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ABSTRACT

Malignant progression of normal tissue is typically driven by complex networks of somatic
changes, including genetic mutations, copy number aberrations, epigenetic changes, and
transcriptional reprogramming. To delineate aberrant multi-omic tumor features that correlate with
clinical outcomes, we present a novel pathway-centric tool based on the multiple factor analysis
framework called padma. Using a multi-omic consensus representation, padma quantifies and
characterizes individualized pathway-specific multi-omic deviations and their underlying drivers,
with respect to the sampled population. We demonstrate the utility of padma to correlate patient
outcomes with complex genetic, epigenetic, and transcriptomic perturbations in clinically

actionable pathways in breast and lung cancer.
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BACKGROUND

Large sets of patient-matched multi-omics data have become widely available for large-scale

human health studies in recent years, with notable examples including the The Cancer Genome
Atlas (TCGA)! and Trans-omics for Precision Medicine (TOPMed) program. The increasing
emergence of multi-omic data has in turn led to a renewed interest in multivariate, multi-table
approaches? to account for interdependencies within and across data types®. In such large-scale
multi-level data, there is often limited or incomplete a priori knowledge of relevant phenotype
groups for comparisons, and a primary goal may be to identify subsets of individuals that share
common molecular characteristics, design therapies in the context of personalized medicine, or
identify relevant biological pathways for follow-up. With these goals in mind, many multivariate
approaches have the advantage of being unsupervised, using matched or partially matched omics
data across genes, obviating the need for predefined groups for comparison as in the framework
of standard differential analyses. A variety of such approaches has been proposed in recent
years. For example, Multi-omics Factor Analysis (MOFA) uses group factor analysis to infer sets
of hidden factors that capture biological and technical variability for downstream use in sample

clustering, data imputation, and sample outlier detection®.

In multi-omic integrative analyses, an intuitive first approach is to consider a gene-centric analysis,
as we previously proposed in the EDGE in TCGA tool®. Expanding such analyses to the pathway-
level is also of great interest, as it can lead to improved biological interpretability as well as
reduced or condensed gene lists to facilitate the generation of relevant hypotheses. In particular,
our goal is to define a method that quantifies an individual’s deviation from a sample average, at
the pathway-level, while simultaneously accounting for multiple layers of molecular information.
Several related approaches for pathway-specific single-sample analyses have been proposed in

recent years®®. For example, PARADIGM’ is a widely used approach based on structured
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probabilistic factor graphs to prioritize relevant pathways involved in cancer progression as well
as identify patient-specific alterations; both pathway structures and multi-omic relationships are
hard-coded directly in the model, but it requires a discretization of the data and is now a closed-
source software, making extensions and application to other gene sets difficult. Pathway
relevance ranking® integrates binarized tumor-related omics data into a comprehensive network
representation of genes, patient samples, and prior knowledge to calculate the relevance of a
given pathway to a set of individuals. A pathway-centric supervised principal component-based
analysis implemented in pathwayPCA?° performs gene selection and estimates latent variables
for association testing with respect to binary, continuous, and survival outcomes within each set
of omics data independently. Pathifier® instead seeks to calculate a personal pathway
deregulation score (PDS), based on the distance of a single individual from the median reference
sample on a principal curve; this principal curve approach is analogous to a nonlinear principal
components analysis (PCA), but can be applied only to a single-omic dataset (e.g., gene
expression). For both PARADIGM and Pathifier, clusters of scores across pathways are shown

to correlate with clinically relevant clustering of patients.

Here, we extend the basic philosophy of the Pathifier approach to multi-omics data, using an
innovative application of a Multiple Factor Analysis (MFA), to quantify individualized pathway
deviation scores. In particular, we propose an approach called padma (“PAthway Deviation scores
using Multiple factor Analysis”) to characterize individuals with aberrant multi-omic profiles for a
given pathway of interest and to quantify this deviation with respect to the sampled population
using a multi-omic consensus representation. We further investigate the following succession of
guestions. In which pathways are high deviation scores strongly associated with measures of
poor prognosis? For such pathways, which specific individuals are characterized by the most
highly aberrant multi-omic profile? And for such individuals, which specific genes and omics drive

large pathway deviation scores? By providing graphical and numerical outputs to address these
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79 questions, padma represents both an approach for generating hypotheses as well as an
80 exploratory data analysis tool for identifying individuals and genes/omics of potential interest for
81 agiven pathway.
82
83 There is already some precedent for using MFA to integrate multi-omic data, although existing
84  approaches differ from that proposed here. For instance, de Tayrac et al. suggested using MFA
85 for paired CGH array and microarray data, superimposed with functional gene ontology terms, to
86  highlight common structures and provide graphical outputs to better understand the relationships
87  between omics't. In addition, padma shares some similarities with a recently proposed integrative
88  multi-omics unsupervised gene set analysis called mogsa, which is similarly based on a MFA??,
89 By calculating an integrated multi-omics enrichment score for a given gene set with respect to the
90 full gene list, mogsa identifies gene sets driven by features that explain a large proportion of the
91 (global correlated information among different omics. In addition, these integrated enrichment
92  scores can be decomposed by omic and used to identify differentially expressed gene sets or
93 reveal biological pathways with correlated profiles across multiple complex data sets. However,
94  the fundamental difference in the two approaches is that mogsa evaluates pathway-specific
95 enrichment with respect to the entire set of genes, while padma instead focuses on identifying
96 and quantifying pathway-specific multi-omic deviations between each individual and the sampled
97  population.
98
99 RESULTS AND DISCUSSION

