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Summary.	How	neural	populations	represent	sensory	information,	and	how	that	
representation	is	transformed	from	one	brain	area	to	another,	are	fundamental	questions	of	
neuroscience.	The	dorsolateral	geniculate	nucleus	(dLGN)	and	primary	visual	cortex	(V1)	
represent	two	distinct	stages	of	early	visual	processing.	Classic	sparse	coding	theories	
propose	that	V1	neurons	represent	local	features	of	images.	More	recent	theories	have	
argued	that	the	visual	pathway	transforms	visual	representations	to	become	increasingly	
linearly	separable.	To	test	these	ideas,	we	simultaneously	recorded	the	spiking	activity	of	
mouse	dLGN	and	V1	in	vivo.	We	find	strong	evidence	for	both	sparse	coding	and	linear	
separability	theories.		Surprisingly,		the	correlations	between	neurons	in	V1	(but	not	dLGN)	
were	shaped	as	to	be	irrelevant	for	stimulus	decoding,	a	feature	which	we	show	enables	
linear	separability.	Therefore,	our	results	suggest	that	the	dLGN-V1	transformation		
reshapes	correlated	variability	in	a	manner	that	facilitates	linear	decoding	while	producing	a	
sparse	code.			
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Introduction	

A	fundamental	goal	in	neuroscience	is	to	understand	how	populations	of	neurons	represent	
and	transform	sensory	information.	In	the	mammalian	visual	pathway,	information	in	the	
retina	is	relayed	through	the	dorsal	lateral	geniculate	nucleus	(dLGN),	and	subsequently	sent	
to	the	primary	visual	cortex	(V1).		Several	hypotheses	regarding	how	the	dLGN-V1	pathway	
transforms	visual	information	have	been	proposed.	Classic		sparse	coding	theories	posit	that	
V1	neurons	encode	visual	information	from	their	thalamic	inputs	in	a	sparse	representation	
of	local	features	(Foldiak	1990;	Olshausen	and	Field,	1996;	Olshausen	and	Field,	1997;	Bell	
and	Sejnowski	1997;	Vinje	and	Gallant,	2000;	Rehn	and	Sommer,	2006;	Zylberberg	et	al.,	
2011).	On	the	other	hand,	recent	work	inspired	by	machine	vision	has	hypothesized	that	the	
visual	cortical	pathway	transforms	visual	representations	to	make	them	more	linearly	
separable	in	neural	activity	space	(DiCarlo	et	al.,	2012).	Intrinsically	linked	to	these	theories	
is	the	question	of	how	the	visual	population	code	is	shaped	by	correlations	in	neural	activity	
(Averbeck	et	al.,	2006).		

These	theoretical	advances	have	shaped	our	understanding	of	early	visual	processing.	Multi-
unit	extracellular	recordings	have	since	provided	evidence	of	sparse	coding	in	V1	(Vinje	and	
Gallant,	2000;	Haider	et	al.,	2010,	but	see	Tollhurst	et	al.,	2009).	However,	direct	tests	of	
whether	sparse	coding	and	linear	separability		theories	have	been	limited	by	the	difficulty	of	
recording	simultaneously	from	dLGN	and	V1	in	vivo.	Indeed,	recent	work	has	found	that	
neural	activity	is	modulated	by	factors	such	as	attention	and	locomotion,	both	in	dLGN	
(Erisken	et	al.,	2014;	Aydın	et	al.,	2018)	and	in	V1	(McAdams	and	Reid,	2005;	Niell	and	
Stryker,	2010;	Polack	et	al.,	2013;	Vinck	et	al.,	2015;	Dadarlat	and	Stryker,	2017;	Pachitariu	
et	al.,	2019).	These	findings	complicate	the	comparisons	of	dLGN	and	V1	representations	in	
different	animals	or	recording	sessions,	as	differences	in	neural	activity	could	be	caused	by	
changes	in	the	internal	or	behavioural	state.	

To	address	this,	we	recorded	simultaneously	from	populations	of	neurons	in	dLGN	and	V1	of	
mice	that	were	presented	with	gratings	of	varying	spatial	and	temporal	frequencies.	
Leveraging	this	dataset,	we	compared	the	population	code	in	each	of	these	areas,	and	how	
trial-to-trial	spiking	covariability	changed	the	representation	of	visual	information	from	
dLGN	to	V1	within	the	same	animal.		

Results	and	Discussion	

Simultaneous	recordings	in	dLGN	and	V1	

We	used	multisite	silicon	probes	to	simultaneously	monitor	neural	populations	in	V1	and	
dLGN	in	mice	during	passive	viewing	of	drifting	gratings	of	varying	direction	and	
spatiotemporal	frequency	(Figure	1A).	Mice	were	either	awake	and	freely	behaving	(n	=	3)	
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or	anesthetized	(n	=	1,	designated	separately	in	all	figures	via	dotted	line	and/or	hollow	
marker).	V1	units	had	lower	stimulus-evoked	firing	rates	and	were	more	direction	selective	
than	dLGN	units	(Figure	1B,C).	These	findings	are	consistent	with	the	reduced	firing	and	
increased	selectivity	predicted	by	classic	sparse	coding	theories	(Foldiak	1990;	Olshausen	
and	Field,	1996).	We	next	directly	tested	whether	the	dLGN-V1	transformation	sparsens	
visual	representations	on	a	trial-by-trial	basis	within	the	same	animal.	To	do	this,	we	
summed	spikes	from	each	neuron	in	time	bins	of	varying	duration	(from	10	ms	to	1	s),	and	
calculated	the	population	sparseness	of	V1	and	dLGN	activity	for	each	trial	(Vinje	and	
Gallant,	2000).	Indeed,	we	found	that	for	each	mouse	and	for	all	temporal	windows	tested,	
single-trial	population	activity	of	V1	units	was	significantly	sparser	than	that	of	dLGN	units	
(Figure	1D),	and	that	this	sparsening	occurred	within	individual	trials	(Figure	1	-	Supplement	
1).	These	findings	provide	direct	evidence	of	sparse	coding	in	early	vision.		

