

1 Abundance, density, and social structure of African forest elephants (*Loxodonta cyclotis*) in a
2 human-modified landscape in southwestern Gabon

3

4 Colin M. Brand^{1*}, Mireille B. Johnson^{2*}, Lillian D. Parker^{3,4}, Jesús E. Maldonado^{3,4}, Lisa Korte²,
5 Hadrien Vanthomme⁵, Alfonso Alonso⁵, Maria Jose Ruiz-Lopez⁶, Caitlin P. Wells^{7,8}, Nelson
6 Ting^{1,8}

7

8 *These authors contributed equally to this work.

9

10 ¹Department of Anthropology, University of Oregon, Eugene, OR, USA

11 ²Gabon Biodiversity Program, Smithsonian Conservation Biology Institute, Gamba, Gabon

12 ³Department of Biosciences, School of Systems Biology, George Mason University, Fairfax,
13 VA, USA

14 ⁴Center for Conservation Genomics, Smithsonian Conservation Biology Institute, National
15 Zoological Park, Washington, DC, USA

16 ⁵Center for Conservation and Sustainability, Smithsonian Conservation Biology Institute,
17 National Zoological Park, Washington, DC, USA

18 ⁶Estacion Biológica de Doñana, Seville, Spain

19 ⁷Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort
20 Collins, CO, USA

21 ⁸Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA

22

23 Corresponding Author:

24 Nelson Ting
25 308 Condon Hall
26 1218 University of Oregon
27 Eugene, OR 97403
28
29 Email: nting@uoregon.edu
30 Telephone: (541) 346-5509

31 **Abstract**

32 The noninvasive monitoring of population size and demography is critical to effective
33 conservation, but forest living taxa can be difficult to directly observe due to elusiveness and/or
34 inaccessible habitat. This has been true of African forest elephants (*Loxodonta cyclotis*), for
35 which we have limited information regarding population size and social behavior despite their
36 threatened conservation status. In this study, we estimated demographic parameters focusing
37 specifically on population size and density using genetic capture-recapture of forest elephants in
38 the southern Industrial Corridor of the Gamba Complex of Protected Areas, which is considered
39 a global stronghold for forest elephants in southwestern Gabon. Additionally, we examined
40 forest elephant sociality through analysis of social networks, predicting that we would find
41 matrilineal structure as exhibited by savanna elephants and other forest elephants. Given 95%
42 confidence intervals, we estimate the size of the population in the sampled area to be between
43 754 and 1,502 individuals and our best density estimate ranges from 0.47 to 0.80 elephants per
44 km². When extrapolated across the entire Industrial Corridor, this estimate suggests an elephant
45 population size of 3,033 to 6,043 in this area based on abundance or 1,684 to 2,832 based on
46 density, which is 40 – 83% smaller than previously suggested. Furthermore, our social network
47 analysis revealed approximately half of network components included females with different
48 mitochondrial haplotypes; this suggests a wider range of variation in forest elephant sociality
49 than has previously been reported. This study emphasizes the threatened status of forest
50 elephants and demonstrates the need to further refine baseline estimates of population size and
51 knowledge on social behavior in this taxon, both of which will aid in determining how
52 population dynamics in this keystone species may be changing through time in relation to
53 increasing conservation threats.

54

55 **Keywords:** conservation genetics, Gamba Complex, genetic capture-recapture, philopatry,
56 dispersal, social networks

57

58 **Introduction**

59 Compared to African savanna elephants, the biology and behavior of African forest
60 elephants (*Loxodonta cyclotis*) remain poorly understood. This knowledge gap may be attributed
61 to their disputed status as a distinct species from *L. africana* (Roca et al. 2001), their cryptic
62 nature, and occupation of difficult to access habitat. Indeed, this last factor limits most
63 behavioral observations of this species to time spent in bais (i.e. forest clearings around a water
64 resource; Fishlock and Lee 2013, Querouil et al. 1999, Turkalo and Fay 1995), although
65 observations have been possible when the elephants occupy coastal or savanna habitats (Morgan
66 and Lee 2007, Mormont 2007, Schuttler et al. 2014b, White et al. 1993). Studies of African
67 forest elephants are critical given their conservation status and recently documented population
68 declines (Maisels et al. 2013, Poulsen et al. 2017), as well as their relevance for understanding
69 the evolution of proboscideans (Meyer et al. 2017, Palkopoulou et al. 2018).

70 Whereas many studies have focused on the feeding ecology of this species (Short 1981,
71 Tchamba and Seme 1993, White et al. 1993), fewer have examined their social behavior. Early
72 models of forest elephant sociality assumed similarities with African savanna elephants, which
73 exhibit a fission-fusion social structure with subunits consisting largely of multiple related
74 females while males are primarily independent and do not consistently associate with a particular
75 subunit (Archie et al. 2006, Douglas-Hamilton 1972, Moss and Poole 1983). Among savanna
76 elephants, Wittemyer et al. (2005) describe a multi-tiered social structure with mother-calf pairs
77 forming the simplest unit, families consisting of multiple mother-calf pairs, kinship groups being
78 composed of multiple families, and clans consisting of multiple kinship groups. Direct
79 observation of forest elephants has revealed that social groups are considerably smaller than
80 those of African savanna elephants with groups typically composed of two to three individuals,

81 often mothers and their dependent offspring (Morgan and Lee 2007, Turkalo et al. 2013).
82 Genetic studies have confirmed that individuals in these small groups are usually highly related
83 (Munshi-South 2011, Schuttler et al. 2014a, Schuttler et al. 2014b). Studies of forest elephants in
84 bails have also revealed that while forest elephant groups differ in size compared to savanna
85 elephant groups, both species exhibit fission-fusion social structure (Fishlock and Lee 2013,
86 Schuttler et al. 2014b). Collectively, these data have furthered our understanding of forest
87 elephant sociality; however, many of these studies have relied on observations of forest elephants
88 in bails. Further study of forest elephants outside of bails are of great importance, especially
89 considering that behavior may differ between bails and other habitats.

90 Many studies of forest elephants have been conducted in national parks or other protected
91 areas (e.g. Fishlock et al. 2008, Munshi-South 2011, Schuttler et al. 2014a,b). However, forest
92 elephants, like many other species, are experiencing increasing contact with humans outside of
93 protected areas as a result of agricultural expansion, resource extraction, and increased
94 urbanization occurring across sub-Saharan Africa and elsewhere. Assessing the potential effects
95 of anthropogenic activity on wildlife biology and behavior by studying forest elephant
96 populations in human-dominated landscapes is now a key research priority (Aherling et al. 2012,
97 Ahlering et al. 2013, Johnson et al. 2019).

