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Abstract. Loss of bladder-control is a common condition after spinal cord injury and in the elderly population
that can have devastating effects on the quality of life. Implanted devices that restore voluntary bladder function
by peripheral neuromodulation, so called bioelectronic medicines, can be a localized and permanent remedy for the
affected individuals. Feedback about the current bladder state, i.e., its fullness, is crucial for the correct function
of these devices, and can be obtained by recording and analyzing the afferent innervation of the bladder. In the
past, studies have been conducted on both the data-driven decoding of bladder pressure from afferent fibres and the
physiology of single units. However, neither has the encoding of bladder-pressure by a population of sensory fibres
been thoroughly analyzed, nor have decoders explicitly been tailored to the encoding principles employed by the
body. We here investigate how populations of bladder afferents encode pressure by applying information theory to
microelectrode-array recordings from the cat sacral dorsal root ganglion. We find an encoding scheme by three main
bladder neuron types (slow tonic, phasic, and derivative fibres) that offers reliability through within-type redundancy
and high information rates through near-independence of different bladder neuron types. Based on these encoding
insights, we propose an adapted decoding strategy from within-type mean responses that is both accurate and robust
against cell loss.
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1. Introduction

A new paradigm for the treatment of diverse medical
conditions has recently emerged: the development
of ‘bioelectronic medicines’ [1] which modulate the
peripheral nerve signaling by means of implanted devices.
This alternative to molecular medicine has promise as
a localized and permanent remedy for conditions as
varied as hypertension and tachycardia [2, 3], sleep
apnea [4], rheumatoid arthritis [5] and many others.
Most current neuromodulation devices still operate in
a simple open-loop fashion, acting in a preset way,
independent of changes in the physiological processes
they try to influence. In the future, bioelectronic
medicines are expected to become more advanced and
include real-time feedback about current organ states.
By only blocking or stimulating when necessary, closed-
loop devices can be much more efficient and effective, and
even capable of dynamically managing conditions, e.g.,
detecting parasympathetic bronchoconstriction in asthma
and suppressing it [6].

To enable the use of feedback control, physiological
quantities of interest may be measured by chemical,
mechanical, or other sensors that are implanted in
addition to the nerve interface [7, 8, 9, 10, 11, 12]. While
this approach seems straightforward from an engineering
point of view, surgery becomes more difficult and the
probability of complications (e.g., device movement,
tissue damage, loss of signal [7, 13]) post surgery rises.
An alternative approach is to harness, where possible, the
body’s own sensors for monitoring and control of organs.
Thousands of afferent fibres continuously transmit signals
about organ physiological state. These existing biological
bladder neurons are sensitive and may offer a stable
source of organ state information as an elegant alternative
to implanted artificial sensors. In order to take
full advantage of these signals, however, we need a
better understanding of how physiological quantities are
encoded by populations of peripheral afferent fibres. We
can then implement informed decoders tailored to the
encoding strategies present in the periphery, and use
them as a robust and precise feedback in next generation
bioelectronic medicines.

The bladder provides an ideal testbed for the
development of closed-loop bioelectronic medicines. It
has a main parameter of interest — its fullness,
characterized by both volume and resulting pressure —
which can easily be manipulated and recorded. The
bladder wall is further covered by numerous stretch
sensors that monitor this central quantity. It is thus a
good candidate for investigating the encoding of an organ
parameter by a multitude of cells. Developing closed-loop
bioelectronic medicines for the bladder is furthermore
clinically important, as bladder dysfunction is a common
condition both in the elderly population [14], and after
spinal cord injury [15, 16]. The resulting incontinence has
devastating effects on a patient’s quality of life [17, 18]. In
addition, other malfunctions such as detrusor-sphincter
dyssynergia and hyper-reflexia can occur in specific
patient groups and cause renal damage, repeated urinary

tract inflammations and kidney infections [19, 20].

The lower urinary tract (LUT), consisting of the
bladder, urethra and sphincter, is innervated by the
pelvic, the pudendal, and the hypogastric nerves [21].
The pelvic nerve projects to the internal pelvic organs
including bladder, urethra, bowel, and vagina [22, 23].
The pudendal nerve goes to the pelvic floor including
urethra, sphincter, anal sphincter, perineal region,
genitalia [24, 25, 26]. The hypogastric nerve forms a
plexus with the pelvic nerve, innervating similar regions,
including the bladder neck/proximal urethra. We are
therefore mainly interested in pelvic nerve fibres that
originate in the sacral-level dorsal root ganglion (DRG)
to innervate the bladder wall. In the cat, most cell
bodies giving rise to the afferent fibres projecting through
the pelvic nerve to the bladder can be found in sacral-
level S1 and S2 DRG [27, 28]. Of the approximately
40000 cell bodies in the cat sacral DRG S1 and S2 [29],
about 1000 innervate the bladder [30, 28, 31, 32]. This
population is composed of both small myelinated Ad and
unmyelinated C-fibres, of which the former are generally
accepted to transport the mechanoreceptor impulses and
trigger the normal micturition reflex [21, 33, 34, 35].
C-fibres are associated with nociception but have been
reported to sense bladder pressure in addition to A¢ fibres
[36]. The bladder neuron responses were characterized as
tonic (Ad) and phasic (C-fibres) [37], sometimes described
as pressure (A¢) and volume (C) receptors [38] and are
usually found to have a diversity of activation thresholds
within each diameter range [39, 40, 41, 36]. Some exhibit
hysteresis [42]. While the large body of physiological
studies draws a detailed descriptive picture of bladder
afferents, elucidating the physiological significance of the
different cell types for pressure encoding has not been
attempted. The question of why the diverse bladder
neuron responses exist is one we seek to answer in this
work.

