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Abstract

Recent advances in sequencing technology and accompanying bioinformatic
pipelines have allowed unprecedented access to the genomes of yet-uncultivated
microorganisms from a wide array of natural and engineered environments.
However, the catalogue of available genomes from uncultivated freshwater
microbial populations remains limited, and most genome recovery attempts in
freshwater ecosystems have only targeted few specific taxa. Here, we present a
novel genome recovery pipeline, which incorporates iterative subtractive binning
and apply it to a time series of metagenomic datasets from seven connected
locations along the Chattahoochee River (Southeastern USA). Our set of
Metagenome-Assembled Genomes (MAGS) represents over four hundred
genomospecies yet to be hamed, which substantially increase the number of
high-quality MAGs from freshwater lakes and represent about half of the total
microbial community sampled. We propose names for two novel species that
were represented by high-quality MAGs: “Candidatus Elulimicrobium humile”
(“Ca. Elulimicrobiota” in the “Patescibacteria” group) and “Candidatus Aquidulcis
frankliniae” (“Chloroflexi”). To evaluate the prevalence of these species in the
chronoseries, we introduce novel approaches to estimate relative abundance and
a habitat-preference score that control for uneven quality of the genomes and
sample representation. Using these metrics, we demonstrate a high degree of
habitat-specialization and endemicity for most genomospecies observed in the
Chattahoochee lacustrine ecosystem, as well as wider species ecological ranges

associated with smaller genomes and higher coding densities, indicating an
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overall advantage of smaller, more compact genomes for cosmopolitan

distributions.

Introduction

Freshwater environments represent a major microbial habitat on Earth, hosting
an estimated 1.3x10%° prokaryotic cells worldwide [1, 2]. The level of diversity in
microbial freshwater communities is orders of magnitude lower than that of other
major environments such as soil and seawater [3], making them a tractable but
globally important model for studying microbial community ecology. However, the
lack of comprehensive sets of reference genomes and low cultivation rates
hinder the study of these communities. On average, a quarter of freshwater
community members detected by 16S rRNA gene or metagenomic surveys
belong to yet-uncultured phyla, with an additional two thirds belonging to
uncultured genera, families, or classes [4]. In fact, only a tenth of freshwater
microbial cells belong to cultivated species or genera, the smallest cultivated
fraction among all major environments on Earth (i.e., environments with over 10?°
microbial cells estimated worldwide [4]; but see also [5]). Recent efforts to
recover metagenome-assembled genomes (MAGSs) from freshwater
environments have largely targeted specific taxa [6—10]. A few recent attempts
recovered MAGs from all Bacteria and Archaea present in freshwater
communities and resulted in three collections of MAGs from a lake in Siberia
(Lake Baikal) and three lakes in North America (Lake Mendota, Trout Bog Lake,

and Upper Mystic Lake) [11-13], as well as two collections from rivers in India
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(Ganges River) and Greece (Kalamas River) [14, 15]. The fraction of the
communities captured by these MAGs or other reference genomes is typically
moderate to low due to the high diversity of freshwater communities as well as
the limitations of the underlying binning methods, which are not optimized for
chronoseries datasets from natural habitats but rather for single or small sets of
samples from the exact same microbial community. Temporal and spatial series
from freshwater ecosystems are even sparser; yet, such data could provide a
more complete picture of seasonal and biogeographic patterns of the
corresponding microbial communities that are important for human activities.
We introduce here a pipeline for the recovery of MAGs from sets of
metagenomes through iterative subtractive binning and apply it to a
metagenomic chronoseries from freshwater lakes and estuaries along the
Chattahoochee River (Southeast USA). The abundance distribution of these
population genomes in the meta-community was studied using two
methodological innovations: an estimation of relative abundance controlling for
completeness and micro-diversity issues in the genomes, and an ecologic
preference score controlling for uneven sample representation. The collection of
MAGs presented here captures 50-60% of the total source communities, which is
about three times larger than previous binning efforts from comparable
freshwater environments, and includes representatives from taxa yet to be

named, ranging from novel species of previously described genera to novel

phyla.
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Materials and Methods

Additional information on software versions and parameters used is available in

Table 1, and additional details are provided in the Text S1.

Sample Collection and Metagenomic Sequencing

All samples were collected from the lower epilimnion (typically 3-5m depth) of the
Southeastern U.S. Lakes Lanier (GA), West Point (GA/AL), Harding (GA/AL),
Eufaula (GA/AL), and Seminole (GA/FL) at least 10 m away from the littoral
zone, and two locations in the Apalachicola estuary, off the coasts of
Apalachicola and East Point (FL). Water samples were immediately stored at 4°C
and processed typically within 1-4 h, and no more than a day post collection.
Water was sequentially filtered with a peristaltic pump through 2.5 pum and 1.6
pm porosity glass microfiber filters (Whatman), to capture large particles and
eukaryotic cells, and microbial cells were eventually retained on 0.2 um porosity
Sterivex filters (Millipore). Thus, all sequenced metagenomes represent the 1.6-
0.2 um cell size fraction, except LLGFA_1308A and LLGFA_1309A that
represent the 2.5-1.6 um fraction. Filters were preserved at -80°C. DNA
extraction was performed as previously described [16] with minor modifications
and samples were sequenced using lllumina MiSeq and HiSeq sequencers (see
Text S1, Metagenomic Sequencing). In addition, we included in our metagenome
collection previously obtained viral enrichments (viral metagenomes) from the

same freshwater samples [17] that were found to be highly contaminated with
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bacterial cells. Those viral metagenomes were included in the binning process,

but not in subsequent analyses.

Sequencing Data Processing

All sequenced metagenomic datasets were subjected to quality control and those
not passing minimum requirements were re-sequenced. Sequencing reads were
trimmed and clipped using SolexaQA++ [18] and Scythe. Abundance-weighted
average coverage of the datasets was estimated using Nonpareil [19]. A
minimum dataset size of 1Gbp after trimming and 50% coverage were required

for all samples in this study (Table S1).