98 Forest elephant populations have been dramatically decreasing over the past few decades
99 for a number of reasons including habitat loss and poaching (Blake et al. 2007, Maisels et al.
100 2013). One recent study highlighted major population loss (78-81%) over a decade within a
101 protected area in northeastern Gabon (Poulsen et al. 2017). The authors argued that the primary
102 reason for this decline is attributed to poaching. Collectively, these studies highlight the
103 immediate need not only for measures to protect forest elephants but also for assessing baseline

104 levels and changes in population size, density, and social structure. While genetic studies can be
105 less cost effective than other methods, noninvasive sampling provides more accurate and precise
106 estimates than other traditional census methods (e.g. Arrendal et al. 2007, Guschanski et al.
107 2009). Such census methods (e.g., counting dung piles) have provided initial global estimates of
108 ~100,000 remaining forest elephants (Blanc et al. 2007), with Gabon identified as containing a
109 considerable proportion of individuals. In particular, the Gamba Complex of Protected Areas in
110 southwestern Gabon, which consists of two national parks (Loango and Moukalaba-Doudou) and
111 an intervening Industrial Corridor, has been described as a bastion for forest elephants. Thibault
112 et al. (2001) estimated that the forest elephant population in the entire complex ranged from
113 10,236 to 12,174 in 1999. A recent study by Eggert et al. (2014) speculated that the Industrial
114 Corridor of the Gamba Complex contained approximately 10,000 forest elephants in 2004, which
115 would have been approximately one-tenth of the world's remaining forest elephant population at
116 that time (Maisels et al. 2013). In addition to information about estimated population size, Eggert
117 et al. (2014) found that this corridor has a resident forest elephant population and also serves as
118 additional habitat to elephants whose primary ranges are in the neighboring parks. Elephants in
119 the Industrial Corridor were also found to occur in small, matrilineal groups (Munshi-South
120 2011) and exhibit lower fecal glucocorticoid concentrations than elephants inhabiting
121 neighboring Loango National Park (Munshi-South et al. 2008).

122 The present study has two research questions. 1) How many forest elephants occupy the
123 891 km² area surrounding the town of Gamba in the Industrial Corridor? Based on the previous
124 population size estimate for the entire Industrial Corridor, we optimistically predicted that our
125 study area would contain approximately 3,330 forest elephants assuming relatively homogenous
126 densities across the landscape and a stable population size since 2004 (Eggert et al. 2014). We

127 used genetic capture-recapture to estimate the abundance and density of elephants within our
128 study area, and we also extrapolated these estimates to infer the total elephant population size
129 across the Gamba Complex Industrial Corridor. 2) What is the social structure of these forest
130 elephants? The social structure of African savanna elephant clusters around matrilines with a
131 multi-tiered system (Archie et al. 2006, Moss and Poole 1983) and the limited amount of data on
132 forest elephants appears to suggest this is also true for this taxon (Fishlock and Lee 2013,
133 Munshi-South 2011, Schuttler et al. 2014). We predicted that social network analysis and genetic
134 data would yield networks that are nearly exclusively composed of females with the same
135 mitochondrial haplotype.

136

137 **Methods**

138 *Study Area*

139 The Gamba Complex of Protected Areas in southwestern Gabon (Figure 1) covers
140 approximately 9,600 km² and includes two national parks (Loango National Park, 1,550 km²;
141 Moukalaba-Doudou National Park, 4,500 km²) in addition to an intervening Industrial Corridor
142 (3,585 km²), which holds oil and timber concessions (Alonso et al. 2014, Eggert et al. 2014,
143 Munshi-South 2011, Munshi-South et al. 2008). Our study was conducted within the Industrial
144 Corridor in an 891 km² landscape between Sette Cama in the north and Mayonami in the south
145 (Johnson et al. 2019). This landscape consists of a variety of habitats including grassland,
146 primary forest, secondary forest, and wetlands. The study area also has the highest human
147 population densities in the Gamba Complex, ranging from < 1 to > 60 people per km²
148 (Vanthomme et al. 2013), and features multiple plantations, settlements, and the town of Gamba
149 with a population of > 9,000 people (Alonso et al. 2014, Johnson et al. 2019). The development

150 of this town and the surrounding area is largely the result of oil extraction, which began in the
151 1960s (Alonso et al. 2014, Vanthomme et al. 2013). Further, this landscape includes the
152 infrastructure necessary for oil extraction including buildings, wells, and roads (Johnson et al.
153 2019). Thus, much of the study area is dominated by human residence and/or activity.

154

155 *Sample Collection and Genotyping*

156 Samples were collected non-invasively from fresh dung between June and August 2013
157 (during the dry season) and between October 2013 and March 2014 (the wet season). A sampling
158 grid was constructed using ArcGIS 10.1 (ESRI, 2012) consisting of 100 points with 3 km
159 intervals that covered the research area (Figure 1). On sampling days, three to four points were
160 chosen at random. A team of three people searched for fresh dung 500 m before the point and
161 500 m after reaching the point in the direction of any elephant trails. Fresh trails from the point
162 were also followed for ~150 m.

163 Details on STR (short-tandem repeat) genotyping of dung samples are described in
164 Johnson et al. (2019). Briefly, total genomic DNA was extracted from each sample for genetic
165 analyses. Samples were genotyped at eight dinucleotide microsatellite (STR) loci (Supplement 1)
166 and sexed using two Y-specific loci (*SRY* and *AMELY*) and one X-specific locus (*PLP1*) in a
167 multiplex PCR reaction following Ahlering et al. (2011). We also sequenced a 600 bp segment
168 of the mtDNA control region for all samples using previously established primers that amplify
169 mtDNA in this taxon, MDL3 and MDL5 (Fernando et al. 2000).