100

101 Description of the approach

102

103  Pathway-centric multiple factor analysis for multi-omic data

104
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105 MFA represents an extension of principal component analysis for the case where multiple
106 quantitative data tables are to be simultaneously analyzed 3-8, As such, MFA is a dimension
107  reduction method that decomposes the set of features from a given gene set into a lower
108 dimension space. In particular, the MFA approach weights each table individually to ensure that
109 tables with more features or those on a different scale do not dominate the analysis; all features
110 within a given table are given the same weight. These weights are chosen such that the first
111  eigenvalue of a PCA performed on each weighted table is equal to 1, ensuring that all tables play
112  an equal role in the global multi-table analysis. According to the desired focus of the analysis,
113 data can be structured either with molecular assays (e.g., RNA-seq, methylation, miRNA-seq,
114  copy number alterations) as tables (and genes as features within omics), or with genes as tables
115 (and molecular assays as features within genes). The MFA weights balance the contributions of
116  each omic or of each gene, respectively. In this work, we focus on the latter strategy in order to
117  allow different omics to contribute to a varying degree depending on the chosen pathway. In
118 addition, we note that because the MFA is performed on standardized features, simple differences
119 in scale between omics (e.g., RNA-seq log-normalized counts versus methylation logit-
120 transformed beta values) do not impact the analysis.

121

122  More precisely, consider a pathway or gene set composed of p genes (Figure 1A), each of which
123 is measured using up to k molecular assays (e.g., RNA-seq, methylation, miRNA-seq, copy

124 number alterations), contained in the set of gene-specific matrices X; ,..., X, that have the same
125 n matched individuals (rows) and ji,..., j, potentially unmatched variables (columns) in each,
126  where j, €{1,...,k} for each gene g = 1,...,p. Because only the observations and not the

127 variables are matched across data tables, genes may be represented by potentially different
128  subset of omics data (e.g., only expression data for one gene, and expression and methylation

129  data for another).


https://doi.org/10.1101/827022
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/827022; this version posted November 8, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

130
131 Inthe first step, these data tables are generally standardized (i.e., centered and scaled). Next, an

132 individual PCA is performed using singular value decomposition for each gene table X;, and its

133 largest singular value Ag, is calculated (Figure 1B). Then, all features in each gene table X are
134  weighted by %1 and a global PCA is performed using a singular value decomposition on the
g

135 concatenated set of weighted standardized tables, X* = sl );—f] (Figure 1C). This yields a
14

=7
136  matrix of components (i.e., latent variables) in the observation and variable space. Optionally, an
137 independent set of supplementary individuals (or supplementary variables) can then be projected
138 onto the original representation; this is performed by centering and scaling variables for the
139 supplementary individuals (or individuals for the supplementary variables, respectively) to the
140 same scale as for the reference individuals, and projecting these rescaled variables into the
141  reference PCA space. Note that in the related mogsa approach, supplementary binary variables
142  representing gene membership in gene sets are projected onto a transcriptome-wide multiple
143  factor analysis to calculate gene set scores'?,

144

145 The MFA thus provides a consensus across-gene representation of the individuals for a given
146  pathway, and the global PCA performed on the weighted gene tables decomposes the consensus
147  variance into orthogonal variables (i.e., principal components) that are ordered by the proportion
148  of variance explained by each. The coordinates of each individual on these components, also
149 referred to as factor scores, can be used to produce factor maps to represent individuals in this
150 consensus space such that smaller distances reflect greater similarities among individuals. In
151  addition, partial factor scores, which represent the position of individuals in the consensus for a
152  given gene, can also be represented in the consensus factor map; the average of partial factor

153 scores across all dimensions and genes for a given individual corresponds to the factor score


https://doi.org/10.1101/827022
http://creativecommons.org/licenses/by-nc-nd/4.0/

154

155

156

157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172

173

174

bioRxiv preprint doi: https://doi.org/10.1101/827022; this version posted November 8, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

(Figure 1D). A more thorough discussion of the MFA, as well as its relationship to a PCA, may be
found in the Supplementary Methods.
A B PC2
o E E ® .
o : : BESELRE:
i L
1/A, 1/ 7 1/Ac

Figure 1. lllustration of the padma approach for calculating individualized multi-omic
pathway deviation scores. (A-B) For a given pathway, matched multi-omic measures for
each gene are assembled, with individuals in rows. Note that genes may be assayed for
varying types of data (e.g., measurements for one gene may be available for expression,
methylation, and copy number alterations, while another may only have measurements
available for expression and methylation). (C) Using a Multiple Factor Analysis, each gene
table is weighted by its largest singular value, and per-gene weighted tables are combined
into a global table, which in turn is analyzed using a Principal Component Analysis. (D)
Finally, each individual i is projected onto the consensus pathway representation; the
individualized pathway deviation score is then quantified as the distance of this individual
from the average individual. These scores can be further decomposed into parts attributed

to each gene in the pathway.

Individualized pathway deviation scores

In the consensus space obtained from the MFA, the origin represents the “average” pathway

behavior across genes, omics, and individuals; individuals that are projected to increasingly
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175 distant points in the factor map represent those with increasingly aberrant values, with respect to
176 this average, for one or more of the omics measures for one or more genes in the pathway. To
177  quantify these aberrant individuals, we propose an individualized pathway deviation scored;
178 based on the multidimensional Euclidean distance of the MFA component loadings for each
179 individual to the origin:

180 d? =i fi

181  where f;,corresponds to the MFA factor score of individual i in component |, and L corresponds
182 to the rank of X*. Note that this corresponds to the weighted Euclidean distance of the scaled
183 multi-omic data (for the genes in a given pathway) of each individual to the origin. These
184 individualized pathway deviation scores are thus nonnegative, where smaller values represent
185 individuals for whom the average multi-omic pathway variation is close to the average, while larger
186  scores represent individuals with increasingly aberrant multi-omic pathway variation with respect
187 tothe average. An individual with a large pathway deviation score is thus characterized by one or
188 more genes, with one or more omic measures, that explain a large proportion of the global
189 correlated information across the full pathway.