Iterative Subtractive Binning

An initial binning methodology was implemented using metadata-dependent
grouping of samples to recover high-quality metagenome-assembled genomes
(MAGs; Fig. 1, top row). Specifically, we grouped and co-assembled all cell-
metagenomic samples from Lake Lanier (34 samples, 120 Gbp in total). The co-
assembly strategy consisted of initial individual assemblies (IDBA-UD [20]),
cutting resulting contigs (FastA.slider.pl [21]), and reassembling the fragments
from all samples (IDBA-UD). We binned the final contigs using MetaBAT [22] and
evaluated genome quality with CheckM [23]. MAGs with estimated completeness
above 75% and contamination below 5% were considered of high quality, and

the resulting set was labeled LLD.
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Next, we implemented a strategy to recover MAGs using the complete
collection of samples (Fig. 1). Our samples consisted of a roughly continuous
two-dimensional scheme (temporal/spatial components), making metadata-
based grouping of samples prone to subjective calls. Instead, we performed a
sequence-based grouping by Markov Clustering (MCL) [21, 24] of Mash
distances [25] using only values below 0.1. Each group was co-assembled
(IDBA-UD), binned (MaxBin [26], Bowtie [27]), and evaluated using MiGA [28].
MAGs with estimated genome quality above 50 were considered of high quality
(see below genome quality definition), and the first resulting set was labeled
WBA4. The resulting set of high-quality MAGs (LLD + WB4) was used as
reference database to map reads from all samples (Bowtie), and unmapped
reads (SAMtools [29]) were used as input for Mash/MCL clustering, iterating the
process described above to produce sets WB5-WBB (Fig. 1). The number of
iterations was determined by saturation of phylogenetic breadth and fraction of
reads mapping (Fig. 2). Finally, two corrections were implemented targeting
groups that typically generate quality underestimations. First, a correction for
archaeal genomes in MiGA was used to recover high-quality genomes from
Archaea in all iterations (WBC). Second, the Random-Forest classifier for
Candidate Phyla Radiation (CPR) scripts in Anvi'o [30] were used to detect high-
guality genomes from CPR in all iterations, which didn’t yield any additional
MAGs. The complete collection of high-quality MAGs is hereafter designated WB

(Table S2).
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Genome Quality and Taxonomic Classification

The quality and taxonomic classification of MAGs were evaluated using MiGA.
Briefly, a composite index of genome quality was used, defined as
“Completeness - 5xContamination”, where both completeness and contamination
were determined by the presence and copy number of genes typically found in
genomes of Archaea and Bacteria in single copy [21, 28]. Taxonomy was
determined by MiGA with the NCBI Genome Database, Prokaryotic section
(henceforth NCBI_Prok; MiGA Online; Jan-2019) [28]. MiGA also performs a de-
replication of the collection by generating groups of genomes with ANI = 95%
using ogs.mcl.rb [21, 24]. These clusters, analogous to bacterial or archaeal

species [31, 32] are hereafter termed genomospecies (gspp, singular gsp).

Genome Phylogeny

Two phylogenetic approaches were used to place the obtained MAGs in the
context of the tree of Bacteria (only 4 distinct species of Archaea were
recovered). First, we used PhyloPhlAn [33] to place the genomes in the context
of a general-purpose widely used genome collection. Next, we generated a
phylogenetic reconstruction using the high-quality MAGs in this study classified
as Bacteria, and all best-match entries (highest AAI) of our set against five

collections of genomes available in MiGA Online at http://microbial-

genomes.org/projects. Namely, a manually curated collection of MAGs from
various projects (GCE), a set of MAGs recovered from the Tara Oceans

expedition (TARA) [34], a collection of MAGs recovered from various
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1  environments excluding human microbiome (UBA) [35], all complete genomes
2 available in NCBI (NCBI_Prok), and all available genomes (complete or draft)
3 from type material (TypeMat) [36]. Marker proteins were extracted from all the
4  abovementioned genomes (HMM.essential.rb [21]), and those present in at least
5 80% of the genomes were selected and independently aligned (Clustal Omega
6  [37]). Next, maximum likelihood gene trees were constructed for individual
7  alignments using RAXML [38] with model selected using ProtTest [39]. Finally, a
8 species tree was estimated from the best-scoring ML trees reconstructed for
9 each gene using ASTRAL-III [40].
10 Both final trees (PhyloPhlAn and ASTRAL) were used to estimate
11  phylogenetic gain for the WB collection using Faith’s Phylogenetic Diversity (PD
12 [41]; Picante [42]):

PD(tree subset excluding WB)
PD(complete tree)

Phylogenetic Gain = 1 —

13 In the ASTRAL tree, branch lengths for all terminal nodes were set to zero
14 in this analysis. The taxonomic classification reported by NCBI for the genomes
15 inthe collections TypeMat, NCBI_Prok, and UBA was recovered by MiGA, and
16  used to calibrate taxonomic limits in coalescent units by identifying the median
17  values between taxonomic ranks. In addition, this taxonomic information was

18 used to decorate the rooted ASTRAL species tree (tax2tree [43]). The tree was
19  visualized using FigTree.

20

21 Genome annotation
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Functional annotation of all genomes was performed using Prokka [44]. Protein
annotations from COG (Cluster of Orthologous Groups of proteins) were mapped
to COG categories using eggNOG [45]. Gene coding density, G+C content, and
other descriptive statistics, as well as genome completeness, contamination, and
guality were calculated using MiGA [28]. Growth rate and optimal growth
temperature were predicted using growthpred [46]. Extracellular proteins were

predicted using PSORTb with Gram staining predicted by Traitar [47, 48].

Abundance and Alpha Diversity

The abundance of each gsp was estimated using the MAG of highest genome
guality as representative. For each metagenomic dataset, the sequencing depth
was estimated per position (Bowtie [27], bedtools [49]) and truncated to the
central 80% (BedGraph.tad.rb [21]), a metric hereafter termed TAD (truncated
average sequencing depth). Abundance was estimated as TAD normalized by
the genome equivalents of the metagenomic dataset (MicrobeCensus [50]),
resulting in units of community fraction. A gsp was considered to be present in a
sample if the TAD was non-zero (equivalent to sequencing breadth = 10%,
previously shown to correspond to confidence of presence > 95% [51]). The
alpha-diversity was estimated using the sequence diversity Ngy projected to
Shannon diversity H' (Nonpareil [3]), as well as H’ on the gspp abundance profile

(AlphaDiversity.pl [21]). Additional details are available on Text S2.