Just as physiologists have led a rich variety of studies
on the afferent innervation of the bladder, engineers
explored various ways to decode bladder pressure, volume
and contractions from peripheral nerve activity in the
past.  Decoders using pelvic [43, 13, 44], pudendal
[45, 46] or spinal nerves [47, 48] have been proposed.
Targeting these nerves, however, requires a difficult
surgery, recordings often lack good signal-to-noise ratio
(SNR) without highly invasive interfaces [47]. As an
alternative, one can interface with sacral-level dorsal root
ganglion (DRG) where cell bodies of both pelvic and
pudendal nerve fibres reside. Recording cell bodies with
penetrating microelectrode arrays (MEA) leads to a good
signal-to-noise ratio at high spatial resolution. Moreover,
the activation of efferent pathways can be accomplished
at the same site through reflex circuits [49, 50]. Decoding
from microelectrode arrays implanted in the DRG has
been demonstrated [39, 51, 52], with a stable interface
over weeks [50]. While many of the above decoding
approaches, be it from a peripheral nerve or from the
DRG, estimate bladder pressure quite accurately, none of
them directly draw on insights from physiological studies
of the encoding. Most proposed solutions rely on single
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cell responses (if spatial resolution and SNR allow) that
are assumed to be stable over time. If a change in the
recording setup occurs, however, e.g., due to electrode
migration, cell death, etc, the decoder has no means of
detecting this change, and can quickly lose its prediction
quality without retraining.

In the present work, we investigate both the
encoding of pressure across the many afferent fibres
innervating the bladder wall, and draw conclusions
towards building better decoders that exploit the
observed encoding strategies. We conducted this research
based on microelectrode array recordings from the sacral
dorsal root ganglion levels S1 and S2 in cats (see
Fig. 1A for the experimental apparatus) during a slow
filling at a physiological rate. = We identified three
distinct stereotypical response types that recur across
all experiments: slow tonic, phasic, and derivative. For
each type, we used information theory to quantify the
information it individually carries about bladder pressure,
and further estimated the benefits of combining different
bladder neuron types — on both real and simulated
data. Taking advantage of the insights gained from this
information theoretic encoding analysis, we propose an
informed decoding strategy from stereotypical groups of
fibres that proves to be robust and accurate.

2. Methods

2.1. Experiments

We analyse here data previously collected for a study
of single-unit hysteresis [42] (experiments 1-5) and a
comparison of bladder pressure decoding algorithms
for the DRG [51] (experiments 6-8). Full details of
experimental procedures can be found in those respective
publications. In short, 8 adult male cats of approximately
1 year of age were used. All procedures were approved
by the University of Michigan Institutional Animal Care
and Use Committee, in accordance with the National
Institute of Health guidelines for the care and use of
laboratory animals. For experiments 1 and 5 a 5x10
microelectrode array (Blackrock Microsystems, Salt Lake
City, Utah, USA) was inserted in the left S1 DRG
and a 4x10 microelectrode array into the left S2 DRG.
For experiments 2, 3 and 4, 5x10 arrays were inserted
bilaterally in S1 and 4x10 arrays were inserted bilaterally
in S2. Experiments 6 to 8 had 4x8 electrode arrays in left
and right S1. Microelectrode shank lengths were either
0.5 or 1.0 mm with 0.4 mm inter-shank spacing. Bladder
pressure was recorded simultaneously with a catheter
either inserted through the urethra or inserted into the
bladder dome, at a sampling rate of 1 kHz and low-pass
filtered for further analysis at 4 Hz.

The experimental apparatus is shown in Fig. 1A. We
emptied the bladder using the bladder catheter before
filling it with saline at a near-physiological rate of 2
ml/min [53]. Inflow was stopped when we observed
dripping from the external meatus or, if present, around
the urethral catheter. The saline had room-temperature
(22°C) in experiments 1-4 and 6-8 and body-temperature

(41°C) in experiment 5. Two infusion trials per
experiment with only non-voiding bladder contractions
form the basis of the following analysis (without the final
voiding phase). Trials took 17 min on average (minimum
5 min, maximum 30 min). Neural signals were recorded
at 30 kHz with a Neural Interface Processor (Ripple LLC,
Salt Lake City, Utah).

After data collection, voltage signals on each
microelectrode channel had an amplitude threshold
between 20 and 35 pV applied (3-5.5 times the root-
mean-square of the signal) to identify spike snippets
of neuron action potential firings. Spike snippets were
sorted in Offline Sorter v3.3.5 (Plexon, Dallas, TX),
using principal component analysis, followed by manual
review to identify unique spike clusters. In MATLAB
(Mathworks, Natick, MA), instantaneous firing rates for
each cell were then calculated by smoothing with a non-
causal triangular kernel [54] of width 3 s.

2.2. Fibre selection and characterization

We first inspected fibre responses manually. In this
process we observed three distinct response types
depicted in Fig. 1B: (1) ‘slow tonic’: a monotonic rise
in firing rate with mean pressure across long time scales
without coverage of the quick non-voiding contractions,
(2) adapting ‘phasic’ fibres which respond to quick
changes in bladder pressure during contractions but,
because they adapt over time, do not report the mean
pressure with the same fidelity as ‘slow tonic’ ones, and
(3) ‘derivative’ fibres which only respond to phases of
rising pressure and are, similar to phasic fibres, weakly
indicative of the mean pressure.