190

191 Note that the full set of components is used for this deviation calculation, rather than subsetting
192  to an optimal number of components; we remark that due to their small variance relative to lower
193 dimensions, components from larger dimensions contribute relatively little to the overall pathway
194  deviation scores. Finally, to facilitate comparisons of scores calculated for pathways of differing
195 sizes (e.g., the number of genes), deviation scores with respect to the origin are normalized for

196 the pathway size.

197  Decomposition of individualized pathway deviation scores into per-gene contributions

198
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199 In order to quantify the role played by each gene for each individual, we decomposed the
200 individualized pathway deviation scores into gene-level contributions. Recall that the average of
201  partial factor scores across all MFA dimensions corresponds to each individual’s factor score. We
202  define the gene-level deviation for a given individual as follows:

_ S Fulfug=1i)

203 dig = S

204  where as before f; corresponds to the MFA factor score of individual i in component I, L
205  corresponds to the rank of X*, and f;, ;corresponds to the MFA partial factor score of individual i

206 in gene g in component I. Note that by construction, the contributions of all pathway genes to the
207  overall deviation score sum to 0. In particular, per-gene contributions can take on both negative
208 and positive values according to the extent to which the gene influences the deviation of the
209 overall pathway score from the origin (i.e., the global center of gravity across individuals); large
210 positive values correspond to tables with a large influence on the overall deviation of an individual,
211  while large negative values correspond to genes that tend to be most similar to the global average.
212  Inthe following, we additionally scale these per-gene scores by the inverse overall pathway score
213 to highlight genes with highly atypical multi-omic measures both with respect to other genes in
214  the pathway and with respect to individuals in the population.

215

216  Quantifying percent contribution of omics to pathway-centric multiple factor analysis

217

218 The richness of MFA outputs also includes various decompositions of the total variance (that is,
219 the sum of the variances of each individual MFA component) of the multi-omic data for a given
220 pathway. Similarly to a standard PCA, the percent contribution of each axis of the MFA can be
221  calculated as the ratio between the variance of the corresponding MFA component and the total

222  variance; by construction, the fraction of explained variance explained decreases as the MFA
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223 dimension increases. Similarly, the percent contribution to the inertia of each axis for a given omic,
224  gene, or individual can be quantified as the ratio between the inertia of its respective partial
225  projection in the consensus space and the inertia of the full data projection for that axis. These
226  per-gene, per-omic, and per-individual contributions can be quantified for a subset of components
227 (e.g., the first ten dimensions) or for the entire set of components; here, as we calculate
228 individualized pathway deviation scores using the full set of dimensions, we also calculated a
229 weighted per-omic contribution, which corresponds to the average contribution across all
230 dimensions, weighted by the corresponding eigenvalue.

231

232 Application

233

234  TCGA data acquisition and pre-processing

235

236  We illustrate the utility of padma on data from two cancer types with sufficiently large multi-omic
237 sample sizes in the TCGA database: invasive breast carcinoma (BRCA), which was chosen as
238 individuals have previously been classified into one of five molecular subtypes " (Luminal A,
239 Luminal B, Her2+, Basal, and Normal-like), as well as lung adenocarcinoma (LUAD), which was
240  chosen for its high recorded mortality.

241

242  The padma approach integrates multi-omic data by mapping omics measures to genes in a given
243  pathway. Although this assignment of values to genes is straightforward for RNA-seq, CNA, and
244  methylation data, a definitive mapping of miRNA-to-gene relationships does not exist, as miRNAs
245  can each potentially target multiple genes. Many methods and databases based on text-mining
246  or bioinformatics-driven approaches exist to predict miRNA-target pairs 8. Here, we make use of

247  the curated miR-target interaction (MTI) predictions in miRTarBase (version 7.0)°, using only

10
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248  exact matches for miRNA IDs and target gene symbols and predictions with the “Functional MTI”
249  support type. Although the TCGA data used here have been filtered to include only those genes
250  for which expression measurements are available, there are cases where missing values are
251 recorded in other omics datasets (e.g., when no methylation probe was available in the promoter
252  region of a gene, or when no predicted MTIs were identified) or where a given feature has little or
253  no variance across individuals. In this analysis, features for a given omics dataset were removed
254  from the analysis only if missing values are recorded for all individuals or if the feature has minimal
255  variance across all individuals (defined here as < 10® after scaling). After running padma, we
256 remark that the first ten MFA dimensions represent a large proportion of the total multi-omic
257 variance across pathways for both cancers (Supplementary Figure 5; BRCA median = 46.1%,
258 LUAD median = 51.9%).

259

260 As a measure of patient prognosis, we focused on two different metrics. First, we used the
261  standardized and curated clinical data included in the TCGA Pan-Cancer Clinical Resource
262 (TCGA-CDR)? to identify the progression-free interval (PFI). The PFI corresponds to the period
263 from the date of diagnosis until the date of the first occurrence of a new tumor event (e.g.,
264  locoregional recurrence, distant metastasis) and typically has a shorter minimum follow-up time
265 than measures such as overall survival. In the BRCA data, a total of 72 uncensored and 434
266 censored events were recorded (median PFI time of 792 and 915 days, respectively); among
267 LUAD individuals, a total of 65 uncensored and 79 censored events were recorded (median PFI
268 time of 439 and 683 days, respectively). Second, we used the histological grade for breast cancer,
269  which is an established cancer hallmark of cellular de-differentiation and poor prognosis?

270 (downloaded from http://legacy.dx.ai/tcga _breast on March 7, 2019). Tumors are typically graded

271 by pathologists on a scale of 1 (well-differentiated), 2 (moderately differentiated), or 3 (poorly

272  differentiated) based on three different measures, including nuclear pleomorphism,

11
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273  glandular/tubule formation, and mitotic index, where higher grades correspond to faster-growing
274  cancers that are more likely to spread (Supplementary Table 1).

