

1 **Oceans apart: Heterogeneous patterns of parallel evolution in**
2 **sticklebacks**

3

4 Bohao Fang*, Petri Kemppainen*, Paolo Momigliano and Juha Merilä

5 *Ecological Genetics Research Unit, Organismal and Evolutionary Biology Research Program,*
6 *Faculty of Biological and Environmental Sciences, University of Helsinki, FI-00014 Helsinki,*
7 *Finland*

8 *These authors contributed equally to this work

9 Correspondence to: PK and BF

10 E-mail: petri.kemppainen@helsinki.fi; bohao.fang@helsinki.fi

11

12 **Abstract**

13 Reuse of standing genetic variation is thought to be the main mechanism behind the repeated
14 evolution of the same phenotypes in similar environments. An important model system for the
15 study of genomic mechanisms underlying parallel ecological adaptation in the wild is the
16 three-spined stickleback (*Gasterosteus aculeatus*), which has repeatedly colonized and
17 adapted to freshwater from the sea. Previous studies have identified numerous genomic
18 regions showing consistent genetic divergence between freshwater and marine ecotypes, but
19 most of these studies have been based on limited geographic sampling, and with strong
20 biases towards studies conducted in the Eastern Pacific area. We analysed population
21 genomic data from three-spined sticklebacks with comprehensive global sampling using
22 unsupervised methods to detect loci involved in parallel evolution at different geographical
23 areas. In line with previous studies, we find several genomic regions, including two
24 chromosomal inversions, contributing to global differentiation of marine and freshwater
25 ecotypes. However, signatures of parallel evolution were far stronger in the Eastern Pacific
26 region than anywhere else in the world. With simulations, we demonstrate that since
27 freshwater-adapted alleles exist in the marine populations only at low frequencies, they are

28 easily lost during founder events, thereby reducing the amount of standing genetic variation
29 available for freshwater adaptation outside of the ancestral Eastern Pacific region. Hence,
30 geographic heterogeneity in access to standing genetic variation due to historical
31 demographic factors appears to provide an explanation to marked geographic differences in
32 the pervasiveness of parallel evolution in the three-spined stickleback. Therefore, the degree
33 of genetic parallelism in the three-spined stickleback model system appears not be as
34 pervasive as earlier studies focused on Eastern Pacific populations have led us to believe.

35

36 **Keywords:** *Gasterosteus aculeatus*; genetic differentiation; linkage disequilibrium; local
37 adaptation; parallel evolution

38 **Introduction**

39

40 The extent to which the evolution of similar phenotypes arises by selection acting on shared
41 ancestral polymorphism (i.e. parallel evolution, Conte and Schluter 2009) or via distinct
42 molecular evolutionary pathways (i.e. convergent evolution; Arendt and Reznick 2008;
43 DeFaveri et al., 2011; Stern 2013) is a major question in evolutionary biology. A powerful
44 approach to disentangle these processes is to study the genomic architecture underlying the
45 repeated evolution of akin phenotypes in similar environments. After the retreat of Pleistocene
46 glaciers, marine three-spined sticklebacks (*Gasterosteus aculeatus*) colonised and adapted to
47 many newly formed freshwater habitats, evolving repeated changes in a number of
48 morphological, physiological, life history and behavioural traits (Bell and Foster, 1994; Gibson,
49 2005; Östlund-Nilsson et al., 2006; Hendry et al., 2013; Lescak et al., 2015). Thus, this
50 species has become one of the most widely used model systems to study the molecular basis
51 of adaptive evolution in vertebrates in the wild (McKinnon and Rundle, 2002).

52 Previous studies of the three-spined stickleback model system have quantified the extent of
53 parallel evolution by identifying genomic regions that are consistently differentiated between
54 marine and freshwater ecotypes sampled across different geographic areas (Hohenlohe et
55 al., 2010, 2019; DeFaveri et al., 2011; Jones et al., 2012; Terekhanova et al., 2014, 2019;
56 Ferchaud and Hansen, 2016; Pujolar et al., 2017; Liu et al., 2018). Studies of parallel
57 genomic patterns of ecotype divergence have historically focused on the Eastern Pacific
58 region (Colosimo et al., 2005; Chan et al., 2010; Hohenlohe et al., 2010, 2019; Jones et al.,
59 2012; Nelson and Cresko, 2018), but with several recent studies emerging also from Atlantic
60 populations (Terekhanova et al., 2014, 2019; Ferchaud and Hansen, 2016; Pujolar et al.,
61 2017; Liu et al., 2018). However, only two studies have thus far included samples from a
62 larger (global) geographic range (DeFaveri et al. 2011; Jones et al. 2012). Based on whole
63 genome sequence data from a limited number of individuals (21) that included samples from
64 Eastern Pacific and Atlantic populations, Jones et al. (2012) identified ~200 genomic regions
65 consistently separating marine and freshwater individuals globally, representing roughly 0.5%
66 of the dataset. They also found that 2.83% of the dataset showed signatures of parallel
67 selection in Eastern Pacific freshwater locations, approximately six times more than at the
68 global scale (Supplementary Fig. 3 and Supplementary Table 7 in Jones et al. [2012]),

69 suggesting that more loci contribute to parallel evolution at smaller geographic (regional)
70 scales. Such global heterogeneous ecotype divergence is consistent with the results of
71 several other studies as well. Focusing on 26 candidate genes in six pairs of marine-
72 freshwater populations across the globe DeFaveri et al. (2011) found that only ~50% of genes
73 under divergent selection were shared across more than three population pairs and none
74 across all. This suggested a limited re-use of ancestral polymorphism at the global
75 geographic scale, implicating either an important role of convergent evolution at larger
76 geographic scales (DeFaveri et al., 2011) or geographic heterogeneity in selective pressure
77 among different freshwater ecosystems (DeFaveri et al. 2011; Stern 2013). Based on a
78 subset of the data from Jones et al. (2012) and using a novel method based on linkage
79 disequilibrium for identifying sets of highly correlated loci, Kemppainen et al. (2015) found that
80 approximately 10 times more loci showed consistent marine-freshwater differentiation in the
81 Eastern Pacific than at the global scale. Furthermore, studies focusing on parallel evolution
82 within oceans, and even smaller geographic regions, show striking differences in the
83 proportion of loci involved in parallel freshwater adaptation between Pacific and Atlantic
84 (Terekhanova et al., 2014, 2019; Hohenlohe et al., 2010; Jones et al., 2012; Ferchaud and
85 Hansen 2016; Pujolar et al., 2017; Nelson and Cresko, 2018; Liu et al., 2018). For instance,
86 Terekhanova et al. (2014) recovered only 19 highly localised genomic regions involved in
87 parallel freshwater divergence in the White Sea in contrast to Hohenlohe et al. (2010) and
88 Nelson and Cresko (2018) who found large genomic regions involved in parallel freshwater
89 divergence across almost all chromosomes in the Eastern Pacific. However, no study has yet
90 addressed these conflicting results, and therefore, the potential mechanisms underlying this
91 apparent large-scale geographic heterogeneity in genome-wide patterns of parallel evolution
92 in three-spined sticklebacks remain unaddressed. To this end, we analysed population
93 genomic data from a comprehensive sampling of all major geographic areas inhabited by the
94 three-spined stickleback, and used supervised and unsupervised methods to detect loci
95 involved in parallel marine-freshwater divergence at different geographical scales. Based on
96 earlier observations (DeFaveri et al., 2011; Terekhanova et al., 2014, 2019; Kemppainen et
97 al., 2015; Ferchaud and Hansen 2016; Pujolar et al., 2017; Liu et al., 2018), we hypothesize
98 that the genetic parallelism in response to colonisation of freshwater environments by marine

99 sticklebacks is heterogeneous at the global scale, and the degree of genetic parallelism is
100 much stronger in the Eastern Pacific region than elsewhere.

101 We further seek to understand and discuss the ultimate causes of marked regional
102 differences in genome-wide signatures of parallel genetic differentiation among ecotypes. To
103 explain the mechanism behind the repeated use of the same alleles in independent
104 freshwater populations of sticklebacks, Schluter and Conte (2009) proposed the “transporter
105 hypothesis”. This hypothesis postulates that three-spined sticklebacks have repeatedly
106 colonized and adapted to freshwater environments via selection on standing genetic variation
107 in large marine populations, where recurrent gene flow from previously colonized freshwater
108 habitats maintains freshwater-adapted alleles. Three-spined stickleback populations have
109 persisted in the Eastern Pacific for approximately 26 Mya (Matschiner et al., 2011; Meynard et
110 al., 2012; Betancu-R et al., 2015; Sanciangco et al., 2016), from which the Western Pacific
111 and the Atlantic were colonized much more recently, during late Pleistocene (36.9-346.5 kya,
112 Orti et al., 1994; Fang et al., 2018, 2019). During bottlenecks and founder events, rare alleles
113 are lost at a higher rate than common alleles (Halliburton and Halliburton, 2004; Hyten et al.,
114 2006). Since freshwater-adapted alleles exist in the marine populations only at low
115 frequencies (Schluter and Conte, 2009), it is likely that they were lost to a higher degree than
116 neutral variation during founder events, thereby reducing the amount of standing genetic
117 variation available for freshwater adaptation outside of the Eastern Pacific. However, this
118 hypothesis has not received much attention. To this end, as proof of concept, we used
119 individual-based forward simulations designed to mimic the transporter hypothesis, and the
120 general global population demographic history of three-spined sticklebacks outlined above, to
121 test this hypothesis. We conclude with a discussion on potential biological and demographic
122 explanations for the high degree of geographic heterogeneity in patterns of parallel genomic
123 divergence, and reflect upon the representativeness of the eastern Pacific three-spined
124 stickleback populations as a general model for the study of parallel evolution.

125

126

127 **Material and Methods**

128 **Sample collection**

129 To study parallel evolution at the global scale, we obtained population genomic data from 166
130 individuals representing both marine and freshwater ecotypes from the Eastern and Western
131 Pacific, as well as from the Eastern and Western Atlantic Oceans (Fig. 2j, Supplementary
132 Table 1 and Supplementary Fig. 1). Of these, 62 individuals from 17 populations were
133 sampled and sequenced specifically for this study while data from 66 individuals from 38
134 populations from Fang et al. (2018) and additional 38 individuals (from 24 populations) from
135 other published studies (Jones et al., 2012; Feulner et al., 2013; Yoshida et al., 2014;
136 Supplementary Table 1) were retrieved from GenBank. Fish collected for this study were
137 sampled with seine nets, minnow traps and electrofishing. Specimens were preserved in
138 ethanol after being euthanized with an overdose of Tricaine mesylate (MS222).

139 To study the extent of genetic parallelism among freshwater sticklebacks with different
140 phylogeographic histories, we classified global samples into seven biogeographic regions
141 based on their phylogenetic affinities: Eastern Pacific, Western Pacific, Western Atlantic,
142 White and Barents Seas, North Sea and British Isles, Baltic Sea and Norwegian Sea (Fang et
143 al., 2018; Fig. 2j). A summary of coordinates, ecotype and population information concerning
144 sampled individuals and re-acquired samples are given in the Supplementary Table 1.

145

146 **Sequencing and genotype likelihood estimation**

147 Restriction site associated DNA sequencing (RADseq) using the enzyme *PstI* was performed
148 for the 62 individuals sampled in this study using the same protocol as in Fang et al. (2018),
149 where DNA library preparation and sequencing method are described in detail. RADseq data
150 for 66 individuals from Fang et al. (2018) were retrieved from GenBank (Accessions
151 SRR7067148 - SRR7067275), as were the whole genome sequencing (WGS) data of 38
152 additional samples from published studies (Supplementary Table 1). All RADseq and WGS
153 datasets were mapped using BWA mem v0.7.17 (Li and Durbin, 2010) to the three-spined
154 stickleback reference genome (release-92) retrieved from Ensembl database (Hubbard et al.,
155 2005). Given the heterogeneity in sequencing depth among different datasets, and
156 particularly the very low coverage of the data retrieved from Jones et al. (2012), most of the

157 analyses were performed directly using genotype likelihoods avoiding variant calling
158 whenever possible. Genotype likelihoods were estimated from the mapped reads using the
159 model of SAMtools (Li, 2011) as implemented in the program suite ANGSD v0.929
160 (Korneliussen et al., 2014). Full scripts of genotyping and filtering parameters are publically
161 available through DRYAD (doi: XX). Bases with a q-score below 20 (-minQ 20) and reads with
162 mapping quality below 25 (-minMapQ 25), were removed and variants were only retained if
163 they had a p-value smaller than 1e-6 (-SNP_pval 1e-6 flag in ANGSD). We retained sites with
164 at least 80% effective sample size (-minInd 133) sequenced at a minimum read depth of 2 (-
165 minIndDepth 2). The sex chromosome (Chr. IX; Kitano et al., 2009, Natri et al., 2013) was
166 excluded from downstream analyses due to sex-specific genomic heterogeneity (Schaffner,
167 2004; Hedrick, 2007). The raw output of genotype likelihoods from 166 individuals comprised
168 2,511,922 genome-wide loci.