Preference Scores

10
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In order to determine the preferential presence of a gsp in a given set of samples
while accounting for the geographic and environmental biases in the dataset
collection used here, we devised a preference score accounting for the expected
abundance of a gsp in a given dataset (see Text S1, Preference Score). Briefly,
we first estimated the observed bias (i.e., over- or under-representation) in
presence frequency of a gsp in a given set of samples compared to the rest of
the samples. Next, we estimated the expected bias assuming that there is no
preference by normalizing by both gsp presence frequency across all samples as
well as the presence frequency of all gspp in each sample. This is achieved by
estimating the expected frequency of each MAG in a metagenome as the
frequency of MAGs in that metagenome multiplied by the frequency with which
the MAG is observed across metagenomes. Finally, we calculate the ratio of
these two biases (observed/expected) maintaining the sign of the observed bias.
The preference score of gsp i for sample set t is termed s (t). A score was
considered significant when s? (¢) > 1 (preference for the sett) or s” (t) < —1
(preference against set t). No clear preference was established for gspp with

1>s7() = -1

Samples from Other Projects

In addition to the metagenomes sequenced as part of our study, we used
previously reported metagenomes from other sites and environments for
comparisons. These metagenomes, derived from previous studies [13, 52—-65], or

recovered via MGnify [66], are described in Table S3. The raw reads were

11
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obtained from the European Nucleotide Archive (EBI ENA) and processed as
described above. The metadata for each sample was obtained from EBI ENA or
the original studies, including biome, aquatic habitat, and geographic location

(latitude and longitude).

Metrics of Ecologic Range

Ecologic ranges were measured in different dimensions reflecting environment
and geographic location. Environments were characterized by biome (one of
brackish water, estuary, estuary sediment, freshwater sediment, glacier,
groundwater, human gut, lake, marine oxygen minimum zone, marine surface,
marine water column, river, or soil) or aguatic habitats (brackish, estuary,
freshwater, marine, non-aquatic), and for each gsp the count breadth (number
of biomes or aquatic habitats) was determined by presence as non-zero TAD in
the corresponding samples of the biome or habitat. In addition, the frequency of
presence of a gsp across samples per biome or aquatic habitat was used to
estimate the entropy (natural units), as proposed by Levins [67] (unweighted
Levins’ breadth). In order to account for the estimated abundances (and not
only inferred presence), we also defined average abundance across samples per
biome or aquatic habitat to estimate entropy (weighted Levins’ breadth).
Geographic distances were estimated using the distance on the ellipsoid [68]
(geosphere). For each gsp, two geographic ranges were estimated: the
maximum distance between any two samples where the gsp is present

(geodesic range), and the maximum latitudinal range of samples where the gsp

12
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1 is present (latitude range). Correlations between traits and ecologic ranges were
2  evaluated by Pearson’s linear correlation for continuous variables and

3 Spearman’s rank correlation for counts. Additionally, correlations along the

4  ASTRAL phylogenetic reconstruction were evaluated using phylogenetic

5 generalized least squares (nlme) assuming a Brownian model (ape [69]).

7 Results

8 Freshwater Metagenomic Datasets

9 We sequenced a total of 69 metagenomic datasets derived from water samples
10 from Lakes Lanier, Harding, Eufaula, and Seminole, and the estuarine locations
11  of Apalachicola and East Point along the Chattahoochee River, in the
12 Southeastern continental USA (Table S1). All samples were collected from the
13 lower epilimnion to allow comparisons across sites. All samples were required to
14 have at least 60% coverage as estimated by Nonpareil [3], except for LL_1007C
15 (46% coverage) that had a high-coverage replicate (LL_1007B, 83% coverage).
16  Excluding the latter (LL_1007C), samples had an average community coverage
17  of 76% (Inter-Quartile Range —IQR—: 70.6-81.3%) and an average total size after
18  trimming of 3.4 Gbp (IQR: 2.6-4.4 Gbp). The sequence diversity estimated by
19  Nonpareil (Ng) was on average 19.6 (IQR: 19.3-20.0), typical of freshwater
20  microbial communities [3].
21

22 lterative Subtractive Binning

13
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An iterative subtractive binning methodology was applied to the collection of
metagenomes described here. Briefly, metagenomic datasets were processed by
grouping metagenomes by read-level similarity (Mash distances), co-assembling
with or without subsampling, binning, mapping reads to high-quality obtained
MAGSs, and iterating this methodology with the resulting unmapped sequencing
reads (Fig. 1; see also Materials and Methods). This method produced a total of
1,126 MAGs grouped in 462 genomospecies, i.e., clusters with intra-cluster ANI
= 95%. The average estimated completeness of the MAGs in this set was 75.4%
(IQR: 66.7-84.7%), and the average estimated contamination was 2.10% (IQR:
0.9-2.7%). This result contrasts with the 199 MAGs identified in the initial non-
iterative binning (LLD), grouped in 166 gspp (Fig. 2-A), indicating that the
iteration process captured at least three times higher taxonomic diversity. The
initial quality control excluded all archaeal genomes captured, and the archaeal
correction (WBC) recovered 22 genomes from 4 gspp. No additional genomes

were recovered by the CPR correction.