275

276  Large deviation scores for relevant oncogenic pathways are associated with survival in lung

277  cancer

278

279  The first question we address is the prioritization of pathways that are associated with a given
280 phenotype of interest. After processing the TCGA data and assembling the collection of gene
281  sets, we sought to identify a subset of pathways for which deviation scores were significantly
282  associated with patient outcome, as measured by PFI. To focus on pathways with the largest
283  potential signal (i.e., those for which a small number of individuals have very large deviation
284  scores relative to the remaining individuals) we consider only those with the most highly positively
285  skewed distribution of deviation scores. For each of the top 5% of pathways (n = 57) ranked
286  according to their Pearson’s moment coefficient of skewness, we fit a Cox proportional hazards
287  (PH) model for the PFI on the pathway deviation score. Using the Benjamini-Hochberg?? adjusted
288  p-values from a likelihood ratio test (FDR < 5%), we identified 14 pathways with deviation scores
289 that were significantly associated with the progression-free interval in lung cancer (Table 1; see
290 Supplementary Table 2 for the full gene lists in each pathway); for all of these, higher pathways
291  scores corresponded to a worse survival outcome. Note that the filtering on skewness of the
292  pathway scores is performed completely independently of the survival phenotype, ensuring that
293  the downstream survival analysis is not biased 23. Of note, while candidates within the majority
294  deviated pathways (Table 1) have been univariately associated with patient outcome (e.g., cell
295  cycle, DNA repair, and apoptosis 24?°), the padma TCGA analysis is unique in its ability to extend
296 these associations across multiple gene patient-specific perturbations within a pathway at the
297  genomic and transcriptomic RNA levels.

298

12
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299 The detection of several pathways related to DNA repair (ATM, Homologous DNA repair,
300 BRCAL/2-ATR; Tablel), as well as cell cycle and apoptosis related pathways, prompted us to
301 consider is whether these pathway deviation scores are simply acting as proxies for the tumor
302 mutational burden (i.e., the total number of nonsynonymous mutations) for each individual. To
303 investigate this, we estimated the mutational burden for each individual by counting the number
304  of somatic nonsynonymous mutations in a set of cancer-specific driver genes (n=183 and n=181
305 genes in breast and lung cancer, respectively) identified by IntOGen?8. After adding a constant of
306 1 to these counts and log-transforming them, we fit a linear model to evaluate their association
307  with the pathway deviation scores; after correcting p-values from the Wald test statistic for multiple
308 testing (FDR < 10%), no pathways were found to be associated with the mutational burden. In
309 addition, when repeating the Cox PH model described above including the log-mutational burden
310 as an additional covariate, adjusted p-values were generally similar to previous values, and the
311 top six pathways remained significant at a significance threshold of 5%. This suggests that the
312  biological signal contained in the pathway deviation scores is indeed independent of that linked

313 to mutational burden.

314
Pathway name Pathway database ngljl..lg_ :'a?izjrd ggr:es
D4-GDI (GDP dissociation inhibitor) signaling pathway Biocarta 0.0111 | 1.2692 13
NF-kB activation through FADD/RIP-1 pathway mediated | Reactome 0.0111 | 1.2839 12
by caspase-8 and -10
Class | PI3K signaling events mediated by Akt PID 0.0251 | 1.1700 35
ATM signaling pathway Biocarta 0.0265 | 1.1644 20
CARML1 and regulation of the estrogen receptor Biocarta 0.0265 | 1.1426 35
Homologous recombination repair of replication- Reactome 0.0265 | 1.2432 16
independent double-strand breaks
Role of BRCA1, BRCAZ2, and ATR in cancer susceptibility | Biocarta 0.0467 1.1823 21

13
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CD40L signaling pathway Biocarta 0.0467 | 1.1880 15
Induction of apoptosis through DR4 and DR4/5 death Biocarta 0.0467 | 1.1208 33
receptors

Cell cycle: G1/S check point Biocarta 0.0467 | 1.1263 28
Double stranded RNA induced gene expression Biocarta 0.0467 | 1.2007 10
Signaling events mediated by HDAC class I PID 0.0467 | 1.1543 25
HIV-1 Nef: Negative effector of Fas and TNF-alpha PID 0.0467 | 1.1268 35
Regulation of telomerase PID 0.0467 | 1.0950 68

Table 1. Pathways whose deviation scores are significantly correlated with progression-
free interval in lung cancer. Hazard ratios and adjusted p-values correspond to a Cox PH
model for pathway deviation alone, with FDR < 5%. The number of genes for each pathway
corresponds to the number of genes with expression quantified by RNA-seq in the TCGA

data.

Padma identifies individualized aberrations in the D4-GDP dissociation inhibitor signaling

pathway in lung cancer

To illustrate the full range of results provided by padma, we focus in particular on the results for
the D4-GDP dissociation inhibitor (GDI) signaling pathway. D4-GDI is a negative regulator of the
ras-related Rho Family of GTPases, and it has been suggested that it may promote breast cancer
cell proliferation and invasiveness 2”28, The D4-GDI signaling pathway is made up of 13 genes;
RNA-seq, methylation, and CNA measures are available for all 13 genes, with the exception of
CYCS and PARP1, for which no methylation probes were measured the promoter region. In
addition, miRNA-seq data were included for one predicted target pair: hsa-mir-421 — CASP3.
Over the 13 genes in the pathway, 130 of the 144 individuals had no honsynonymous mutations,
while 13 and 1 individuals had 1 or 3 such mutations; ARHGAP5 and CASP3 were most often

characterized by mutations (3 individuals affected for each). Notably, although the D4-GDI
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334 pathway has been previously implicated in breast cancer aggressiveness "8, this is to our
335 knowledge the first evidence suggesting that D4-GDI pathway might play a similar role in
336  promoting lung cancer.