To select relevant fibres and systematically associate
them with the types we found through manual inspection,
we computed the Pearson correlation coefficients between
firing rates and (1) low-pass filtered pressure below 0.01
Hz, (2) high-pass filtered pressure above 0.005 Hz, and (3)
derivative of pressure I for every fibre of every trial. The
high- and low-pass filter cutoff frequencies were chosen to
separate the pressure signal into a slow mean component
without contractions and the contractions only. We
only considered neurons as bladder units that had a raw
correlation p above 0.4 to at least one of these filtered
bladder pressure variants. As our experiments contained
many candidate cells (~1000) to choose from, we could
afford an increased selectivity and be sure to only consider
unambiguously relevant neurons.

In the two-dimensional plane of the correlation
measures between firing rate and high-pass filtered
pressure (x-axis) and derivative of pressure (y-axis),
shown in Fig. 1C, different fibre types occupy different
regions.§ We could therefore cluster bladder neurons
globally across all trials by their responsiveness to

1 The pressure was first low-pass filtered at a high frequency of 0.25
Hz to remove noisy transients. The derivative was computed as the
step-wise difference between samples of this filtered pressure.

§ As we first assured that all cells had at least 0.4 correlation to any
filtered signal variant, cells with low correlations to both derivative
and high-pass filtered pressure signals were implicitly identified as
only highly correlated to the slow component.
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Figure 1: Bladder pressure is encoded by distinct groups of stereotypical cells. A Microelectrode array
(MEA) recording of cells from the first and second sacral dorsal root ganglion (DRG S1/S2) along with the bladder
pressure. The bladder was filled with through a catheter in the bladder dome (solid line) or urethra (dotted line).
Graphic from [42]. B Stylized (cartoon) illustration of the three stereotypical fibre type firing rates (FR) we observe:
slow tonic, phasic, derivative; shown with an example pressure signal. C When plotting all fibres of all trials in
the 2D-plane of the correlations of firing rates with high-pass filtered pressure (x-axis) and derivative of pressure
(y-axis), we can associate regions of this correlation-feature plane with the different bladder neuron types shown in
(B). Crosses indicate the cluster centers obtained through k-means clustering and large circles show the manually
selected initial centers. The firing rates of example bladder cells, with the corresponding bladder pressure, are shown
in the small plots.

This approach will be referred to as ‘feature clustering’
and forms the basis of associating each cell to one of
the three bladder neuron types slow tonic, phasic, and

different frequency components of the pressure signal
using k-means clustering in this ‘correlation-feature’
plane (converged and initial centers shown in Fig. 1C).
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derivative. We note that no finer frequency analysis was
possible, as the pressure signals did not contain spectral
power above approximately 0.05 Hz.

Clustering by correlation-features relies on the
availability of the pressure signal and its differently
filtered variants. As an unsupervised alternative that
could, for instance, be carried out on-line in an implanted
device, we also clustered fibres hierarchically in each trial
based on the pairwise Pearson correlation coefficients
between their firing rates (number of clusters fixed to the
number of fibre types in each trial). This step allowed us
to identify clusters of similarly evolving firing rates — and
therefore fibres of similar bladder neuron characteristics —
without relying on the bladder pressure. We will denote
this approach ‘activity clustering’. Clustering by activity
was only possible within each trial, not across trials, as
pressure dynamics differed in each trial.

2.8. Surrogate data

The dataset had three inconvenient properties which
affected the analyses: (1) the low-frequency power of the
pressure signal was correlated with the high-frequency
power as non-voiding contractions mostly occur at high
pressures, (2) not all cell types were present in all
experiments, and (3) the recording length complicated the
estimation of information theoretic quantities (detailed
in the next section). To overcome these limitations,
we created surrogate cells (single cells or populations
of similar cells) that reproduced the behavior of the
main bladder neuron types, and drove them by idealized
stimuli (‘pressure signals’). A surrogate cell consisted
of an ‘intended firing’ rate with was derived from the
pressure signal (e.g., a low-pass filtered version of the
pressure signal) that defined, together with an intended
mean firing rate, the rate parameter of an inhomogeneous
Poisson process to generate a spike train. See Table 1
for a list of the implemented fibre response types. We
define a theoretical ‘tonic’ fibre whose intended firing rate
perfectly matches the bladder pressure and a theoretical
‘linear’ fibre that rises linearly with time (coefficients
a and b fit to data). The remaining three types of
simulated cells match the response characteristics we
found experimentally. The ‘slow’ fibres follow the low-
pass filtered pressure at 0.0005 Hz, ‘derivative’ cells were
driven by the pressure derivative, and ‘phasic’ responses
were defined using a decay parameter 7 in seconds that
regulates how quickly the fibre adapts. From the spike
times output by the inhomogeneous Poisson process, we
computed the continuous firing rate just as we did in the
real data by a non-causal triangular kernel of width 3 s.