170 GENALEX version 6.5 (Peakall and Smouse 2012) was used to determine P(ID), the
171 probability that two individuals randomly drawn from a population have the same multi-locus
172 genotype, and P(ID)_{sib}, the probability that siblings have the same multi-locus genotype, which

173 corrects for shared alleles among relatives and siblings. Thus, these measures test the power of a
174 microsatellite panel to identify unique individuals (Waits et al. 2001). As elephants are highly
175 social and may be associating with kin, we chose the more conservative approach: $P(ID)_{sib}$, using
176 a cutoff of 0.01. We used GENEPOL version 4.2 (Raymond and Rousset 1995) to test for
177 deviations from Hardy-Weinberg equilibrium (HWE) and linkage disequilibrium (LD) across all
178 markers. Fisher's exact test was used to test for a deviation from HWE across all loci. We used
179 the program's Markov chain algorithm to determine departures from HWE and LD for each
180 marker using 100 batches and 1000 iterations. Significance levels were adjusted using a
181 Bonferroni correction. MICROCHECKER version 2.2.1 (Van Oosterhout et al. 2004) was used
182 to detect the presence of null alleles. We used GIMLET version 1.3.3 (Valière 2002) to
183 determine allelic dropout and false allele rates across all loci. GENALEX was used to identify
184 unique individuals from the consensus genotypes, detect individual recapture, and estimate
185 standard measures of genetic diversity. We considered samples with identical mtDNA
186 haplotypes, sex, and STR genotypes to represent recapture of the same individual. We also
187 allowed for samples to differ at one STR locus to represent recapture to account for genotyping
188 error.

189

190 *Estimation of Abundance and Density*

191 We used the package Capwire (Miller et al. 2005, Pennell et al. 2013) in R (R Core Team
192 2016) to estimate elephant abundance in our study area. Capwire generates abundance estimates
193 from capture class frequency data. We classed individuals based on the number of times each
194 unique individual was sampled. We considered samples to be recaptures if they were collected
195 on different days. Capwire features three models to estimate population size: the equal capture

196 model (ECM), the two-innate rates model (TIRM), and the partitioned two-innate rates model
197 (TIRMpart). ECM assumes that all individuals in a given population have an equal probability of
198 being sampled, whereas the TIRM categorizes each individual into one of two classes:
199 individuals that are less likely to be resampled and those that more likely to be resampled (Miller
200 et al. 2005). TIRMpart partitions the data into three different classes and calculates population
201 size using TIRM, but excludes individuals from the third class that were detected a large number
202 of times (Pennell et al. 2013). These individuals violate the assumption of two detection
203 probabilities and may bias the population size estimate, and they thus are excluded. The number
204 of individuals sampled in this third class are added to the point estimate calculated from the two
205 classes for the final partitioned point estimate (Pennell et al. 2013). When generating point
206 estimates we used a maximum population of 10,000 individuals. In addition to the point
207 estimates from both models, we calculated 95% confidence intervals for each using parametric
208 bootstrapping (N=100 bootstraps). We emphasize these confidence intervals, rather than the
209 point estimates, as they are more informative for size estimation and monitoring trends over time
210 (Arandjelovic and Vigilant 2018). All three models assume the target population is closed (e.g.
211 no births, no deaths, no emigration/immigration). We also compared the ECM and TIRM as well
212 as TIRM to TIRMpart using likelihood ratio tests with 100 bootstraps to determine which model
213 best fit our data.

214 We also examined forest elephant density using the spatially explicit R package SECR
215 (Borchers and Efford 2008, Efford 2011). This program estimates density by assuming each
216 individual sampled has a circular home range and that capture probability decreases with
217 increasing distance from the center of that individual's home range. We used an exponential
218 detection function, the default Poisson distribution of home range centers, and a buffer of 2000

219 m, which defines an area outside of the sampling area in which individuals may have a home
220 range center. As some samples were collected near bodies of water (the Atlantic Ocean or the
221 Ngodo Lagoon), we used a 2000 m buffer so as to not include home range centers in unsuitable
222 habitat. This choice in buffer distance is further buttressed by known forest elephant home
223 ranges from radio-collared individuals whose mean home range radii (as estimated by minimum
224 convex polygons) is ~ 8.5 km (Kolowski et al. 2010). We ran two models, a null model as well
225 as a model that examined sex differences in detection. Forest elephant sex ratios are typically
226 female biased (Fishlock and Lee 2013, Turkalo et al. 2013); thus, we modeled for this potential
227 influencing factor in density estimation. While most samples yielded consistent genotypes at the
228 three sex-determining loci, we classified the sex for any samples that did not consistently
229 amplify as unknown. We compared these models using Akaike's Information Criteria corrected
230 for small sample size (AICc) and determined the best fit model using $\Delta\text{AICc} < 2$ (Burnham and
231 Anderson 2002).

232

233 *Sociality Analysis*

234 We used fresh dung samples collected in close proximity to assess patterns of sociality.
235 We excluded any samples that appeared to be of a different age based on appearance (moisture,
236 degradation, etc.) than the surrounding samples ($N = 4$). Previous forest elephant studies have
237 used varying distances to define association. Munshi-South (2011) used a distance of 100 m
238 whereas Schuttler et al. (2014a,b) used 250 m. The latter was described by the authors to be a
239 compromise between 50 m used in Morgan and Lee (2007) for forest elephants and 500 m used
240 for savanna elephants in Wittemyer et al. (2005). As there is no consensus on the appropriate
241 distance to define association in elephants and given that the distance used to define association

242 will determine the subsequent social network, we constructed social networks using both 100 and
243 250 m as defining association. We also constructed a social network using 75 m to assess how
244 different this social network would be compared to the 100 m and 250 m networks. Distances
245 between samples were calculated in ArcMap, version 10.4 (ESRI 2015). Samples in association
246 that were collected on the same day and estimated to have been deposited at the same time
247 (based on the appearance of the sample) were considered to be individuals from the same social
248 group (e.g., Brand et al. 2016).

249 In order to visualize the social organization of the individuals represented in our sample
250 we used the package igraph (Csardi and Nepusz 2006) in R (R Core Team 2016). We coded
251 individual vertices for sex using shape and for mitochondrial haplotype using color.
252 Additionally, we weighted the edges of our social networks using estimated genetic relatedness
253 calculated using ML-Relate (Kalinowski et al. 2006). We excluded individuals that were found
254 in isolation from the network. We visualized networks both with males and without males and
255 report the number of vertices (individuals), edges (associations between individuals), and
256 components (groups of vertices) for each network.

257 In order to examine whether or not relatedness was correlated with association, we used
258 our association data and Queller and Goodnight (1989) relatedness values calculated in
259 GENALEX and ran Mantel tests in R using the package ‘vegan’ (Oksanen et al. 2019).

260

261 **Results**

262 *Sampling, Individual Identification, and Sex*

263 We visited 61 and 82 points in the dry and wet season, respectively, covering 84 of the
264 100 total points. We collected 300 total samples from 31 points. We calculated $P(ID)_{sib}$ to be <

265 0.001 at 7 microsatellite loci. Given the high degree of sociality among forest elephants and need
266 for more loci to distinguish among related individuals/genotypes, we excluded samples that
267 could only be genotyped at fewer than 7 loci (N = 12). Our analysis yielded 288 samples after
268 exclusion, constituting 190 unique individuals. Some elephants were recaptured at the same
269 location and time (N = 53) so we excluded these ‘false recaptures’ for our abundance and density
270 estimates but retained them for our sociality analyses. Recapture rates ranged from one to four
271 (Table 2) and all recaptures matched the capture in sex and haplotype when either could be
272 determined.