Diversity Captured

The initial non-iterative binning (LLD) captured only 8-14% (IQR; average:
11.5%) of the total metagenomic reads, depending on the dataset considered,
whereas the final set captured 38-50% (IQR; average: 43.2%) of the total
metagenomic reads (Fig. 2-B-C). These figures underscore the large increase in
representation of the community throughout the iterative process. However, it is

expected that this representation be strongly biased towards the most abundant

14
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members of the community. In order to reduce the effects of genome size
variation, completeness, and other artifacts, we estimated relative abundance of
MAGs as truncated sequencing depth (TAD) normalized by genome equivalents
(see Methods and Text S2). The estimated fraction of the community captured by
the final set of MAGs was 42-59% (IQR; average: 50.2%). Importantly, this
fraction is considerably larger than that of other available MAG sets from
freshwater lakes, further underscoring the usefulness of iterative subtractive
binning. For instance, a previous study on the microbial communities of Upper
Mystic Lake (Massachusetts, USA) [12] recovered a set of 87 genomes from 14
metagenomic datasets. Using the same abundance estimations as above, we
calculated that those 87 genomes captured 11-18% (IQR; average: 14.9%) of the
source communities. A smaller set of 35 MAGs recovered from two metagenomic
dataset from the waters under the surface ice layer of Lake Baikal (Siberia,
Russia) [11], resulted in 10 and 9.7% of the source communities captured at 20-
and 4-m-deep samples, respectively. Finally, a set of 194 MAGs recovered from
three chronoseries from the eutrophic Lake Mendota and the humic Trout Bog
Lake (Wisconsin, USA) [13] resulted in 20.2%, 31.9%, and 38.4% of the
communities captured in Lake Mendota, and the epilimnion and hypolimnion of
Trout Bog Lake, respectively. In addition, we evaluated two riverine MAG
datasets from Rivers Ganges (India) and Kalamas (Greece). The former,
composed of 104 MAGs, captured on average 23.6% of the source communities
(IQR: 18-33%), and the latter with 14 MAGs captured 7.4% (IQR: 6-10%).

Overall, freshwater MAG sets from previous studies captured on average 16.7%

15
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of the source communities (IQR: 10-20%), about three times less than the WB
set presented in this study. However, note that the high metagenomic read
recovery from the WB collection does not preclude other biases for community-
level diversity assessment. Most notably, we identified that MAGs capture a
disproportionally larger fraction of less diverse communities, indicating that profile
summary statistics such as Shannon diversity or Richness estimations should not

be computed directly from collections of MAGs (Fig. S1, Text S2).

Phylogenetic Diversity and Novelty

We reconstructed a coalescent-based phylogeny of all high-quality bacterial
MAGs in this study (n=1,108 in 462 gspp) and related genomes (best-hit by AAI)
in different reference collections (Fig. 3). The best-hit sets included genomes
from GCE (n=96, from 591 genomes/393 gspp), TARA (n=173, from 957
genomes/856 gspp), UBA (n=224, from 7,903 genomes/4,042 gspp), NCBI_Prok
(n=226, from 13,826 genomes/4,271 gspp), and TypeMat (n=143, from 9,077
genomes/6,939 gspp). Marker proteins from all the abovementioned genomes
(n=1,970) present in at least 80% of the genomes were selected (n=70, from 110
proteins evaluated) for gene-tree reconstructions reconciled in the final species
tree.

We characterized the global gain in phylogenetic diversity represented by our
collection with respect to two reference sets. First, in the set of best-matching
genomes described above (ASTRAL tree), our collection represents about 409

novel species (out of 999 total species-level clades) and 70 novel genera (out of

16


https://doi.org/10.1101/826941
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/826941; this version posted October 31, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

10

11

12

13

14

15

16

17

18

19

20

21

22

23

aCC-BY 4.0 International license.

332), based on approximated calibration of taxonomic ranks (as retrieved from
NCBI) in the reconstructed phylogeny (Fig. S4-A-B). Overall, the gain in summed
branch lengths (phylogenetic diversity) was estimated at 24.8%. A similar value
of phylogenetic gain was obtained when comparing against a second reference
set obtained directly from PhyloPhlAn (24.5%; Fig. S4-C-D). However, note that
both estimates of phylogenetic gain are likely inflated since the former reference
set does not include groups distant from any MAG in our collection (i.e., we only
used reference genomes identified as best matches to WB), and the latter does
not include recently described taxa (PhyloPhlan version 0.99, last updated

May/2013).

Presence in Other Sites and Ecosystems

We evaluated the presence of the WB gspp in samples from different
environments, mainly aquatic (Fig. 4). WB species were considered present in a
sample if their sequencing depth was at least 10%, which corresponds to
confidence of presence > 95% [51]. In order to determine environmental or
geographic preference, we estimated preference scores based on the
frequencies of presence in different sets of samples, normalizing by the baseline
distribution of each gsp and the probability of capturing any gsp in a given
sample, and implicitly accounting for sample size and community evenness
among other factors (see Methods; Fig. 4-A). Gspp tended to cluster in two main
groups: freshwater (77%) and seawater (18%), with a few gspp showing no clear

preference between fresh- and seawater (4%; Fig. 5-A). From 20 gspp showing
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no clear preference, 19 were restricted to estuarine samples (classified as
seawater in this test) and freshwater (Fig. 4-C), and one was observed in three
marine samples at low abundances. Therefore, the lack of clear preference was
likely the effect of low statistical power and/or water mixing in estuaries. Only 7
gspp were present in both freshwater and marine samples (6
Synechococcaceae), but all were detected in only 1 or 2 marine or freshwater
samples at consistently low abundances (10°-0.01%). Therefore, no evidence of
gspp adapted to both freshwater and marine environments was found. Among
those with clear freshwater preference, 73% were predominantly found in the
Chattahoochee lakes, and 33 gspp (9%) displayed a preference for Lake
Mendota (Fig. 5-B). Finally, 53% of the seawater gspp had a clear preference for
estuarine over marine samples, whereas the rest were evenly divided in
preference for marine samples or no clear preference (Fig. 5-D).