2.4. Information theoretic analysis

Information theory [55, 56], originally developed for the
study of communication channels in engineered systems,
has proven to be a useful tool in neuroscience for
quantifying the information carried by a single cell or a
population of neurons about a variable of interest [57,
58, 59, 60, 61]. We here consider a common information
theoretic quantity, the Shannon mutual information (MI),

Fibre type response formula
Tonic r(t") = s(t)
Linear r)=a+b-t
Slow r(t') = s(t') * hrp
Derivative r(t') = ds(g,)
Phasic drd(f/) =

Table 1: Surrogate fibre responses in relation to
a stimulus s(t).  The operation *hyp,p indicates
convolution with a high-pass or low-pass filter.

estimating (1) how much information each fibre carries
about the pressure stimulus, and (2), how much benefit
there is in combining the information from two different
fibres or fibre types. In the continuous case, mutual
information I(X,Y’) is computed between two variables
X and Y of probability distributions px (z) and py (y) and
joint distribution p(x yy(z,y). In our case, X could for
instance be the firing rate of a selected cell and Y could
be the bladder pressure signal. I(X,Y’) then quantifies
the amount of entropy of variable X that is lost when
knowing what values Y assumes in all joint measurements
of X and Y:

Pxy) (T, y
I(X;Y) = //p(x,Y)(fmy)log (M()) dx dy,
yJx

px(x) py (y)
(1)

In addition to the two-variable case, we can also quantify
the joint mutual information that two variables X and Y
carry together about a third variable of interest Z:

I(X,Y:2)=1(X;Z) + I1(Y; Z|X), (2)

where for I(Y; Z|X) we have to adapt Eq. 1 by replacing
all distributions of X and Y by conditionals to Z and
integrate over the distribution of Z. We can further
combine the individual mutual information measures of
both X and Y and their joint mutual information about
Z to a quantity called ‘fractional redundancy’, R, which
can assume values between -1 and 1 and indicates how
much less information the ensemble of X and Y contains
about Z than the sum of the parts,

I(X:2)+1(Y:2) - I(X,Y; 2)
I(X,Y:2) '

R(X,Y:Z) = (3)
Note that negative values of redundancy imply synergistic
interaction between variables. We compute the described
information theoretic quantities from firing rate and
pressure at a sampling rate of 1/s using the Kraskov
mutual information estimator for continuous signals [62],
implemented in the JIDT toolbox [63] which we run from
MATLAB (Mathworks, Natick, MA). The conditional
mutual information needed for the joint MI (Eq. 2) was
computed in the full joint space [64, 65] as implemented
by the JIDT toolbox.
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mutual information, but a slight underestimation
of redundancy. Mutual information, joint mutual
information and redundancy were computed from the
firing rate of a simulated tonic fibre (pair) and an idealized
pressure signal. Firing rate was set to 20/s for single
fibres, and 10/s for each fibre in a pair; 5 repetitions for
each signal length. See Sec. 2.3 and Fig. 5 for details of
the simulated data.

As our trials were of limited length (1036 + 399
samples), mutual information estimates were upwardly
biased due to finite sampling effects, which are
incompletely removed by the Kraskov estimator. This
is illustrated in Fig. 2 for a single and a pair of simulated
tonic fibre(s). At 1000 samples, mutual information of a
single fibre is overestimated by approximately 7% and
joint mutual information by approximately 14%, and
redundancy is underestimated by 12%. From 10000
samples, joint and single mutual information as well as
the redundancy stabilize.

2.5. Decoding

So far we described the quantification of information
that individual fibres and fibre combinations carry about
pressure — on both real and surrogate data. Using
the following approach, we made use of our refined
understanding of the physiological encoding and designed
an adapted decoder. When estimating bladder pressure
from nervous activity, we face two main areas of choice
to be mae. (1) The pre-processing of the neural signal:
whether we sort cells or take some measure of activity per
electrode, what cells we choose if sorted, how we compute
the spike rate, and (2) the type of decoding algorithm we
use: Optimal Linear Estimator (OLE), Kalman, etc. We
focus here on the pre-processing based on the sorted cell
responses and fix the decoding algorithm to an OLE for
simplicity. From our encoding results, we compare three
signal variants to decode from in both estimation error
and robustness against lost cells — a common problem
due to electrode migration or cell death:

To compare decoding performances statistically, we

conducted paired t-test across trials.

3. Results

We found 185 bladder-units within 1044 overall fibres
across 22 trials in 8 animals by thresholding the
Pearson correlation coefficient between firing rates and
the pressure signals (see Sec. 2.2 for details). These 185
fibres serve as the basis of our subsequent analyses.

3.1. Groups of stereotypical bladder neuron types exist

As shown in Fig. 1C and described in Sec. 2.2, we
first clustered cells globally by the correlation of their
firing rates to the high-pass filtered pressure and the
pressure derivative (‘correlation-features’). In this way,
we distinguished 89 cells as ‘slow tonic’, 81 as ‘phasic’
and 15 as ‘derivative’. While ‘derivative’ cells were
clearly separated from the other types in correlation-
feature plane (Fig. 1C), ‘tonic’ and ‘phasic’ showed a more
gradual transition. Some slow tonic fibres also responded
to quick contractions to some extent and some phasic
fibres did not completely decay to inactivity for stimulus
plateau phases. In addition to these overlapping receptor
properties, the stimulus signal did not separate phases of
high low-frequency power and high high-frequency power
well, as non-voiding contractions mostly occurred in the
high-pressure regime. In many trials, this caused the
firing rates of quick ‘phasic’ fibres to be correlated with
the slow component of the pressure as well. We sought
to overcome this limitation of the in vivo data with our
surrogate data study. An overview of the cell types in
each trial is given in Table 2. Each trial was usually
dominated by one or two fibre type(s).