273

274 *Genetic Diversity, Hardy-Weinberg Equilibrium, Linkage Disequilibrium, and Null Alleles*

275 Genetic diversity measures from identified individuals are presented in Table 1, and
276 Supplement 1 contains allelic dropout estimates and false allele rates. Our results are consistent
277 with previous studies using these markers in forest elephants inhabiting the Gamba Complex
278 Industrial Corridor, with the presence of loci out of HWE, loci in LD, and null alleles explained
279 by population structure and non-random mating (Eggert et al. 2014, Johnson et al. 2019).
280 Exclusion of the markers that may have contained null alleles did not change our results,
281 including population size estimates, so we included them in our downstream analyses.

282

283 *Estimation of Abundance and Density*

284 Confidence intervals for estimated population abundance varied across three Capwire
285 models (Table 3) from 432 - 683 (ECM) to a high of 754 - 1502 (TIRMpart) (Table 3). These
286 models were significantly different in how well each was supported: the TIRM was better

287 supported than the ECM (likelihood ratio = 43.52, $P < 0.05$) and TIRMpart was better supported
288 than the TIRM ($P < 0.0001$).

289 The null SECR model resulted in a population density of 0.62 elephants per km^2 (95%
290 CI: 0.47-0.80) whereas our SECR model examining sex differences in detection probability
291 indicated 0.64 elephants per km^2 (95% CI: 0.49 - 0.84). Based on AICc values, the first model
292 better fit the data ($\Delta\text{AICc} = 230.49$).

293

294 *Sociality*

295 Overall, we found similarity between our three sets of social networks of varying
296 association radii (75, 100, and 250 m) in that a substantial proportion of networks in all analyses
297 contained females with different mitochondrial haplotypes. Thus, we here present data on the
298 100 m social networks. See Supplement 2 for results from the other networks. When including
299 both sexes, the 100 m social networks consisted of 35 components, 166 edges, and 139 vertices
300 (Figure 2a). The components ranged in size from 2 to 21 individuals. Excluding individuals of
301 unknown sex, 11 components were composed of all females, 3 components were composed of all
302 males, and 20 components consisted of both females and males. One component consisted of two
303 individuals of unknown sex. We detected six mitochondrial haplotypes, all of which have been
304 identified in previous studies (Johnson et al. 2007, Munshi-South 2011). Twenty-two
305 components had more than one female. Twelve of these components (54.5%) exhibited the same
306 mitochondrial haplotype. When males and individuals of unknown sex were excluded from the
307 analysis, the 100 m social network comprised 24 components, 58 edges, and 66 vertices that
308 ranged in size from 2 to 5 individuals (Figure 2b). We could not confirm the presence of multiple
309 haplotypes in 3 components due to individuals lacking haplotype data. Of the 21 components we

310 were able to assess, 12 (57%) had the same mitochondrial haplotype. Our other social networks
311 with different association radii (75 m and 250 m) also included components with females that
312 had different mitochondrial haplotypes whether or not males were included (Supplement 2).

313 Mean relatedness across all sampled individuals was -0.006 ± 0.177 . Among all dyads in
314 all components in the 100 m social network, mean relatedness was 0.184 ± 0.021 . When males
315 and individuals of unknown sex were excluded, mean relatedness between all dyads in all
316 components rose to 0.246 ± 0.033 . Relatedness was significantly, positively correlated with
317 being found in association within 100 m ($r = 0.072$, iterations = 999, $p < 0.01$).

318

319 **Discussion**

320 Our analyses produced different yet overlapping population size estimates using the
321 different Capwire models. Concordant with other genetic capture-recapture studies (e.g. Granjon
322 et al. 2017), we found support for the TIRMpart model, which estimated that between 697 and
323 1,252 forest elephants inhabit our study area. This indicates that this population of forest
324 elephants exhibits heterogeneity in capture probability. Differences in capture probability may
325 reflect sex differences between males and females or may represent male movement in and out
326 of the Industrial Corridor (Eggert et al. 2014). While our sampling period was relatively short (9
327 months) and similar to some sampling periods for other social mammals with slow life histories,
328 such as great apes (e.g. McCarthy et al. 2015, Moore and Vigilant 2014), it is quite likely the
329 population was not completely closed during this time period. In particular, individual elephant
330 movement in and out of the study area may have reduced the likelihood of recapture, particularly
331 because our sampling periods were in different seasons and at least some of the elephants in this
332 population show seasonal movement (Eggert et al. 2014). Analyzing the two sampling sessions

333 separately would also reduce likelihood of recapture, and recent studies have shown that longer
334 sampling periods, despite increasing the likelihood of violating the closed population
335 assumption, yield more precise and accurate population size estimates (Aranjelovic et al. 2010,
336 Granjon et al. 2017). Regardless, violation of the closed population assumption and reduction in
337 recapture probability likely artificially inflates abundance and density estimates, so that our
338 results may actually be optimistic.

339 The best fit SECR model produced density estimates of 0.47 – 0.80 elephants per km²
340 that fall within the known range for forest elephants in Gabon: 0.18 elephants per km² at Monts
341 Birougou National Park to 1.06 elephants per km² at Mwagné National Park (Turkalo et al.
342 2016). There is some evidence that elephants in the Gamba Complex are attracted to roads and
343 other human infrastructure (H. Vanthomme, personal observation). If this is the case and given
344 that sampling tended to be biased toward areas close to roads, these densities may represent the
345 highest densities that can be found in the Gamba Complex.

346 If we extrapolate our results to the area of the entire Industrial Corridor (3,585 km²), we
347 estimate that between 3,033 to 6,043 forest elephants inhabit this area based on abundance or
348 between 1,684 to 2,832 elephants based on density. We note that extrapolation of these numbers
349 assumes homogeneity in the factors that drive density across the landscape, which is unlikely.
350 Since it is possible that human infrastructure may attract elephants, densities may be lower in
351 other parts of the Industrial Corridor, which would make our extrapolated abundance estimates
352 optimistic. Despite this variation, the extrapolated abundance estimates are still quite short of the
353 estimate of 10,000 elephants in the Industrial Corridor (Eggert et al. 2014). This discrepancy
354 may be explained by either differences in methodology and/or a recent decline in forest elephant
355 population size in the Gamba Complex. Given the catastrophic population declines seen

356 elsewhere in Gabon (Poulsen et al. 2017), this latter potential scenario is worrying. However,
357 there is little evidence that elephant hunting and habitat loss in the Gamba Complex is at a rate
358 that would cause such a rapid demographic decline. Still, new infrastructure as well as new
359 mining and oil concessions pose a significant threat and underscore the need to preserve this
360 area, especially given its importance as one of the last remaining forest elephant strongholds
361 (Maisels et al. 2013).