169

170 **Supervised approaches to determine marine-freshwater divergence**

171 To test to what extent *a priori* population grouping can bias inferences of the pervasiveness of
172 parallel divergence patterns, we estimated allelic differentiation (as estimated by the fixation
173 index, F_{ST} ; Weir and Cockerham [1984], as implemented in VCFtools) between the two
174 ecotypes similarly to previously published studies (see Introduction), but using different
175 geographical subsamples from the complete dataset. Using ANGSD, we called the genotype
176 from the raw dataset, keeping only genotypes with a posterior probability over 0.95 and minor
177 allele frequency above 0.1 (-postCutoff 0.95 in ANGSD; --maf 0.1 in VCFtools). Four datasets
178 with different geographic sampling schemes were analysed (Fig. 1 a-d and Supplementary
179 Fig. 2).

180 In dataset 1 (Fig. 1a), for each SNP we estimated F_{ST} was estimated between all available
181 freshwater individuals from the Eastern Pacific (n=13 and Supplementary Table 3) and a
182 group of marine individuals (n=12) comprising four marine samples from the Eastern Pacific
183 (same samples as in Jones et al., 2012), two marine samples from the Western Pacific and
184 the remaining individuals were randomly sampled from non-Eastern Pacific locations (n=6).
185 This dataset was the one most biased towards freshwater individuals from the Eastern
186 Pacific. The inclusion of two Western Pacific marine individuals was due to the small number

187 of available Eastern Pacific marine individuals. Dataset 2 (Fig. 1b and Supplementary Table
188 3) was constructed to simulate the sampling scheme of Jones et al. (2012): it contrasted
189 freshwater individuals ($n=26$) against marine individuals ($n=26$), with half of the individuals in
190 each group always coming from the Eastern Pacific (with the exception of the two Western
191 Pacific individuals as above) and the other half from elsewhere. In dataset 3 (Fig. 1c and
192 Supplementary Table 3), a random sample of all available freshwater individuals ($n=26$) were
193 contrasted against a random sample ($n=26$) of all available marine individuals (regardless of
194 geographic location). The dataset 4 (Fig. 1d and Supplementary Table 3) was similar to the
195 second dataset, except with the Pacific individuals coming from the Western Pacific instead of
196 from the Eastern Pacific. Thus, the dataset 4 represents a form of the negative control.
197 Random sampling was repeated 100 times under each sampling scheme, F_{ST} was calculated
198 for each locus in each replicate (VCFtools), and the mean F_{ST} values of all replicates were
199 used.

200 To summarize the pattern of differentiation (genome-wide F_{ST}) for the four datasets, we
201 calculated moving averages of 95% quantiles and medians in windows of 100 SNPs with a
202 step size of 50 SNPs. Since background F_{ST} was likely to be highly dependent on sample
203 sizes and mixtures of individuals from different populations, we focused on the difference
204 between the median and the 95% quantile of genome divergence. A large difference between
205 the two (median and 95% quantile value) indicating a skewed distribution due to an excess of
206 “outlier” loci, i.e. genomic islands of parallel marine-freshwater divergence.

207

208 **Unsupervised approach to determine marine-freshwater divergence**

209 We conducted Linkage Disequilibrium Network Analysis (LDna) on the whole dataset
210 (2,511,922 SNPs) to identify and extract clusters of highly correlated loci, i.e. sets of loci
211 affected by the same evolutionary processes. LDna starts by producing a single linkage
212 clustering tree (a hierarchical clustering algorithm which combines two clusters connected to
213 each other by at least one edge) based on a pairwise matrix of LD values (as estimated by r^2 ;
214 Hill 1968) where nodes represent loci and edges represent LD values above given thresholds
215 (Kemppainen et al., 2015). As the LD threshold is sequentially lowered, more and more loci
216 will be connected to each other in a fashion that reflects how similar phylogenetic signals they

217 contain. For each cluster merger (with decreasing LD threshold) the change in median LD
218 between all pairwise loci in a cluster before and after merger is estimated as λ . When two
219 highly interconnected clusters merge, λ will be large (as compared to when e.g. only a single
220 locus is added to an existing cluster), signifying that these two clusters bear distinct
221 phylogenetic signals. LDna is currently limited to ~20,000 SNPs at a time due to its
222 dependence on LD estimates for all pairwise comparisons between loci in the dataset. To
223 analyse the whole dataset, we applied a three-step LDna approach to reduce complexity of
224 population genomic data in a nested fashion starting from non-overlapping windows within
225 chromosomes (Li et al. 2018), separately for each chromosome and finally for the whole
226 dataset (Supplementary Information 1). In all steps of LDna, we estimated LD between loci
227 from genotype likelihoods using the program ngsLD (Fox et al., 2019), setting the minimum
228 SNP minor allele frequency at 0.05. Full scripts the LDna analyses are provided in the
229 DRYAD (doi: xxx). In the first step, we only kept loci that were in high LD with at least one
230 more locus ($r^2 > 0.8$) within a window of 100 SNPs, as most SNPs in the data were not
231 correlated with any other adjacent loci (so called singleton clusters, Li et al. 2018), and thus
232 are unlikely to be informative in our analyses.

233 The main evolutionary phenomena that cause elevated LD between large sets of loci in
234 population genomic datasets are polymorphic inversions, population structure and local
235 adaptation, all of which are expected to be present in our dataset (Kemppainen et al., 2015).
236 There are specific and distinct predictions about the population genetic signal and the
237 distribution of loci in the genome that arise from these evolutionary phenomena (Kemppainen
238 et al., 2015). First, clusters with LD signals caused by inversions are expected to
239 predominantly map to the specific genomic position where the inversion is situated. In
240 addition, a Principal Component Analysis (PCA) of these loci is expected to separate
241 individuals based on karyotype, with the heterokaryotype being intermediate to the two
242 alternative homokaryotypes (provided that all karyotypes exist in the dataset) and the
243 heterokaryotypic individuals showing higher observed heterozygosities than the
244 homokaryotypes (although this is not always so clear, for instance when the inversion is new
245 and enough mutational differences have not yet accumulated). Second, a PCA based on loci
246 whose frequencies are shaped by genetic drift is expected to separate individuals on the
247 basis of geographic location, with no (or very little) separation between marine and freshwater

248 ecotypes. Third, clusters with LD signal caused by local adaptation (globally) are expected to
249 cluster individuals based on ecotype, regardless of geographic location, with both the locus
250 distribution and LD patterns being, to some extent, negatively correlated with local
251 recombination rate (Roesti et al., 2013, 2014). The reason for this correlation is that gene flow
252 between ecotypes erodes genetic differentiation on sites linked to locally adapted loci with the
253 exception of regions where recombination is restricted (for instance in inversions, or close to
254 centromeres or telomeres). No such pattern is expected for LD caused by population
255 structuring as the main source of this LD is random genetic drift that, in the absence of gene
256 flow, generates LD in fashion that is independent of genome position (Kemppainen et al.
257 2015). If a set of loci contributes to local adaptation exclusively in a particular geographic
258 area, PCA based on these loci will only separate individuals based on ecotype in that region.
259 We considered loci to be involved in parallel evolution only if they grouped individuals of the
260 same ecotype from more than one independent location, as otherwise, it is not possible to
261 discern drift from local adaptation, particularly if N_e is small (i.e. genetic drift is strong). To
262 determine if an LD-cluster was likely associated with parallel freshwater divergence we first
263 used expectation maximisation (EM) and hierarchical clustering methods to identify clusters of
264 individuals in PCAs that contained a minimum of seven individuals of which at least 90% of
265 the individuals are freshwater ecotypes (the “in-group”; dotted line; Fig 2a-i, Supplementary
266 Fig. 3). Second, if such in-groups were detected, we further tested whether this cluster
267 contained more freshwater individuals than expected by chance by permutation
268 (Supplementary Information 2). With less than seven in-group individuals, there was no power
269 to detect significant associations, even if all of them were freshwater individuals.

270

271 **Proof of concept using simulated data**

272 Several potential explanations for geographic heterogeneity in parallel patterns of marine-
273 freshwater divergence in three-spines sticklebacks have been suggested (DeFaveri, et al.
274 2011). One such explanation that has not received much attention in the context of three-
275 spined sticklebacks is the stochastic loss of freshwater adapted alleles due to founder events
276 when three-spined sticklebacks colonised the rest of the world from the Eastern Pacific in late
277 Pleistocene (see Introduction). Thus, as proof of concept, we here use forward-in-time

278 simulations to investigate the conditions for such a scenario under which parallel islands of
279 differentiation (i.e. parallel genomic divergence between marine and freshwater ecotypes) can
280 arise.

281 Our simulations were aimed at recreating the transporter hypothesis model in the Eastern
282 Pacific, and to simulate the colonization of the Atlantic from the Pacific 30-60 Kya during the
283 last known opening of the Bering strait (Hu et al., 2010; Meiri et al., 2014; Fang et al., 2019)
284 and the subsequent colonization of newly available freshwater habitats. Our model starts by
285 allowing local adaptation in the Pacific until mutation/drift/selection equilibrium (Fig. 4a) for 20
286 Ky after which the Atlantic is colonised from the Pacific between 36 to 40 Kya with no further
287 trans-oceanic gene flow possible beyond 36 Kya. Both oceans are connected to five
288 independent freshwater populations (gene flow between them is only possible via standing
289 genetic variation in the sea) by symmetrical gene flow of $N_e m = 1$, where $N_e m$ is the number of
290 migrants per generation. While the freshwater populations in the Pacific are populated already
291 from the simulation start, the freshwater populations in the Atlantic can naturally only be
292 colonised following colonisation from the Pacific. To simulate the retreat of the Pleistocene
293 continental ice sheets, and the colonization of newly formed freshwater habitats, we firstly
294 removed four of the freshwater populations (at 10 Kya) in both oceans. Immediately following
295 this, four new freshwater locations were allowed to be colonised (from the sea) while keeping
296 one of the original freshwater populations as “glacial refugia”, that could continue to feed
297 freshwater adapted alleles to the sea as standing genetic variation. While this process in
298 reality most likely was gradual and not instant, as in our simulations, the end result is the
299 same; most Pleistocene freshwater populations are no longer present today (bar potential
300 glacial refugia), and most present day populations were colonised from the sea (following the
301 retreat of the Pleistocene ice sheets). Thus, post glacial local adaptation is only possible
302 due to the spread of freshwater adapted alleles from the sea in accordance with the
303 transporter hypothesis (Schluter & Conte, 2009; Fig. 4a-e). The carrying capacity (K), that
304 under mutation/drift equilibrium equates to N_e , was kept at 10,000 individuals in the sea and
305 1,000 individuals in the freshwater populations. This historical global population demographic
306 scenario and the population sizes are in line with findings from Liu, et al. (2016) and Fang et
307 al. (2018, 2019). Generation time was assumed to be two years. We allowed two different
308 levels of trans-oceanic gene flow during the colonization of the Atlantic ($N_e m = 1$ or $N_e m = 5$).