The clustering described above required knowledge of
the pressure signal in order to compute the correlation-
features. As an alternative, we attempted to retrieve the
cell types in an unsupervised way by grouping similarly
firing cells within each trial to activity clusters. Because
similar response characteristics should produce similar
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Table 2: Summary of the identified bladder units across trials. Numbers are fibre counts, TXX indicates
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Figure 3: Activity clusters per trial correspond to
bladder neuron types; example trial E4T29. A The
correlation distance matrix shows the two main clusters.
Overall, both clusters are quite homogeneous in their cell
type content (see colors in (B)). B The time course of
all normalized bladder unit firing rates along with the
bladder pressure.

outputs given the same stimulus, the activity clusters
should correspond to feature clusters (cell types) we

Fibre types contained in cluster

slow tonic phasic derivative
g2y .
o2 slow tonic 74 15 0
=R
55 .
g = phasic 14 65 1
23
S &  derivative 1 1 14
[}

Table 3: Clustering by activity within trial often
recovers the cell types obtained from clustering in
correlation feature plane. Rows show the dominant
fibre type in each activity cluster, columns give the fibre
type identities from correlation feature plane clustering.

observed across all trials. As Table 3 shows, activity
clusters often reproduce cell types well. We here assigned
a cell type label to each cluster from the dominant type.
Fig. 3 shows an example of an activity clustered trial with
a clean separation of fibre types. Table Al gives a more
detailed overview of the relation between activity clusters
and cell types in all trials.

The presence of imperfectly tuned fibres that respond
to both static pressure and to quick pressure changes
complicated a clean clustering into bladder neuron types,
particularly a clean distinction of the types phasic and
tonic. Also, slow tonic fibres could have low pairwise
similarity complicating the activity clustering. We still
often retrieved the same fibre groups by both global
clustering across all trials based on correlation-features
and by simply grouping similarly firing fibres per trial.
It was thus feasible to cluster cells online into different
bladder neuron groups by their activity.

3.2. Encoding by groups of stereotypical bladder neurons
is efficient and robust

We have shown that different bladder neuron types exist
in the studied animals. In the following section, we aim to
identify reasons for both the observed response diversity
(different types) and the presence of multiple very similar
bladder neurons (see Table 2).

Fibres of the same type were highly redundant, as
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Figure 4: Combining complementary fibre groups leads to high joint mutual information at a moderate
redundancy. Real data. A Fractional redundancy between average firing rates within fibre types. For on-diagonal
entries, fibres were split into two equally large subpopulations of randomly chosen fibres of the same type five times
between which the joint mutual information was computed and then averaged over repetitions; trials had to contain
at least 4 fibres of the same type. B Mutual information between average firing rates within fibre type and pressure
on the diagonal, averaged across trials. Joint mutual information between average firing rates of two different types
and pressure in off-diagonal entries. C Mutual information of the average firing rate of all fibres and pressure, mean
across trials. D Mean mutual information of single fibres across trials on the diagonal and joint mutual information
of two fibres in the off-diagonal entries. E Mutual information between the average firing rate across an increasing
number of fibres and pressure. F Joint mutual information between the mean firing rates of two growing pools of
fibres; phasic and slow tonic. Pools either contain one fibre type (solid line) or are mixed (dashed line). Average

firing rates computed from normalized firing rates.

indicated by the diagonal elements of Fig. 4A |. A
straightforward way of making use of this redundancy
and quantifying the benefit of duplicating sensors is to
pool these fibres into a single compound activity signal.
Such pooling of similar sensors enhances the mutual
information: the MI of the averaged firing rates of one
fibre type on the diagonal of Fig. 4B is substantially
higher (at least by a factor of 4, often more) than the
average single fibre mutual information shown on the
diagonal of Fig. 4C (see Table B2 and Table B3 for
all MI values). As single units map bladder pressure
(or an aspect of it such as the slow rise) imperfectly
due to both their tuning (e.g., activation threshold) and
the spiking nature of their output, pooling many similar
cells increases the information content. The signal-to-
noise ratio is enhanced through averaging many imperfect
sensor outputs [66]. Fig. 4E further illustrates the benefit
of averaging over multiple redundant cells: information

|| As single fibre responses were often too noisy to obtain
meaningful redundancy estimates, we here computed it between
within-type average firing rates.

rises with fibre count in almost every case.

Pooling redundant fibres increases information rate.
Still, the average firing rate across all fibres of all
types does not lead to the highest attainable mutual
information between population activity and pressure.
Even though the pooled rate of all fibres carries a higher
mutual information (Fig. 4C, 1.082 £ 0.362 bits) than
the average firing rate of each individual fibre type (on-
diagonal in Fig. 4B, at most 0.886 £ 0.305), it is inferior to
the joint mutual information of two different fibre types
combined shown on the off-diagonal entries of Fig. 4B
(at least 1.255 £ 0.410 bits; see Table B2 for all MI
values). This effect can be understood from the low
fractional redundancy ¢ between types shown in the off-
diagonal entries of Fig. 4A: the firing rates of different
types are almost independent of each other (fractional

q Derivative fibres are by themselves not very informative of the
raw pressure signal and their within-type fractional redundancy
becomes less meaningful. If we compute redundancy relative to
the derivative of the pressure signal as shown in Fig. C1, fractional
redundancy also reaches high values for this fibre type.
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Figure 5: Surrogate cells confirm the benefit of complementary fibres pools on information rate.
A Simplified pressure time course used in the simulation study along with the idealized responses of ‘slow’ and

‘linear’ fibres. B Idealized responses of the fast fibre types.

