plots of the various sleep time ratios versus brain mass, demonstrating

clearly that all of the data for sleep time ratios exhibit a clear transition from early to late

development. Using our compiled developmental data for sleep in humans, we test predictions

from the theory and are thereby able to determine the underlying mechanisms of sleep.

Fig. (3A) shows that the scaling exponent for the ratio of sleep to awake time, tS/tA, during

early development (< 2.4 years) is −0.33± 0.07, in the opposite direction (decreasing with size

rather than increasing) and strongly at odds with the predictions from neural repair. Similarly, in

Fig. (3B) we see that the scaling exponent for the fraction of REM sleep, tR/tS , is −0.60± 0.06

during early development, again in complete contradiction to the invariance predicted from neural

repair. On the other hand, from Fig. (3C) the ratio of REM sleep time to awake time, tR/tA,
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Figure 2: Plots of the Sum of Squared Errors (SSE) for the residuals of the two best-fit lines to data for (A)
ln(tS/tA) and (B) ln(tNR/tA) on either side of a break point in the lines that corresponds to that value of the
logarithm of brain mass (Mb). The minimum of each curve is identified as the transition point that divides sleep
function into early and late developmental stages as described by our theory. These minima are unique and have
values of Mb = 1.14 kg for the transition in tS/tA and Mb = 1.15 kg for the transition in tNR/tA, corresponding
to ages of 2.4 to 2.5 years old respectively.

has an exponent of −1.00± 0.05, consistent with the prediction that assumes sleep function is

primarily driven by neural reorganization during REM sleep. Finally, as a consistency check

on this, Fig. (3D) reveals that the corresponding exponent for the ratio of NREM sleep time to

awake time, tNR/tA, is 0.09± 0.09, consistent with it being an invariant and strongly counter to
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Figure 3: A. Plot of the logarithm of the ratio of total sleep time to total awake time per day versus the logarithm
of brain mass with measured slope -0.33 before transition and -3.50 after. B. Plot of the logarithm of the ratio of
REM sleep time to total sleep time per day versus the logarithm of brain mass with measured slope -0.60 before
transition and -0.01 after. C. Plot of the logarithm of the ratio of REM sleep time to total awake time per day versus
the logarithm of brain mass with measured slope -1.00 before transition and -5.10 after. D. Plot of the logarithm of
the ratio of NREM sleep time to total awake time per day versus the logarithm of brain mass with measured slope
0.09 before transition and -3.16 after.

the predictions assuming that sleep function is primarily driven by neural reorganization during

NREM sleep.

As a further test of our predictions, we return to Equation (5). Because the observed scaling of
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Table 1: Early Development (<2.4 years)

Ratio measured
exponent

REM reorg. pre-
diction

NREM reorg.
prediction

repair
prediction

tS/tA −0.33± 0.07 NA NA 0.20 to 0.60
tR/tS −0.60± 0.06 -0.87 to -0.07 NA 0
tR/tA −1.00± 0.05 -1.20 to -0.40 NA NA

tNR/tA 0.09± 0.09 NA -1.20 to -0.40 NA

Table 1. Summary of the key empirical results and theoretical tests of our model for the various ratios
of sleep times in the first column during the period of early development (< 2.4 years old). The second column
contains the values and 95% confidence intervals (CI) for the scaling exponents as determined from direct empirical
data, whereas the third through fifth columns contain the ranges of predicted values for the scaling exponents based
on theories that sleep function is primarily for neural reorganization in either REM (3rd column) or NREM (4th
column) sleep or that it is primarily for neural repair (5th column). The range of predicted values is calculated
in each case using the three best-fit estimates for the scaling exponent α from Fig. (1). NA denotes that the
corresponding theory makes no prediction for that specific variable. Predictions that match data are in red. For these
data, the predictions of the theory that sleep function during early development is primarily for neural reorganization
in REM sleep are all supported, whereas the predictions are all rejected that during early development sleep function
is either primarily for neural repair or for neural reorganization during NREM sleep.

tS/tA has an exponent of −0.33, the theory based on REM sleep being for neural reorganization

would predict that the exponent for the fraction of REM sleep, tR/tS , should be between -0.87

and -0.07. This differs significantly from the invariance predicted from neural repair and implies

that the empirically measured exponent of -0.60 provides additional support for sleep function

during early development being tied to neural reorganization in REM sleep.

