

1 **PUF family proteins FBF-1 and FBF-2 regulate germline stem and progenitor cell
2 proliferation and differentiation in *C. elegans***

3

4 Xiaobo Wang, Mary Ellenbecker, Benjamin Hickey, Nicholas J. Day

5 and Ekaterina Voronina*

6 Division of Biological Sciences, University of Montana, Missoula, MT, USA

7

8

9

10

11

12

13

14 *Correspondence:

15 Ekaterina Voronina

16 ekaterina.voronina@umontana.edu

17 Phone: 406-243-4254

18 Fax: 406-243-4184

19

20 **Keywords:** germline, *C. elegans*, PUF, CCR4-NOT, stem cells

21

22

23 **ABSTRACT**

24 Stem cells support tissue maintenance, but the mechanisms that balance the rate of stem cell
25 self-renewal with differentiation at a population level remain uncharacterized. Through
26 investigating the regulation of germline stem cells by two PUF family RNA-binding proteins FBF-
27 1 and FBF-2 in *C. elegans*, we find that FBF-1 restricts differentiation, while FBF-2 promotes
28 both proliferation and differentiation. FBFs act on a shared set of target mRNAs; however, FBF-
29 1 destabilizes target transcripts, while FBF-2 promotes their accumulation. These regulatory
30 differences result in complementary effects of FBFs on stem cells. We identify a mitotic cyclin as
31 one of the targets affecting stem cell homeostasis. FBF-1-mediated translational control
32 requires the activity of CCR4-NOT deadenylase. Distinct abilities of FBFs to cooperate with
33 CCR4-NOT depend on protein sequences outside of the conserved PUF family RNA-binding
34 domain. We propose that the combination of FBF activities regulates the dynamics of germline
35 stem cell proliferation and differentiation.

36

37 **INTRODUCTION**

38 Adult tissue maintenance relies on the activity of stem cells that self-renew and produce
39 differentiating progeny in step with tissue demands (Morrison and Kimble 2006). It is essential
40 that self-renewal be balanced with differentiation to preserve the size of the stem cell pool
41 over time. One simple model achieving this balance is an asymmetric division that always
42 produces a single stem cell daughter and a daughter destined to differentiate (Chen and others
43 2016). Alternatively, tissue homeostasis can be controlled at a population level (Simons and
44 Clevers 2011), where some stem cells are lost through differentiation while others proliferate,
45 with both outcomes occurring with the same frequency. Such population-level control of stem
46 cell activity is observed in the *C. elegans* germline (Kimble and Crittenden 2007). However, the
47 mechanisms of population-level balance of stem cell proliferation and differentiation in the
48 adult tissues are largely unclear.

49

50 The *C. elegans* hermaphrodite germline is a robust system to explore the mechanisms
51 coordinating stem cell proliferation and differentiation. It is maintained by a stem cell niche
52 that supports about 200-250 mitotically-dividing stem and progenitor cells at the distal end of
53 the gonad (collectively called SPCs, **Figure 1A, Cii**). A single somatic distal tip cell serves as a
54 stem cell niche and activates the GLP-1/Notch signaling necessary for SPC pool maintenance
55 (Austin and Kimble 1987), which in turn supports germline development (Hansen and Schedl
56 2013). As germline stem cells move proximally away from the niche, they differentiate by
57 entering meiotic prophase and eventually generate gametes near the proximal gonad end.
58 Mitotic divisions of SPCs are not oriented and there doesn't appear to be a correlation between

59 the position of cell divisions uniformly distributed over the SPC zone and the position of cells
60 committing to differentiation at the proximal end of the zone (Crittenden and others 2006).

61

62 Analysis of *C. elegans* germline stem cell maintenance identified a number of genes affecting
63 SPC self-renewal and differentiation (Hansen and Schedl 2013). Genes essential for self-renewal
64 include GLP-1/Notch and two highly similar Pumilio and FBF (PUF) family RNA-binding proteins
65 called FBF-1 and FBF-2 (Austin and Kimble 1987; Crittenden and others 2002; Zhang and others
66 1997). Genetic studies of stem cell maintenance led to a model where a balance of mitosis- and
67 meiosis-promoting activities maintains tissue homeostasis (Hansen and Schedl 2013), but the
68 regulatory mechanism matching differentiation demands with proliferative SPC activity
69 remained elusive.