C Joint mutual information between single fibres of each

type in (A) and (B) with firing rate 20/s. Each square is obtained as the mean over 10 repetitions of calculating
the spike times from the inhomogeneous Poisson process, kernel-smoothing for firing rate estimation and computing
the single repetition joint mutual information. For on-diagonal entries, the joint mutual information between two
fibres of the same type and pressure was evaluated. D Fractional redundancy obtained through the same process as
the joint mutual information shown in (C). E Mutual information between an average firing rate of a population of
increasing size and the raw pressure, the high-pass filtered pressure, and the pressure derivative. Firing rate of each
fibre 2/s. F Joint mutual information of two average firing rates across 10 fibres (firing rate 2/s each) and pressure;
pools either homogeneous (one fibre type) or mixed 5 times.

redundancy approximately 25%, see Table B1). It is
therefore important for the transmitted information to
keep the signals from different fibre types separate.
To further illustrate that mutual information depends
on preserving cell type-identity, Fig. 4F displays the
evolution of joint mutual information between two fibre
pools of increasing size while (1) only averaging within-
type (solid line) and (2) mixing types to generate two
inhomogeneous pools from which the average firing rate

is computed. T In the case of the cleanly distinguished
fibre groups of Experiment 4 (see Fig. 3), the joint
mutual information of the mixed populations is clearly
inferior to the homogeneous populations. In Experiment
3, the difference between mixed and not-mixed is less
pronounced because of the imperfect tuning of some
fibres in that experiment (partly slow tonic and partly
phasic at the same time). As we saw in the beginning

*+ The shown example trials were chosen because they had at least
4 slow tonic and 4 phasic fibres.
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of this section, averaging across similar (redundant)
fibres reduces noise without signal loss. As we see now,
averaging across multiple dissimilar (independent) fibres,
on the other hand, washes out the the messages of each
homogeneous fibre group and destroys information. We
therefore observe a coding in separate, near-independent
groups.

In Fig. 5, we confirmed the benefit of different
homogeneously tuned fibre pools in surrogate data (see
Sec. 2.3). This additional simulation study enabled us
to overcome the three main shortcomings of the in wvivo
data: (1) not all cell types were recorded in each trial, (2)
the low- and high-frequency power of the pressure signal
were correlated, and (3) the relatively short recording
duration was likely to cause finite sampling biases in
our estimates of information theoretic quantities. In
simulation, we selected a simple idealized pressure time
course consisting of a linear slope and a sinusoid of
constant amplitude (period 100 s, see Fig. 5A). The
different idealized responses are shown in Fig. 5A (slow)
and B (fast). Making use of the increased degrees of
freedom of a simulation, we implemented multiple phasic
fibres with different decaying constants 7 (see Table 1 for
its meaning). After driving an inhomogeneous Poisson
spiking process at mean firing rate 20/s with the idealized
rates (shown in Fig. 5A and B) and kernel-smoothing
the spikes to an estimated spike rate (see Sec. 2.3 for
details), the heatmap of joint mutual information in
Fig. 5C could be generated. Its values were similar
to the mutual information from real data in Fig. 4B
but it provides a more detailed picture. Both within
the fast bladder neuron types on the lower right and
the slow types on the upper left, the joint mutual
information stayed low at about 0.5 bits. Within the
fast group, the combination of derivative and phasic
fibres with intermediate decay constants (7=30 s) reached
slightly higher values as already seen in real data. Only
the combination of slow and quick fibres achieved high
information rates: slow tonic (and linear) and phasic
fibres combined reached the highest mutual information
(~ 1.1 bits). We further observed a match between
the rate of decay in phasic fibres (7=30 s) and the
dominant frequency (period T=100 s) in the pressure
signal. When increasing the sinusoid frequency, smaller
values of 7 reached higher mutual information and vice
versa (not shown). Fractional redundancy was high
within the group of slow fibres and between phasic fibres
of high and medium decay constants. As fibres became
less relevant to the raw pressure signal (derivative and
quickly-decaying phasic fibres), fractional redundancy
decreased to about zero and the expected higher values
became visible when computing redundancy towards the
high-frequency component of the pressure signal (see
Fig. C2). Between the cleanly separated bladder neuron
types of the simulated data, the off-diagonal fractional
redundancies were all close to zero — fibres were truly
independent. The positive effect of averaging on mutual
information that we observed in real data (Fig. 4E) was
confirmed in Fig. 5E where MI rises with increasing
number of fibres to average over. When comparing the MI

between the fibre types and different pressure variants in
the subplots of Fig. 5E, linear and phasic fibres are both
informative of the raw pressure, derivative and phasic
provide information about the quick components, and
the fit between the intended firing rate and the pressure
derivative causes an exceptionally high MI for derivative
fibres and a much smaller relative benefit for added
derivative fibres. In Fig. 5F we repeated the analysis of
Fig. 4F with a fixed number of 10 selected fibres from each
population at a firing rate of 2/s each. If we kept track of
the fibre identities and only average within-type, the joint
mutual information of the two fibre group mean firing
rates was higher than when mixing the fibres randomly
into two inhomogeneous groups — averaging between fibre
types destroys information.

In summary, we observed a partly redundant (within-
type) and partly independent (between-type) coding
scheme that offers reliability and high SNR per channel
by redundancy and a high information rate through
complementary groups of bladder neurons.

3.8. A robust decoder based on stereotypical bladder
neuron clusters

After identifying different recurring cell types by both
global clustering in correlation-feature plane and by
local activity clustering within trials, we demonstrated
the functional significance of these groups for pressure
encoding using information theory. In this last section
we want to apply these encoding insights to the design
of adapted decoding strategies to be used in next
generation closed-loop bioelectronic medicines for bladder
dysfunction.