362 We found that relatedness was consistent with our expectations from elephant social
363 structure such that elephants found in association were more related than the mean relatedness
364 across all individuals. Relatedness among associated females was also higher than the mean for
365 all associated individuals. However, contrary to our prediction for forest elephant social structure
366 based on previous studies and assumptions regarding the presence of strong female philopatry,
367 we did not find a high proportion of social networks where females had the same mitochondrial
368 haplotype. Approximately half of the networks exhibited females with only one mitochondrial
369 haplotype, regardless of whether or not males and individuals of unknown sex were included in
370 these networks (54.5% and 57%, respectively). Using a similar approach, a recent study
371 examined social networks in forest elephants at Lopé (Schuttler et al. 2014a) and found that 79%
372 of social network components that had multiple females shared the same mitochondrial
373 haplotype, which is more concordant with the female philopatric social structure typically found
374 in savanna elephants. This suggests that the forest elephants living in the southern region of the
375 Industrial Corridor may exhibit some degree of female dispersal, which is different to what has
376 been assumed and found for other forest elephant populations as well as most African savanna
377 elephants. Johnson et al. (2019) found low but significant F_{ST} values in the mitochondrial DNA
378 of these same animals. However, even modest levels of female dispersal could produce our

379 observed pattern for social networks and relatedness. This departure from the expected pattern of
380 female dispersal could be due to a number of reasons. It is possible that these social networks
381 represent temporary fusion events. Alternatively, forest elephants may show considerable natural
382 variation in social structure with conditional female dispersal as seen in other social mammals
383 (e.g. Wikberg et al. 2012). In relation, local ecological conditions, such as the presence of
384 plantations and/or high human population density, could be driving female dispersal and/or
385 fusion events between different matrilines. As we excluded any samples that were differently
386 aged, it is unlikely that we mistakenly assigned different matrilines feeding from the same
387 resource at different times on the same day as being found in association. Further, multiple
388 haplotypes appear to be more likely detected in closer proximity to human infrastructure, such as
389 plantations. Lastly, it is also possible we are detecting anthropogenic effects such as agriculture
390 or poaching on forest elephant behavior and social structure. For example, Johnson et al. (2019)
391 recently reported on crop raiding in this forest elephant population, and poaching has been
392 previously suggested to explain departures in expected social structure for savanna elephants in
393 Mikumi National Park, Tanzania (Gobush et al. 2009), Queen Elizabeth National Park, Uganda
394 (Nyakaana et al. 2001), and elsewhere (Archie and Chiyo 2012). As poaching disrupts social
395 relationships between females, females left without a social group or smaller social groups may
396 associate with other, unrelated females. Given the smaller size of forest elephant social units
397 compared to savanna elephants (Munshi-South 2011, Schuttler et al. 2014), the death of even one
398 female may result in an individual female without a social group. It's possible that the human
399 dominated landscape in Gamba may act as a refuge from poaching for elephants resulting in
400 multiple sedentary matrilines. However, further research is required to fully understand the
401 anthropogenic and ecological variables that drive variation in forest elephant social structure.

402

403 **Conclusions**

404 This research provides novel baseline information on the forest elephants inhabiting the
405 Gamba Complex. We believe the population size of forest elephants in the Gamba Complex
406 Industrial Corridor, and thus the Gamba Complex of Protected Areas as a whole, to be much
407 smaller (40 – 83% lower) than previously thought. Further, it is possible that our estimates of
408 abundance and density are optimistic. This makes the future survival of forest elephants in
409 general that much more precarious because the Gamba Complex is viewed as a forest elephant
410 stronghold in Gabon, which in turn is seen as the stronghold for the global population of forest
411 elephants. Further, we suggest that the female philopatric nature of forest elephants may be
412 overstated in the current literature, and that forest elephants show a greater range of variation in
413 social structure than previously thought. Lastly, given the difficulty in estimating forest elephant
414 population sizes, we believe that this study provides promise for a standardized method for forest
415 elephant censusing, and expanding and repeating this study is essential to monitor changes in
416 forest elephant population size and sociality. It is clear that African forest elephants face
417 significant threats from habitat loss, hunting and poaching, and other human related activities.
418 Given the slow intrinsic growth rate of this particular taxon (Turkalo et al. 2016), continuous
419 population decline will result in an increasingly difficult population recovery. It is imperative
420 that known populations are monitored to provide accurate and precise data on the status of these
421 populations and the global forest elephant population as a whole.

422

423 **Acknowledgments**

424 We thank the Centre National de la Recherche Scientifique et Technologique for
425 authorizing our study (permits #AR0017/13/MENESTFPRSCJS/CENAREST/CG/CST/CSAR).
426 We also thank the Gabon-Oregon Center, the Smithsonian Conservation Biology Institute, and
427 Shell Gabon for funding, and Rob Fleischer and Nancy McInerney for all their help and support
428 for this project at the Center for Conservation Genomics at the National Zoological Park. Many
429 thanks to our collaborators who contributed to field work: M. Onbenotori, G. R. Mihindou, A.
430 Litona-Boubeya, and N. Simons. We also thank Murray Efford who graciously helped with the
431 SECR analyses. This is contribution #192 of the Gabon Biodiversity Program.

432

433 **References**

434 Ahlering MA, Hailer F, Roberts MT, Foley C. 2011. A simple and accurate method to sex
435 savanna, forest and Asian elephants using noninvasive sampling techniques. Molecular
436 Ecology Resources. 11: 831–834.

437 Ahlering MA, Maldonado JE, Eggert LS et al. 2013. Conservation outside protected areas and
438 the effect of human-dominated landscapes on stress hormones in savanna elephants.
439 Conservation Biology. 27: 569-575.

440 Ahlering MA, Maldonado JE, Fleischer RC, Western D, Eggert LS. 2012. Fine-scale group
441 structure and demography of African savanna elephants recolonizing lands outside
442 protected areas. Diversity and Distributions. 18: 952-961.