70

71 Importantly, SPC cell cycle is distinct from that of most somatic stem cells. One characteristic
72 feature of *C. elegans* germline SPC cell cycle is a very short G1 phase (Fox and others 2011;
73 Furuta and others 2018), reminiscent of the short G1 phase observed in embryonic stem cells
74 (ESCs, (Becker and others 2006; Karetta and others 2015; White and Dalton 2005). Mouse and
75 human ESCs maintain robust proliferation supported by cell cycle with a short G1 phase while
76 the length of S and G2 phases is similar to that observed in differentiated mouse somatic cells
77 (Becker and others 2006; Chao and others 2019; Karetta and others 2015; Stead and others
78 2002). Despite the abbreviated G1 phase, ESCs maintain S and G2 checkpoints (Chuykin and
79 others 2008; Stead and others 2002; White and Dalton 2005). Similarly, *C. elegans* SPCs retain
80 G2 checkpoints despite the shortened G1 phase (Garcia-Muse and Boulton 2005; Seidel and

81 Kimble 2015). This may be due to a constant proliferative demand that both SPCs and ESCs are
82 subject to. By contrast, this type of modified cell cycle is not observed in the adult stem cell
83 populations that support regenerative response upon injury, such as adult mammalian bulge
84 stem cells (hair follicle stem cells; (Cotsarelis and others 1990) or satellite cells (muscle stem
85 cells; (Schultz 1974; 1985; Snow 1977) that remain in G0 or quiescent phase for the most of the
86 adult life and only reenter cell cycle upon injury. Similarly, adult epidermal stem cells
87 maintaining tissue homeostasis regulate their cell cycle by controlling G1/S transition (Mesa
88 and others 2018).

89

90 Unlike somatic cells' G1 phase that is triggered and marked by increased amounts of cyclins E
91 and D (Aleem and others 2005; Guevara and others 1999), the germ cells characterized by a
92 shortened G1 phase maintain a constitutive robust expression of G1/S regulators Cyclin E and
93 CDK2 (Fox and others 2011; Furuta and others 2018; White and Dalton 2005). Despite
94 continuous proliferation of *C. elegans* SPCs, the rate of SPC proliferation changes during
95 development and in different mutant backgrounds (Michaelson and others 2010; Roy and
96 others 2016) and a mechanism for changing the rate of proliferation to meet the demands of
97 germ cell production while maintaining cell cycle with an abbreviated G1 phase remains
98 unknown. Here, we report the mechanism through which PUF family RNA binding proteins FBF-
99 1 and FBF-2 balance SPC proliferative activity with the rate of meiotic entry.

100

101 PUF proteins are expressed in germ cells of many animals and are conserved regulators of stem
102 cells (Salvetti and others 2005; Wickens and others 2002). *C. elegans* PUF proteins expressed in

103 germline SPCs, FBF-1 and FBF-2, share the majority of their target mRNAs (Porter and others
104 2019; Prasad and others 2016) and are redundantly required for SPC maintenance (Zhang et al.,
105 1997; Crittenden et al., 2002). Despite 89% identity between FBF-1 and FBF-2 protein
106 sequences, several reports suggest that FBF-1 and FBF-2 localize to distinct cytoplasmic RNA
107 granules and have unique effects on the germline SPC pool (Lamont and others 2004; Voronina
108 and others 2012). Specifically, FBF-1 and FBF-2 each support distinct numbers of SPCs (Lamont
109 and others 2004). Furthermore, FBF-1 inhibits accumulation of target mRNAs in SPCs, while
110 FBF-2 primarily represses translation of the target mRNAs (Voronina and others 2012). Some
111 unique aspects of FBF-1 and FBF-2 function might be explained by their association with distinct
112 protein cofactors, as we previously found that a small protein DLC-1 is a cofactor specific to
113 FBF-2 that promotes FBF-2 localization and function (Wang and others 2016). Despite the fact
114 that several repressive mechanisms have been documented for PUF family proteins (Quenault
115 and others 2011), it is relatively understudied how the differences between PUF homologs are
116 specified. Here we sought to take advantage of the distinct SPC numbers maintained by
117 individual FBF proteins to understand how they regulate the dynamics of SPCs proliferation and
118 differentiation and probe the functional differences between FBFs.