Our information theoretic analysis showed that
averaging within fibre type and keeping distinct types
separate leads to a high information rate. A simple linear
decoder was therefore trained on both single fibres and
on the mean firing rates within fibre types or activity
clusters (see Table Al for their relationship). Fig. 6 and
Table 4 give an overview of the decoding error across
trials. The bars display the 5-fold cross validated error
within-trial when both training and testing on intact
fibre populations. It can be seen that decoding from
average firing rates (both fibre type mean and activity
cluster mean) performs mildly (on average 9% and 12%
higher error for fibre type and activity cluster means
respectively) but significantly worse (p-values 0.00017 for
fibre type and 0.0004 for activity cluster means in a paired
t-test), than decoding from all single cell responses and
that decoding from fibre type mean firing rates tends to
be marginally more successful than from activity cluster
means. We test the robustness of our proposed decoding
scheme by removing 20% of the cells after training and
testing on a corrupt fibre set from which mean-responses
were re-calculated. As can be seen in Fig. 6, the decoding
error from single cells often became much larger after
cell loss than when decoding from average responses,
especially in cases like experiment 4 where many cells of
each type allow for reliable cluster mean responses despite
cell loss. The values in Table 4 confirm that the decoding
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error after cell loss from single cells was 18% higher than
from subpopulation averages (p-values 0.00016 for fibre
type and 0.00011 for activity cluster means): redundancy
leads to reliability.

signal type no cell loss 20% cell loss

0.121 £ 0.034 0.176 £ 0.049
0.132 £ 0.030  0.149 + 0.036
0.136 £ 0.035 0.149 £ 0.037

single fibres
fibre type mean

activity cluster mean

Table 4: Decoding from pooled fibre subpopula-
tions is more robust. Values are mean and standard
deviation of NRMSE across trials.

Clustering can have advantages for decoding beyond
an increased robustness against cell loss. Grouping
fibres periodically by their recorded activities may allow
for a continuous identification of relevant cells without
knowledge of the pressure signal. Similarly firing fibre
groups are most likely driven by the same stimulus and
if a subset of these similar fibres is already known to
be bladder units, clustering offers an unsupervised way
of identifying new relevant fibres on-line in the face of
varying recording conditions caused by e.g., electrode
migration.

4. Discussion

We have shown that stereotypical groups of bladder neu-
ron types — slow tonic, phasic and derivative — imple-
ment a partly redundant, partly complementary encod-
ing scheme for bladder pressure that achieves a reliable
and effective information transmission. We clustered fi-
bres globally across all trials from their correlations to
differently filtered variants of the pressure signal and re-
produced these types through unsupervised activity clus-
tering within trials. In both real data and surrogate cell
populations, we quantified the benefit of within-type re-
dundancy (reliability, enhanced signal-to-noise ratio) and
between-type tuning differences (maximization of trans-
mitted information by complementary channels) using in-
formation theory. Building on these encoding insights,
we proposed an informed decoding scheme that builds
on cluster (feature-based or activity-based) mean firing
rates and thereby offers increased robustness at a moder-
ate (~10%) accuracy reduction.

One limitation of our study was the sparse sampling
of fibres. Using microelectrode arrays, we could record
from 6 to 125 cells in each trial — of which at most
23 were identified as bladder-units. Given the high
number of cell bodies in the S1 and S2 DRG of cats
(~12000 [29]) and bladder-units (~1000 [30, 28, 31,
32]), we thus recorded from at most 2% of the overall
bladder-unit population. This sparseness may well be
the cause of the observed variability in the distribution
of cell types across trials shown in Table Al and
leaves uncertain whether cell types exist in consistent

ratios across animals. The study is further limited by
the pressure signal that drove the bladder neurons we
were analyzing. Firstly, the pressure did not contain
much high frequency power, keeping us from conducting
a sophisticated frequency-analysis or bladder neuron
responsiveness mapping such as spike triggered averaging.
Secondly, the non-stationary nature of the pressure signal
and the limited reproducibility of the pressure signal
across trials prevented a principled error-analysis of our
information theoretic measures (e.g., by bootstrapping).
Lastly, the high-frequency events (contractions) usually
took place at high stationary pressure. Therefore, the
firing rates of fibres responding to high-frequency events
(phasic and derivative) were usually high in correlation to
the slow signal components simply by correlation of slow
and fast stimulus components. This made it difficult to
distinguish ‘purely phasic’ and mixed phasic and tonic
bladder neurons. It has to be noted at this point that our
clustering into three types of fibres is, to a certain extent,
an oversimplification. As can be seen in Fig. 1C, tonic and
phasic fibres do overlap in the correlation-feature space
and this is at least partly due to a mixed bladder neuron
tuning. It remains to be seen whether this overlap is an
imprecision of the bladder neuron expression that induces
noise or is in fact a feature of the transmission strategy
that our analysis does not acknowledge. A limitation
of the decoding scheme we proposed is its dependency
on online spike sorting which in itself complicates the
interface considerably. We did not observe any clustering
of the cell types within the electrode arrays across
experiments. Therefore, an unsorted ‘electrode-activity’
will not provide a clean separation of fibre types.

In addition to reliability and the benefits of averaging
over imperfect sensors, other reasons for implementing
multiple similar fibres are conceivable. If we look at
the bladder and its feedback loop into the spinal cord
as a control system, we observe that no quick control
is required. The fastest events, single contractions, take
place over the course of seconds to tens of seconds. The
peripheral nervous system can thus afford a considerable
lag between bladder pressure and the response by its
higher control centers in the spinal cord an higher neural
levels and can implement feedback by energetically cheap
thin, slowly conducting fibres as it is observed [21, 33,
34, 35]. These thin fibres, however, do not fire at high
frequencies, imposing a limit on the information rate per
fibre [66]. The observed high number of thin similar
fibres can therefore be viewed as the result of an energetic
optimization of the information channel that ensures a
sufficient information rate at an affordable lag [67].