309 From previous studies (Roesti et al. 2013, 2014), we know that recombination rate variation
310 plays an important role in the formation of differentiation islands around locally adaptive loci.
311 Thus, we configured a genetic map where the recombination distance (as measured in
312 centiMorgans, cM; Haldane [1919]) was shorter at the chromosome centres to simulate the
313 presence of centromeres (recombination distance versus physical distance between loci can
314 be seen in Supplementary Fig. 4). We simulated ten equally sized chromosomes of a total
315 length of 100 cM. This relatively short total map length was chosen such that fewer numbers
316 of neutral markers (n=1000; in the interest of computational speed) would be needed to
317 detect differentiation islands. To demonstrate the effect of the number of differentially selected
318 freshwater-adapted traits (each coded by a single quantitative trait locus, QTL), we simulated
319 datasets with 24, 48 and 72 QTL equally distributed among the eight first chromosomes (3, 6
320 or 9 QTL per chromosome), leaving the remaining two without any QTL. The positions of
321 these QTL within chromosomes were randomly selected (Fig. 5), and then fixed for all
322 simulation replicates (n=20). We also ensured that there was always some recombination
323 distance between a QTL and the nearest neutral locus (but sometimes by necessity very
324 small, e.g. around the simulated centromeres and telomeres, i.e. no QTL position was exactly
325 the same as any of the positions for the neutral markers). The allelic effects of the QTL were
326 either zero (allele 1) or 10 (allele 2), with the selection optima in the marine habitat being zero
327 and the selection optima in all freshwater populations being 20. Thus, a freshwater individual
328 homozygous for allele 2 for a given QTL meant that individual was at its optimal phenotype,
329 and *vice versa* for marine individuals. The selection intensity was set to 100 for the freshwater
330 habitat and 200 for the marine habitat, lower values translating to stronger selection intensity
331 (see quantiNemo manual for details). Smaller selection intensity in the sea allowed higher
332 frequencies of the freshwater allele (allele 2) in the sea as standing genetic variation to
333 facilitate rapid local adaption in the newly formed freshwater populations from the sea. Per-
334 site germ-line mutation rate was set to 1.0×10^{-8} per generation for all loci. Full simulation
335 details can be obtained from DRYAD (doi: xx). Population genomic datasets for both neutral
336 loci and QTL were saved every 50 generations. All allele frequencies started at 0.5 (hence the
337 initial 10,000 generations to allow mutation-drift-selection equilibrium), thus also initially
338 allowing all QTL to be fixed in the Pacific freshwater populations.
339

340 The combination of two trans-oceanic gene flow rates ($N_e m=1$ or $N_e m=5$) and three different
341 QTL settings (ca. 3, 6 or 9 QTL per chromosome) resulted in six different parameter settings.
342 Custom R scripts were used to retrieve and parse outputs from the simulations. We monitored
343 the allele frequency of freshwater-adapted alleles for the QTL to assess levels of standing
344 genetic variation at 50-generation intervals in both marine and freshwater habitats. Genome
345 divergence was estimated for the last generation in the simulations; in each replicate
346 simulations, F_{ST} was estimated for neutral loci between the marine and the four freshwater
347 populations that were colonised after the Pleistocene glaciations (pooled) separately for each
348 ocean. The F_{ST} calculations were based only on the neutral loci, thus assuming any genetic
349 signal of selection is due to LD with a QTL. To determine how repeatable evolution was in the
350 simulated data, we obtained the squared correlation coefficient between all pairs of simulation
351 replicates for F_{ST} averaged over 20 bps windows with a step size of 10 bps.

352

353

354 **Results**

355 **Supervised approaches to determine marine-freshwater divergence**

356 Genome-wide allelic differentiation of four different datasets suggested that parallel marine-
357 freshwater divergence in Eastern Pacific freshwater populations was much stronger and
358 consistent across the genome than in the other geographic regions (Atlantic and Western
359 Pacific). The strongest pattern of differentiation was found when F_{ST} was estimated between
360 Eastern Pacific freshwater individuals and marine individuals randomly sampled from all
361 geographic regions in the dataset (dataset 1, Fig. 1a), with 95%-quantile reaching above 0.5
362 on most of the 21 chromosomes but with the median F_{ST} remaining close to zero (Fig. 1a,
363 Supplementary Fig. 2). The second dataset (dataset 2, Fig. 1b) mirroring the sampling
364 scheme of Jones et al. (2012) also exhibited strong ecotype differentiation. The overall F_{ST}
365 was lower than in the dataset 1 because of the inclusion of freshwater individuals also from
366 Atlantic, but these two datasets showed similar patterns of marine-freshwater divergence (Fig.
367 1a-b) as previous studies from the Eastern Pacific (Hohenlohe et al., 2010; Jones et al., 2012;
368 Nelson and Cresko, 2018). When marine and freshwater individuals were randomly sampled

369 across the data (dataset 3), much less consistent marine-freshwater divergence was found
370 (Fig. 1c, Supplementary Fig. 2) with Chr. I and XX standing out as clear outlier regions. Since
371 our random global sampling is biased towards Atlantic samples (126 individuals vs. 40
372 individuals from the Pacific, Supplementary Table. 1) we also analysed a negative control
373 (dataset 4), focusing on the Western Pacific freshwater ecotypes. In this dataset, no regions
374 showed consistent marine-freshwater divergence with very little variation in the 95%-quantile
375 across the genome (Fig. 1d, Supplementary Fig. 2).

376 Since F_{ST} is negatively correlated to within-group diversity, the neutral F_{ST} is expected to
377 decrease when pooling many divergent populations (datasets 2,3 and 4; Fig. 1 b-c,
378 Supplementary Fig. 2). However, if allelic differentiation is caused by selection to freshwater-
379 marine environments, F_{ST} is still expected to be high if divergent population are pooled
380 because allele fixation is not random and concordant with how populations were pooled,
381 leading to a strong heterogeneity in the difference between the median and 95% quantile F_{ST}
382 across the genome. Furthermore, the dataset 4 (biased towards sampling of freshwater
383 individuals from the Western Pacific) provided a control test to show that biased geographical
384 sampling alone does not lead to high heterogeneity in 95% quantiles across the genome
385 (Supplementary Fig. 2).

386

387 **Unsupervised approach to determine marine-freshwater divergence**

388 The first step of LDna on the empirical dataset (2,511,922 SNPs derived from 166 individuals
389 worldwide) identified 214,326 loci that were in high LD with at least one other locus within
390 windows of 100 SNPs (Supplementary Information 1). Performing LDna on each chromosome
391 separately (only using one locus from each LD-cluster from step one; Supplementary
392 information 1) resulted in 81 distinct LD-clusters and from these a final 29 LD-clusters were
393 obtained (pooling within chromosome LD-clusters whenever they were grouped by LDna in
394 the final step; Supplementary information 1), containing in total 71,064 loci (viz. Cluster 1-29).
395 Nine of these LD-clusters associated with local adaptation, inversions and divergence
396 between Pacific and Atlantic populations are highlighted in Fig. 2a-i. All 29 clusters are
397 detailed in Supplementary Fig. 3 and Supplementary Table 2.

398 Cluster 1 (10,184 loci, 0.405% of the dataset) separated all Pacific individuals (East and
399 West) from the Atlantic individuals (Fig. 2a), thus reflecting trans-oceanic geographic
400 structure. Clusters 2 (53,785 loci, 2.141% of the dataset, Fig. 2b) and 21 (2,728 loci, 0.007%
401 of the dataset; correspond to an inversion in Chr. XXI, Fig. 2c) separated most of the Eastern
402 Pacific freshwater individuals from the remaining samples, a pattern that is not expected by
403 chance alone (randomisation test $P < 0.001$, Supplementary Fig. 3, Table 2), reflecting a
404 shared adaptive response amid Eastern Pacific freshwater populations. Two Eastern Pacific
405 freshwater individuals from Kodiak Island, Alaska (ALA population) did not group with the
406 other Eastern Pacific individuals. Therefore, in agreement with earlier phylogenetic analyses
407 (Fang et al., 2018), these two individuals were considered separate from the other Eastern
408 Pacific freshwater individuals for the remaining analyses. Notably, no cluster of similar
409 magnitude separating freshwater individuals from any other large-scale geographic region
410 could be detected, demonstrating that parallel marine-freshwater divergence in the Eastern
411 Pacific is much more prevalent than anywhere else in the world.

412 Clusters 5, 6, 10, 11, 12, 13, 16, 18, 20, 22, 25, 27 and 29 (in total of 5,232 loci, 0.208% of
413 the dataset; see six representatives in Fig. 2 d-i, and all in Supplementary Fig. 3, Table 2; $P <$
414 0.05) grouped multiple freshwater individuals from different geographic regions across the
415 Pacific and Atlantic Oceans, reflecting genetic marine-freshwater parallelism on a global
416 (trans-oceanic) scale. LD-clusters 6, 22 and 29 correspond to previously known chromosomal
417 inversions (on chromosomes I, XI and XXI, respectively) associated with marine-freshwater
418 divergence (Jones et al. 2012 Fig. 2d, g, i; Supplementary Fig. 3, Table 2). LD-clusters 6, 11,
419 12 and 27 showed similar marine-freshwater divergence (F_{ST} : Fig. 3a) in datasets biased
420 towards Eastern Pacific freshwater samples (dataset 2) and datasets biased towards Atlantic
421 individuals (dataset 3), suggesting extensive global parallelism. While clusters 5, 10, 13, 22,
422 25 and 29 also separate freshwater individuals from both Pacific and Atlantic populations from
423 all other individuals, the divergent Atlantic freshwater individuals (in the in-group) were few
424 (Supplementary Fig. 3) and thus these LD-clusters were still biased towards marine-
425 freshwater divergence in the Eastern Pacific (Fig 3 a).

426 Four LD-clusters (Clusters 4, 8, 9 and 14, in total of 479 loci, 0.019% of the dataset,
427 Supplementary Fig. 3) separated freshwater individuals from only one geographic region

428 likely reflecting geographic clustering but could also contain some loci involved in non-parallel
429 freshwater adaptation. They are therefore interpreted as inconclusive with respect to their
430 underlying evolutionary phenomena (Supplementary Table 2). Accordingly, loci from these
431 LD-clusters showed little marine-freshwater divergence in the global dataset (Supplementary
432 Fig. 5). Since LD-cluster 24 (47 loci) separated most of the freshwater individuals from the
433 Western Pacific (bar one) from the remaining individuals (Supplementary Fig. 3) it could
434 reflect marine-freshwater divergence exclusively in the Western Pacific. However, the marine
435 and freshwater individuals in this region were sampled far from each other (all freshwater
436 individuals came from Japan and all marine individuals came from south North Eastern
437 Russia; Supplementary Fig. 6 and Supplementary Fig. 1), thus this marine-freshwater
438 divergence could also have been driven by geographic structuring and it was thus also
439 classified as inconclusive. Furthermore, the LD-cluster 19 (241 loci) was identified as a
440 putative chromosomal inversion but it was not associated with marine-freshwater
441 differentiation (Supplementary Fig. 3 and Supplementary Table 2).

442

443 **Proof of concept using simulated data**

444 In the simulated data, before the Atlantic was colonised from the Pacific, all five freshwater
445 populations in the Pacific were fixed, or nearly fixed for the freshwater-adapted alleles of all
446 locally adapted QTL (Fig. 4f). Following the invasion of the Atlantic (36-40 Kya; Fig. 4f), the
447 increase of freshwater allele frequency in the Atlantic freshwater populations depended on
448 both the number of QTL and level of gene flow from Pacific to Atlantic (Fig. 4f). The highest
449 increase in freshwater-adapted alleles was observed when the number of QTL was small (3
450 QTL per chromosome) and trans-oceanic gene flow was high ($N_e m=5$, g. 11,000-25,000, Fig.
451 4f). During post-glacial colonisation of new freshwater habitats from the sea (g. 25,002-
452 30,000), freshwater-adapted alleles (in both Pacific and Atlantic) gradually increased in the
453 newly formed freshwater populations (Fig. 4f), thus reflecting local adaptation. Likewise, this
454 increase was similarly dependent on the number of QTL under selection (both in Pacific and
455 Atlantic) and trans-oceanic gene flow (only affecting the Atlantic, Fig. 4f). These patterns likely
456 reflect the underlying levels of ancestral variation in the sea available for subsequent
457 freshwater adaptation (Fig. 4g). The lowest frequencies of freshwater-adapted alleles in the

458 sea was always observed in conjunction of the highest number of locally adapted QTL (in
459 both Pacific and Atlantic) and lowest trans-oceanic gene flow (only affecting the Atlantic, Fig.
460 4g). Furthermore, both the frequency of freshwater adapted alleles in the sea (ancestral
461 variation) and in the post-glacial freshwater populations (local adaptation) depended on
462 whether the QTL were located in low or high recombination regions, with lowest frequencies
463 of freshwater-adapted alleles always observed in low recombination regions (Supplementary
464 Fig. 7a,b). Frequencies of the freshwater-adapted alleles in both Pacific and Atlantic
465 freshwater populations never reached similar frequencies during the post-glacial colonisation
466 (10 Kya; Fig. 4f) as during the last glacial period (10,000-36,000 Kya; Fig. 4f) showing that
467 ancestral variation in the sea in our simulations was not sufficient to allow complete local
468 adaptation (i.e. fixation of all freshwater adapted alleles).

469 In the simulations, present-day marine-freshwater divergence (mean neutral F_{ST}) was always
470 low for the two chromosomes without QTL and in high recombination regions (Fig. 5). In
471 contrast, F_{ST} for low recombination regions was high for Pacific (for all parameter settings),
472 indicating strong islands of parallel marine-freshwater divergence. This was also true for the
473 Atlantic when the number of QTL was low (3 or 6 QTL per chromosome) and when trans-
474 oceanic gene flow was high ($N_e m=5$). However, when number of QTL was high (9 per
475 chromosome) and trans-oceanic gene flow was low ($N_e m=1$), only one chromosome in the
476 Atlantic (chromosome 6) showed strong marine-freshwater divergence (Fig. 5a). The mean
477 squared correlation coefficient of F_{ST} (measured in sliding windows of 20 SNPs) between
478 replicates was stronger in the Pacific ($r^2=0.42-0.57$) than in the Atlantic ($r^2=0.09-0.42$,
479 Supplementary Table 4). This translates in a higher repeatability of genome-wide parallel
480 differentiation island across the replicates in the Pacific than in the Atlantic. The weakest
481 correlation was observed when trans-oceanic gene flow was low and QTL density was high (9
482 QTL per chromosome; $r^2 = 0.09$).