To summarize: when theoretical predictions are confronted with empirical data, the only

consistent mechanism is that sleep function throughout early development is primarily driven by

neural reorganization during REM sleep. Equally importantly, all other mechanisms are soundly

rejected as can be seen by comparing measured scaling exponents and their confidence intervals

from Figs. 1-3 with predictions from our theory (see Table 1).

The result that REM sleep time takes up about 50% of total sleep time for newborns, whereas

people older than 50 years spend only about 14%− 15% of their sleep time in REM (45), is a

particularly striking result. Indeed, this ontogenetic change is a fundamentally different pattern

than that observed phylogenetically, i.e. across species, in which the fraction of time spent in
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REM sleep does not change from mice to whales. Yet the ontogenetic change is consistent

across phylogeny (45, 93–95). The decline in the fraction of REM sleep strongly suggests the

decreasing importance of reorganization as a function for sleep beyond about human age 2.4

years old, and correspondingly, the ascendance of repair and/or clearance as the primary function

in later development (Table 2). That is, as we grow, the dominance of sleep by processes for

neural reorganization transitions to the dominance by neural repair and clearance. To test this,

we fit the data for tR/tS after the transition point (Fig. (3B)) and find that it has a slope not

significantly different from 0 and therefore consistent with it being an invariant as it is across

adult mammals.

Moreover, if we try to fit a line through these data to connect it with the line at our transition

point, we obtain an R2 value of -0.33 (the negative sign being due to the fixing of the y-intercept),

indicating a terrible fit. Taken together, this means that in later development, as well as across

species, the scaling of the fraction of REM sleep is consistent with the prediction of it being

invariant based on the importance of neural repair and clearance for sleep function. Furthermore,

the fits indicate there is an actual discontinuity in the slope (i.e., first derivative) of this property,

corresponding in physics terminology to a true phase transition (96) and indicative of a seismic

change in sleep and brain function at this early age of around 3 years old.

As further support for the idea that sleep function in later development is for neural repair

and clearance, we measure the scaling exponent of brain metabolic rate, α, beyond this transition

(Supp. Info. E) and find a value of−1.70± 1.66. Using this in Eq. (1) predicts that tS/tA should

scale in this regime with an exponent of −2.70 ± 1.66, which is consistent with the value of

−3.50± 0.12 measured in Fig. (3A). Altogether, this provides compelling evidence in favor of

sleep function being primarily for neural repair and clearance during later development, beyond

about 3 years old, and also into adulthood and across species (1, 42).

In summary, our main results are to
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Table 2: Late Development (>2.4 years)

Ratio measured
exponent

REM reorg. pre-
diction

NREM reorg.
prediction

repair
prediction

tS/tA −3.50± 0.23 NA NA -2.70± 1.66
tR/tS −0.01± 0.52 8.90± 3.55 NA 0
tR/tA −5.10± 0.20 5.40± 3.32 NA NA

tNR/tA −3.16± 0.26 NA 5.40± 3.32 NA

Table 2. Summary of the key empirical results and theoretical tests of our model for the various ratios
of sleep times in the first column during the period of late development (> 2.4 years old). The second column
contains the values and 95% confidence intervals (CI) of the scaling exponents as determined from direct empirical
data, whereas the third through fifth columns contain the ranges of predicted values for the scaling exponents
based on theories that sleep function is primarily for neural reorganization in either REM (3rd column) or NREM
(4th column) sleep or that it is primarily for neural repair (5th column). The 95% confidence intervals for the
predictions are derived from the confidence intervals determined for the scaling exponent α = −1.70± 1.66 in later
development (Fig. (S2)). NA denotes that the corresponding theory makes no prediction for that specific variable.
Predictions that match data are in red. For these data, the predictions of the theory that sleep function during early
development is primarily or neural repair and clearance are all supported, whereas the predictions that during early
development sleep function is primarily for neural reorganization in REM sleep or NREM sleep are all rejected.

1. identify the exact transition point in the function of sleep from reorganization to repair in

the brain and recognize that it tightly corresponds to transitions in brain development.