Next, we determined the ecologic ranges of each gsp as the number of
different biomes where it could be confidently detected (biome count), the
number of aquatic habitats (habitat count), the maximum geographic distance
between samples where it was detected (geodesic range), and the maximum
range of latitudes (latitude range). Biome and aquatic habitat breadths were
additionally measured by unweighted (frequency of presence) and weighted
(abundance) Levins’ breadth [67]. All metrics of ecologic range displayed
significantly negative correlation with expected genome size (assembly length
divided by estimated completeness; p or R between -0.18 and -0.3; p-values <

10®) and positive correlation with coding density (p or R: 0.21-0.38; p-values <
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10'®), indicating that more cosmopolitan and habitat-generalist gspp exhibit
smaller and more compact genomes (Figs. 6, S5). Among gspp in three aquatic
habitats, WB8_4xD_006 had the highest coding density (96.2%, estimated
genome: 1.07Mbp), previously identified as a member of an uncharacterized
clade of “Ca. Pelagibacterales” temporarily designated PELS8 [10]. Most gspp
present in three aquatic habitats in the top 20% of coding density belong to
“Actinobacteria” (n=8) or “Ca. Pelagibacterales” (n=4) Despite this strong
taxonomic bias, correlations between coding density and ecologic ranges
remained statistically significant after excluding all members of “Actinobacteria”
(p-values < 10), “Ca. Pelagibacterales” (p-values < 2.8x10™), or both (p-values
< 1.4x107%). On the other end, among gspp restricted to a single aquatic habitat,
two genomes were particularly notable for their low coding density: WB6_1B 304
(83.49%, estimated genome: 3.39 Mbp; “Cyanobacteria”) and WB9_2 319
(85.1%, 4.77 Mbp; “Proteobacteria”; Fig. 6), and no taxonomic bias was
observed in this set. In addition, genomes from more cosmopolitan gspp
exhibited larger fractions of COG-annotated genes (p or R: 0.22-0.27; p-values <
10°®). This effect was possibly due to a higher prevalence of better-characterized
functions (housekeeping genes, central metabolism) in smaller genomes and/or
database bias towards more broadly distributed microbes. We observed a
significant negative correlation of G+C% content with count breadth of aquatic
habitats (R: -0.1; p-value: 0.025) and weighted Levins’ breadths of both biome
and aquatic habitat (R: -0.28, -0.29; p-values: 2.5x107°, 1.5x10°®), but not with

other environmental range metrics (Fig. S5). Other genomic signatures
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associated with the growth strategy such as the density of ribosomal proteins
(COG category J), estimated minimum generation time, and estimated optimal
growth temperature were not significantly correlated with ecologic range metrics
(Ip or R| < 0.07; p-values > 0.15). However, when controlling for phylogenetic
relatedness (assuming correlation under a Brownian model), the minimum
generation time was negatively correlated with all metrics of ecologic range (p-
values < 0.035), indicating that faster growth is a trait that facilitates broader
ecologic ranges among close relatives. Finally, we evaluated the possibility of
larger fractions of extracellular proteins present in more cosmopolitan organisms,
previously proposed as a mechanism of ecological success for pathogenic
bacteria [70]. Interestingly, we observed the opposite trend: more cosmopolitan
gspp were predicted to have fewer extracellular proteins as a fraction of their

genome (p or R <-0.17, p-values < 2.5x10).

Description of Novel Taxa

Finally, we characterized the genomes representing two novel taxa. We propose
the names “Candidatus Elulimicrobium humile” gen. nov. sp. nov., represented
by WB6_2A 207 (GenBank: RGCK00000000), from a novel phylum
(“Candidatus Elulota” phy. nov.) within the “Patescibacteria” group, and
“Candidatus Aquadulcis frankliniae” gen. nov. sp. nov., represented by

WB4_1 0576 (GenBank: RFPZ00000000), from a novel genus within the

recently described class “Candidatus Limnocylindria” [6] (“Chloroflexi”).
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Additional description of these taxa including protologues is available as

Supplementary Material (Text S3 and Fig. S2).

Discussion

In this study, we introduced a methodology for iterative subtractive binning of
metagenomic collections including de novo grouping of samples (i.e.,
independent of metadata) and the gradual reduction of dataset diversity for the
recovery of genomes from populations with vastly different relative abundances
(Fig. 1). The genomes recovered showed on average a maximum relative
abundance across samples of only 0.59% of the total microbial community (IQR:
0.12-0.55%), with as many as 17% of the recovered genomospecies consistently
below 0.1% relative abundance, considered the rare fraction in this ecosystem
[71]. We were able to reconstruct the genome of a “Patescibacteria” bacterium
for which we propose the name “Ca. Elulimicrobium humile”, representing a
novel phylum (“Ca. Elulota”), that appears to be regionally widespread and
endemic, but had consistently low abundance in our metagenome series (<
0.12%). Combined, all the gspp in our collection represent about 50% of the
entire communities (Chattahoochee metagenomes), about three times more than
other binning efforts in freshwater habitats. Importantly, we demonstrate that
MAGs capture a larger fraction of less diverse communities. Therefore, we
recommend against using summaries of abundance profiles from MAGs to

characterize and/or compare entire communities (e.g., measuring richness or
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alpha/beta diversity from MAG profiles), and emphasize the advantages on
phylogenetic novelty of individual populations instead.

Overall, from 462 genomospecies detected here, 452 (98%) represent
novel species on the basis of ANI or 409 (88%) on the basis of approximate
phylogenetic calibration, indicating that the great majority of genomes recovered
here are novel. In terms of phylogenetic novelty, about one fourth of the branch
lengths of a phylogenetic reconstruction including all best matches from complete
genomes, type material, and MAGs, were uniquely derived from our set (Fig. S4).
Moreover, the species detected in our samples span a variety of geographic
ranges, from highly restricted locally to regionally or globally distributed in aquatic
environments (Fig. 4). For example, we report here a novel species, for which we
propose the name “Ca. Aquidulcis frankliniae” (“Chloroflexi”), that is widely
distributed geographically but restricted to freshwater environments. This species
(and genus) is clearly distinct from its closest relative (“Ca. Limnocylindria sp”)
based on phylogenetic reconstruction (Fig. S2-B) and AAI (71.85%). However, it
would have remained cryptic if using 16S rRNA sequences alone, with a
sequence identity of 98.4% between the two genera; a phenomenon previously
observed for a few other bacterial taxa [32].