To	better	understand	how	the	dLGN-V1	pathway	transforms	activity	at	the	population	level,	
we	next	compared	the	correlations	of	spiking	activity	between	units	within	the	same	region.	
Spiking	correlations	can	loosely	be	categorized	into	signal	correlations	(correlations	due	to	
the	stimulus	tuning	between	neurons),	and	noise	correlations	(correlations	that	cannot	be	
explained	by	tuning	-	these	may	reflect	connectivity	or	modulating	factors	like	internal	state)	
(Averbeck	et	al.,	2006;	Cohen	and	Kohn,	2011;	Doiron	et	al.,	2016).		We	calculated	spike	
count	noise	correlations	in	dLGN	and	V1	based	on	the	joint	spiking	activity	of	pairs	of	
neurons	within	single	trials.	Previous	work	has	shown	that	nonlinear	thresholding	can	
reduce	spiking	correlations	by	quenching	sub-threshold	covariability	of	their	synaptic	inputs	
(de	la	Rocha	et	al.,	2007).	Therefore,	naively	one	might	expect	V1	units	to	be	significantly	
less	correlated	than	dLGN	units	as	a	result	of	their	lower	firing	rates.	Surprisingly,	we	found	
that		the	average	noise	correlation	between	V1	units	was	slightly	greater	than	in	dLGN	
(Figure	1E).	This	difference	persisted	over	a	wide	range	of	temporal	windows	(Figure	1	-	
figure	supplement	2).	One	potential	confound		is	that	the	multi-shank	probe	used	in		dLGN	
may	record	from	more	dispersed	units.	As	correlations	tend	to	decay	over	long	distances,	
this	could	contribute	to	the	lower	dLGN	correlations	that	we	observed.	However,	we	found	
the	same	difference	in	correlations	when	removing	dLGN	pairs	located	on	different	shanks	
(Figure	1	-	figure	supplement	1).	In	sum,	we	found	that	the	the	dLGN-V1	transformation	
sparsens	population	activity	while	slightly	increasing	average	correlated	variability.	

dLGN-V1	transformation	removes	impact	of	correlations	on	decoding	

A	significant	amount	of	recent	theoretical	work	has	shown	that	correlated	spiking	can	
impact	neural	coding	(Averbeck	et	al,	2006;	Shamir,	2014;	Kohn	et	al.,	2016).	Yet,	V1	
decoding	studies	in	mice	and	monkeys	(Panzeri	et	al.,	2002;	Averbeck	and	Lee,	2006;	
Montani	et	al.,	2007;	Poort	and	Roelfsema,	2009;	Berens	et	al.,	2012;	de	Vriees	et	al.,	2018	-
-	but	see	Graf	et	al.,	2011	for	an	exception),	have	generally	observed	very	little	effect	of	
correlations	on	visual	coding.	On	the	other	hand,	previous	work	has	shown	that	precisely	
timed	spiking	correlations	between	pairs	of	dLGN	neurons	(Alonso	et	al.,	1996)	may	act	as	
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an	extra	information	channel	(Dan	et	al.,	1998).	We	therefore	next	asked	how	the	dLGN-V1	
transformation	changes	stimulus	decoding.	In	particular,	we	asked	how	the	change	in	
spiking	correlations		from	dLGN	to	V1	changes	how	these	regions	represent	specific	visual	
features	(e.g.,	direction)	while	remaining	invariant	to	others	(e.g.,	frequency).		

To	do	this,	we	trained	downstream	decoders	on	either	dLGN	or	V1	activity	to	discriminate	
between	neural	responses	to	similar	visual	stimuli	(i.e.,	between	responses	to	a	pair	of	
directions	θ1	and	θ2		differing	by	45	degrees).	We	then	tested	the	ability	of	these	decoders	
to	predict	which	of	the	two		grating	directions	were	presented	on	a	single	held-out	trial	of	
unknown	spatiotemporal	frequency	(Figure	2A).	For	a	fair	comparison,	V1	and	dLGN	
populations	were	subsampled	to	the	same	number	of	neurons	used	for	decoding	in	each	
mouse.	To	test	the	impact	of	correlated	variability	on	decoding,	we	compared	the	
performance	of	decoders	based	on	models	that	captured	the	population	activity	
(‘Correlated	decoder’),	versus	those	based	only	on	the	firing	rates	of	each	neuron	while	
missing	their	trial-to-trial	covariation	(‘Independent	decoder’;	see	Methods).	By	comparing	
the	performance	of	correlated	and	independent	decoders	based	on	dLGN	or	V1	activity,	we	
were	then	able	to	quantify	how	knowledge	of	the	population	correlation	structure	affects	
stimulus	decoding	(Figure	2B).	Although	overall	decoder	accuracies	were	heterogeneous	
across	animals	(Figure	2	-	figure	supplement	1),	dLGN	decoders	always	performed	
significantly	better	when	taking	into	account	trial-to-trial	correlations	(Figure	2C).	In	
contrast,	knowledge	of	V1	correlations	had	less	impact	on	decoding	(Figure	2C),	despite	the	
fact	that	V1	correlations	were	greater	on	average	than	dLGN	correlations	(Figure	2	-	Figure	
Supplement	2,	which	shows	correlations	for	responses	combined	across	spatiotemporal	
frequencies,	as	in	our	decoding	task).	Because	the	yield	of	our	dLGN	recordings	was	often	
much	higher	than	our	V1	recordings,	we	repeated	our	decoding	analyses	for	different	sizes	
of	subsampled	dLGN	populations.	As	expected,	the	impact	of	correlations	on	dLGN	decoding	
increased	with	population	size	(Figure	2D).	Together,	these	results	suggest	that	the	dLGN-V1	
transformation	reshapes	population	activity	so	that	correlated	spiking	has	less	impact	on	
stimulus	decoding.		