2. quantitatively demonstrate that this transition, which occurs at 2.4 years old, is remarkably

sharp and analogous to a phase transition, or tipping point, as when water freezes to ice.

3. show that evidence supports the REM-reorganization theory of sleep prior to this early

transition and strongly exclude both NREM-based reorganization and repair-driven mecha-

nisms.

4. show that theories for the function of sleep in late development that are based on neural

reorganization during either REM or NREM sleep are strongly excluded by the data.
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4 Discussion

Sleep is such an engrained and necessary part of our lives that we often take its functions and ori-

gins for granted. Presuming that sleep evolved to serve some primary function, it is almost certain

that multiple physiological functions have piggy-backed onto this pervasive and time-consuming

feature of animal life. Here, by deriving a novel theory, compiling comprehensive data on sleep

and brain development, and quantitatively comparing sleep ontogeny with sleep phylogeny, we

illuminate the dominant functions of sleep and how they change through development. Infants

spend a much greater percentage of time in REM sleep compared with older children and adults.

This finding suggests that REM sleep is likely crucial for the initial growth of babies, and perhaps

especially for the regulation of synaptic weights throughout the nervous system (97). These

substantial changes in percent REM sleep across human growth are in stark contrast with the

constant percentage of REM sleep observed across an enormous range in brain and body size for

adult mammals (42). The large change in percent REM sleep across development is thus a key

indicator that the function of sleep, and particularly of REM sleep, is very different during devel-

opment than in adults. Indeed, it shows that ontogeny does not recapitulate phylogeny because

ontogeny does not show qualitatively similar patterns to phylogeny for REM sleep. Rather, it

differs from it in the most fundamental of ways (e.g., invariance versus rapidly changing) and

exhibits a phase transition between early and late development.

In our analysis we divide development into two regimes: an early period of high plasticity

accompanied by ongoing synaptogenesis and increasing myelination followed by a later period of

declining plasticity, slow synaptic pruning, and increasing white matter integrity and stabilizing

connectivity. Our new theory, mathematical models, and data analysis provide compelling

evidence that these fundamental differences arise because sleep is used primarily for neural

reorganization until about 2 to 3 years of age, at which point there is a critical transition and the
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function shifts sharply towards sleep being for repair and clearance. We identify the specific

turning point as occurring at a surprisingly precise age of around 2.4 years old, reflecting a

critical physiological or cerebral developmental change. In all cases, we see a sharp shift in the

scaling of sleep during this period of early development that to our knowledge has never been

conceptually or quantitatively connected to a shift in sleep function.

When looking at functional brain development in humans (85), Johnson found the first two

years of life is the period that most of the pronounced advances in brain structure and behavior

occur. Brains develop extremely dynamically in the first two years (84), and most brain structures

have the overall appearance of adults by the age of around two. One notable exception is the

delayed development of the prefrontal cortex, the onset of which perhaps corresponds with a

surge in REM sleep around later puberty, which would be predicted by our theory. Overall brain

size increases dramatically during the first two years of life and reaches 80− 90% of adult size

by the age of 2. All of the main fiber tracts are observed by 3 years old (85), and in frontal brain

regions white matter changes most rapidly during the first two years. White matter is associated

with cognitive function (98), so the rapid change of white matter by the age of two helps to

partly explain why reorganization might dominate before 2.4 years of age and then transition

to a different stage. Other critical periods and transitions in early development with regard to

learning and brain function are well known and of great interest, including the acquisition of

language (81–84, 92, 99).

Our ontogenetic findings differ markedly from previous phylogenetic findings both in

terms of the magnitude and sometimes the direction of changes and the corresponding scaling

exponents. These results are quite surprising, yet by transitioning from our model for neural

reorganization to one for repair and clearance, we are able to simultaneously explain the scaling

of sleep time across species as well as across growth. Indeed, repair/clearance (30–32, 100, 101)

and reorganization both occur throughout growth, and in analyzing data and building our theory,
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we hypothesized and showed how each of these dominates during specific developmental stages:

reorganization dominates at early ages whereas repair and clearance dominate at later stages.