443 Alonso A, Dallmeier F, Korte L, Vanthomme H. 2014. The Gabon Biodiversity Program: A
444 conservation research collaboration. Africa Today. 61: 3-15.
445 <https://doi.org/10.2979/africatoday.61.1.3>

446 Arandjelovic M, Head J, Kuehl H, Boesch C, Robbins MM, Maisels F, Vigilant L. 2010.

447 Effective non-invasive genetic monitoring of multiple wild western lowland gorilla
448 groups. *Biological Conservation*. 143: 1780-1791.

449 Arandjelovic M, Vigilant L. 2018. Non-invasive genetic censusing and monitoring of primate
450 populations. *American Journal of Primatology*. e22743.

451 Archie EA, Chiyo PI. 2012. Elephant behaviour and conservation: social relationships, the
452 effects of poaching, and genetic tools for management. *Molecular Ecology* 21: 765-778.

453 Archie EA, Moss CJ, Alberts SC. 2006. The ties that bind: genetic relatedness predicts the
454 fission and fusion of social groups in wild African elephants. *Proceedings of the Royal
455 Society of London B: Biological Sciences*. 273: 513-522.

456 Arrendal J, Vila C, Bjorklund M. 2007. Reliability of noninvasive genetic census of otters
457 compared to field censuses. *Conservation Genetics*. 8: 1097-1107.

458 Blake S, Strindberg S, Boudjan P et al. 2007. Forest elephant crisis in the Congo Basin. *PLoS
459 Biology*. 5: e111.

460 Blanc JJ, Barnes RFW, Craig GC et al. 2007. African elephant status report 2007: an update
461 from the African Elephant Database. Gland (Switzerland): IUCN.

462 Borchers DL, Efford MG. 2008. Spatially explicit maximum likelihood methods for capture-
463 recapture studies. *Biometrics*. 64: 377-385.

464 Brand CM, White FJ, Wakefield ML et al. 2016. Initiation of genetic demographic monitoring of
465 bonobos (*Pan paniscus*) at Iyema, Lomako Forest, DRC. *Primate Conservation*. 30: 103-
466 111.

467 Burnham KP, Anderson DR. 2002. Model selection and multimodel inference: A practical
468 information-theoretic approach (2nd ed.). New York: Springer.

469 Csardi G, Nepusz T. 2006. The igraph software package for complex network research.
470

471 InterJournal. Complex Systems 1695.

472 Douglas-Hamilton I. 1972. On the ecology and behaviour of the African elephant. Oxford (UK):
473 Oxford University Press.

474 Efford MG. 2011. Estimation of population density by spatially explicit capture-recapture
475 analysis of data from area searches. *Ecology*. 92: 2202-2207.

476 Eggert LS, Buij R, Lee ME et al. 2014. Using genetic profiles of African forest elephants to infer
477 population structure, movements, and habitat use in a conservation and development
478 landscape in Gabon. *Conservation Biology*. 28: 107-118.

479 Fernando P, Pfrender ME, Encalada SE, Lande R. 2000. Mitochondrial DNA variation,
480 phylogeography and population structure of the Asian elephant. *Heredity*. 84: 362-372.

481 Fishlock V, Lee PC. 2013. Forest elephants: fission-fusion and social arenas. *Animal Behaviour*.
482 85: 357-363.

483 Fishlock V, Lee PC, Breuer T. 2008. Quantifying forest elephant social structure in Central
484 African bai environments. *Pachyderm*. 44: 17-26.

485 Gobush K, Kerr B, Wasser S. 2009. Genetic relatedness and disrupted social structure in a poach
486 population of African elephants. *Molecular Ecology*. 18: 722-734.

487 Goldenberg SZ, Douglas-Hamilton I, Wittemyer G. 2016. Vertical transmission of social roles
488 drives resilience to poaching in elephant networks. *Currently Biology* 26: 75-79.

489 Granjon AC, Rowney C, Vigilant L, Langergraber KE. 2017. Evaluating genetic capture-
490 recapture using a chimpanzee population of known size. *The Journal of Wildlife
491 Management*. 81: 279-288.

492 Guschanski K, Vigilant L, McNeilage A et al. 2009. Counting elusive animals: comparing field

493 and genetic census of the entire mountain gorilla population of Bwindi impenetrable
494 National Park, Uganda. *Biological Conservation*. 142: 290-300.

495 Johnson MB, Clifford SL, Goossens B et al. 2007. Complex phylogeographic history of central
496 African forest elephants and its implications for taxonomy. *BMC Evolutionary Biology*.
497 7: 244.

498 Johnson MB, Parker LD, Vanthomme H, et al. 2019. Patterns of genetic diversity in African
499 forest elephants living in a human-modified landscape in southwest Gabon. *Conservation
500 Science and Practice*. e76. <https://doi.org/10.1111/csp2.76>.

501 Kalinowski ST, AP Wagner, ML Taper. 2006. ML-Relate: a computer program for maximum
502 likelihood estimation of relatedness and relationship. *Molecular Ecology Notes*. 6: 576-
503 579.

504 Kolowski JM, Blake S, Kock MD, Lee ME, Henderson A, Honorez A, Alonso A. 2010.
505 Movements of four forest elephants in an oil concession in Gabon, Central Africa.
506 *African Journal of Ecology*. 48: 1134-1138.

507 Maisels F, Strindberg S, Blake S, et al. 2013. Devastating decline of forest elephants in Central
508 Africa. *PLoS ONE*. 8: e59469.

509 McCarthy MS, Lester JD, Howe EJ, Arandjelovic M, Stanford CB, Vigilant L. 2015. Genetic
510 censusing identifies an unexpectedly sizeable population of an endangered large mammal
511 in a fragmented forest landscape. *BMC Ecology*. 15: 21.

512 Meyer M, Palkopoulou E, Baleka S, et al. 2017. Paleogenomes of Eurasian straight-tusked
513 elephants challenge the current view of elephant evolution. *eLife*. 6: e25413. DOI:
514 10.7554/eLife.25413.

515 Miller CR, Joyce P, Waits LP. 2005. A new method for estimating the size of small populations

516 from genetic mark-recapture data. *Molecular Ecology*. 14: 1991-2005.

517 Mondol S, Mailand CR, Wasser SK. 2014. Male biased sex ratio of poached elephants is
518 negatively related to poaching intensity over time. *Conservation Genetics*. 15: 1259-
519 1263.

520 Moore DL, Vigilant L. 2014. A population estimate of chimpanzee (*Pan troglodytes*
521 *schweinfurthii*) in the Ugalla region using standard and spatially explicit genetic capture-
522 recapture methods. *American Journal of Primatology*. 76: 335-346.