483

484

485

486 **Discussion**

487 Using genome-wide SNP data from a comprehensive global sampling of marine and
488 freshwater ecotypes, we demonstrated that only a small proportion of the dataset (13 LD-
489 clusters comprising 0.208% of the dataset) show consistent patterns of parallel ecotype
490 differentiation at the global scale (i.e. in at least two freshwater populations from different
491 biogeographic regions). Two large LD-clusters (comprising 2.149% of the dataset) separated
492 freshwater individuals from Eastern Pacific from all other individuals, while no comparable
493 cluster could be detected for any other geographic region. This shows that parallel evolution
494 in the three-spined stickleback is much more pervasive in the Eastern Pacific than anywhere
495 else in the world. Indeed, marine-freshwater divergence in the Eastern Pacific is even
496 stronger than geographic structuring between the Pacific and Atlantic Oceans (LD-clusters
497 separating freshwater individuals from the Eastern Pacific comprised five times as many loci
498 than the LD-cluster reflecting geographic structuring between Pacific and Atlantic Oceans).
499 With simulations, we demonstrate that this pattern could be explained by the stochastic loss
500 of low frequency freshwater-adapted alleles (in the sea) during range expansion from the
501 Eastern Pacific. This loss was the strongest when trans-oceanic gene flow was low and when
502 the number locally adapted QTL in the Eastern Pacific was high, particularly in low
503 recombination regions where genomic islands of parallel ecotype divergence are expected to
504 occur (Roesti et al. 2014). Supervised F_{ST} genome scans using different sampling strategies
505 demonstrated that a sampling scheme with a large proportion of Eastern Pacific populations
506 could overestimate the number of loci involved in parallel evolution. In the following, we
507 discuss the biological factors potentially contributing to the differences in the degree of
508 marine-freshwater parallelism between Eastern Pacific and non-Eastern Pacific populations of
509 the three-spined stickleback.

510

511 **Geographic heterogeneity in standing genetic variation**

512

513 The “transporter hypothesis” (Schluter & Conte, 2009) postulates that three-spined
514 sticklebacks have repeatedly colonized and adapted to freshwater environments via selection
515 on standing genetic variation derived from large marine populations, where recurrent gene

516 flow from previously colonised freshwater habitats maintains freshwater-adapted alleles. This
517 implicitly assumes that a large pool of locally adapted alleles has accumulated during a long
518 period of time, as gene-flow is expected to spread potentially beneficial mutations across
519 demographically independent populations (Johannesson et al., 2010; Kemppainen et al.,
520 2011). In support of this hypothesis, it has been shown that haplotypes repeatedly used in
521 freshwater adaptation are identical by descent (Colosimo et al., 2005; Roesti et al., 2014) and
522 old, averaging six million years (My) with some as old as 15 My (Colosimo et al., 2005, Roesti
523 et al., 2004, Nelson and Cresko, 2018). These studies analysed populations from the Eastern
524 Pacific region, which represents the oldest and most ancestral marine population (Fang et al.,
525 2018; 2019) where three-spined sticklebacks are thought to have persisted since the split
526 from their close relative, the nine-spined stickleback (*Pungitus pungitus*), approximately 26
527 Mya (Matschiner et al., 2011; Meynard et al., 2012; Betancu-R et al., 2015; Sanciangco et al.,
528 2016; Varadharajan et al., 2019). However, populations in the Western Pacific and the
529 Atlantic are much younger, as they were colonized from the Eastern Pacific during the late
530 Pleistocene (36.9-346.5 kya; Fang et al., 2018, 2019). Furthermore, there is no evidence for
531 trans-oceanic admixture in previous phylogenetic studies (Fang et al. 2018; 2019) following
532 the split of Pacific and Atlantic clades, and there are no extant populations of three-spined
533 sticklebacks in the arctic Russia between the Kara Sea and the Eastern Siberian Sea. Thus,
534 the spread of freshwater-adapted alleles from the Eastern Pacific to elsewhere via migration
535 through the Bering Strait is unlikely, and has probably not occurred in recent times. Our
536 simulations show that following colonisation of freshwater populations from the sea, the
537 accessibility of freshwater-adapted alleles, which is a function of colonisation history, the
538 number of QTL under selection and recombination rate variation, largely determine the
539 number of loci that show consistent marine-freshwater divergence. Thus, the lower levels of
540 parallelism at the genetic level in European populations could at least in part be explained by
541 access to a smaller pool of standing genetic variation relative to Eastern Pacific populations
542 as a result of a range expansion.

543 Under the hypothesis that the colonisation of the Atlantic from the Pacific involved a limited
544 number of founder individuals, genetic diversity (expected heterozygosity, H_E , and nucleotide
545 diversity, π) is expected decrease with distance from the source population from which the
546 range expansion started (Ramachandran et al., 2005). We found no evidence to support this

547 hypothesis (Supplementary Fig. 8 a,b). However, since freshwater-adapted alleles occur in
548 the sea only at low frequencies (and are selected against in the sea), they are less likely to
549 spread to new geographic regions than neutral alleles (Halliburton and Halliburton, 2004;
550 Hyten et al., 2006), so the loss of genetic diversity is expected to be less severe for neutral
551 than freshwater adapted alleles..

552

553 Another possible explanation for the lack of parallel islands of ecotype divergence in the
554 Atlantic could be stronger spatial genetic structure in marine populations outside of the
555 Eastern Pacific causing heterogeneity in standing genetic variation available for freshwater
556 adaptation, which was not tested in our simulations. Limited gene flow among marine
557 populations may increase the chance that freshwater-adapted alleles are stochastically lost in
558 some of the sub-populations, thus resulting in smaller and more heterogeneous pools of
559 freshwater-adapted alleles. While there is indeed a significant IBD in our Atlantic marine
560 populations (Supplementary Fig. 8e), spatial structure in the Eastern Pacific seems to be
561 even stronger (Supplementary Fig. 8; data from Morris et al., 2018). Thus, we find no support
562 for the hypothesis that differences in the degree of spatial genetic structuring among marine
563 populations within regions explain the observed patterns.

564

565 Based on results of this and earlier studies, there is some evidence for parallel evolution in
566 Europe (Ferchaud & Hansen 2016, Liu et al. 2018, Terekhanova et al., 2014, 2019), though
567 such patterns are locally restricted and involve fewer genomic regions than in the Eastern
568 Pacific. Ferchaud and Hansen (2016) and Liu et al. (2018), reported little parallelism in
569 genomic regions involved in local adaptation, most notably in Denmark and Greenland,
570 compared to the Eastern Pacific. Similarly, Terekhanova et al. (2014) identified a total of 19
571 distinct genomic regions showing consistent marine-freshwater divergence in the White Sea
572 (later refined to 21, Terekhanova et al. 2019), all of which were also identified as
573 differentiation islands between marine and freshwater ecotypes in the Eastern Pacific (Jones
574 et al., 2012, Hohenlohe et al., 2010). Thus, while local adaptation in all geographic regions
575 indeed likely stem from standing genetic variation originating from the Eastern Pacific (sensu
576 the transporter hypothesis), only Eastern Pacific populations show extensive parallel evolution
577 over a larger geographic area. These results are entirely consistent with our analyses, where

578 no LD-cluster showed parallel marine-freshwater divergence exclusively among non-Eastern
579 Pacific samples.

580 Another likely explanation for the lack of globally shared genetic parallelism is heterogeneity
581 in selective regimes among freshwater habitats, both between Atlantic and Eastern Pacific
582 Oceans and between different geographic areas in the Atlantic (DeFaveri et al. 2011).
583 However, there is currently no data to assess to what extent differences in selection regimes
584 could contribute to the observed heterogeneity in parallel patterns of marine-freshwater
585 divergence at the trans-oceanic scale. A recent simulation study showed that the probability
586 of genetic parallelism from standing genetic variation rapidly declines as selection starts to
587 change from fully parallel (optima angle of 0°) to divergent (optima angle of 180°), especially
588 when a large number of traits affect fitness (Thompson et al., 2018). For example, populations
589 adapting to optima separated by an angle of just 33° might have only 50% of shared
590 beneficial alleles, even if they have access to the same pool of genetic variation. However, in
591 this model adaptation proceeded via the sorting of naive alleles and not via alleles that are
592 “pretested” by selection (as under the transporter hypothesis) when parallel evolution is
593 particularly likely (Thompson et al., 2018).

594

595 **Accessibility to ancestral variation and recombination rate variation could explain
596 “differentiation islands”**

597 In the simulated data, correlations of genome-wide patterns of genetic differentiation between
598 independent replicate simulations were strong for Pacific populations (Supplementary Table
599 4). This demonstrates that – given that the same set of locally adapted alleles are available
600 from standing genetic variation, the underlying recombination rate variation and the
601 population demographic history and selection regimes are the same – evolution of local
602 adaptation can be highly repeatable as also demonstrated by earlier empirical work (e.g.
603 Bassham et al. 2018). According to the divergence hitchhiking model (Feder and Nosil, 2010)
604 clustering of several QTL in low recombination regions should reduce gene flow between
605 ecotypes and thus extend LD across larger genomic regions. This is consistent with our
606 simulations where we were only able to detect genomic islands when several of these QTL
607 were clustered in the same low recombination region. Under such conditions, clear

608 differentiation islands between ecotypes were detected, in agreement with empirical data
609 (Roesti et al., 2014) showing that differentiation islands between freshwater and marine
610 sticklebacks tend to be located in genomic regions of low recombination (for example close to
611 centromeres). Our results contrast with the results of Flaxman et al. (2013) who, using
612 simulations based on simple genetic maps without recombination modifiers, concluded that
613 under most conditions, divergence hitchhiking is unlikely to significantly contribute to the
614 generation of differentiation islands.

615 Somewhat surprisingly, we also noted that, while genomic islands of parallel ecotype
616 divergence was most likely when several QTL clustered in the same low recombination
617 region, these were also the QTL where the frequency of the freshwater-adapted allele
618 showed the lowest frequencies in the sea (and thus were least likely to spread to Atlantic
619 during colonisation from Pacific). Since QTL in the low recombination region are less likely to
620 be separated by recombination when freshwater-adapted individuals migrate to the sea, it is
621 reasonable to assume that the selection pressure against these “haplotypes” in the sea is
622 stronger. However, this is not consistent with the empirical data showing that the genomic
623 regions most likely to show global parallel ecotype divergence are inversions, where
624 recombination in heterokaryotypes is particularly restricted. Our simulations assume that
625 freshwater-adapted alleles are selected against in the sea (and is equal for all QTL) while in
626 reality, selection against some of the “freshwater haplotypes/karyotypes” in the sea may be
627 weak or even absent allowing them to easily spread during range expansions. Consistent with
628 this hypothesis, in PCAs based on loci from LD-clusters corresponding to inversions (LD-
629 clusters 6, 22 and 29) several marine individuals also cluster with the freshwater individuals
630 (Fig. 2 d,h), indicating frequent occurrence of the “freshwater karyotypes” in the sea. Indeed,
631 Terekhanova et al. (2019) found that the genomic regions most commonly involved in local
632 adaptation in multiple independent freshwater populations were also those with the highest
633 frequencies of these haplotypes in the sea. This is in agreement with our simulation study that
634 predicts that the strongest limiting factor for the transporter hypothesis in the Atlantic is the
635 frequency of the freshwater adapted alleles in the sea.