Remarkably, our theory explains the scaling with brain and body mass in these two different

regions for quite different reasons. For neural reorganziation, the scaling arises due to the

mismatch between the sub-linear scaling of whole body metabolic rate, which drives information

transfer to the brain, and the super-linear scaling of synapse number and white matter volume. In

contrast, for repair and clearance, the scaling arises because the repair and clearance mechanisms

are proportional to brain mass, while the damage rate is proportional to brain metabolic rate

that scales nonlinearly with brain mass, creating a different type of scaling relationship. These

multiple origins of the scaling of sleep properties during different periods of life history, and how

they arise from different sleep functions, is crucial because it allows us to match our different

theories to the proposed functions for sleep. Another crucial difference is that the scaling

exponents manifest as a steep, super-linear increase in brain metabolic rate with brain size during

early development followed by a subsequent decline in later development.

Given the relative simplicity of the theory, the various sleep and cerebral properties predicted

by our model match empirical data surprisingly well. We are not yet able to predict all measured

sleep properties, but our agreement for such a diverse set of characteristics during ontogenetic

development as well as across phylogeny in adults is impressive. This lends credence to our

assumptions and to the quantitative, mathematical framework that we developed.

One of our most compelling findings is not just that there is a transition, but how sharp that

transition is, leading to complete reversals in direction for scaling relationships and also percent

REM now suddenly changing instead of being invariant as it is across species. Although sleep

always involves a loss of consciousness and characteristic electrical activity, our results suggest

that the underlying dynamics of sleep may change fundamentally around 2 to 3 years of age.

During early development, when substantial synaptogenesis is occurring, connections between
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neurons are likely transitioning from more short-range correlations (e.g., spatially localized

circuits or networks) to more long-range connections (e.g., whole-brain) (102, 103). Moreover,

connections are much more plastic in early development, while they are much more solidified in

later development. From this perspective, the brain is in a more fluid state at birth and ”cools

off” during early ontogeny until a critical point is reached at 2 to 3 years of age that corresponds

to a more crystallized state of brain structure and dynamics.

A central feature of our approach is that it is quantitative, computational, predictive, and can

be readily tested with empirical data. Our findings point towards new and exciting questions

that require more studies. An open question is whether the same ontogenetic patterns in sleep

exist for other species. Humans are known to be unusual in the amount of brain development

that occurs after birth (75). Therefore, it is conceivable that the phase transition described

here for humans may occur earlier in other species, possibly even before birth. Indeed, fetuses

sleep a very large amount of the time (104), but it may be exceedingly difficult to take precise

measurements of metabolic rate or brain mass and thus observe this shift in other species before

birth. Measurements for growth and development in rats, zebra finches, drosophila, c. elegans,

and many other species (27, 105, 105–107) are needed to test how well our theory generalizes to

development in other species and the extent to which these shifts really are phase transitions.
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Supporting Information (SI)

4.1 Equation for mass dependence of total sleep time, tS

We can solve Eq. (1) in the main text by substituting tS = 24 hours− tA to obtain

tS =
24c1M

α−1
b

1 + c1M
α−1
b

(7)

where c1 ≡ cBb,0

PR
with parameters as defined in the main text and Bb,0 representing the normal-

ization constant for relating brain metabolic rate, Bb to brain mass, Mb. Across species, the

scaling exponent is sublinear, α < 1, so α− 1 < 0, resulting in tS ∼ 24hours when Mb becomes

increasingly smaller and tS ∼ Mα−1
b → 0 when Mb becomes increasingly larger. In strong

contrast, within species, the scaling exponent is superlinear, α > 1, so α− 1 > 0, resulting in

tS ∼ 24hours when Mb becomes increasingly larger and tS ∼ Mα−1
b → 0 when Mb becomes

increasingly larger. These limits make it strikingly clear that these predictions are the opposite of

real patterns of sleep during growth.

4.2 Scaling of brain mass with body mass during early development

We note that data confirm that the brain mass of infants scales with their body mass as a power

law whose exponent is 0.72, as shown in Fig. (S1), and that this value is very close to the value

of 3/4 that was used in our predictions for the scaling of sleep properties.