337

338  Using the multi-omic data available for the D4-GDI signaling pathway, we can use the outputs of
339 padma to better understand the individualized drivers of multi-omic variation. In particular, it is
340 possible to quantify both gene-specific deviation scores as well as an overall pathway deviation
341  score for each individual, respectively based on the set of partial or full MFA components. We first
342  visualize the scaled gene-specific deviation scores for the top and bottom decile of individuals,
343  according to their overall pathway deviation score (Figure 2); these groups thus correspond to the
344  individuals that are least and most similar to the average individual within the population. We
345  remark that the 10% of individuals with the most aberrant overall scores for the D4-GDI signaling
346  pathway, who also had a high 1- and 5-year mortality rate, are those that also tend to have large
347 aberrant (i.e., red in the heatmap) scaled gene-specific deviation scores for one or more genes.
348 For example, the two individuals with the largest overall scores, TCGA-78-7536 and TCGA-78-
349 7155 (12.79 and 12.31, respectively), both had large scaled gene-specific scores for CASP3
350 (12.93 and 17.05, respectively), CASP1 (27.80 and 10.85, respectively), and CASP8 (29.72 and
351  22.61, respectively). While a subset of five individuals from the top decile were all characterized
352 by high deviation scores for JUN (TCGA-64-5775, TCGA-55-6972, TCGA-50-5051, TCGA-44-
353 6779, TCGA-49-4488), several other genes appear to have relatively small deviation scores for
354  all individuals plotted here (e.g., PRF1, PARP1). In addition, we remark the presence of highly
355 individualized gene-specific aberrations (e.g., APAFL1 in individual TCGA-55-7725).

356

357  To provide an intuitive link between these gene-specific deviation scores with the original batch-
358 corrected multi-omics data that were input into padma, we further focus on the three genes

359 (CASP1, CASP3, and CASPS8) for which large deviation scores were observed for the two highly
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360 aberrant individuals (TCGA-78-7536 and TCGA-78-7155) in the D4-GDI signaling pathway. We
361  plot boxplots of the Z-scores for each available omic for the three genes across all 144 individuals
362  with lung cancer (Figure 3), specifically highlighting the two aforementioned individuals; full plots
363  of all 13 genes in the pathway are included in Supplementary Figure 1. This plot reveals that both
364 individuals are indeed notable for their overexpression, with respect to the other individuals, of
365 miRNA hsa-mir-421 (Figure 3D), which is predicted to target CASP3; in coherence with this, both
366 individuals had weaker CASP3 expression than average (although we note that its expression
367  was not particularly extreme with respect to the full sample). Individual TCGA-78-7536 appears
368 to have a hypomethylated CASP1 promoter, but a significantly higher number of copies of CASPS,
369  while individual TCGA-78-7155 is characterized by a large underexpression of CASP8 with
370 respect to other individuals. Both individuals appear to have deletions of CASP3, and
371 hypermethylated CASP8 promoters. This seems to indicate that, although the large overall
372  pathway deviations for these two individuals share some common etiologies, each also exhibit
373  unique characteristics.

374
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376 Figure 2. Scaled per-gene deviation scores for the D4-GDI signaling pathway for
377 individuals corresponding to the top and bottom decile of overall pathway deviation scores.
378 Red scores correspond to highly aberrant gene scores with respect to each individual's
379 global score, while blue indicates gene scores close to the overall population average.
380 Annotations on the left indicate the 6-month, 1-year, and 5-year survival status (deceased,
381 alive, or censored) and overall pathway deviation score for each individual. Genes and
382 individuals within each sub-plot are hierarchically clustered using the Euclidean distance
383 and complete linkage.
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Figure 3. Boxplots of Z-scores of gene expression (A), copy number alterations (B),
methylation (C), and miRNA expression (D) for all individuals with lung cancer, with the 3
genes (CASP1, CASP3, CASP8) and one miRNA (hsa-mir-421, predicted to target
CASP3) of interest in the D4-GDI signaling pathway. The two individuals with the largest
pathway deviation score (TCGA-78-7155, TCGA-78-7536) are highlighted in red and

turquoise, respectively.

As overall pathway deviation scores represent the multi-dimensional average of these gene-
specific deviation scores, a deeper investigation into them can also provide useful insight for a
given pathway. We first note that the distribution of deviation scores for the D4-GDI signaling
pathway (Figure 4A) is highly skewed, with a handful of individuals (e.g., TCGA-78-7536, TCGA-
78-7155, TCGA-91-6847, TCGA-50-5931, TCGA-50-5051, and TCGA-66-7725) characterized by
particularly large scores with respect to the remaining individuals. The individual with the most
aberrant score for this pathway, TCGA-78-7536, had a single pathway-specific somatic mutation
in the CASP1 gene, and a total of 7 cancer-specific driver gene mutations (corresponding to the
80th percentile of individuals considered here). Although these pathway deviation scores are

calculated across all dimensions of the MFA, it can also be useful to represent individuals in the
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407  first few components of the consensus MFA space (Figure 4B); the farther away an individual is
408 from the origin over multiple MFA dimensions, the larger the corresponding pathway deviation
409  score. In this case, we see that TCGA-78-7536 is a large positive and negative outlier in the
410 second (9.55% total variance explained), and third (8.07% total variance explained) MFA
411  components, respectively, although less so in the first component (11.97% total variance
412  explained). In addition, we note that RNA-seq is the major driver of the first MFA dimension
413  (54.38% contribution), while promoter methylation and copy number alterations take a larger role
414  in the second and third dimensions (42.29% and 59.18% contribution, respectively). miRNA
415  expression appears to play a fairly minor role in the MFA, with its maximum contribution (21.14%)
416  occurring at only the 16th dimension.