The different groups of bladder neurons we observed
can be understood as reporting the two main components
of the physiological pressure signal: the bladder (1) fills
steadily at a very low rate of pressure change and (2)
contracts ‘quickly’. It is not surprising that sensors for
those two main signal components exist in slow fibres
on the one hand and fast phasic and derivative fibres
on the other hand. This mapping of bladder neuron
responsiveness to signal components has been reported in
many studies on nervous sensory processing, for instance
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Figure 6: Decoding from pooled fibre types and activity clusters is robust against cell loss. Bars show
the mean decoding test error (normalized by the maximum pressure) of a linear decoder in a 5-fold cross validation
(CV) when training and testing on the complete fibre sets. Error bars and horizontal lines indicate the standard
deviation and mean test error (again mean across 5-fold CV) across 10 repetitions of removing 20% of the cells
between training and testing.

as receptive fields in the visual and auditory cortex
[68, 69].

Finally, many organ systems use an afferent
encoding scheme based on stereotypical bladder neuron
subpopulations, similar to our findings in the bladder.
Phasic and tonic fibres have been reported in the
colon [70, 71, 72], gall bladder [73], the lung (slowly-
and rapidly-adapting sensors) [74, 75, 76, 77|, similarly
separate subpopulations were observed in muscle spindles
[78, 79]. We hypothesize that the same benefits may
have led the evolution of all these sensory populations
towards an identical encoding scheme: complementary
channels, each reliable due to within-type redundancy,
independently encode different (quick and slow) aspects
of the quantity of interest and together achieve a high
information rate.
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Appendix A. Detailed analysis of the relation
between activity clusters and cell types

In addition to the summary of the given in Table 3,
Table Al gives a more detailed overview of the
relationship between activity clusters and cell types
(feature clusters) in all trials.
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p d|ls p d|s p d|s p p d|s p p d| s p d|s p d|s p p dls p
act. cluster 1 1 6 3 3 2 2 2 11 1 1 1 3
act. cluster 2 4 2 1 2 2 10 5 9 14 3 8 6 1
act. cluster 3 1 1
sum 4 1 2 7 5 3 3 10 7 11 16 14 9 1 6|1 1 1 3
Exp 7 Exp 8
T 14 T 16 T 18 T 19 T 49 T 50 T 52 T 67 T 68 T 72
p dis p d|s p d|s p p d|s p p d| s p d|s p d|s p
act. cluster 1 2 2 5 4 5 1 1 1 4 1 1
act. cluster 2 1 1 1 1 1 2 3 6
act. cluster 3 1 1
sum 1 2 3 5 4 5 2 2 1 2 1|6 3 7 1

Table Al: Unsupervised clustering by activity often yields near-homogeneous groups of one bladder neuron type. Each trial is shown separately and
the three columns per trial correspond to the three fibre types slow tonic (s), phasic (p), and derivative (d). In each row, fibres of the three activity clusters are
counted. Ideally, each activity cluster would only contain one of the three fibre types. Numbers are fibre counts.
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In some trials with multiple cell types, activity clusters 0.4
were inhomogeneous: E2T9, E3T100, E8T72. Other slow tonic 03 §
diverse trials were more successful, with each cluster ’ g
capturing one specific cell type: E1T57, E2T11, E4T28, phasic 02 B
E4T29, E8T67. =
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Appendix B. Tables of mutual information and derivative g
redundancy © © e 00 =
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The following tables give the numerical values for mutual 6\0*$ < 6?}\

information and fractional redundancy shown in Fig. 4A,
B, and D.

slow tonic phasic derivative

s 0.346 £ 0.152 0.268 £ 0.184 0.242 £ 0.149
p 0.268 £0.184 0.426 £ 0.118 0.243 £ 0.133
d 0.242 £ 0.149 0.243 £ 0.133 0.040 £ 0.057

Table B1l: Figure 4A. Fractional redundancy between
within-type mean firing rates; mean across trials. All
values in bits.
slow tonic phasic derivative
s 0.886 + 0.305 1.374 £ 0.375 1.281 4+ 0.362
p 1374 £0.375 0.865 + 0.410 1.255 4+ 0.410
d 1.281 £ 0.362 1.255 £ 0.410 0.709 £ 0.267

Table B2: Figure 4B. Joint mutual information between
within-type mean firing rates; mean across trials. All
values in bits.

slow tonic phasic derivative

0.137 £ 0.177  0.209 £ 0.179
0.214 £ 0.145 0.199 +£ 0.147
0.199 £ 0.147  0.036 &+ 0.039

s 0.182 + 0.210
p  0.137 £ 0.177
d 0.209 + 0.179

Table B3: Figure 4D. Joint mutual information between
single fibre firing rates, mean over all fibres of all trials
for each type after MI calculation. All values in bits.

Appendix C. Redundancy towards fast pressure
components

Fractional redundancy of two firing rates only evaluates to
meaningful values when computed in relation to a relevant
signal with which at least one firing rate has a high mutual
information. We therefore obtain very small fractional
redundancies in relation to the raw pressure signal for
very quick phasic and derivative fibres. Here, we repeat
the redundancy computation in relation to only the quick
components of the pressure.

Figure C1: Derivative fibres only show their within-
type redundancy with respect to the derivative of
pressure. Real data. Fractional redundancy of fibre
type average firing rates and the derivative of pressure.
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Figure C2: Fast fibres only show their mutual

redundancy with respect to the high-pass filtered
pressure. Surrogate data. Fractional redundancy of
simulated firing rates and the high-pass filtered pressure
above 0.001 Hz.
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