The	reduced	impact	of	correlations	from	dLGN	to	V1	produces	a	more	linearised	
population	code	

What	is	the	benefit	of	restructuring	spiking	co-variability	so	that	it	has	less	of	an	impact	on	
population	decoding?	Recent	theories	have	suggested	that	the	transformation	of	visual	
representations	across	successive	stages	of	higher	cortical	processing	helps	to	separate	
invariant	representations	of	objects	in	the	ventral	stream	(DiCarlo	et	al.,	2012).	We	
therefore	speculated	that	a	similar	reshaping	of	the	population	code	may	also	occur	in	the	
dLGN-V1	transformation	for	simpler	visual	features.	We	first	showed		analytically	that	the	
independent	decoder	can	be	mathematically	reduced	to	a	linear	decoder	(Appendix	1).	
Linear	decoders	are	favoured	because	they	are	easy	to	implement	in	a	downstream	neuron,	
as	a	weighted	summation	and	thresholding	of	population	activity.	Conversely,	the	
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correlated	decoder	is	equivalent	to	a	nonlinear	(quadratic)	decoder	(Fig	3A).	This	fact,	
combined	with	the	different	effects	of	correlations	on	dLGN	and	V1	decoding	(Figure	2C),	
suggests	that	V1	population	activity	may	be	more	linearly	decodable	than	dLGN	activity.	
Indeed,	we	found	that	nonlinear	(quadratic)	decoders	significantly	outperformed	linear	
decoders	in	dLGN,	but	not	in	V1	(Figure	3B),	confirming	that	the	dLGN-V1	transformation	
increases	the	linear	separability	of	simple	visual	features.		

Anatomically,	the	projection	from	dLGN	to	V1	is	highly	divergent,	with	hundreds	of	cortical	
neurons	for	every	geniculate	neuron	in	primates	(Stevens,	2001).	Such	divergent	projections	
are	generally	thought	to	separate	neural	representations	by	projecting	them	into	a	high-
dimensional	space	(Cover,	1966;	Albus,	1971;	Rigotti	et	al.,	2013;	Babadi	and	Sompolinsky,	
2014,	Litwin-Kumar	et	al.,	2017;	Cayco	Gajic	et	al.,	2017;	Cayco	Gajic	et	al.,	2019).	Indeed,	
recent	large	scale	imaging	has	found	high-dimensional	representations	of	naturalistic	
images	in	V1	population	activity,	consistent	with	this	hypothesis	(Stringer	et	al.,	2019).	
However,	we	observed	a	decrease	of	the	embedding	dimensionality	of	V1	representations	
compared	to	dLGN	representations	(Figure	3B).	One	possibility	is	that	the	dLGN-V1	pathway	
uses	different	strategies	-	increasing	dimensionality	vs.	reshaping	representations	-	for	
complex	vs.	simple	visual	stimuli.	Overall,	our	results	suggest	that	the	dLGN-V1	
transformation	can	make	representations	of	simple	visual	features	more	linearly	separable	
by	reshaping	correlated	spiking		variability,	even	without	increasing	their	dimensionality.	
This	finding	complements	recent	work	that	has	shown	that	changes	in	the	geometry	of	
visual	representations	of	objects	contribute	to	their	increased	separability	in	deep	neural	
networks	(Cohen	et	al.,	2019;	Recanatesi	et	al,	2019).	However,	an	important		caveat	of	our	
interpretation	is	that,	because	we	have	subsampled	dLGN	and	V1	recordings	the	same	
population	size,	we	may	miss	an	increase	in	dimensionality	that	could	occur	due	to	the	
anatomical	divergence.	In	fact,	it	seems	likely	that	these	two	mechanisms	-	increasing	
dimensionality	and	reshaping	covariability	-	work	in	tandem	to	reshape	representations	of	
visual	stimuli	to	be	more	separable.	Recent	advances	in	high	density	electrophysiology	(Jun	
et	al.,	2017)	will	enable	future	testing	of	the	mechanisms	behind	linear	separability	of	
invariant	representations	in	large	scale	recordings	of	neural	populations	across	the	brain.	

Methods	

Mice	were	maintained	in	the	Allen	Institute	for	Brain	Science's	animal	facility	and	used	in	
accordance	with	the	protocol	approved	by	Allen	Institute	for	Brain	Science's	Institutional	
Animal	Care	and	Use	Committees.	