523 Morgan BJ, Lee PC. 2007. Forest elephant group composition, frugivory and coastal use in the
524 Réserve de Faune du Petit Loango, Gabon. *African Journal of Ecology*. 45:519-526.

525 Mormont L. 2007. Selection de l'habitat et organisation sociale de l'elephant de foret,
526 *Loxodonta africana cyclotis* (Matshie 1900), au Gabon. Doctoral Dissertation, Museum
527 National d'Histoire Naturelle.

528 Moss CJ, Poole JH. 1983. Relationships and social structure of African elephants. In: Hinde RA
529 (Ed). *Primate social relationships: an integrated approach*. pp. 315-325. Oxford:
530 Blackwell Scientific.

531 Munshi-South J, Tchignoumba L, Brown J et al. 2008. Physiological indicators of stress in
532 African forest elephants (*Loxodonta africana cyclotis*) in relation to petroleum operations
533 in Gabon, Central Africa. *Diversity and Distributions*. 14: 993-1001.

534 Munshi-South J. 2011. Relatedness and demography of African forest elephants: Inferences from
535 noninvasive fecal DNA analyses. *Journal of Heredity*. 102: 391-398.

536 Nyakaana S, Abe EL, Arctander P, Siegismund HR. 2001. DNA evidence for elephant social
537 behaviour breakdown in Queen Elizabeth National Park, Uganda. *Animal Conservation*.
538 4: 231-237.

539 Oksanen J, Guillaume Blanchet F, Friendly M et al. 2019. vegan: Community Ecology Package.
540 R package version 2.5-4. <https://CRAN.R-project.org/package=vegan>.

541 Palkopoulou E, Lipson M, Mallick S et al. 2018. A comprehensive genomic history of extinct
542 and living elephants. *Proceedings of the National Academy of Sciences*. 115 : E2566-
543 E2574.

544 Peakall R, Smouse PE. 2012. GenAlEx 6.5: genetic analysis in Excel. Population genetic
545 software for teaching and research-an update. *Bioinformatics*. 28: 2537-2539.

546 Pennell MW, Stansbury CR, Waits LP, Miller CR. 2013. Capwire: a R package for estimating
547 population census size from non-invasive genetic sampling. *Molecular Ecology
548 Resources*. 13: 154-157.

549 Poulsen JR, Koerner SE, Moore S et al. 2017. Poaching empties critical Central African
550 wilderness of forest elephants. *Current Biology*. 27: R134-R135.

551 Queller DC, Goodnight KF. 1989. Estimating relatedness using genetic markers. *Evolution*. 43:
552 258-275.

553 Querouil S, Magliocca F, Gautier-Hion A. 1999. Structure of population, grouping patterns and
554 density of forest elephants in north-west Congo. *African Journal of Ecology*. 37: 161-
555 167.

556 R Core Team. 2016. R: A language and environment for statistical computing. R Foundation for
557 Statistical Computing, Vienna, Austria. URL <https://www.R-project.org/>.

558 Raymond, M. and F. Rousset. 1995. GENEPOP (version 1.2): population genetics software for
559 exact tests and ecumenicism. *Journal of Heredity*. 86: 248-249.

560 Roca AL, Georgiadis N, Pecon-Slattery J, O'Brien SJ. 2001. Genetic evidence for two species of
561 elephant in Africa. *Science*. 293: 1473-1477.

562 Schuttler SG, Philbrick JA, Jeffery KJ, Eggert LS. 2014a. Fine-scale genetic structure and
563 cryptic associations reveal evidence of kin-based sociality in the African forest elephant.
564 PloS One. 9: e88074.

565 Schuttler SG, Whittaker A, Jeffery KJ, Eggert LS. 2014b. African forest elephant social
566 networks: fission-fusion dynamics, but fewer associations. Endangered Species Research.
567 25: 165-173.

568 Short JC. 1981. Diet and feeding behaviour of the forest elephant. Mammalia. 45: 177-185.

569 Tchamba MN, Seme PM. 1993. Diet and feeding behaviour of the forest elephant in the Sanchou
570 Reserve, Cameroon. African Journal of Ecology. 31: 165-171.

571 Thibault M, Walsh PD, Idiata D, Mbina C, Mihindou Y, White LJT. 2001. Inventaire de Grands
572 mammifères dans le Complexe d'Aires Protégées de Gamba en 1998 et 1999.
573 Preliminary report. World Wildlife Fund and Wildlife Conservation Society, Libreville,
574 Gabon.

575 Turkalo A, Fay M. 1995. Studying forest elephants by direct observation: preliminary results
576 from the Dzanga clearing, Central African Republic. Pachyderm. 20:45-54.

577 Turkalo AK, Fay JM. 2001. Forest elephant behavior and ecology: observations
578 from the Dzanga saline. In: Weber W, White LJT, Vedder A, Naughton-Treves L (Eds)
579 African Rainforest Ecology and Conservation. pp. 207-213. New Haven, Connecticut:
580 Yale University Press.

581 Turkalo AK, Wrege PH, Wittemyer G. 2013. Long-term monitoring of Dzanga Bai forest
582 elephants: forest clearing use patterns. PLoS One. 8: e85154.