In order to evaluate preference (geographic or environmental), we devised
a metric to compare expected and observed presence frequencies (Fig. 5) based
on the observation that “presence” can be confidently assessed at the species
level (95% ANI) and 0.05 p-value significance given a genome sequencing

breadth of at least 10% [51]. All detected species appeared to have a preference
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for either freshwater or saltwater, or were too scarcely present to determine
preference. Moreover, our method was able to distinguish species present in the
estuaries that appeared to be adapted to freshwater, seawater, or displaying a
preference specifically to estuaries (Figs. 4, 5). This clear differentiation likely
reflects the large number of genomic adaptations required for a
freshwater/seawater transition (e.g., see [72, 73]).

Interestingly, we identified a statistically significant association between
the ecologic range of gspp (in terms of habitat range and geographic distribution)
and their genome size and coding density, indicating that more cosmopolitan
gspp exhibit smaller, more compact genomes (Fig. S5). At first glance, this result
might appear unexpected when considering that bacteria with more flexible and
versatile metabolisms (multiple amenable carbon sources, detoxification
mechanisms, or micronutrient scavenging capabilities) tend to have larger
genomes, on average, and thus, are expected to colonize a higher number of
ecological niches [74]. However, metabolic flexibility is also associated with
fitness costs through the impact on growth rates, which may hinder the wider
distribution across different habitats and long geographic distances. Indeed, we
observed a phylogenetically-dependent negative association between estimated
minimum generation time and ecologic range, indicating that (at short
evolutionary distances) faster maximum growth facilitates more cosmopolitan
distributions. These results support the hypothesis that benefits from metabolic
flexibility provided by larger genomes could be superseded by the cost on fithess

of replicating a longer genome and thus, longer generation times, on average
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[75, 76]. This idea has been formally described as the Black Queen Hypothesis
(BQH), positing that genome reduction confers an inherent selective advantage
to bacteria [77]. BQH has been used to explain the genome reduction of taxa
with high population numbers (small effective population sizes are typically used
to explain genome reductions such as those observed in endosymbionts), as
observed in the marine members of the genera “Ca. Pelagibacter” and
Prochlorococcus [77, 78] as well as in freshwater microorganisms including
members of “Actinobacteria” and “Chloroflexi” [6, 7]. Here, we show that the
effects predicted by BQH may be observed across Bacteria. Moreover, BQH
implies the reliance of cosmopolitan bacteria on cheating: unilaterally using
common goods such as secreted metabolites and extracellular proteins. In
contrast, it has been previously proposed that cooperative pathogenic bacteria,
not cheaters, have wider host ranges [70]. We found that, in our collection, there
is a negative correlation between the fraction of extracellular proteins and all
evaluated ecologic range metrics, further supporting BQH.

A consequence of BQH pervasiveness is that its effects should be
observable in entire communities, not only in specific populations. While this
prediction remains speculative, it is worth noting that selection for generalists, an
increase in functional diversity, and faster growth rates have been observed in
prokaryotic communities after a strong disturbance without an associated
increase in average genome sizes [79]. However, note that these observations
are based on genomes from samples geographically and environmentally

restricted, and the generalization to other aquatic systems remains speculative.
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Finally, most of the analyses described above required a reliable
estimation of the relative abundance of genomospecies in each dataset.
However, estimating MAG abundances in metagenomes is encumbered by: (1)
genome incompleteness and imperfect estimations of completeness, (2) genome
contamination and time-consuming and subjective contamination identification,
and (3) microdiversity potentially confounding gene-content diversity with
technical artifacts like non-overlapping assemblies. We applied a novel approach
to estimate MAG abundance in metagenomes that sidesteps these limitations.
Two key corrections include (1) truncation of sequencing depth before averaging
to exclude highly conserved regions (overestimating depth), regions with gene-
content micro-diversity (underestimating depth), and contamination (both); and
(2) normalization of sequencing depth by genome equivalents in the
metagenome, allowing relative abundance estimates. Note that this approach
aims to estimate the relative abundance of the species in the community
(i.e., number of cells per total cells), not the more common metric of relative
abundance of sequenced DNA which is affected by genome sizes [80]. Our
abundance estimates correlated well with read counts normalized by
metagenome size and genome length (RPKM [81]), while revealing an expected
error of about 0.26 percent points in the simpler metric of read fraction
(significantly correlated with completeness and N50, unlike our estimate) as well
as about 1/3 of non-zero read fractions being potentially spurious. The metric
introduced here has several advantages with respect to RPKM: (1) it is

expressed in units of community fraction and, thus, can be readily interpreted as
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relative abundance, (2) it is robust to spurious high-depth regions due to highly
conserved loci, and (3) the difference between zero and non-zero values is
meaningful, as it corresponds to the tipping point for statistically significant
presence.

In conclusion, we present methodological advances for the generation and
study of MAGs derived from sets of related metagenomic datasets, and apply
them to interconnected lakes and estuaries along the Chattahoochee River. This
collection represents a valuable repository for the study of freshwater
communities, and the methods introduced here are widely applicable to other
metagenomic collections and environments. In addition, we show that
cosmopolitan gspp tend to display smaller genomes with a phylogenetically-
dependent association with faster growth rates, potentially reflecting the effects

of the Black Queen Hypothesis.

Data Availability
High-quality bins, distances, and other taxonomic analyses are available at

http://microbial-genomes.org/projects/WB_binsHQ. Assembled genomes were

also deposited in the NCBI GenBank database under BioProject PRINA495371.
All metagenomic datasets from the Chattahoochee samples are available in the
NCBI SRA database as part of the BioProject PRINA497294. Additional
metadata on the provenance of sets in the iterative subtractive binning is also

available as BioSamples SAMN10265471-SAMN10265528.
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Figure and Table legends

Figure 1. Diagram of the iterative subtractive binning methodology applied in this
study. Input data (bold) and processes are depicted as light grey boxes, data flow
as arrows, and output sets of MAGs as dark grey boxes. The initial non-iterative
binning of Lake Lanier metagenomes corresponds to the set LLD, and the 8
iterations including all datasets correspond to the sets WB4-WBB. After the
iterative approach, two targeted corrections were applied corresponding to WBC
(Archaea) and the empty set WBD (CPR). QC stands for Quality Control, and HQ

stands for High Quality.