Extracellular	multisite	electrophysiology	

The	experimental	procedure	was	the	same	as	in	our	previously-published	work	(Durand	et	
al.,	2016),	and	summarized	briefly	here.	Electrophysiological	recordings	were	performed	in	
the	left	hemisphere	of	adult	C57Bl/6	mice	(2–	6	months,	males).	We	performed	experiments	
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in	awake	(n=	3)	and	anesthetized	mice	(n=	1;	urethane	(1.2–1.5	g/kg,	i.p.)).	Using	aseptic	
conditions,	mice	were	first	implanted	with	a	metallic	head-plate	(with	well)	under	
anesthesia	with	isoflurane	(3%–5%	induction	and	1.5%	maintenance,	100%O2)	and	
ketamine/xylazine	(70	mg/kg,	i.p.).	Body	temperature	was	maintained	at	37.5°C.	The	head-
plate	was	positioned	and	secured	by	Vetbond	(Webster	Veterinary)	and	Metabond	(Parkell).	
The	head-plate	provides	a	secure	way	to	stabilize	the	head	and	allows	easy	access	to	our	
targets	areas	(dLGN	and	V1).	Finally,	we	sealed	the	skull	surface	with	a	thin	layer	of	
transparent	Metabond	and	filled	the	well	of	the	head-plate	with	Kwik	Cast	(WPI)	until	the	
day	before	the	experiment,	3–8	weeks	later.		

The	day	before	recordings,	we	performed	two	craniotomies	under	anesthesia:	one	directly	
over	the	dLGN	and	one	over	V1.	We	used	two	small	craniotomies	instead	of	a	large	one	to	
reduce	brain	movement	leading	to	probe	drift.	The	multi-shank	dLGN	probes	were	too	thin	
to	go	through	the	dura,	so	we	performed	a	durotomy	using	an	insulin	syringe	with	bent	tip.	
For	reference	and	grounding,	we	inserted	two	screws,	one	over	frontal	cortex	and	the	other	
caudal,	over	the	cerebellum.	Then,	we	filled	the	well	with	Kwik	Cast.	To	allow	recovery	from	
anesthesia	and	surgery,	the	recordings	were	performed	the	next	day.	Awake	mice	went	
directly	into	the	recording	setup.	They	were	head-fixed	while	they	were	free	to	run	or	
remain	still	on	a	freely	rotating	disk.	For	the	anesthetized	mouse,	we	started	by	giving	
dexamethasone	to	avoid	brain	inflammation	(2	mg/kg,	s.c.)	and	atropine	to	keep	the	
respiratory	tract	clear	(0.3	mg/kg,	i.p.).	Then,	it	was	head-fixed	and	placed	on	a	heating	pad	
with	feedback	control	(ATC	1000,	WPI),	on	a	static	disk.	Body	temperature	was	maintained	
at	37.5°C.	For	both	awake	and	anesthetized	recordings,	the	Kwik	Cast	was	removed	and	the	
exposed	cortex	and	skull	were	covered	with	1%	agarose	in	saline	to	prevent	drying	and	to	
help	maintain	mechanical	stability.	dLGN	electrodes	were	either	a	Neuronexus	Buzsáki32	
(32	channels	with	4	shanks)	or	a	Buzsáki64	(64	channels	and	6	shanks)	and	were	advanced	
vertically	to	a	depth	of	2700–2900	μm.	V1	electrodes	were	an	Edge32	(A1x32-Edge-5	mm-
20–177)	and	were	advanced	to	a	depth	800–1000	μm.	The	electrodes	were	dipped	with	a	
lipophilic	dye	(DiI)	allowing	post	hoc	visualization	of	the	electrode’s	path.	We	then	inserted	
the	probes	and	used	them	to	record	brain	activity.	We	allowed	20	minutes	after	
implantation	for	the	electrodes	to	settle,	before	starting	the	recordings.	In	the	anesthetized	
mouse,	the	eyes	were	covered	with	a	thin	layer	of	a	long-lasting	lubricating	and	moisturizing	
agent	(I-drop)	to	prevent	drying.	Set	up	and	recording	lasted	around	5	to	6	hours.	

After	the	recordings,	mice	were	perfused	with	4%	PFA	(after	induction	with	5%	isoflurane	
and	1	L/min	of	O2).	Their	brains	were	preserved	in	4%	PFA,	rinsed	with	1X	PBS	the	next	
morning,	and	stored	at	4°C	in	PBS.	We	cut	coronal	or	sagittal	100m	sections	with	a	
vibratome.	The	sections	were	mounted	using	VectaShield	with	DAPI	(Vector	Laboratories)	
and	imaged	on	Olympus	VS-110\120	with	a	magnification	objective	of	10x	to	reconstruct	
electrode	paths	in	V1	and	dLGN	(see	Figure	1).	Based	on	DiI	staining,	we	confirmed	that	the	
probes	reached	dLGN	(Allen	Mouse	Brain	Atlas,	Lein	et	al.,	2007).		
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Data	acquisition	

Neurophysiological	signals	were	amplified	(400x),	bandpass	filtered	(0.3-10	kHz),	and	
acquired	continuously	at	20	kHz	at	16-bit	resolution	using	an	Amplipex	system	
(http://www.amplipex.com/).	The	spike	sorting	procedure	was	described	in	detail	previously	
(Mizuseki	et	al.,	2009).	In	brief,	extracellular	action	potentials	were	extracted	from	the	
recorded	broadband	signal	after	high	pass	filtering	(>800Hz)	by	a	threshold	crossing-based	
algorithm.	Based	on	principal	component	analysis,	individual	spikes	were	automatically	
clustered	into	groups	using	the	KlustaKwik	program	(Harris	et	al.,	2000),	followed	by	manual	
adjustment	of	the	clusters	using	the	Klusters	software	package	
(http://klusters.sourceforge.net)	(Hazan	et	al.,	2006).	Only	units	with	clear	refractory	
periods	and	well-defined	cluster	boundaries	were	included	in	the	analyses	(Harris	et	al.,	
2000).	