636 A difference between LDna and self-organizing map-based iterative Hidden Markov Model
637 (SOM/HMM) used by Jones et al. (2012) to detect genomic islands of marine-freshwater

638 divergence is that SOM/HMM finds regions of the genome that support a given set of
639 commonly found tree topologies in the data, where the loci may or may not be in high LD with
640 each other, whereas LDna exclusively depends on LD and treats each locus individually.
641 Since our three-step LDna approach firstly only keeps correlated loci (above a given
642 threshold, Supplementary Information 1) within non-overlapping windows within
643 chromosomes, LDna is biased to detect LD-clusters where loci are in LD with at least one
644 physically adjacent locus within a window (of 100 SNPs). Thus, LDna is particularly sensitive
645 to detecting inversions, and may underestimate the number genomic regions involved in
646 parallel genomic divergence globally, if LD is not sufficiently high, or single loci are in LD
647 across regions spanning more than 100 SNPs in the data (on average corresponding to ~
648 15kb). Nevertheless, next to the largest LD-clusters that reflected ecotype differentiation
649 exclusively in the Eastern Pacific and the inversions, we identified most of the F_{ST} peaks in
650 the global dataset (Supplementary Fig. 3), thus demonstrating that our method (and
651 parameter settings used for the LDna) is sensitive to the main LD-signals in the data. Most
652 notably, we also found several genomic regions involved in parallel marine-freshwater
653 divergence globally that were not apparent in the F_{ST} analyses (e.g. the marine-freshwater
654 divergence only involved a small proportion of the samples in the total data set),
655 demonstrating the main strength of LDna. This cannot thus explain the complete lack of LD-
656 clusters that differentiate between ecotypes outside of the Eastern Pacific. Furthermore our
657 results are entirely consistent with the lack of large regions of high F_{ST} in the global dataset
658 (with a bias towards non-Eastern populations; Fig. 3 b), the numerous regional studies that
659 show much less parallel evolution outside of the Eastern Pacific and the fact that also in
660 Jones et al. (2012) much stronger marine-freshwater divergence was found within the Eastern
661 Pacific than at the global scale (see Introduction). Therefore, the evidence for a strong
662 discrepancy of marine-freshwater divergence between the Eastern and non-Eastern Pacific
663 populations is indeed substantial.
664 Jones et al. (2012) described ~200 genomic regions involved in marine-freshwater
665 divergence globally, and we know that this number could much higher in the Eastern Pacific
666 where ecotype divergence is the strongest. Furthermore, islands do not occur on all
667 chromosomes (presumably because these chromosomes do not contain loci for freshwater
668 adaptation), thus the number of QTL responsible for marine-freshwater divergence in the

669 Eastern Pacific could be substantial in the most QTL-dense chromosomes (e.g. Chromosome
670 IV, where global marine-freshwater divergence is the strongest). In the simulations, we
671 included up to nine QTL per chromosome, with up to six QTL within a single low
672 recombination region within a chromosome (Chr. 3 in the simulations, Fig. 5 a, b). While this
673 might seem like an exceptionally high number, this is nevertheless consistent with empirical
674 data.

675

676 **Are three-spined sticklebacks a representative model to study parallel evolution?**

677 Since the pattern of parallel genetic differentiation between marine and freshwater stickleback
678 ecotypes in the Eastern Pacific are in stark contrast to what is seen across other parts of the
679 species distribution range, one is posed to ask how representative are the results from the
680 Eastern Pacific stickleback studies with respect to parallel evolution more generally. A recent
681 review of parallel evolution suggests that even dramatic phenotypic parallelism can be
682 generated by a continuum of parallelism at the genetic level (Bolnick et al., 2018). For
683 instance, the coastal ecotypes of *Senecio lautus* exhibit only partial reuse of particular QTL
684 among replicate populations (Roda et al., 2017), and genetic redundancy frequently underlies
685 polygenic adaptation in *Drosophila* (Barghi et al., 2019). Similarly, Conte et al. (2015) studied
686 the extent of QTL reuse in parallel phenotypic divergence of limnetic and benthic three-spined
687 sticklebacks (*Gasterosteus aculeatus*) in Paxton and Priest lakes, and found that 76% of 42
688 phenotypic traits diverged in the same direction, whereas only 49% of underlying QTL
689 evolved in parallel in both lakes. For highly parallel traits in two other pairs of benthic-limnetic
690 sticklebacks, only 32% of the underlying QTL were reported to be shared (Conte et al., 2012).
691 Finally, using F_{ST} outliers to detect putative genomic targets of selection Kautt et al. (2012,
692 cichlid fishes), Le Moan et al. (2016, anchovy) and Westram et al. (2014, periwinkles),
693 showed that phenotypically very similar populations often share only a small proportion of
694 their F_{ST} outliers. Thus, these studies are also in stark contrast to the original conclusions of
695 widespread genetic parallelism in three-spined sticklebacks.

696 One exception that seems more general across taxa is the repeated involvement of
697 chromosomal inversions in parallel evolution. Chromosomal inversions could store standing
698 variation as balanced polymorphism and distribute it to fuel parallel adaptation (Morales et al.,

699 2019). For instance, the same Chr. I inversion involved in global marine-freshwater
700 divergence in three-spined sticklebacks (Jones et al., 2012, Terekhanova et al., 2014, 2019,
701 Liu et al., 2018, this study) also differentiates stream and lake ecotypes in the lake Constance
702 basin in Central Europe (Roesti et al., 2015). Two other clear examples where most genetic
703 differentiation between ecotypes at larger geographic scales is partitioned into inversions
704 come from monkey flowers (*Mimulus guttatus*; Twyford and Friedman 2015) and marine
705 periwinkles (*Littorina saxatilis*; Faria et al., 2018; Westram et al., 2018).

706

707 **Conclusions**

708 Our results demonstrate that genetic parallelism in the three-spined stickleback model system
709 is in fact not as pervasive as some earlier papers focusing on Eastern Pacific populations
710 have led us to believe. Our analysis of geographically more comprehensive data, with similar
711 and less assumption-burden methods as used in earlier studies, show that the extraordinary
712 genetic parallelism observed in the Eastern Pacific Ocean is not detectable elsewhere in the
713 world (e.g. Atlantic Ocean, Western Pacific Ocean). Hence, the focus on Eastern Pacific has
714 generated a perception bias – what goes on there, does not actually apply to the rest of the
715 world. Furthermore, our simulations show that the spread of freshwater adapted alleles can
716 easily be hampered if the colonisation of the Atlantic (from the Pacific) was limited, in
717 particular for QTL clustered in low recombination regions; i.e. the ones that are most likely to
718 result in parallel islands of ecotype differentiation. Therefore, geographic differences in
719 incidence and pervasiveness of parallel evolution in three-spined sticklebacks likely stem from
720 geographic heterogeneity in access to, and amount of, standing genetic variation, which in
721 turn has been influenced by historical population demographic factors. Hence, while striking
722 genome-wide patterns of genetic parallelism exist (e.g. in Eastern Pacific sticklebacks), the
723 conditions under which such pattern can occur may be far from common, perhaps even
724 exceptional.

725

726 **Acknowledgements**

727 We are grateful to the following people who helped in obtaining the samples used in this
728 study: Anders Adill, Windsor Aguirre, Theo Bakker, Alison Bell, Mike Bell, Bertil Borg,
729 Jacqueline DeFaveri, Fredrik Franzén, Akira Goto, Andrew Hendry, Gabor Herczeg, Frank von
730 Hippel, Aki Hirvonen, Jenni Hämäläinen, Markku Kaukoranta, Agnieszka Kijewska, David
731 Kingsley, Yoshinobu Kosaka, Lotta Kvarnemo, Dmitry Lajus, Tuomas Leinonen, Arne Levsen,
732 Scott McCairns, Antoine Millet, Jola Morozinska, Corey Munk, Hannu Mäkinen, Arne Nolte,
733 Kjartan Østbye, Wäinö Pekkola, Jouko Pokela, Mark Ravinet, Katja Räsänen, Dolph Schluter,
734 Mat Seymor, Takahito Shikano, Per Sjöstrand, Garrett Staines, Björn Stelbrink, Ilkka
735 Syväperä, Anti Vasemägi, Mike Webster, James Willacker, Helmut Winkler, and Linda
736 Zaveik. Our research was supported by grants from Academy of Finland (250435, 263722,
737 265211 and 1307943 to JM and grant 316294 to PM), the Finnish Cultural Foundation (grant
738 00190489 to PK) and the Chinese Scholarship Council (grant 201606270188 to BF).

739

References

740 Arendt, J., Reznick, D., 2008. Convergence and parallelism reconsidered: what have we
741 learned about the genetics of adaptation? *Trends Ecol Evol* 23, 26-32.

742 Barghi, N., Tobler, R., Nolte, V., Jakšić, A.M., Mallard, F., Otte, K.A., Dolezal, M., Taus, T.,
743 Kofler, R., Schlötterer, C., 2019. Genetic redundancy fuels polygenic adaptation in
744 *Drosophila*. *PLoS Biol* 17, e3000128.

745 Bassham, S., Catchen, J., Lescak, E., von Hippel, F.A., Cresko, W.A., 2018. Repeated
746 Selection of Alternatively Adapted Haplotypes Creates Sweeping Genomic Remodeling in
747 Stickleback. *Genetics* 209, 921-939.

748 Bell, M.A., Foster, S.A., 1994. The evolutionary biology of the threespine stickleback. Oxford
749 University Press.

750 Betancur-R, R., Ortí, G., Pyron, R.A., 2015. Fossil-based comparative analyses reveal
751 ancient marine ancestry erased by extinction in ray-finned fishes. *Ecol Lett* 18, 441-450.

752 Bolnick, D.I., Barrett, R.D.H., Oke, K.B., Rennison, D.J., Stuart, Y.E., 2018. (Non)Parallel
753 Evolution. *Annu. Rev. Ecol. Evol. Syst.* 49, 303-330.

754 Chan, Y.F., Marks, M.E., Jones, F.C., Villarreal, G., Jr., Shapiro, M.D., Brady, S.D.,
755 Southwick, A.M., Absher, D.M., Grimwood, J., Schmutz, J., Myers, R.M., Petrov, D., Jonsson,
756 B., Schluter, D., Bell, M.A., Kingsley, D.M., 2010. Adaptive evolution of pelvic reduction in
757 sticklebacks by recurrent deletion of a Pitx1 enhancer. *Science* 327, 302-305.

758 Colosimo, P.F., Hosemann, K.E., Balabhadra, S., Villarreal, G., Jr., Dickson, M., Grimwood,
759 J., Schmutz, J., Myers, R.M., Schluter, D., Kingsley, D.M., 2005. Widespread parallel
760 evolution in sticklebacks by repeated fixation of Ectodysplasin alleles. *Science* 307, 1928-
761 1933.

762 Conte, G.L., Arnegard, M.E., Best, J., Chan, Y.F., Jones, F.C., Kingsley, D.M., Schluter, D.,
763 Peichel, C.L., 2015. Extent of QTL reuse during repeated phenotypic divergence of sympatric
764 threespine stickleback. *Genetics* 201, 1189-1200.

765 Conte, G.L., Arnegard, M.E., Peichel, C.L., Schluter, D., 2012. The probability of genetic
766 parallelism and convergence in natural populations. *Proc. Biol. Sci.* 279, 5039-5047.

767 DeFaveri, J., Jonsson, P.R., Merilä, J., 2013. Heterogeneous Genomic Differentiation in
768 marine threespine sticklebacks: adaptation along an environmental gradient. *Evolution* 67,
769 2530-2546.

770 DeFaveri, J., Merilä, J., 2013. Variation in age and size in Fennoscandian three-spined
771 sticklebacks (*Gasterosteus aculeatus*). *PLoS ONE* 8, e80866.

772 DeFaveri, J., Shikano, T., Shimada, Y., Goto, A., Merilä, J., 2011. Global analysis of genes
773 involved in freshwater adaptation in threespine sticklebacks (*Gasterosteus aculeatus*).
774 *Evolution* 65, 1800-1807.

775 Defaveri, J., Shikano, T., Shimada, Y., Merila, J., 2013. High degree of genetic differentiation
776 in marine three-spined sticklebacks (*Gasterosteus aculeatus*). *Mol Ecol* 22, 4811-4828.

777 Fang, B., Merila, J., Ribeiro, F., Alexandre, C.M., Momigliano, P., 2018. Worldwide phylogeny
778 of three-spined sticklebacks. *Mol Phylogenet Evol* 127, 613-625.

779 Fang, B., Merilä, J., Matschiner, M., Momigliano, P., 2019. Estimating uncertainty in
780 divergence times among three-spined stickleback clades using the multispecies coalescent.
781 *Mol Phylogenet Evol*, 106646.

782 Faria, R., Chaube, P., Morales, H.E., Larsson, T., Lemmon, A.R., Lemmon, E.M., Rafajlović,
783 M., Panova, M., Ravinet, M., Johannesson, K., Westram, A.M., Butlin, R.K., 2018. Multiple
784 chromosomal rearrangements in a hybrid zone between *Littorina saxatilis* ecotypes. *Mol Ecol*
785 00, 1-19.

786 Feder, J.L., Nosil, P., 2010. The efficacy of divergence hitchhiking in generating genomic
787 islands during ecological speciation. *Evolution* 64, 1729-1747.