119
120 Elaborating on the general contribution of PUF proteins to stem cell maintenance, we describe
121 here that FBF-1 and FBF-2 have opposing effects on the rate of germline SPCs proliferation and
122 the rate of meiotic entry. We discovered that FBFs regulate core cell cycle machinery transcripts
123 along with transcripts required for differentiation to coordinately change the steady-state
124 amounts of both transcript classes. We show that FBF-1 decreases steady-state levels of target

125 mRNAs and requires CCR4-NOT deadenylation machinery. By contrast, FBF-2 functions
126 independently of CCR4-NOT and promotes accumulation of target mRNAs. These distinct
127 functions of FBFs are determined by the protein regions outside of the conserved PUF
128 homology domain. The dual regulation of SPC self-renewal and differentiation by FBFs
129 effectively allows the stem cells to match cell division rate with the demand for meiotic cell
130 output.

131

132 RESULTS

133 **FBF-1 and FBF-2 differentially modulate proliferation and meiotic entry of *C. elegans* germline 134 SPCs**

135 During tissue maintenance, stem cells adjust their proliferative activity and differentiation rate
136 to meet the physiological tissue demands through diverse regulatory mechanisms, including
137 RNA-binding protein mediated post-transcriptional regulation. We hypothesized that two
138 paralogous RNA-binding proteins FBF-1 and FBF-2 differentially regulate germline stem cell
139 proliferation and differentiation in *C. elegans*, resulting in distinct effects on the size of stem
140 and progenitor cell (SPC) zone. We first determined how the SPC zone size was affected by loss-
141 of-function mutations of each *fbf*. SPCs were marked by staining for a nucleoplasmic marker
142 REC-8 (**Figure 1A and C**) (Hansen and others 2004), and the SPC zone size was measured by
143 counting the number of cell rows positive for REC-8 staining in each germline. Consistent with a
144 previous report (Lamont and others 2004), we observed that the SPC zone of *fbf-1(ok91, loss-*
145 *of-function mutation, lf)* (~15 germ cell diameters, gcd; **Figure 1Ci**) is smaller than that of the

146 wild type (~20 gcd, **Figure 1Cii**), whereas the SPC zone of *fbf-2(q738, loss-of-function mutation,*
147 *lf)* (~25 gcd, **Figure 1Ciii**) is larger than that of the wild type (**Figures 1B and C**). The differences
148 in SPC zone size between *fbf* single mutants and the wild type are consistently observed in
149 animals from the late L4 to the second day of adulthood (**Figure 1--figure supplement 1A**).

150 To test whether the differences in germline SPC zone sizes between *fbf* mutants and the wild
151 type result from changes in cell proliferation, we compared cell cycle parameters in each
152 genetic background. We started with measuring the M-phase index (the percentage of SPC
153 zone cells in M phase) following immunostaining for the SPC marker REC-8 and the M-phase
154 marker phospho-histone H3 (pH3, **Figure 1C**). We found that the mitotic index of *fbf-1(lf)* was
155 significantly higher than that of the wild type (by 54%, **Figure 1D**). By contrast, the mitotic index
156 of *fbf-2(lf)* was significantly lower than that of the wild type (by 42%; **Figure 1D**). These results
157 suggested that loss of FBF-1 might result in greater SPC proliferation, while loss of FBF-2 might
158 reduce SPC proliferation. Since *C. elegans* stem cells have an abbreviated G1 and an extended
159 G2 phases (Fox and others 2011), we tested whether the G2-phase duration is affected
160 differentially by loss of function mutation of each *fbf*. Using phospho-histone H3
161 immunostaining and 5-ethynyl-2'-deoxyuridine (EdU) pulse we estimated a median G2 length
162 by determining when 50% of pH3 positive cells become EdU-positive (**Figure 1—figure**
163 **supplement 1B**). We found that the median G2 length of *fbf-2(lf)* is significantly greater than
164 that of the wild type, suggesting that loss of FBF-2 results in slower progression through the G2-
165 phase of the cell cycle (by 25%; **Figure 1E**). By contrast, the median G2 length of *fbf-1(lf)* is not
166 significantly different from that of the wild type (**Figure 1E**). We conclude that FBF-2 promotes
167 SPC proliferation by facilitating the G2-phase progression.