Visual	stimuli	

Stimuli	were	generated	in	Python,	using	the	Psychopy	toolbox	(Peirce,	2007),	and	were	
shown	on	an	Asus	PB238	screen	(1920	x	1080	pixels,	51	cm	wide,	60	Hz	refresh	rate)	
adjusted	with	a	flexible	arm	to	be	45°	from	the	anteroposterior	axis,	11	cm	from	the	
mouse’s	eye,	thus	subtending	133°	of	visual	field.	The	monitor	was	gamma	corrected	to	
linearize	luminance.	All	stimuli	were	presented	full	screen.	

Gratings	

We	presented	an	extensive	matrix	of	stimuli	consisting	of	drifting	gratings.	We	aimed	to	
explore	a	broad	range	of	spatial	and	temporal	frequencies	(Niell	and	Stryker,	2008;	
Andermann	et	al.,	2011;	Piscopo	et	al.,	2013).	This	stimulus	set	consisted	of	gratings	with	
eight	directions	(4	orientations)	spaced	uniformly	between	0	deg	and	360	deg,	six	spatial	
frequencies	(0.02,	0.04,	0.08,	0.16,	0.32	and	0.64	cycles	per	degree),	and	five	temporal	
frequencies	(1,	2,	4,	8,	15	Hz)	with	contrast	fixed	at	80%.	We	analyzed	data	only	from	the	3	
lower	spatial	frequencies,	because	the	neural	responses	recorded	at	the	3	higher	spatial	
frequencies	showed	unstable	inter-neuronal	correlations	(i.e.,	the	correlations	differed	
substantially	between	different	portions	of	the	dataset,	precluding	accurate	statistical	
models	to	be	fit	to	the	population	activity).	

The	gratings	were	presented	for	3	s	with	1	s	of	mean	luminance	gray	between	successive	
gratings.	Blank	(mean	gray)	stimuli	were	randomly	interleaved.	Grating	conditions	were	
presented	in	a	randomized	fashion,	and	each	condition	was	presented	at	least	7	times.	

DSI	and	sparseness	

The	direction	selectivity	index	(DSI)	of	each	neuron	was	measured	following		(Zylberberg	et	
al.,	2016):	
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!"#!  = �!!(!) !(!)�
�!!(!)�

,	

where	!!(!)is	the	firing	rate	of	neuron	i		during	all	presentations	of	a	grating	with	direction	
!(regardless	of	spatiotemporal	frequency),	and	!(!) = [!"#(!), !"#(!)]	is	the	unit	vector	in	
the	direction	of	angle	!.	Averages	are	taken	over	stimulus	direction.	Intuitively,	this	quantity	
computes	the	vector	mean	of	the	circularized	tuning	curve,	normalized	by	the	average	firing	
rate,	and	takes	the	magnitude	of	the	resulting	vector.	As	a	result	the	DSI	is	1	for	a	neuron	
that	only	responds	to	stimuli	of	a	single	grating	direction,	and	is	0	for	a	neuron	that	fires	on	
average	the	same	amount	for	any	grating	direction.	

Population	sparseness	at	a	single	time	bin	was	quantified	by	(Vinje	and	Gallant,	2000):		

! =  1
!− 1

!− !!! 2

!!!!
	

where	ri	is	the	firing	rate	of	neuron	i	in	the	corresponding	time	bin.	This	quantity	measures	
how	evenly	spread	spiking	activity	is	over	the	population.	Single-trial	population	sparseness	
was	calculated	by	averaging	S	over	all	time	bins	within	the	3	s	trial	(shown	in	Figure	1	-	
Supplement	1).	The	single-trial	population	sparseness		was	then	averaged	over	all	trials	to	
obtain	the	trial-averaged	population	sparseness	for	each	mouse	(shown	in	Figure	1D).	

Cell	selection	for	decoding	analyses	

For	all	decoding	analyses,	neurons	with	firing	rates	<	0.1	Hz	were	excluded	due	to	difficulty	
fitting	infrequent	spiking	statistics.	Moreover,	in	all	decoding	analyses,	neuronal	populations	
were	randomly	subsampled	so	that	the	number	of	neurons	used	for	decoding	dLGN	and	V1	
activity	was	the	same	within	each	mouse	(Mouse	M40,	N	=	24;	M72,	N	=	21;	M78,	N	=	16;	
M83,	N	=	30).	