788 Ferchaud, A.L., Hansen, M.M., 2016. The imPacifict of selection, gene flow and demographic
789 history on heterogeneous genomic divergence: three-spine sticklebacks in divergent
790 environments. *Mol Ecol* 25, 238-259.

791 Feulner, P.G., Chain, F.J., Panchal, M., Eizaguirre, C., Kalbe, M., Lenz, T.L., Munday, M.,
792 Samonte, I.E., Stoll, M., Milinski, M., Reusch, T.B., Bornberg-Bauer, E., 2013. Genome-wide
793 patterns of standing genetic variation in a marine population of three-spined sticklebacks. *Mol*
794 *Ecol* 22, 635-649.

795 Flaxman, S.M., Feder, J.L., Nosil, P., 2013. Genetic hitchhiking and the dynamic buildup of
796 genomic divergence during speciation with gene flow. *Evolution* 67, 2577-2591.

797 Fox, E.A., Wright, A.E., Fumagalli, M., Vieira, F.G., 2019. ngsLD: evaluating linkage
798 disequilibrium using genotype likelihoods. *Bioinformatics*.

799 Gibson, G., 2005. The synthesis and evolution of a supermodel. *Science* 307, 1890-1891.

800 Haldane, J.B.S., 1919. The combination of linkage values, and the calculation of distance
801 between the loci of linked factors. *J Genet* 8, 299-309.

802 Halliburton, R., Halliburton, R., 2004. Introduction to population genetics. Pearson/Prentice
803 Hall Upper Saddle River, NJ.

804 Hedrick, P.W., 2007. Sex: differences in mutation, recombination, selection, gene flow, and
805 genetic drift. *Evolution* 61, 2750-2771.

806 Hendry, A.P., Peichel, C.L., Matthews, B., Boughman, J.W., Nosil, P., 2013. Stickleback
807 research: the now and the next. *Evol Ecol Res* 15, 111-141.

808 Hill, W.G., Robertson, A., 1968. Linkage disequilibrium in finite populations. *Theor Appl Genet*
809 38, 226-231.

810 Hohenlohe, P.A., Bassham, S., Currey, M., Cresko, W.A., 2012. Extensive linkage
811 disequilibrium and parallel adaptive divergence across threespine stickleback genomes.
812 *Philos Trans R Soc Lond B Biol Sci* 367, 395-408.

813 Hohenlohe, P.A., Bassham, S., Etter, P.D., Stiffler, N., Johnson, E.A., Cresko, W.A., 2010.
814 Population genomics of parallel adaptation in threespine stickleback using sequenced RAD
815 tags. *PLoS Genet* 6, e1000862.

816 Hohenlohe, P.A., Magalhaes, I.S., 2019. The Population Genomics of Parallel Adaptation:
817 Lessons from Threespine Stickleback. In: . Population Genomics. Springer, Cham

818 Hu, A., Meehl, G.A., Otto-Bliesner, B.L., Waelbroeck, C., Han, W., Loutre, M.-F., Lambeck,
819 K., Mitrovica, J.X., Rosenbloom, N., 2010. Influence of Bering Strait flow and North
820 Atlantic circulation on glacial sea-level changes. *Nature Geoscience* 3, 118-121.

821 Hubbard, T., Andrews, D., Cáccamo, M., Cameron, G., Chen, Y., Clamp, M., Clarke, L.,
822 Coates, G., Cox, T., Cunningham, F., 2005. Ensembl 2005. *Nucleic Acids Res* 33, D447-
823 D453.

824 Hyten, D.L., Song, Q., Zhu, Y., Choi, I.-Y., Nelson, R.L., Costa, J.M., Specht, J.E.,
825 Shoemaker, R.C., Cregan, P.B., 2006. Impacts of genetic bottlenecks on soybean genome
826 diversity. *Proceedings of the National Academy of Sciences* 103, 16666-16671.

827 Johannesson, K., Panova, M., Kemppainen, P., Andre, C., Rolan-Alvarez, E., Butlin, R.K.,
828 2010. Repeated evolution of reproductive isolation in a marine snail: unveiling mechanisms of
829 speciation. *Philos Trans R Soc Lond B Biol Sci* 365, 1735-1747.

830 Jones, F.C., Grabherr, M.G., Chan, Y.F., Russell, P., Mauceli, E., Johnson, J., Swofford, R.,
831 Pirun, M., Zody, M.C., White, S., Birney, E., Searle, S., Schmutz, J., Grimwood, J., Dickson,
832 M.C., Myers, R.M., Miller, C.T., Summers, B.R., Knecht, A.K., Brady, S.D., Zhang, H., Pollen,
833 A.A., Howes, T., Amemiya, C., Broad Institute Genome Sequencing, P., Whole Genome
834 Assembly, T., Baldwin, J., Bloom, T., Jaffe, D.B., Nicol, R., Wilkinson, J., Lander, E.S., Di
835 Palma, F., Lindblad-Toh, K., Kingsley, D.M., 2012. The genomic basis of adaptive evolution in
836 threespine sticklebacks. *Nature* 484, 55-61.

837 Kautt, A.F., Elmer, K.R., Meyer, A., 2012. Genomic signatures of divergent selection and
838 speciation patterns in a 'natural experiment', the young parallel radiations of Nicaraguan
839 crater lake cichlid fishes. *Mol Ecol* 21, 4770-4786.

840 Kemppainen, P., Knight, C.G., Sarma, D.K., Hlaing, T., Prakash, A., Maung Maung, Y.N.,
841 Somboon, P., Mahanta, J., Walton, C., 2015. Linkage disequilibrium network analysis (LDna)

842 gives a global view of chromosomal inversions, local adaptation and geographic structure.
843 Mol. Ecol. Resour. 15, 1031-1045.

844 Kitano, J., Ross, J.A., Mori, S., Kume, M., Jones, F.C., Chan, Y.F., Absher, D.M., Grimwood,
845 J., Schmutz, J., Myers, R.M., 2009. A role for a neo-sex chromosome in stickleback
846 speciation. Nature 461, 1079.

847 Korneliussen, T.S., Albrechtsen, A., Nielsen, R., 2014. ANGSD: analysis of next generation
848 sequencing data. BMC Bioinformatics 15, 356.

849 Le Moan, A., Gagnaire, P.A., Bonhomme, F., 2016. Parallel genetic divergence among
850 coastal–marine ecotype pairs of European anchovy explained by differential introgression
851 after secondary contact. Mol Ecol 25, 3187-3202.

852 Lescak, E.A., Bassham, S.L., Catchen, J., Gelmond, O., Sherbick, M.L., von Hippel, F.A.,
853 Cresko, W.A., 2015. Evolution of stickleback in 50 years on earthquake-uplifted islands. Proc
854 NAtlantic Acad Sci U S A 112, E7204-7212.

855 Li, H., 2011. A statistical framework for SNP calling, mutation discovery, association mapping
856 and population genetical parameter estimation from sequencing data. Bioinformatics 27,
857 2987-2993.

858 Li, H., Durbin, R.J.B., 2010. Fast and accurate long-read alignment with Burrows–Wheeler
859 transform. Bioinformatics 26, 589-595.

860 Li, Z., Kemppainen, P., Rastas, P., Merila, J., 2018. Linkage disequilibrium clustering-based
861 approach for association mapping with tightly linked genomewide data. Mol. Ecol. Resour. 18,
862 809-824.

863 Liu, S., Ferchaud, A.L., Gronkjaer, P., Nygaard, R., Hansen, M.M., 2018. Genomic parallelism
864 and lack thereof in contrasting systems of three-spined sticklebacks. Mol Ecol 27, 4725-4743.

865 Matschiner, M., Hanel, R., Salzburger, W., 2011. On the origin and trigger of the notothenioid
866 adaptive radiation. PLoS ONE 6, e18911.

867 McKinnon, J.S., Rundle, H.D., 2002. Speciation in nature: the threespine stickleback model
868 systems. *Trends Ecol Evol* 17, 480-488.

869 Meiri, M., Lister, A.M., Collins, M.J., Tuross, N., Goebel, T., Blockley, S., Zazula, G.D., van
870 Doorn, N., Dale Guthrie, R., Boeskorov, G.G., Baryshnikov, G.F., Sher, A., Barnes, I., 2014.
871 Faunal record identifies Bering isthmus conditions as constraint to end-Pleistocene migration
872 to the New World. *Proc. Biol. Sci.* 281, 20132167.

873 Meynard, C.N., Mouillot, D., Mouquet, N., Douzery, E.J.P., 2012. A phylogenetic perspective
874 on the evolution of mediterranean teleost fishes. *PLoS ONE* 7, e36443.

875 Morris, M.R.J., Bowles, E., Allen, B.E., Jamniczky, H.A., Rogers, S.M., 2018. Contemporary
876 ancestor? Adaptive divergence from standing genetic variation in Pacific marine threespine
877 stickleback. *BMC Evol Biol* 18, 113.

878 Natri, H.M., Shikano, T., Merilä, J., 2013. Progressive recombination suppression and
879 differentiation in recently evolved neo-sex chromosomes. *Mol Biol Evol* 30, 1131-1144.

880 Nelson, T.C., Cresko, W.A., 2018. Ancient genomic variation underlies repeated ecological
881 adaptation in young stickleback populations. *Evol Lett* 2, 9-21.

882 Neuenschwander, S., Hospital, F., Guillaume, F., Goudet, J., 2008. quantiNemo: an
883 individual-based program to simulate quantitative traits with explicit genetic architecture in a
884 dynamic metapopulation. *Bioinformatics* 24, 1552-1553.

885 Orti, G., Bell, M.A., Reimchen, T.E., Meyer, A., 1994. Global survey of mitochondrial DNA
886 sequences in the threespine stickleback: evidence for recent migrations. *Evolution* 48, 608-
887 622.

888 Pujolar, J.M., Ferchaud, A.L., Bekkevold, D., Hansen, M.M., 2017. Non-parallel divergence
889 across freshwater and marine three-spined stickleback *Gasterosteus aculeatus* populations. *J*
890 *Fish Biol* 91, 175-194.

891 Ramachandran, S., Deshpande, O., Roseman, C.C., Rosenberg, N.A., Feldman, M.W.,
892 Cavalli-Sforza, L.L., 2005. Support from the relationship of genetic and geographic distance in

893 human populations for a serial founder effect originating in Africa. Proceedings of the National
894 Academy of Sciences 102, 15942-15947.

895 Roda, F., Walter, G.M., Nipper, R., Ortiz-Barrientos, D., 2017. Genomic clustering of adaptive
896 loci during parallel evolution of an Australian wildflower. Mol Ecol 26, 3687-3699.

897 Roesti, M., Gavrillets, S., Hendry, A.P., Salzburger, W., Berner, D., 2014. The genomic
898 signature of parallel adaptation from shared genetic variation. Mol Ecol 23, 3944-3956.

899 Roesti, M., Kueng, B., Moser, D., Berner, D., 2015. The genomics of ecological vicariance in
900 threespine stickleback fish. Nature Communications 6, 8767.

901 Roesti, M., Moser, D., Berner, D., 2013. Recombination in the threespine stickleback
902 genome—patterns and consequences. Mol Ecol 22, 3014-3027.

903 Sanciangco, M.D., Carpenter, K.E., Betancur-R, R., 2016. Phylogenetic placement of
904 enigmatic percomorph families (Teleostei: Percomorphaceae). Mol Phylogenet Evol 94, 565-
905 576.

906 Schaffner, S.F., 2004. The X chromosome in population genetics. Nat Rev Genet 5, 43.

907 Schluter, D., Conte, G.L., 2009. Genetics and ecological speciation. Proc Nat Acad Sci U S A
908 106 Suppl 1, 9955-9962.

909 Stern, D.L., 2013. The genetic causes of convergent evolution. Nat Rev Genet 14, 751-764.

910 Terekhanova, N.V., Logacheva, M.D., Penin, A.A., Neretina, T.V., Barmintseva, A.E.,
911 Bazykin, G.A., Kondrashov, A.S., Mugue, N.S., 2014. Fast evolution from precast bricks:
912 genomics of young freshwater populations of threespine stickleback *Gasterosteus aculeatus*.
913 PLoS Genet 10, e1004696.

914 Terekhanova NV, Barmintseva AE, Kondrashov AS, Bazykin GA, Mugue NS. 2019.
915 Architecture of parallel adaptation in ten lacustrine threespine stickleback populations from
916 the White Sea area. Genome Biology and Evolution 11:2605-2618.

917 Thompson, K.A., Osmond, M.M., Schluter, D., 2018. Parallel genetic evolution and speciation
918 from standing variation. *Evolution Letters* 0-0, 1-13.

919 Twyford, A.D., Friedman, J., 2015. Adaptive divergence in the monkey flower *Mimulus*
920 *guttatus* is maintained by a chromosomal inversion. *Evolution* 69, 1476-1486.