168 Despite an increase in mitotic index of *fbf-1(lf)*, its SPC zone is smaller than that of the wild
169 type, suggesting a possibility that *fbf-1(lf)* might result in faster meiotic entry. Conversely,
170 compared to the wild type, *fbf-2(lf)* maintains a relatively larger SPC population but with less
171 proliferation, suggesting that the rate of meiotic entry in *fbf-2(lf)* might be slower than in the
172 wild type. To test these possibilities, we determined the rate of meiotic entry in each genetic
173 background. Animals were continuously EdU labeled and stained for EdU and REC-8 at three
174 time points. The number of germ cells negative for REC-8 but positive for EdU were scored at
175 each time point and the rate of meiotic entry was estimated from the slope of plotted
176 regression line as in **Figure 1—figure supplement 1C**. We found that *fbf-1(lf)* results in a
177 significantly increased rate of meiotic entry compared to the wild type (by 31%; **Figure 1F**),
178 whereas *fbf-2(lf)* results in a significantly reduced rate of meiotic entry (by 18%; **Figure 1F**). We
179 conclude that FBF-2 stimulates meiotic entry while FBF-1 inhibits meiotic entry.

180 In summary, mutations in *fbf-1* and *fbf-2* differentially influence both SPC proliferative activity
181 and meiotic entry rate, suggesting FBF proteins have distinct effects on SPC proliferation and
182 differentiation. FBF-1 promotes a more quiescent stem cell state characterized by a slower rate
183 of meiotic entry, while FBF-2 promotes a more activated stem cell state characterized by faster
184 rates of both cell cycle and meiotic entry.

185

186 **FBF-1 and FBF-2 differentially regulate mRNA abundance of target genes controlling**
187 **proliferation and differentiation**

188 FBFs are two redundant translational repressors in *C. elegans* germline SPCs. Although FBF-1
189 and FBF-2 share the majority of target mRNAs and bind to the same motif in the 3'UTRs (Porter
190 and others 2019; Prasad and others 2016), they have different effects on their targets: FBF-1
191 promotes target mRNA clearance in the stem cell region, whereas FBF-2 sequesters target
192 mRNAs (Voronina and others 2012). We hypothesized that the FBF-mediated effects on
193 germline SPC proliferation and differentiation might be explained by their differential
194 regulation of target mRNAs associated with proliferation and differentiation in germline SPCs.
195 To test this hypothesis, we compared the steady-state mRNA abundance of selected FBF targets
196 among the wild type, *fbf-1(lf)* and *fbf-2(lf)* genetic backgrounds by qPCR (**Figure 1G**). RNA
197 samples were extracted from animals of *glp-1 (gain-of-function, gf)* mutant background, which
198 produce germlines with only mitotic cells when grown at restrictive temperature, thus allowing
199 us to focus on the changes in mRNA abundance in the mitotic cell population. We determined
200 steady-state levels of meiotic entry associated transcripts, *him-3*, *htp-1*, and *htp-2* (previously
201 described FBF targets (Merritt and Seydoux 2010)) and cell cycle regulators, *cyc-1*, *cyc-2.1*, *cyc-2.2* and *cyc-3* (FBF-bound transcripts (Kershner and Kimble 2010; Porter and others 2019;
202 Prasad and others 2016)), as well as a control not regulated by FBFs, tubulin (*tbb-2*). All
203 transcript levels were normalized to a housekeeping gene actin (*act-1*). We found that the
204 mRNA levels of all tested FBF targets, except for *cyc-1*, are increased in *fbf-1(lf)* relative to the
205 wild type and all are decreased in *fbf-2(lf)* relative to the wild type (**Figure 1G**). Linear trend
206 analysis showed that the decrease in mRNA abundance of FBF targets from *fbf-1(lf)* to wild type
207 to *fbf-2(lf)* is statistically significant ($P<0.01$); and the mRNA abundance of *htp-2* and all cyclin B
208 genes among all three genetic backgrounds are significantly different by ANOVA analysis

210 (P<0.01). The most dramatic change (5-fold difference) in mRNA abundance between *fbf-2(lf)*
211 and *fbf-1(lf)* genetic backgrounds was observed for *cyb-2.1* mRNA. By contrast, the mRNA
212 abundance of *tbb-2* control is not significantly different among the three analyzed genetic
213 backgrounds (**Figure 1G**).