Correlated	v.	independent	decoding	

Population	decoding	was	assessed	as	two-alternative	forced	choice	accuracy	of	a	maximum	
likelihood	estimation.	That	is,	given	neural	activity	pattern	x	at	a	single	snapshot	in	time,	the	
decoder	chooses	direction	θ1	if	P(x|θ1)	>	P(x|θ2).	To	test	the	impact	of	correlations	on	
decoding,	we	compared	two	models	of	the	conditional	distribution	P(x|θ):	one	that	only	
reproduces	the	firing	rates	of	the	neurons	(the	‘independent’	decoder),	and	one	that	also	
reproduces	the	pairwise	noise	correlations	(the	‘correlated’	decoder).	Specifically,	we	used	
maximum	entropy	models	to	fit	the	joint	spiking	activity	of	populations	of	either	dLGN	or	V1	
neurons	(Gardella	et	al.,	2019).	Maximum	entropy	models	are	useful	because	they	can	fit	
specified	statistics	of	the	data	(such	as	correlations	and	firing	rates)	while	making	no	
additional	assumptions	on	the	rest	of	the	structure	of	the	data.	The	maximum	entropy	
model	has	the	following	form:		
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!!(!) =
1

!!
!!!!!!!	

!!	is	a	symmetric	matrix	of	pairwise	interaction	terms	capturing	the	coupling	between	
neurons,	and	!!	is	a	normalizing	factor.	Spiking	activity	x	was	binned	in	short	20	ms	time	
windows.	For	parameter	fitting,	we	used	Minimum	Probability	Flow	(Sohl-Dickstein	et	al.,	
2011).	For	correlated	decoders	the	full	matrix	!!	was	fit	to	match	the	firing	rates	and	
pairwise	correlations,	while	for	independent	decoders	!!	was	constrained	to	be	diagonal	
(and	was	fit	to	match	only	the	firing	rates).	!!	was	approximated	using	the	Good-Turing	
estimate	(Haslinger	et	al.,	2013).	Note	that	a	separate	model	was	fit	for	each	grating	
direction.	One	trial	per	orientation	was	held	out	for	testing	the	model.	This	process	was	
repeated	150	times	with	different	choices	of	randomly	subsampled	populations	and	held-
out	trials.	Upon	testing,	multiple	timepoints	were	treated	as	statistically	independent	to	
obtain	decoding	accuracy	as	a	function	of	time	throughout	the	held-out	trial	(e.g.,	Figure	
2B).	Finally,	decoding	accuracy	was	averaged	over	all	pairs	of	grating	directions	differing	by	
45	degrees.	Similar	results	were	obtained	when	averaging	over	all	possible	pairs	of	
directions.	

Linear	vs.	quadratic	decoding	

Linear	separability	was	determined	using	cross-validated	logistic	regression	to	discriminate	
between	pairs	of	stimuli.	For	each	pair	of	grating	directions	,	a	linear	classifier	was		built	by	
fitting	a	generalized	linear	model	(GLM)	with	a	logit	link	and	binomial	distribution	to	classifiy	
the	vector	of	20	ms	binned,	binarized	neural	activity	.	For	quadratic	decoders,	regressors	
additionally	included	cross-terms	(i.e.,	!!!!).	Linear	(or	nonlinear)	decoding	accuracy	was	

then	calculated		by	predicting	the	stimulus	based	on	the	population	activity	averaged	over	
the	first	600	ms	of	a	held-out	test	trial.	Decoding	accuracy	was	averaged	over	all	pairs	of	
grating	direction	and	over	150	random	choices	of	subsampled	populations	and	held-out	test	
trials.		

Dimensionality	

To	compare	the	dimensionality	across	mice	and	across	regions,	all	dLGN	and	V1	populations	
were	randomly	subsampled	to	20	neurons.	The	dimensionality	was	then	measured	as	the	
eigenvalue	participation	ratio	(Gao	et	al.,	2017;	Litwin-Kumar	et	al.,	2017):	

! = !!! 2

!!!!
,	

where	each	!! 	is	the	ith	eigenvalue	of	the	covariance	matrix	of	the	20	ms	binned	spiking	
activity	over	the	first	600	ms	following	stimulus	presentation.	This	can	be	viewed	as	a	
generalization	of	dimensionality	(as	typically	measured	as	the	number	of	principal	
components	required	to	capture	a	fixed	percentage	of	the	variance)	to	continuous	values.	
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Code	availability	