417

418 When examining the partial factor maps for this individual over the first three MFA dimensions
419  (Figures 4C-D), we note the large contribution of CASP3 (axis 1), CASP10 (axis 2), CASP1 and
420 CASP 8 (axis 3), as evidenced by their distance from the origin in these dimensions. Overall, this
421 is coherent with the previous gene-level analyses (Figure 2), where hypomethylation in CASP1
422  and large copy number gains for CASP3 and CASP8 with respect to the population were identified
423  for this individual. Other individuals with large overall deviation scores (e.g., TCGA-50-5931) are
424  not obvious outliers in the first two MFA dimensions, reflecting the fact that additional dimensions
425  play a more important role for them. Taken together, the individualized gene-specific and overall
426  pathway deviation scores output by padma provide complementary and interesting exploratory
427  insight into atypical multi-omic profiles for a given pathway of interest (here, the D4-GDI signaling
428  pathway in lung cancer).

429
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Figure 4. (A) Distribution of pathway deviation scores for the D4-GDI signaling pathway
in lung cancer; individuals with unusually large scores are labeled. (B) Factor map,
representing the first two components of the MFA for the D4-GDI signaling pathway in lung
cancer, with normal confidence ellipse superimposed. Individuals with extreme values in
each plot are labeled with their barcode identifiers and colored by the number of pathway-
specific nonsynonymous mutations. For the individual circled in red, TCGA-78-7536, a
partial factor map representing the first MFA components 1 and 2 is plotted in (C), and
MFA components 1 and 3 in (D). The large black dot represents the individual’s overall
pathway deviation score, as plotted in panel (B) for the first two axes, and gene-specific

scores are joined to this point with dotted lines.
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443  Pathway deviation scores globally recapitulate histological grade in breast cancer

444

445  For some cancers, additional clinical phenotypes beyond survival information may be of particular
446 interest; to illustrate the use of padma in such a case, we focus on histological grade for breast
447  cancer. To quantify whether pathway deviation scores tend to be associated with histological
448 grade in breast cancer, we performed a one-way ANOVA on the three measures that comprise
449 histological grade for each of the 1136 pathways. Based on the Benjamini-Hochberg?? adjusted
450  p-values from an F-test (FDR < 5%), all (1136) or nearly all (1135) pathways were found to have
451  deviation scores that are significantly correlated with mitotic index and nuclear pleomorphism.
452 Intriguingly, no pathways were found to be associated with degree of glandular/tubule formation;
453  this may in part be due to the large proportion of individuals identified as grade Il (poorly
454  differentiated) for this measure (n = 285). The rankings of pathways based on mitotic index and
455  nuclear pleomorphism were generally in agreement (Supplementary Figure 2). In all but two
456 cases, higher deviation pathway scores corresponded to the higher grades for these two
457  measures, corresponding to more aggressive tumors; the two exceptions were the Presynaptic
458 nicotinic acetylcholine receptor and Highly calcium permeable postsynaptic nicotinic acetylcholine
459  receptor pathways (both from Reactome), for which the largest pathway deviation scores were
460 associated with grade I, rather than grade lll, of the mitotic index.

461

462  To prioritize pathways among this list, we calculated the rank product of the individual rankings
463 by p-value for mitosis and nuclear pleomorphism; the top 10 pathways according to this joint
464  ranking are shown in Table 2 (see Supplementary Table 3 for the full gene lists in each pathway).
465  The signaling by Wnt pathway, which is made up of 63 genes, had the highest combined ranking
466  for these two histological measures. Of this set of genes, all had RNA-seq, methylation, and CNA
467 measures available, with the exception of FAM123B and PSMD10 (no CNA measures with

468 nonzero variance) and PSMB1 to PSMB10, PSMC2, PSMC3, PSMC5, PSMC6, PSME1, and
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PSME2 (no promoter methylation measures). miRNA-seq data were included for only two
predicted target pairs: hsa-mir-375 =CTNNB1 and hsa-mir-320a - CTNNBL1. Over the 63 genes
in the pathway, 453 individuals had no nonsynonymous mutations, while 39, 6, 3, 2, and 1
individuals had 1, 2, 3, 4, or 5 such mutations; APC, PSMD1, and FAM123B were most often
characterized by mutations (10, 7, and 7 individuals affected, respectively).
Pathway Pathway Combined | # of
name database ranking genes
Signaling by Wnt Reactome 3.16 63
Apoptotic execution phase Reactome 5.00 52
APC/C:Cdh1 mediated degradation of Cdc20 and other APC/C:Cdhl
targeted proteins in late mitosis/early G1 Reactome 6.78 64
Genes involved in Beta-catenin phosphorylation cascade Reactome 10.49 16
Autodegradation of Cdhl by Cdh1l:APC/C Reactome 10.95 56
Genes involved in M/G1 transition Reactome 11.62 72
Regulation of the Fanconi anemia pathway Reactome 13.93 7
Apoptotic cleavage of cellular proteins Reactome 14.14 38
Apoptosis Reactome 14.28 143
ER-phagosome pathway Reactome 15.62 58

Table 2. Pathways whose deviation scores are significantly correlated with measures of
histological grade (mitosis, nuclear pleomorphism) in breast cancer. Adjusted p-values
after Benjamini-Hochberg correction were < 3.31 x 10712 for all pathways presented in the
table. Combined ranks correspond to the rank product of the individual rankings from
mitosis and nuclear pleomorphism, and the number of genes for each pathway
corresponds to the number of genes with expression quantified by RNA-seq in the TCGA

data.

Similarly to the distribution of D4-GDI pathway scores in lung adenocarcinomas, a small number

of breast cancer patients are characterized by highly aberrant scores in the signaling by Wnt
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485 pathway, including TCGA-BH-A1FM, TCGA-E9-A22G, and TCGA-EW-A1PH, and the number of
486  pathway-specific honsynonymous somatic mutations does not appear to be related to this score.
487  The associated factor map on the first two dimensions of the MFA (Figure 5A) clearly captures
488  relevant biological structure from the data, as evidenced by the quasi-separation of individuals in
489  different intrinsic inferred molecular subtypes (AIMS). Notably, individuals with Basal and Luminal
490 A breast cancer are clearly separated in the first two dimensions and tend to respectively have
491 positive and negative loadings in the first dimension of the MFA; Luminal B and Normal-like
492  subtypes largely overlap with the Luminal A subtype for this pathway, while Her2 is located
493 intermediate to the Luminal and Basal subtypes, as could be anticipated due to the equal
494  prevalence of Her2 amplification in both Luminal and Basal subtypes. Similar relevant biological
495  signal can be seen when considering a larger spectrum of pathways (Figure 5C). In particular,
496 individuals with the Basal and Luminal B subtypes tend to have much more highly variant
497  deviation scores across all pathways, whereas Luminal A and Normal-like subtypes are generally
498  much less variant.