Figure 2: Saturation of captured diversity along the iterative subtractive binning
rounds. (A) Total number of clades captured with ANI = 95% (light blue,
representing species level), AAl = 60% (dark blue, roughly corresponding to
genus level), and AAI = 40% (grey, roughly corresponding to phylum level). Note
that the range of AAl values (a proxy for genetic relatedness) within genera and
phyla typically varies between clades, and the latter two thresholds shouldn’t be
considered as precise estimates of taxonomic diversity. (B-C) Total fraction of
metagenomic reads from each dataset mapping to the complete (cumulative)
collection of MAGs after each iteration. Each line represents a metagenomic
dataset derived from Lake Lanier (B), other lakes (C, blue), or estuarine samples

(C, green).
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Figure 3: Phylogenetic reconstruction of the bacterial MAGs in this study and
closest relatives derived from five different genome collections. The phylogeny
was reconstructed using coalescent-based species tree estimation [40] from 70
gene trees reconstructed by Maximum Likelihood [38, 39]. The tree is decorated
with colored backgrounds corresponding to phyla (or classes in “Proteobacteria”),
labeled in the innermost ring. Light grey background corresponds to taxa not
including any representatives from our collection, and dark grey corresponds to
yet-unnamed taxa. The next ring indicates the genome collection (see legend),
emphasizing genomes from type material (purple, with accent dots inwards) and
from the current study (blue, extending outwards). The following double-ring
corresponds to the innermost background (phyla or classes, inwards) and the
larger containing group as labeled in the outermost ring (superphyla or the
phylum “Proteobacteria”, outwards). The labels use abbreviations for the
following taxa (clockwise): “Patescibacteria” (Patesc., also referred to as CPR),
“Ca. Saccharibacteria” (Sacc.), “Ca. Katanobacteria” (Kata., also referred to as
WWED3), “Ca. Uhrbacteria” (Uhr.), “Ca. Wolfebacteria” (Wolf.), “Ca.
Nomurabacteria” (Nom.), “Tenericutes” (Ten.), “Firmicutes” (Firm.), “Chloroflexi”
(Chl.), “Cyanobacteria” (Cyano.), “Aquificae” (Aqu.), “Planctomycetes” (Plancto.),
“Chlamydiae” (Chlam.), “Verrucomicrobia” (Verruco.), “Gemmatimonadetes”
(Gem.), “Deferribacteres” (Def.), “Marinimicrobia” (Mar.), “Ilgnavibacteriae” (Ign.),
“Spirochaetes” (Spir.), “Acidobacteria” (Acid.), “Dependentiae” (Dep.),
Deltaproteobacteria (Delta.), Acidiferrobacteria (Acidiferro.), and

Gammaproteobacteria (Gammaproteo.).
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Figure 4. Detection of the WB genomospecies in different environments. (A)
Presence/absence matrix of WB gspp per sample. The columns correspond to
metagenomic samples, sorted by biome and source collection, and the rows
correspond to WB gspp, sorted by the presence/absence pattern using Ward’s
hierarchical clustering of Euclidean distances. Empty cells in the matrix
correspond to TAD of zero (i.e., sequencing breadth below 10%), grey cells
correspond to 0 < TAD < 0.01X, and black cells correspond to TAD = 0.01X.
Large collections of metagenomic samples are indicated with horizontal bars at
the top and bottom and matching shading in the matrix, and correspond to
Ch:LL: Lake Lanier (Chattahoochee, this study), Ch:OL: other lakes from
Chattahoochee (this study), L. Mendota: Lake Mendota (WI, USA; JGI), Ch:E:
Estuaries from Chattahoochee (this study), GOM: Gulf of Mexico water column,
OMZ: Oxygen Minimum Zone, and TARA: Tara Ocean expedition. For
reference, the ticks on the left are spaced every 10 rows, and the marker colors
correspond to gspp with freshwater preference (blue), seawater preference (teal),
or no clear preference (grey; see also Fig. 5). (B) Summary statistics for gspp
detection. Each row corresponds to a set of samples, and the columns indicate
the total number of metagenomes (MGs), the number and fraction of
metagenomes with WB MAGs, and the number and fraction of WB gspp present
in the sample set. (C) Genomospecies in aquatic samples: freshwater (blue) and

seawater (teal). The different marks indicate the total number of gspp in each
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environment (light bars) and the number of gspp found only in that environment

(intermediate bars) and only in the Chattahoochee samples (dark bars).

Figure 5: Preference scores of the WB genomospecies in different sample sets.
(A) Preference scores for freshwater vs. seawater samples of all WB gspp.
Larger positive values indicate stronger preference towards freshwater, and
larger negative values stronger preference towards seawater. (B) Preference
scores for Chattahoochee lakes vs. Lake Mendota samples among gspp with
clear preference towards freshwater (blue squares in panel A). Larger positive
values indicate stronger preference for Chattahoochee lakes. Shadowed areas
indicate excluded gspp (without clear preference towards freshwater). (C)
Preference scores for Lake Lanier vs. other Chattahoochee lakes samples
among gspp with clear preference towards Chattahoochee lakes (blue squares in
panel B). (D) Preference scores for estuarine vs. marine samples among gspp

with clear preference towards seawater (red squares in panel A).