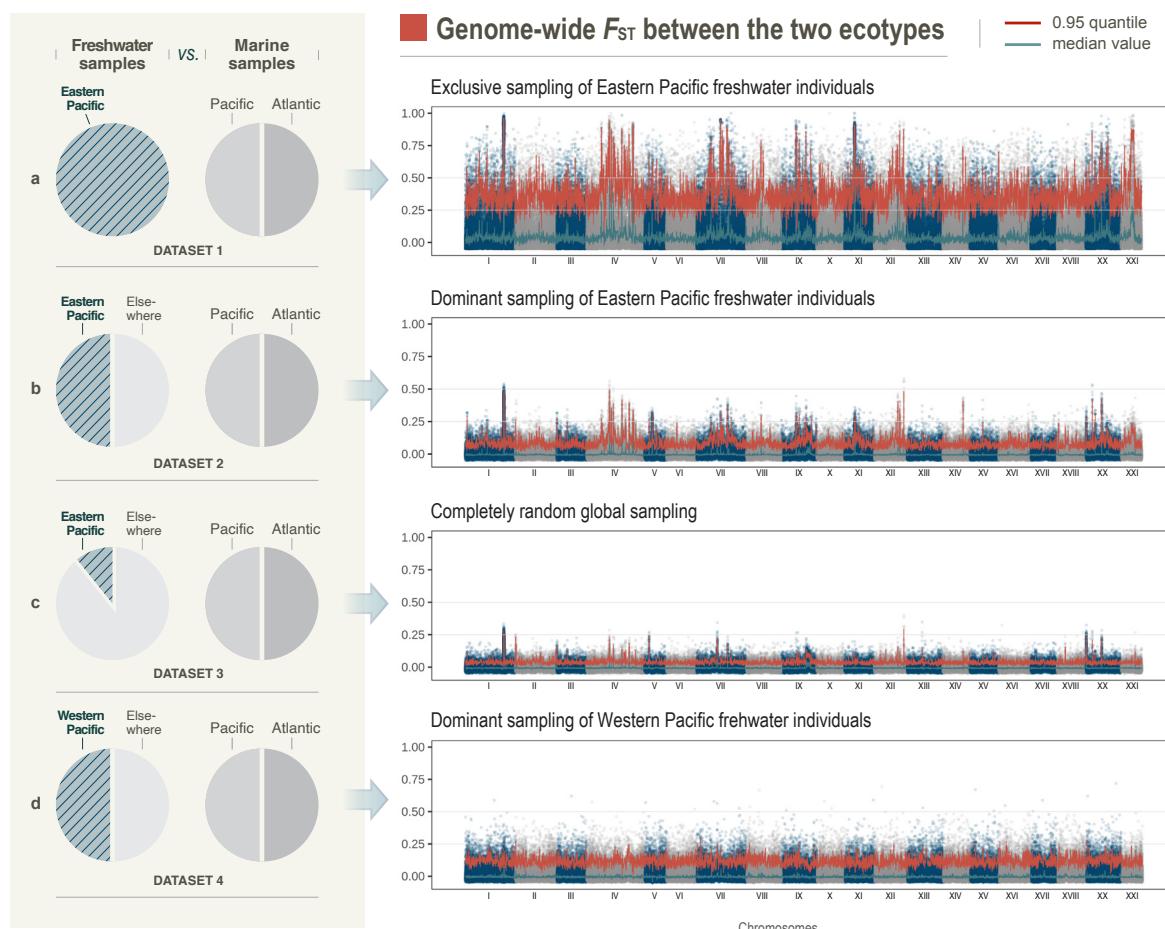
921 Varadharajan, S., Rastas, P., Löytynoja, A., Matschiner, M., Calboli, F.C.F., Guo, B.,
922 Nederbragt, A.J., Jakobsen, K.S., Merilä, J., 2019. Genome sequencing of the nine-spined
923 stickleback (*Pungitius pungitius*) provides insights into chromosome evolution. *BioRxiv*,
924 741751.

925 Weir, B.S., Cockerham, C.C., 1984. Estimating F-statistics for the analysis of population
926 structure. *Evolution* 38, 1358-1370.

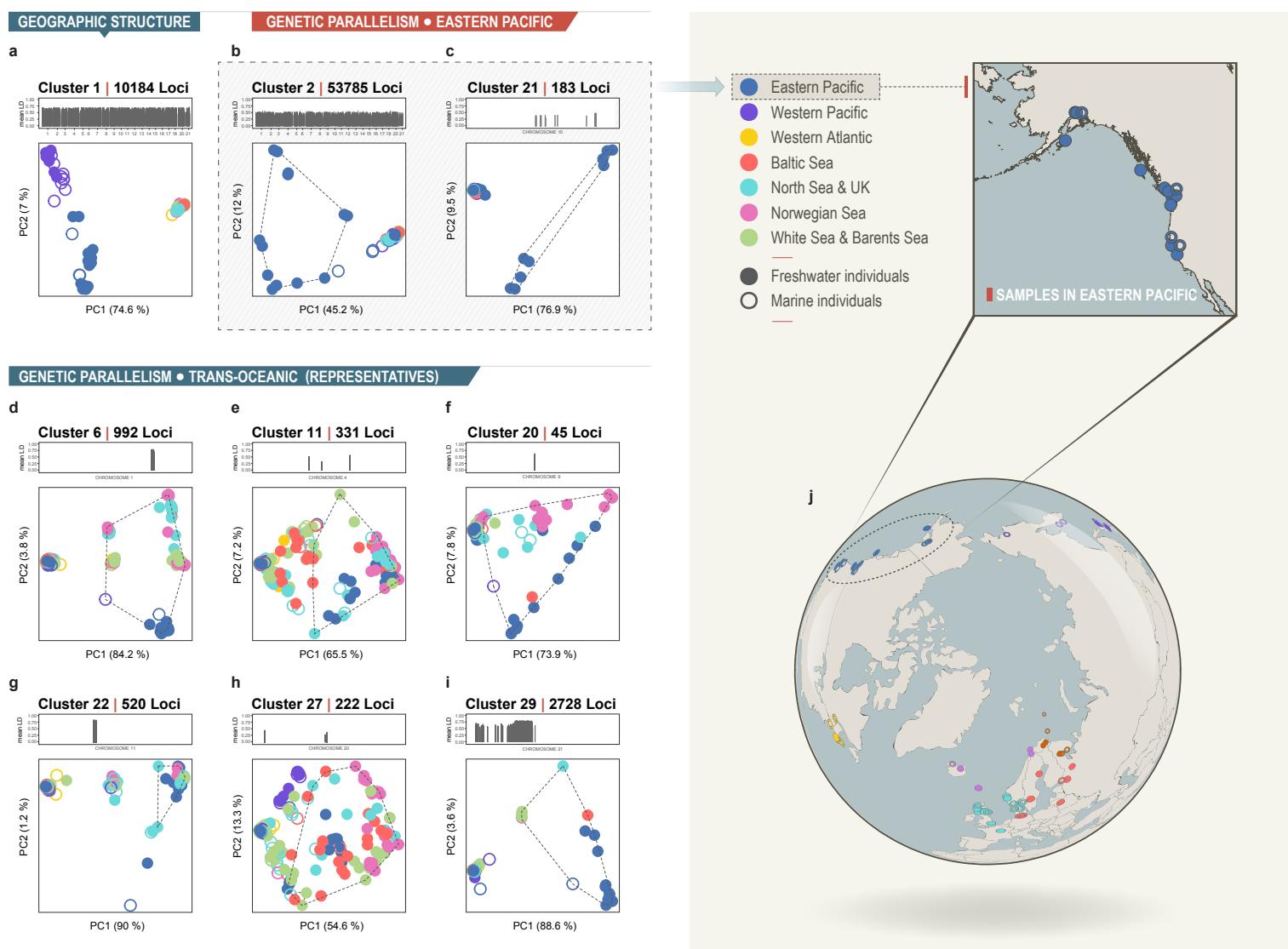
927 Westram, A., Galindo, J., Alm Rosenblad, M., Grahame, J., Panova, M., Butlin, R.J.M.e.,
928 2014. Do the same genes underlie parallel phenotypic divergence in different *Littorina*
929 *saxatilis* populations? 23, 4603-4616.

930 Westram, A.M., Rafajlović, M., Chaube, P., Faria, R., Larsson, T., Panova, M., Ravinet, M.,
931 Blomberg, A., Mehlig, B., Johannesson, K., 2018. Clines on the seashore: The genomic
932 architecture underlying rapid divergence in the face of gene flow. *Evolution Letters* 2, 297-
933 309.

934 Yoshida, K., Makino, T., Yamaguchi, K., Shigenobu, S., Hasebe, M., Kawata, M., Kume, M.,
935 Mori, S., Peichel, C.L., Toyoda, A., Fujiyama, A., Kitano, J., 2014. Sex Chromosome Turnover
936 Contributes to Genomic Divergence between Incipient Stickleback Species. *PLoS Genet* 10,
937 e1004223.

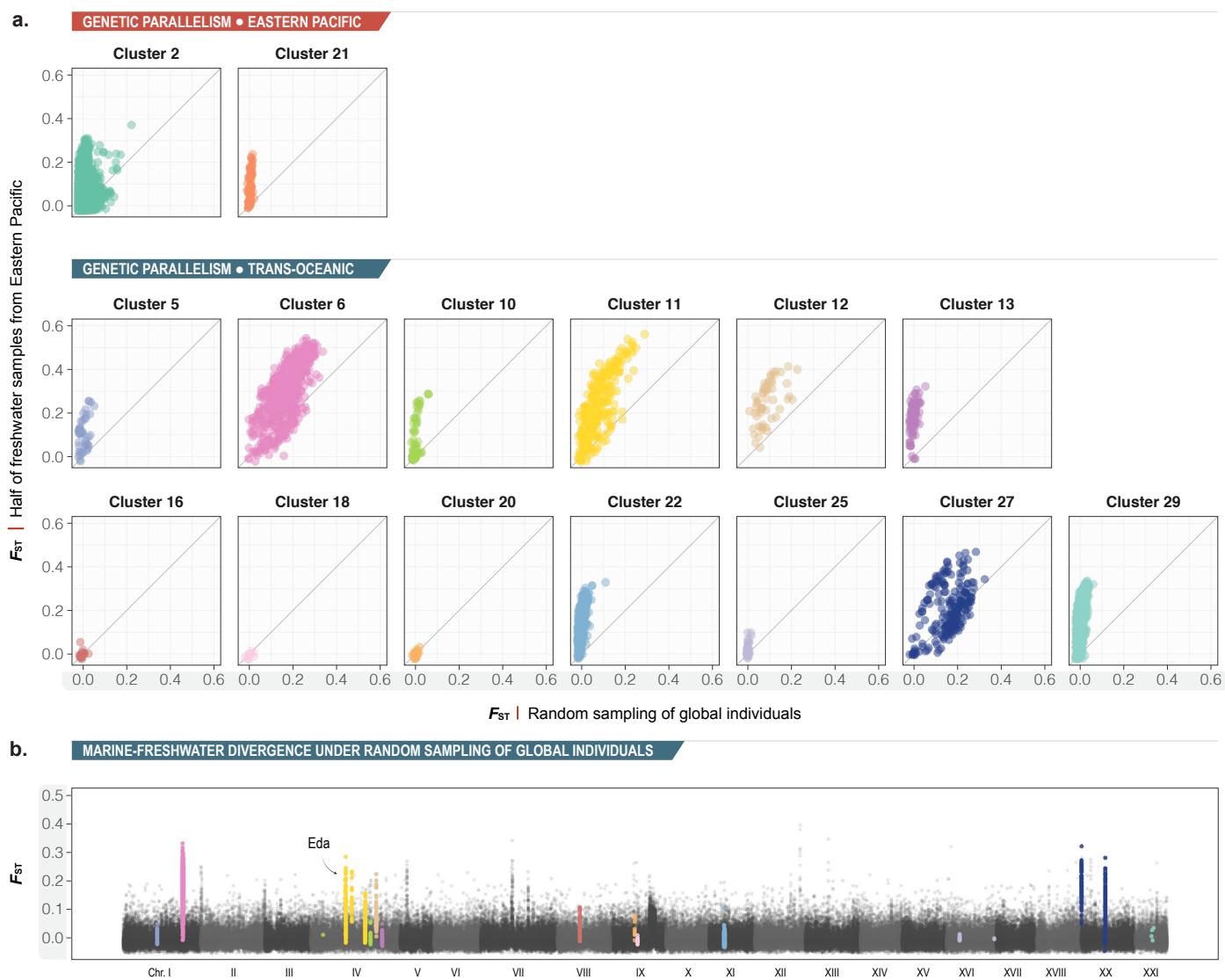

938 Östlund-Nilsson, S., Mayer, I., Huntingford, F.A., 2006. *Biology of the three-spined*
939 *stickleback*. CRC Press.