All	analysis	code	will	be	made	available	upon	publication	at:	
https://github.com/caycogajic/LGN-V1-neural-code	
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Figure	1.	Simultaneous	recordings	in	dLGN	and	V1.	
(A)	Top:	Typical	location	of	electrodes	in	an	example	mouse,	superimposed	on	Allen	Brain	
Reference	Atlas.	Inset	depicts	single-shank	and	multi-shank	probes	used	in	V1	and	dLGN,	
respectively.	Bottom:	Sagittal	sections	showing	electrode	tracks	in	dLGN	(left)	and	V1	(right).	
Scale	bars	indicate	1	mm	(left)	and	200	μm	(right).	
(B)	Distribution	of	firing	rates	over	all	mice	for	dLGN	units	(blue)	and	V1	units	(red)	(p	<	10-4,	
Wilcoxon	rank-sum	test,	N	=	302	dLGN	units,	141	V1	units).	Inset	shows	the	change	in	
average	firing	rates	for	each	mouse	separately	(indicated	by	shade;	anesthetized	mouse	
depicted	by	dotted	line).	Stars	in	inset	indicate	minimum	significance	level	for	each	mouse	
(p	<	10-3	for	each	mouse,	Wilcoxon	rank-sum	test).	Error	bars	indicate	SEM.	
(C)	As	in	(B)	for	distribution	of	direction	selectivity	index	(DSI)	over	all	mice	(p	<	10-4,	
Wilcoxon	rank-sum	test,	N	=	302	dLGN	units,	141	V1	units).	Inset	shows	the	change	in	DSI	
for	each	mouse	separately	(anesthetized	mouse	depicted	by	dotted	line)	(p	<	10-2	for	each	
mouse,	Wilcoxon	rank-sum	test).	
(D)	Trial-averaged	population	sparseness	of	dLGN	and	V1	population	activity,	calculated	
over	varying	time	windows.	Different	shades	indicate	different	mice	(anesthetized	mouse	
depicted	by	dotted	line).	Error	bars	indicate	SEM.	Stars	indicate	comparison	of	V1	vs	dLGN	
population	sparseness	across	individual	trials	(p	<	10-4	for	each	mouse	and	for	each	time	
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window	tested,	Wilcoxon	signed	rank	test,	N	=	960	trials	/	stimuli).	
(E)	Distribution	of	intraregional	single-trial	noise	correlations	over	all	mice	(100	ms	bins).	V1	
pairs	are	slightly	but	significantly	more	correlated	than	dLGN	pairs	on	average	(p	<	10-4,	
Wilcoxon	rank-sum	test,	N	=	15,168	dLGN	pairs,	2,571	V1	pairs).	Inset	shows	the	change	in	
average	single-trial	noise	correlation	for	each	mouse	separately	(anesthetized	mouse	
depicted	by	dotted	line).	Stars	in	inset	indicate	minimum	significance	level	for	each	mouse	
(p	<	10-4	for	each	mouse,	Wilcoxon	rank-sum	test).	Error	bars	indicate	SEM.	
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Figure	2.	Knowledge	of	correlations	improve	decoding	in	dLGN	but	not	in	V1.	
(A)	Schematic	of	decoding	task.	Maximum	likelihood	decoders	were	built	based	on	the	
neural	activity	patterns	of	either	dLGN	or	V1	populations	in	response	to	gratings	of	a	given	
direction,	while	spatial	and	temporal	frequencies	were	varied.	These	decoders	were	then	
used	to	predict	grating	direction	based	on	the	population	response	in	a	single,	held-out	trial	
(i.e.,	a	trial	that	was	not	used	for	training	the	decoder).	To	compare	the	impact	of	
correlations	on	decoding,	decoders	were	built	which	either	used	only	firing	rate	information	
(‘independent’	decoders),	or	used	both	firing	rate	and	short-timescale	(20	ms)	correlated	
spiking	(‘correlated’	decoders).		
(B)	Decoding	grating	direction	from	dLGN	(top)	or	V1	(bottom)	population	activity	in	an	
example	mouse.	Solid	lines	indicate	the	performance	of	a	correlated-based	decoder,	while	
dotted	lines	indicate	performance	of	an	independent	decoder.	Error	bars	indicate	SEM	over	
150	random	samples	of	the	held-out	trial,	and	subsamples	of	the	full	population.		
(C)	Change	in	decoding	accuracy	due	to	knowledge	of	correlated	population	structure,	
shown	both	for	dLGN	and	V1	responses,	and	for	all	mice	(anesthetized	mouse	depicted	by	
dotted	line).	Knowledge	of	the	correlated	structure	greatly	increases	decoding	performance	
in	dLGN	(red,	p	<	10-4	for	each	mouse,	Wilcoxon	signed	rank	test,	N	=	150	random	samples),	
but	has	a	smaller	impact	in	dLGN	(blue).	Error	bars	indicate	SEM	over	150	random	samples	
of	the	held-out	trial,	and	subsamples	of	the	full	population.		
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(D)	Change	in	dLGN	decoding	accuracy	as	a	function	of	population	size.	Each	line	indicates	a	
different	mouse	(anesthetized	mouse	depicted	by	dotted	line).	Error	bars	indicate	SEM	over	
150	random	samples	of	the	held-out	trial,	and	subsamples	of	the	full	population.		
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Figure	3.	Transformation	of	population	code	makes	visual	information	more	linearly	
decodable.	
(A)	Separability	of	neural	representations	in	activity	space,	in	which	each	axis	represents	the	
activity	(e.g.,	firing	rate)	of	a	neuron.	Each	point	represents	a	neural	activity	pattern	(here,	
white	markers	represent	grating	stimuli	of	direction	θ1,	grey	markers	represent	direction	θ2).		
Left	panel:	In	this	example,	the	representations	of	the	two	directions	can	be	separated	by	a	
linear	separator	(red).	Right:	In	general,	a	non-linear	separator	(such	as	a	quadratic	function)	
is	necessary	to	separate	representations.	
(B)	Change	in	accuracy	of	a	quadratic	decoder	(compared	to	a	linear	decoder)	for	dLGN	(red)	
and	V1	(blue),	shown	for	all	mice	(anesthetized	mouse	depicted	by	dotted	line).	The	
quadratic	decoder	performs	significantly	better	than	the	linear	decoder	in	dLGN	(p	<	10-4	for	
each	mouse,	Wilcoxon	signed	rank	test,	N	=	150	samples),	but	has	a	smaller	impact	in	dLGN	
(blue).	Error	bars	indicate	SEM	over	150	random	samples	of	the	held-out	trial,	and	
subsamples	of	the	full	population.		
(C)	The	eigenvalues	of	the	covariance	matrix	of	the	spiking	activity	are	related	to	the	extent	
of	the	neural	representation	along	its	principal	directions.	The	intrinsic	dimensionality	of	the	
neural	representation	can	be	calculated	as	the	‘participation	ratio’	of	these	eigenvalues	
(Abbott	et	al.,	2011;	Gao	and	Ganguli,	2017).	
(D)	Dimensionality	of	dLGN	and	V1	population	activity	(100	ms	bins,	anesthetized	mouse	
depicted	by	dotted	line).	Population	activity	was	randomly	subsampled	to	20	neurons	to	
compare	across	regions	/	animals	(p	<	.01	for	each	mouse,	Wilcoxon	rank-sum	test,	N	=	30	
random	samples).	Error	bars	indicate	SEM.	
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Appendix	1	
Suppose	we	have	M	neural	activity	patterns	 !! !!!