Figure 6: Biome and aquatic habitat breadths as functions of genome coding
density and estimated size. The panels in the top display the coding density of
the genomes for each given biome breadth (left), aquatic habitat breadth
(center), and the histogram for all representative genomes (right) indicating two
outliers classified in the phyla “Proteobacteria” (p Proteo.) and “Cyanobacteria” (p
Cyano.) further discussed in the main text. The panels in the middle follow the

same layout, with the rightmost histogram highlighting an outlier classified in the
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family Caulobacteraceae (f Caulobact.). Finally, the panels in the bottom
indicate the distribution of genomes by biome (left) and aquatic habitat (right)
breadths as bar plots with the total counts shown above each bar. Additionally,
the bottom panels highlight the frequency of selected taxa that were
overrepresented among cosmopolitans by the width of the colored sections (see
legend), including the order “Ca. Pelagibacterales” (o Pelag.), the phylum
“Actinobacteria” (p Actino.), the family Synechococcaceae (f Synech.), and the

phylum “Bacteroidetes” (p Bacter.).

Table 1: Software used in this study, sorted by method sections.
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Supplementary Online Material

Figure S1: Total Community Diversity captured by the WB MAGs collection. (A)
Shannon diversity (H’) estimated on the WB genomospecies abundance profiles
(circles) and linear model of H' by Ny (Nonpareil sequence diversity index;
dashed line). The expected diversity based on Ny is presented for reference
(solid line) as derived previously [3]. Grey bands indicate the 95% confidence
interval of both linear models. (B) Residuals of the observed H’ with respect to
the expected value; i.e., distances between the circles and the solid line in panel
A. (C) Total added abundance of the entire MAG set as a fraction of the
community (y-axis) by Ng. Note the significant positive linear correlation in panel
B and the significant negative correlation in panel C, indicating that the more
diverse communities (larger Ng) have poorer diversity coverage by the WB MAG

set (larger residuals in B, smaller total community fraction in C).

Figure S2: Phylogenetic reconstructions of two groups of MAGs and relatives.
(A) Genome representatives from seven phyla within the “Terrabacteria” group,
including “Ca. Elulota” proposed here. This species phylogeny represents a
coalescent-based reconstruction on the trees of 82 genes [38—-40]. (B)
Representatives from four phyla within the “Terrabacteria” group, emphasizing
the class “Ca. Limnocylindria” in the phylum “Chloroflexi”. This class includes two
genera: “Ca. Limnocylindrus” (emended here) and “Ca. Aquidulcis” (proposed
here). This species phylogeny obtained by coalescent-based reconstruction

based on the trees of 67 genes. In both panels the genomes derived from
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metagenomes (MAGSs) are prefixed with a label in squared brackets indicating
the study from where they were derived, including: A13 [82], B15 [53], M18 [6],
P18 [83], and Z18 [84], as well as the current study (This study) or publicly
available data currently missing a published manuscript (Unpub). Genomes

including a 16S rRNA gene sequence are marked with an asterisk.

Figure S3: Histograms of 80% central truncated average sequencing depth
(TAD) all WB genomospecies in all Chattahoochee samples (top) and all other
samples (bottom). Genomospecies with non-zero TAD (i.e., a sequencing
breadth > 10%) were considered confidently present if TAD was at least 0.01X
(black), and uncertain otherwise (grey). The values of absent, uncertain, and

present also correspond to the values in Fig. 4.

Figure S4: Phylogenetic diversity of the WB collection of MAGs in the context of
best matches to other genomic collections (A-B) and the reference collection of
genomes in PhyloPhlAn (C-D). In panels A and C, the X-axis corresponds to the
phylogenetic distance (branch lengths, bottom scale) at which the tree is cut into
clades (numbers on top). These clades are then classified as containing only
genomes from the WB collection (blue), only genomes from the reference
database (grey), or both (blue and grey pattern). In panels B and D, the overall
fraction of the tree (in branch lengths) covered by each category is summarized
as Faith’s Phylogenetic Diversity (bar graph) in order to estimate the

phylogenetic gain (right). Additionally, panel A includes an approximated
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phylogenetic calibration for the taxonomic ranks of species, genus, class, and
phylum (vertical dashed lines). Each of these points also include the number of
taxa only represented in the WB collection (novel) and the total number of taxa

formed at the calibrated point.

Figure S5: Metrics of Ecologic Range and their correlation with genomic
signatures. The y-axes (rows) indicate the genomic signatures evaluated, with
the summary histograms in the rightmost panels. Conversely, the x-axes
(columns) indicate the ecologic ranges, with summary histograms in the bottom
panels. Both the correlation statistic (Pearson’s R or Spearman’s p) and the
corresponding p-value are shown underneath each panel, with significant
correlations (p-value < 0.01) highlighted in green (positive) and red (negative).
The ecologic range metrics evaluated (left-to-right) are: biome count breadth (out
of 13 biomes), aquatic habitat count breadth (out of 5 habitats), unweighted
Levins’ breadths of biome and aquatic habitat (natural units), weighted Levins’
breadths of biome and aquatic habitat (natural units), geodesic range (thousands
of km), and latitude range (degrees). The genomic features evaluated (from top-
to-bottom) are: coding density (%), expected genome size (Mbp), G+C content
(%), frequency of the J COG category (%), minimum generation time (h), and

optimal growth temperature (°C).
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Table S1: Metagenomic datasets from water bodies along the Chattahoochee
River used here, including accession numbers, sample attributes,

physicochemical parameters, and sequencing attributes.

Table S2: Metagenome-Assembled Genomes (MAGSs) from the WB collection

and general statistics.

Table S3: Metagenomic datasets from other studies used here to determine
geographic and environmental breadth or preference. The column “Collection
name” corresponds to the collections in Fig. 1. The columns “Sample accession”
and “Run” correspond to the BioSample and Run accessions in the SRA/ENA
databases, respectively. Additional metadata is provided as derived from MGnify
or the original studies. The column “Reference” indicates the source study,
corresponding to references [13, 52—65], or “Unpublished” corresponding to data
publicly available in the SRA/ENA databases but currently not linked to

publications.

Text S1: Additional details on materials and methods used in the present study.

Text S2: Additional details on population abundance and community diversity

estimation.
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1 Text S3: Additional methodology, results, and protologues for novel lineages

2 described here: “Ca. Elulimicrobium humile” gen. nov. sp. nov. and “Ca.

w

Aquidulcis frankliniae” gen. nov. sp. nov.
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A. Presence / absence matrix of WB genomospecies per sample
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