940

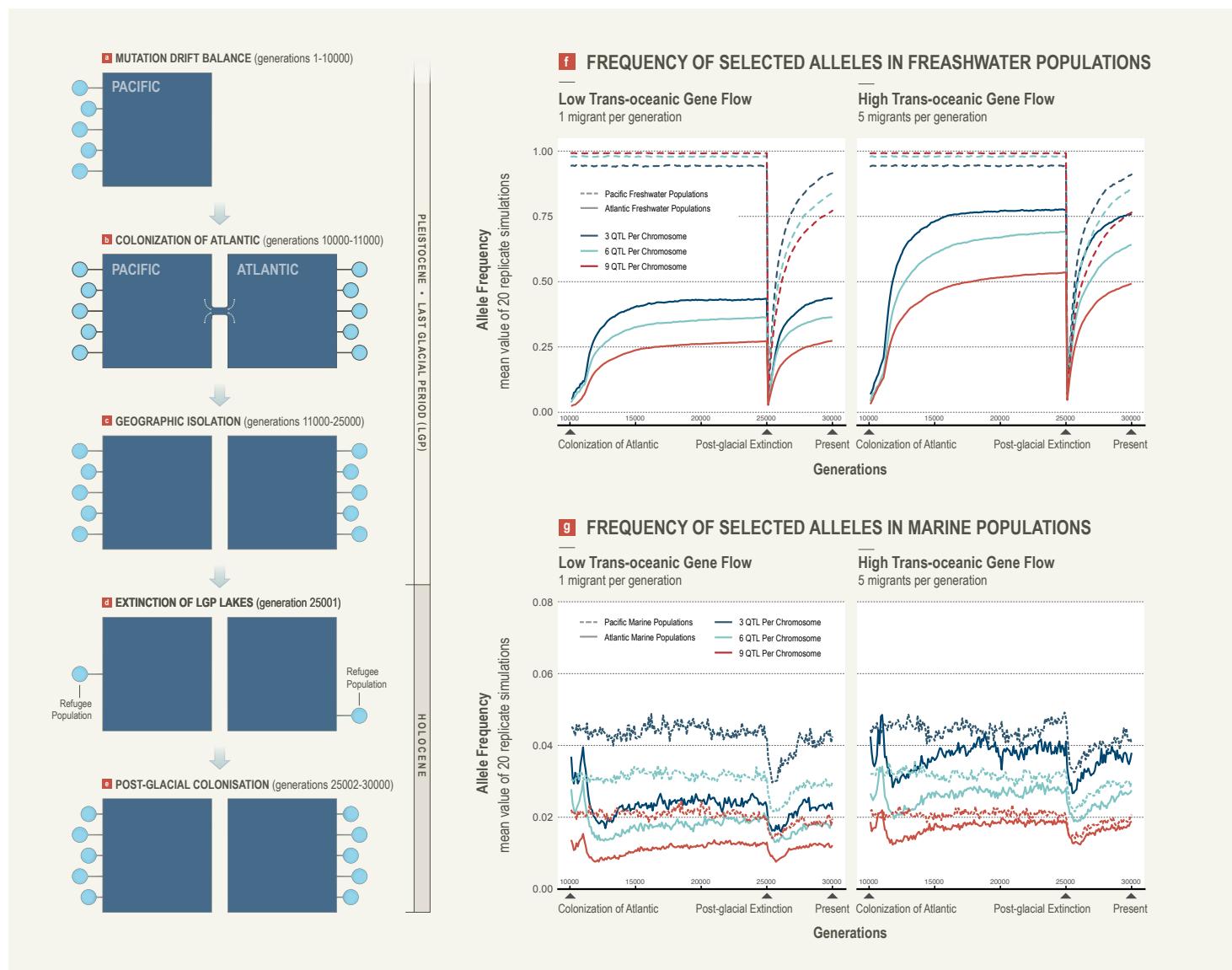

941 Morales HE, Faria R, Johannesson K, Larsson T, Panova M, Westram AM, Butlin R. 2018.
942 Genomic architecture of parallel ecological divergence: beyond a single environmental
943 contrast. *bioRxiv*:447854.

942 **FIGURES**

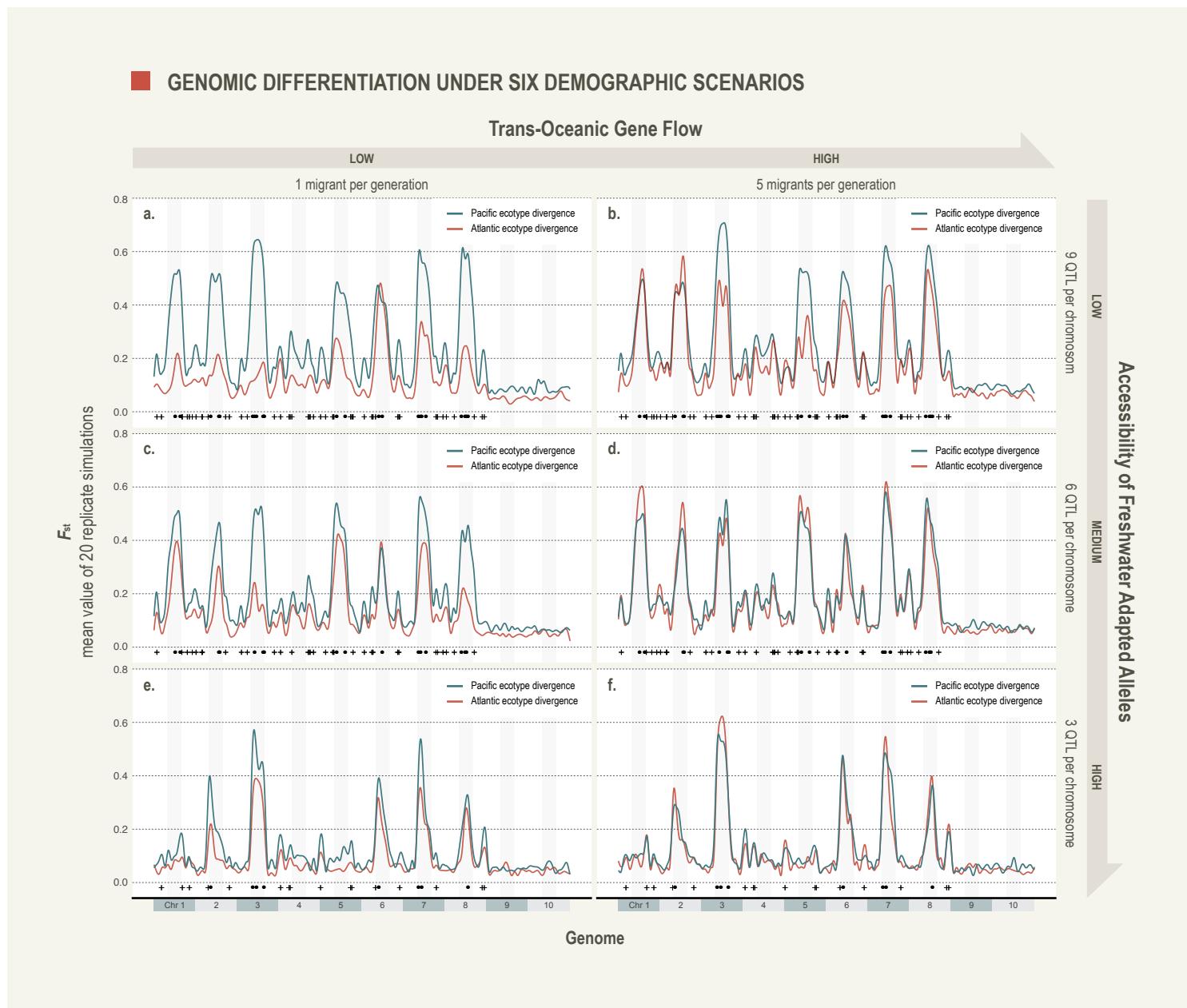
943 **Figure 1 | Marine-freshwater divergence in datasets with different geographic**
944 **sampling.** The four sampling schemes contrasting freshwater and marine individuals with
945 equal sample sizes are illustrated as follows (a) Dataset 1: Eastern Pacific freshwater
946 individuals against global sampling of marine individuals. (b) Dataset 2: half of freshwater
947 individuals are from Eastern Pacific with the remaining individuals randomly sampled from
948 individuals elsewhere. (c) Dataset 3: random sampling of global freshwater individuals against
949 random global sample of marine individuals. (d) A negative control (Dataset 4) where half of
950 the freshwater individuals are from the Western Pacific with the remaining individuals
951 randomly sampled from individuals elsewhere. Genome-wide F_{ST} was calculated 100 times
952 from random sampling under the three sampling schemes, and the mean F_{ST} values are
953 presented on the right side. Red and green lines represent moving averages of 95%-quantiles
954 and medians in windows of 100 SNPs with a step size of 50 SNPs, thus “islands of
955 differentiation” are indicated by a large difference between the 95%-quantile and the median
956 indicating excess of highly differentiated loci.



958 **Figure 2 | Linkage Disequilibrium network analysis (LDna).** (a-i) Nine main LD-clusters of
 959 loci identified by LDna. In each plot, the upper depicts the position of the clustered loci across
 960 the genome (x-axis) and for each locus, mean LD (r^2) for each locus (relative to all other loci
 961 in its cluster; high values indicates strongly connected loci) on the y-axis. The lower presents
 962 visualization of principal component analysis (PCA) showing population divergence based on
 963 loci from the LD-clusters. The seven different colours represent the geographic origin of
 964 populations. Solid and open circles respectively refer to freshwater and marine ecotypes. All
 965 identified 29 LD-clusters and corresponding information are listed in Supplementary Fig. 3
 966 and Supplementary Table 2. (j) Map of sampled populations with colours matching the PCA
 967 results. A flat sampling map is given in the Supplementary Fig. 1.



972 **Figure 3 | Genetic parallelism identified by the supervised and unsupervised method.**


973 (a) The figure displays loci from the 15 LD-clusters identified by LDna, representing the
974 parallel genomic loci of marine-freshwater divergence across either the Eastern Pacific or the
975 global freshwater populations. The x-axis refers to the genome-wide F_{ST} based on the random
976 sampling of freshwater individuals globally (viz. [b] and Fig. 1c). The y-axis represents the
977 genome-wide F_{ST} derived when half of the individuals are from the Eastern Pacific (Fig. 1b). A
978 figure displaying the remaining LDna loci as well as all non-LDna loci across the genome can
979 be found in Supplementary Fig. 2. (b) The genomic position of the parallel genetic variants
980 across the global (trans-oceanic) freshwater populations (13 LD-clusters of lower panel of [a]).
981 The genome-wide F_{ST} (dots in grey colour) is based on the random sampling of freshwater
982 individuals globally (viz. Fig. 1c). The LD-clusters are distinguished by corresponding colour
983 at (a).

987 **Figure 4 | Ecological genetics in simulated data.** (a-e) A schematic of the demographic
 988 scenario used for the simulations that is consistent with the “transporter hypothesis” of Conte
 989 & Schluter (2009) in the Eastern Pacific. (a) Initial local adaption of the freshwater populations
 990 in the Pacific. (b) The colonisation of stickleback populations from the Pacific to the Atlantic.
 991 (c) Geographic isolation between the two oceans. (d) Extinction of lakes during last glacial
 992 period (LGP) with the survival of refugee populations. (e) The post-glacial colonisation of the
 993 new freshwater populations. (f) Frequency of selected (freshwater-adapted) alleles in the new
 994 established freshwater populations through generations at high and low levels of trans-
 995 oceanic gene flow and three levels of number of locally adapted traits. (g) Frequency of
 996 selected alleles in the marine populations through generations at high and low levels of trans-
 997 oceanic gene flow and three different numbers of QTL per chromosome.

1001 **Figure 5 | Genomic differentiation in simulated data.** Six plots demonstrate the results of
1002 genome-wide marine-freshwater divergence (F_{ST}) under six demographic scenarios at the
1003 end of simulations (generation 30,000). The F_{ST} is summarized by the mean value from 20
1004 replicate simulations. The white and shaded background represents "High" or "Low"
1005 recombining regions, corresponding to chromosome arms or centromeres, respectively. The
1006 positions of QTL (3, 6 or 9 QTL per Chromosome 1-8) are fixed across simulation replicates.
1007 The crosses (+) and black dots (•), at the base in each plot, represent the QTL in high and low
1008 recombination genomic regions respectively.