214 These findings suggest that FBF-1 might destabilize the target mRNAs controlling germline SPC
215 proliferation and differentiation while FBF-2 promotes accumulation of the same target mRNAs.
216 The distinct effects of the FBF homologs on target mRNAs may explain FBFs' regulation of
217 germline SPC proliferation and differentiation. For example, slower rates of cell cycle and
218 meiotic entry in *fbf-2(lf)* genetic background might result from FBF-1-mediated destabilization
219 of target mRNAs required for cell proliferation and differentiation. Next, we tested whether
220 disrupting FBF-mediated regulation of a target transcript controlling cell cycle in *fbf-2(lf)* would
221 influence the size of germline SPC zone.

222

223 **Repression of cyclin B by FBF limits accumulation of germline SPCs.**

224 Cyclin B/Cdk1 kinase, also known as M-phase promoting factor, triggers G2/M transition in
225 most eukaryotes (Lindqvist and others 2009). Four cyclin B family genes provide overlapping as
226 well as specific mitotic functions in *C. elegans* (van der Voet and others 2009). We hypothesized
227 that the slower G2-phase and lower M-phase index of *fbf-2(lf)* SPCs results from FBF-1-
228 mediated translational repression and reduced steady-state levels of four cyclin B family
229 transcripts. We addressed this hypothesis in two ways. First, we tested whether mutation of
230 FBF binding elements (FBEs) in the 3'UTR of *cyb-2.1* mRNA would result in translational

231 derepression of *cyb-2.1*. Second, we assessed whether derepression of *cyb-2.1* in *fbf-2(lf)* would
232 lead to accumulation of more SPCs due to greater proliferation but unchanged meiotic entry
233 rate.

234 FBFs repress their target mRNAs by binding to the FBF-binding elements (FBEs; UGUxxxAU) in
235 the 3'UTRs (Bernstein and others 2005; Crittenden and others 2002; Merritt and Seydoux
236 2010). Four mRNAs encoding Cyclin B family members co-purify with FBF proteins and contain
237 predicted FBEs in their 3'UTRs (Porter and others 2019; Prasad and others 2016). Since *cyb-2.1*
238 contains more canonical FBE sites than the other cyclin B transcripts and the mRNA abundance
239 of *cyb-2.1* varies most dramatically between *fbf* mutants and the wild type (**Figure 1G**), we
240 chose to analyze the translational regulation of *cyb-2.1*. If FBFs repress translation of *cyb-2.1* by
241 binding to FBEs, mutation of FBEs would cause derepression of CYB-2.1 protein. To test this
242 prediction, we established a transgenic animal *3xflag::cyb-2.1(fbm)*, expressing 3xFLAG::CYB-2.1
243 under the control of 3'UTR with mutated FBEs (ACAxxxAU); as a control, a transgenic animal
244 expressing *3xflag::cyb-2.1(wt)* with wild type FBEs was also established (**Figure 2A**). By
245 immunoblotting, we found that the expression of 3xFLAG::CYB-2.1 protein was increased in
246 *3xflag::cyb-2.1(fbm)* animals compared to *3xflag::cyb-2.1(wt)*, suggesting that mutation of FBEs
247 caused translational derepression (**Figure 2B**). The protein levels of 3xFLAG::CYB-2.1wt might
248 be too low to be detectable by western blot.

249 A larger SPC zone size in *fbf-2(lf)* is associated with slower SPC proliferation in conjunction with
250 a slower SPC meiotic entry rate. We hypothesized that the slower SPC proliferation is caused by
251 FBF-1-mediated destabilization and repression of cyclin B-family mRNAs. If any cyclin B-family
252 gene can promote SPC proliferation, disrupting translational repression of a single cyclin B-

253 family transcript in *fbf-2(lf)* would facilitate SPC proliferation, resulting in accumulation of SPCs
254 and an increase of SPC zone size when SPC meiotic entry rate is unchanged. To test this
255 hypothesis, we measured the SPC zone size after crossing the *3xflag::cyb-2.1fbm* and
256 *3xflag::cyb-2.1wt* transgenes into *fbf-2(lf)* genetic background. We found that the SPC zone of
257 *fbf-2(lf); 3xflag::cyb-2.1fbm* (~32 gcd, **Figure 2Ciii**) is significantly larger than that of the *fbf-2(lf)*
258 (~26 gcd, **Figure 2Ci, D**, $P < 0.0001$). By contrast, there is no significant difference in the SPC
259 zone size between the *fbf-2(lf); 3xflag::cyb-2.1wt* and *fbf-2(lf)* (**Figure 2Cii and D**). To test
260 whether the expansion of SPC zone in *fbf-2(lf); 3xflag::cyb-2.1fbm* results from overexpression
261 of *cyb-2.1*, we measured the SPC zone size following knockdown of *cyb-2.1* by RNAi. We found
262 that the SPC zone of *fbf-2(lf); 3xflag::cyb-2.1fbm* after *cyb-2.1(RNAi)* became significantly
263 smaller (~ 26 gcd) compared to the control RNAi (~31 gcd; **Figure 2E**). Depletion of CYB-2.1 was
264 confirmed by immunoblot for FLAG::CYB-2.1 after RNAi of *cyb-2.1* compared to the control
265 (**Figure 2F**).