! ,	with	each	pattern	!! ∈ [0,1]!	
from	an	unknown	stimulus Θ.	Under	the	maximum	entropy	model,	the	probability	of	
each	sample	!	is	given	by:	

! !  Θ = !! = 1
!(!!) exp − !!,!(!!)!!!!

!,!
	

We	estimate	decoding	accuracy	using	the	maximum	likelihood	estimate	based	on	
the	conditional	probabilities	! !  Θ = !! 	in	a	two-alternative	forced	choice	task.	
Multiple	patterns	(which	are	taken	as	sequential	binned	activity	patterns	during	the	
held	out	task)	are	treated	as	independent	by	the	decoder.	

Specifically,	the	decoder	guesses	stimulus	!!	over	stimulus	!!	if	! !! Θ = !! >
! !! Θ = !! .	Assuming	the	samples	are	independent,	this	reduces	to	the	
following:	

1
!(!!) exp − !!,!(!!)!!,!!!,!

!,!

!

!!!
> 1

!(!!) exp − !!,!(!!)!!,!!!,!
!,!

!

!!!
	

Taking	the	log	of	both	sides:	

− ! log !(!!) + − !!,!!! !!,!!!,!
!,!!

> − ! log !(!!) + − !!,!(!!)!!,!!!,!
!,!!

	

Simplifying	this	equation	yields:	

 log !
!!

! !! + 1
! !!,!(!!) − !!,!(!!) !!,!!!,!

!,!
< 0

!
	

For	a	correlated	decoder	(pairwise	maximum	entropy	model),	this	is	equivalent	to	
the	following	quadratic	separator:	

! + !!,! !!,!!!,! ! < 0
!,!

	

where	! = log	!(!!)
!(!!)

	and	!!" = !!,!(!!) − !!,!(!!).	For	an	independent	decoder,	J	is	diagonal	
therefore	all	cross	terms	vanish.	As	! is	binary	(hence	!! = !),	this	reduces	to	a	
linear	separator	of	the	time-averaged	activity	of	single	units:	

! + !!,! !!,! ! > 0
!

	

Therefore,	the	correlated	decoder	is	equivalent	to	a	quadratic	decoder,	and	the	
independent	decoder	is	equivalent	to	a	linear	decoder.	
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Figure	1	-	figure	supplement	1.		
dLGN	vs	V1	population	sparseness	on	single	trials,	calculated	for	100	ms	binned	responses.	
Each	point	indicates	a	different	direction	and	spatiotemporal	frequency	and	trial,	and	each	
panel	depicts	results	for	a	different	mouse	(M83	indicates	anesthetized	mouse).	
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Figure	1	-	figure	supplement	2.		
Intraregional	correlations	are	smaller	than	interregional	correlations.		
(A)	Average	intraregional	correlations	between	dLGN	pairs	(red)	or	V1	pairs	(blue),	
calculated	over	varying	time	windows.	Error	bars	indicate	SEM.																								
(B)	Same	as	(A),	but	for	interregional	correlations	between	dLGN	and	V1	units.	
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Figure	1	-	figure	supplement	3.		
Distribution	of	noise	correlations	separated	by	probe	shank.	Red	histogram	now	shows	the	
distribution	of	correlations	between	dLGN	units	on	the	same	shank.	V1	distribution	(blue)	is	
identical	to	data	shown	in	Figure	1E.	V1	pairs	are	slightly	more	correlated	than	dLGN	pairs	
on	average	(p	<	10-4,	Wilcoxon	rank-sum	test,	N	=	2767	dLGN	pairs,	2571	V1	pairs).	Inset	
shows	the	change	in	average	noise	correlation	for	each	mouse	separately.	Stars	indicate	
minimum	significance	level	for	each	mouse	(p	<	.01	for	each	mouse,	Wilcoxon	rank-sum	
test).	Error	bars	indicate	SEM.	
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Figure	2	-	figure	supplement	1.	
Decoding	accuracy	for	each	region	and	each	mouse	(M83	indicates	anesthetized	mouse).	
Each	panel	as	in	Figure	2B.	
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Figure	2	-	figure	supplement	2.	
Noise	correlations	of	decoder,	that	is,	correlations	of	20	ms	binned	dLGN	or	V1	spiking	
activity,	calculated	over	all	trials	in	which	the	visual	stimulus	has	the	same	grating	direction.	
As	for	the	single-trial	noise	correlations	(Figure	1E),	dLGN	correlations	are	lower	on	average	
than	V1	correlations	(p	<	10-4,	Wilcoxon	rank-sum	test).	Inset	shows	change	in	average	
correlation	separately	for	each	mouse.	Note	that,	unlike	Figure	1E,	the	difference	between	
dLGN	and	V1	correlations	is	not	statistically	significant	for	each	mouse.	
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