583 Turkalo AK, Wrege PH, Wittemyer G. 2016. Slow intrinsic growth rate in forest elephants

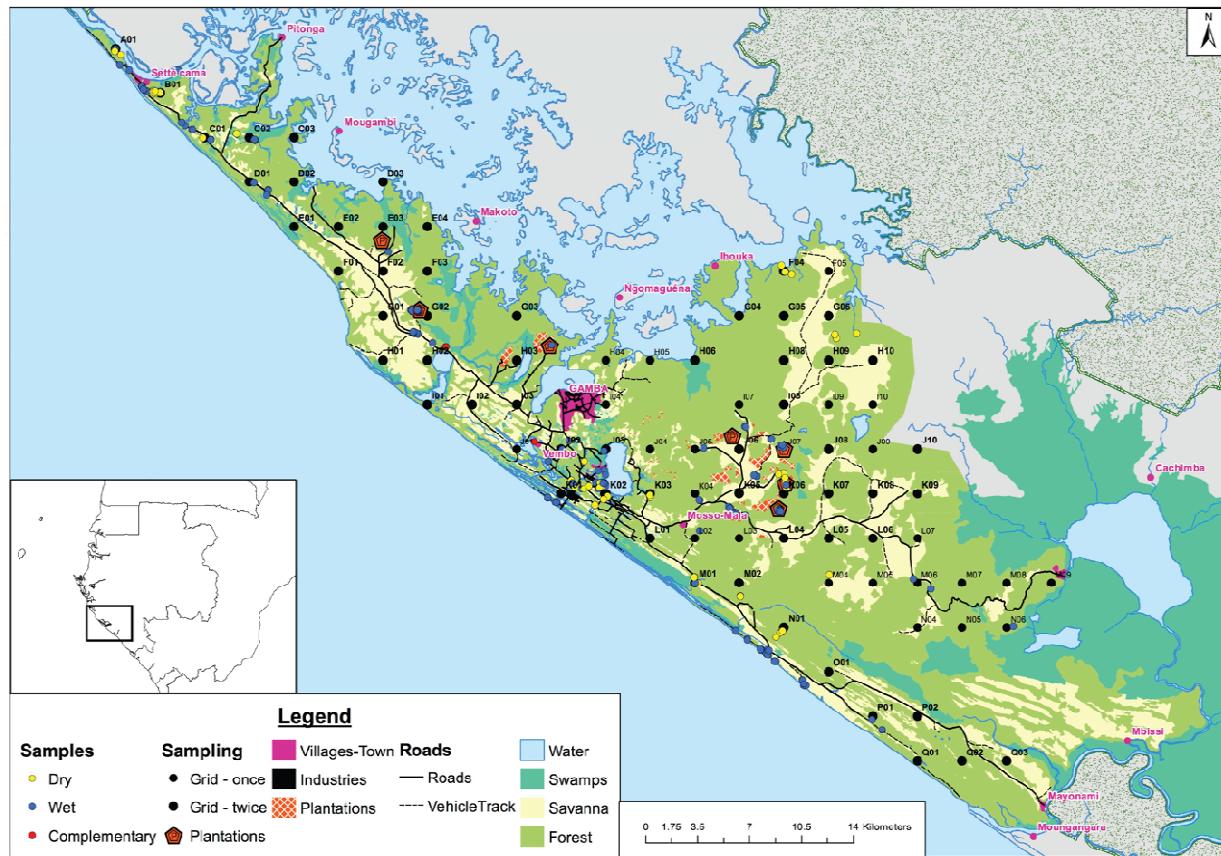
584 indicates recovery from poaching will require decades. *Journal of Applied Ecology*. 54:
585 153-159.

586 Valière N. 2002. GIMLET: a computer program for analysing genetic individual identification
587 data. *Molecular Ecology Notes*. 2: 377-379.

588 Van Oosterhout C, Hutchinson WF, Wills DP, Shipley P. 2004. MICRO-CHECKER: software
589 for identifying and correcting genotyping errors in microsatellite data. *Molecular Ecology*
590 Resources. 4: 535-538.

591 Vanthomme H, Kolowski J, Korte L, Alonso A. 2013. Distribution of a community of mammals
592 in relation to roads and other human disturbances in Gabon, central Africa. *Conservation*
593 Biology. 27: 281-291.

594 Waits LP, Luikart G, Taberlat P. 2001. Estimating the probability of identity among genotypes in
595 natural populations: cautions and guidelines. *Molecular Ecology*. 10: 249-256.


596 White LJT. 1994. Biomass of rain-forest mammals in the Lopé Reserve, Gabon. *Journal of*
597 *Animal Ecology*. 63: 499-512.

598 White LJT, Tutin CEG, Fernandez M. 1993. Group composition and diet of forest elephants,
599 *Loxodonta africana cyclotis* Matschie 1900, in the Lopé Reserve, Gabon. *African Journal*
600 *of Ecology*. 31: 181-199.

601 Wikberg EC, Sicotte P, Campos FA, Ting N. 2012. Between-group variation in female dispersal,
602 kin composition of groups, and proximity patterns in a black-and-white colobus monkey
603 (*Colobus vellerosus*). *PLOS One*. 7: e48740.

604 Wittemyer G, Douglas-Hamilton I, Getz W. 2005. The socioecology of elephants: analysis of the
605 processes creating multitiered social structures. *Animal Behaviour*. 69: 1357-1371.

606

607

608 Figure 1. Location of study area, sampling grid, and sample localities.

609

610

611

612 Figure 2. Social networks. The left network (2a) includes females (circles), males (squares), and
613 individuals of unknown sex (stars) while the network on the right (2b) contains only females.
614 Node color indicates mtDNA haplotype; white nodes are individuals whose mtDNA haplotype
615 could not be determined. Edges are weighted by kinship estimated using ML-Relate with
616 medium weighted lines representing second order relatives and the thickest lines representing
617 first order relatives.

618 Table 1. Genetic diversity measures per locus. Na, number of alleles; Ne, number of effective
619 alleles; Ho, Observed heterozygosity; He, expected heterozygosity; UHe, unbiased expected
620 heterozygosity; F_{IS}, Inbreeding coefficient; HWE, p-values for Hardy-Weinberg equilibrium test.

Marker	Na	Ne	Ho	He	UHe	Fis	HWE
FH126	16	8.703	0.815	0.885	0.887	0.079	NS
FH48R	13	5.175	0.754	0.807	0.809	0.065	< 0.05
FH60R	12	7.071	0.858	0.859	0.861	0.001	NS
FH67	6	4.191	0.774	0.761	0.763	-0.016	NS
FH94R	10	2.942	0.746	0.660	0.662	-0.130	NS
LA4	12	7.037	0.695	0.858	0.860	0.189	< 0.001
LA5	8	4.388	0.684	0.772	0.774	0.114	< 0.01
LA6R	10	3.891	0.784	0.743	0.745	-0.055	NS
Mean	10.875	5.425	0.764	0.793	0.795	0.031	
Std. Dev.	3.09	1.97	0.06	0.07	0.07	0.10	

621

622 Table 2. Capture rate of individual elephants.

Capture(s) (N)	Individuals (N)	Females/Males/Unknowns (N)
1	157	84/65/8
2	25	12/10/3
3	5	2/1/2
4	2	0/2/0
5	1	1/0/0

623

624 Table 3. Forest elephant abundance and density estimates per km² in our study area

Abundance Model (Capwire)	Model Likelihood	Abundance 95% CI (Point Estimate)	Density 95% CI (Point Estimate)
ECM	-1131.598	432 - 683 (530)	
TIRM	-1088.083	604 - 1038 (690)	
TIRMpart	-935.884	754 - 1502 (867)	
Density Model (SECR)			
Null	-484.761		0.47 - 0.80 (0.62)
Sex Differences in Detection Probability	-596.839		0.49 - 0.84 (0.64)

625

626 **Supplements**

627 1. Allelic dropout and false allele rate per locus.

628 2. Additional social networks.