4.3 Determination of transition age

Surveying the plots of our data, we note the sharpest and most dramatic transition of any of

the sleep variables is for the ratio of NREM sleep time to awake time or for REM sleep time

to awake time, strongly supportive of a transition in sleep function. Indeed, this ratio remains

unchanged as a function of brain mass during the earliest stages of development until a transition

occurs after which it steeply decreases. Thus, beyond this transition the fraction of REM sleep
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Figure S1: Plot of the logarithm of brain mass versus the logarithm of body mass before the transition with the
measured slope 0.72.

sharply decrease as a function of brain mass and age. Fig. (2) in the main text displays the data

for this relationship and the dramatic transition from one scaling regime to another is clearly

evident. Our fitting procedure identifies the transition age as 2.4 years old. Notably, there is a

similar transition at roughly the same age in the ratio of sleep time to awake time (Fig. (3A) in

main text) and of REM sleep time to awake time (Fig. (3C) in main text). Because the ratio of

sleep to awake time and REM to awake time are primary drivers of sleep relationships within

our models, these findings are consistent with a general shift in all sleep properties at a common

age. For this reason, we use the following equations to determine the transition point.

min
k1,k2

J(k1, k2) =
t∑
i=1

(yi − k1(xi − x0)− y0)2

+
T∑
i=t

(yi − k2(xi − x0)− y0)2 (8)
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Taking the derivative of J , we have{
∂J
∂k1

= 2
∑t

i=1(yi − k1(xi − x0)− y0)(x0 − xi) = 0
∂J
∂k2

= 2
∑T

i=t(yi − k2(xi − x0)− y0)(x0 − xi) = 0

which implies that the optimal k1 and k2 with the corresponding transition point (x0, y0) are

k1 =

∑t
i=1(yi − y0)(xi − x0)∑t

i=1(xi − x0)2
and k2 =

∑T
i=t(yi − y0)(xi − x0)∑T

i=t(xi − x0)2

4.4 Raw data for scaling of number of synapses in early development

Our plots for number of synapses, Nσ, in the main text were calculated from raw data for synaptic

density, ρσ, and gray matter volume, Vg. Plots of the raw data for these two parameters are shown

in Fig. (S2). Based on the scaling exponents of 0.39 and 0.91 measured in these plots, we would

predict that Nσ ∝M0.39
b M0.91

b = M1.30
b , which is consistent with the measured scaling exponent

for Nσ of 1.23± 0.09 from Fig. 1B in the main text.
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Figure S2: A. Plot of the logarithm of synaptic density versus the logarithm of brain mass before transition with
measured slope 0.39. B. Plot of the logarithm of gray matter versus the logarithm of brain mass before transition
with measure slope 0.91.

31

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 1, 2019. ; https://doi.org/10.1101/827212doi: bioRxiv preprint 

https://doi.org/10.1101/827212
http://creativecommons.org/licenses/by-nc-nd/4.0/


4.5 Scaling of brain metabolic rate during later development

Below we show a plot and measured scaling exponent for how brain metabolic rate, Bb, changes

with brain size, Mb. This scaling exponent as an additional check of our theory for sleep being

for neural repair during later development. We caution against much certainty or interpretation

about the exact value (−2.70) of the exponent and its being significantly larger than the classic

value of −0.25. Importantly, it should be noted that the range in brain mass over this time period

of development is extremely small and the data are quite limited. Both of these properties of

the data call into question the use of logarithmic variables to determine the exact magnitude

of the scaling exponent in this case (91, 108), and the large 95% CI indicate the high degree of

uncertainty in the exact value of this estimate.
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Figure S3: A. Plot of the logarithm of brain metabolic rate versus the logarithm of brain mass after 2.4 years old
with the measured slope -1.70. B. Plot of the logarithm of the white matter volume versus the logarithm of brain
mass after 2.4 years old with the measured slope 0.98.
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Figure S4: Plots of the ratio of REM sleep time to total sleep time per day versus the age for rabbit, rat, and pig,
respectively.

4.6 Scaling of sleep across development in other species

We collect sleep data for three other mammals: rabbit (109), rat (110), and guinea pig (111).

Fig S4 is a plot of the ratio of REM sleep time to total sleep time per day versus the age (days)

for these three species.
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