499

500 When examining the percent contribution of each omic to the axes of the MFA for the Wnt
501 signaling pathway (Figure 5B), we remark the preponderant contribution of gene expression to
502  the first component (84.40%), while variability in the second component is largely driven by both
503 gene expression and copy numbers (45.66 and 35.37%, respectively). The large role played by
504 RNA-seq here is coherent with the definition of the AIMS subtypes themselves, which are defined
505 on the basis of gene expression. On average, after weighting by the eigenvalue of each
506 component, gene expression and copy number alterations were found to have similar
507  contributions to the overall variation (36.6%, 35.4%, respectively), while methylation played a less
508 important role (26.8%). For this pathway, as for most others we studied (Supplementary Figure
509  6), miRNA expression contributed relatively little to the overall variation (1.2%).

510
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511  Taken together, these results illustrate that the padma approach, which is used in an
512  unsupervised manner on multi-omic cancer data for a given pathway, is able to recapitulate known
513  sample structure in the form of intrinsic tumor subtypes as well as relevant prognostic factors such
514  as histological grade.

515

516 CONCLUSIONS
517

518 Unsupervised dimension reduction approaches (such as PCA) have been widely used in genetics
519 and genomics for many years, both to identify sample structure and batch effects?® and to
520 visualize overall variation in large data®’. Here, we present a generalization of this approach to
521  multi-omic data for investigating biological variation at the pathway-level by aggregating across
522  genes, omic-type, and individuals. Compared to single-omics approaches (for instance, running
523 a PCA on RNA-seq data alone), padma accommodates multiple omics-sources which, for some
524  sample sets and pathways, account for more than 50% of the overall variation (Figure 5B). Using
525 MFA to partition variance, we construct a clinically relevant pathway disruption score that
526  correlates with survival outcomes in lung cancer patients, and histological grade in breast cancer
527  patients.

528

529 Our MFA-based approach allows investigators to (a) identify overall sources of variation (such as
530 batch effects); (b) prioritize high variance pathways defined by variability across subjects; (c)
531 identify aberrant observations (i.e., individuals) within a given pathway; and (d) identify the genes
532 and omics sources that drive these aberrant observations. For large, multi-omic data such as
533 TCGA, padma allows investigators to summarize overall variation and assist in generating
534  hypotheses for more targeted analyses and follow-up studies. As a case in point, we identified

535 two lung cancer patients with aberrant multi-omic profiles at three CASP genes. With access to

24


https://doi.org/10.1101/827022
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/827022; this version posted November 8, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

536 the tumor samples and more fine-grained clinical data, future molecular experiments could help
537 to clarify the role (if any) that these genes play in contributing to lung cancer mortality.

538

539 There are a number of natural extensions and alternative formulations to our MFA-based
540 approach. If comparisons between sets of individuals (e.g., healthy vs. disease) are of interest,
541  the MFA can be based on one set of samples (e.g., healthy, or a “reference set”), and the other
542  set of samples (e.g., diseased, or a “supplementary set”) can be projected onto this original
543  representation. This is accomplished by centering and scaling supplementary individuals to the
544  same scale as the reference individuals, and projecting these rescaled variables into the
545 reference MFA space. In this setting, the interpretation of pathway deviation scores would no
546  longer correspond to the identification of “aberrant” individuals compared to an overall average,
547  but rather individuals that are most different from the reference set (e.g., the most “diseased” as
548 compared to a healthy reference); this strategy would be similar in spirit to the individualized
549 pathway aberrance score (iPAS) approach, which proposed using accumulated (unmatched)
550 normal samples as a reference set®!. There is also no reason to limit this approach to pathways,
551 as the analysis could be performed just once, genome-wide (accordingly, inferences would no
552 longer be applicable to specific pathways). Here, we have structured the data with genes
553  representing data tables and omics representing columns within each table. Alternatively, the
554  data could be re-weighted by having omics represented as data tables and genes as columns
555  within each, similar to de Tayrac et al. (2009)**. Extensions to our work could include incorporating
556  the hierarchical structure of genes within pathways, or relatedness structure among samples. In
557  principle, other types of omics that do not map to genes or pathways (e.g., genotypes on single
558 nucleotide polymorphisms) could also be incorporated. Finally, though we illustrate the use of
559 padma for cancer genomics data, we anticipate that it will be broadly useful to other multi-omic
560 applications in human health or agriculture.

561
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562 MATERIALS AND METHODS

563

564  TCGA data acquisition and pre-processing

565

566  The multi-omic TCGA data were downloaded and processed as described in Rau et al. (2019)°.
567  Briefly, using TCGA2STAT*? we downloaded processed TCGA Level 3 data from the Broad
568 Institute Genome Data Analysis Center (GDAC) Firehose on March 18, 2017 for individuals of
569 self-reported European ancestry for whom gene expression, methylation, copy number alterations
570 (CNA), microRNA (miRNA) abundance, and somatic mutation data were all available; this
571 ancestry filter was applied to minimize population-specific variance and focus on the group with
572  the largest available sample size. In addition, two individuals from the BRCA dataset (TCGA-E9-
573 A245, TCGA-BH-ALES) were identified as outliers with consistently extreme deviation scores
574  across multiple pathways and were removed from the remainder of the analyses; the final sample
575  sizes were thus n=504 and n=144 individuals for the BRCA and LUAD datasets, respectively.
576

577  Per-gene normalized expression estimates were calculated using RSEM33. Methylation was
578 quantified using the maximally variant probe from the lllumina Infinium Human Methylation450
579 BeadChip located within +£1500bp of the transcription start site, and representative probe beta
580 measures were transformed to the logit scale. Somatic CNAs were called by comparing Affymetrix
581 6.0 probe intensities from normal (i.e., non-cancer tissue) and cancer tissue, and genome
582  segments were aggregated to gene-level measures by TCGA2STAT and CNTools. Individuals
583  were classified as carriers or noncarriers of a nonsynonymous somatic mutation for each gene
584  using TCGA2STAT. Normalized miRNA abundance was quantified as Reads per million
585 microRNA mapped (RPMMM) values. RNA-seq and miRNA-seq quantifications were TMM-
586  normalized®, converted to counts per million (CPM), and log2-transformed. Only genes with

587 available RNA-seq expression measures were retained for the remainder of the analysis,
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588  corresponding to 20,501 and 19,971 genes for BRCA and LUAD, respectively. Finally, batch
589 effects have been shown to have a strong impact on the analysis of high-throughput data in
590 general® and for the TCGA data specifically®®. As specific sample plates have been shown to
591 represent significant batch effects in previous analyses®, each processed omic (with the
592  exception of somatic mutation data) was individually batch adjusted for each cancer to correct for
593 plate-specific effects using removeBatchEffects in limmal®’. Plots of the first two components
594  from a transcriptome-wide and genome-wide single-omics PCA and multi-omics MFA for the
595  batch-corrected data are included in Supplementary Figures 3 and 4.

596

597 Choice of curated pathway collection

598

599 We consider the pathways included in the MSigDB canonical pathways curated gene set

600 catalog®, which includes genes whose products are involved in metabolic and signaling pathways
601 reported in curated public databases. We specifically use the “C2 curated gene sets” catalog from

602  MSigDB v5.2 available at http://bioinf.wehi.edu.au/software/MSigDB/ as described in the limma

603  Bioconductor package®. We focus in particular on a collection of 1322 gene sets from public

604 databases, including Biocarta, Pathway Interaction Database®®, Reactome*’; Sigma Aldrich,

605  Signaling Gateway, Signal Transduction Knowledge Environment, and the Matrisome Project*,

606 the smallest and largest of which were respectively made up of 6 and 478 genes (median size 29
607 genes). For the subsequent padma analysis, we excluded gene sets for which fewer than 3 genes
608 mapped to quantified features in the TCGA gene expression data, corresponding to a total of
609 1136 gene sets.

610

611 Padma R software package
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612 The proposed method described above has been implemented in an open-source R package
613 called padma, freely available on GitHub. Padma notably makes use FactoMineR®*° to run the
614 MFA; heatmaps in the following results were produced using ComplexHeatmap®. All of the

615 analyses in this paper were performed using R v3.5.1.

616
A B
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618 Figure 5. (A) Factor map of individuals, representing the first two components of the MFA,
619 for the Wnt signaling pathway in breast cancer, with normal confidence ellipses
620 superimposed for the five AIMS subtypes. B) Weighted overall percent contribution per
621 omic (left) and for each of the first 10 MFA components (right) for the Wnt signaling
622 pathway, with colors faded according to the percent variance explained for each
623 (represented in text above each bar). (C) Distribution of pathway deviation scores for each
624 individual in the breast cancer data, with individuals colored according to their AIMS
625 subtype.
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739

740 Supplementary Materials

741

742  Supplementary Figure 1. Z-scores of RNA-seq, CNA, methylation, and miRNA-seq data for
743  genes in the D4-GDI signaling pathway for individuals in the TCGA LUAD data (n = 144). Data
744 corresponding to the two individuals with the largest overall pathway deviation scores, TCGA-78-
745 7155 and TCGA-78-7536, are highlighted in red and blue.

746

747  Supplementary Figure 2. Negative logl0-transformed p-values from the ANOVA F-test of
748 pathway deviation score versus mitosis and nuclear pleomorphism for each pathway among
749  Dbreast cancer individuals. The signaling by Wnt pathway is highlighted in red.

750

751  Supplementary Figure 3. Factor maps for the first two dimensions of a global transcriptome- and
752 genome-wide PCA of the methylation, miRNA-seq, CNA, and RNA-seq data (left), as well as a
753  global MFA of all four omics combined (right) for the TCGA BRCA data.

754

755  Supplementary Figure 4. Factor maps for the first two dimensions of a global transcriptome- and
756  genome-wide PCA of the methylation, miRNA-seq, CNA, and RNA-seq data (left), as well as a
757  global MFA of all four omics combined (right) for the TCGA BRCA data.

758

759  Supplementary Figure 5. Percent variance explained by the first 5 (blue) or 10 (red) components
760  of the MFA for each pathway for the TCGA BRCA (A) and LUAD (B) data.

761

762  Supplementary Figure 6. Average percent contribution to the MFA of each omic (miRNA-seq,

763  methylation, CNA, RNA-seq) for each pathway. (A) Per-omic average contribution across the first
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10 MFA components for TCGA BRCA. (B) Per-omic average contribution across all MFA
components for TCGA BRCA. (C) Per-omic average contribution across the first 10 MFA
components for TCGA LUAD. (D) Per-omic average contribution across all MFA components for

TCGA LUAD.

Supplementary Table 1. Sample size for each histological measure for the n = 504 breast cancer

patients.

Supplementary Table 2. Full gene lists for pathways in Table 1. Genes correspond to those with

expression quantified by RNA-seq in the TCGA data.

Supplementary Table 3. Full gene lists for pathways in Table 2. Genes correspond to those with

expression quantified by RNA-seq in the TCGA data.
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