266 We conclude that the levels of B-type cyclins limit SPC proliferation rate in *fbf-2(lf)* and
267 disruption of FBF-1-mediated repression of a single cyclin B gene is sufficient to affect the size
268 of germline SPC zone. We next focus on investigating the mechanism of FBF-1-mediated mRNA
269 regulation.

270

271 **FBF-1 function requires CCR4-NOT deadenylase complex.**

272 One mechanism of PUF-dependent destabilization of target mRNAs is through recruitment of
273 CCR4-NOT deadenylase that shortens poly(A) tails of the targets (Quenault and others 2011).

274 CCR4-NOT deadenylase is a complex that includes three core subunits: two catalytic subunits
275 CCR-4/CNOT6/6L and CCF-1/CNOT-7/8 and one scaffold subunit LET-711/CNOT1, which are
276 highly conserved in *C. elegans* and humans (**Figure 3A**; (Nousch and others 2013). Although
277 multiple PUF family proteins, including FBF homologs in *C. elegans*, interact with a catalytic
278 subunit of CCR4-NOT *in vitro*, the contribution of CCR4-NOT to PUF-mediated repression *in vivo*
279 is still controversial (Suh and others 2009; Weidmann and others 2014). We hypothesized that
280 the enlarged germline SPC zone in *fbf-2(lf)* mutant results from FBF-1-mediated destabilization
281 and translational repression of target mRNAs achieved through the activity of CCR4-NOT
282 deadenylase. If so, knockdown of CCR4-NOT in *fbf-2(lf)* genetic background would lead to
283 derepression of target mRNAs in SPCs and a decrease of SPC zone size.

284 First, we measured SPC zone size after RNAi-mediated knockdown of core CCR4-NOT subunits,
285 and we found that CCR4-NOT RNAi dramatically shortened the SPC zone in *fbf-2(lf)* compared
286 to the control RNAi ($P < 0.01$; **Figure 3B**). By contrast, the sizes of SPC zones in the wild type and
287 *fbf-1(lf)* animals were not significantly affected by CCR4-NOT knockdown (**Figure 3B**). These
288 findings suggest that CCR4-NOT is required for FBF-1-mediated regulation of germline SPC zone
289 size, but does not significantly contribute to FBF-2 function.

290 Next, we tested whether CCR4-NOT knockdown disrupts FBF-1-mediated translational
291 repression in SPCs. One relevant FBF target mRNA is *htp-2*, a HORMA domain meiotic protein
292 (Merritt and Seydoux 2010). Translational regulation of a transgenic reporter encoding
293 GFP::Histone H2B fusion under the control of *htp-2* 3'UTR recapitulates FBF-mediated
294 repression in germline SPCs (Merritt and Seydoux 2010). We performed CCR4-NOT RNAi in the
295 *rrf-1(lf)* background to preferentially direct the RNAi effects to the germline and avoid any

296 defects in the somatic cells (Kumsta and Hansen 2012; Sijen and others 2001) and observed
297 derepression of the reporter in SPCs of 63-69% germlines of *rrf-1(lf); fbf-2(lf)* genetic
298 background (**Figure 3C and D**). By contrast, derepression of the reporter was observed only in
299 3-5% of *rrf-1(lf)* and *rrf-1(lf); fbf-1(lf)* genetic backgrounds (**Figure 3D; Figure 3—figure**
300 **supplement 1A**). These data suggest that the CCR4-NOT deadenylase complex is necessary for
301 FBF-1-mediated translational repression of targets in germline SPCs, but is dispensable for FBF-
302 2 regulatory function. In addition, we observed significantly increased sterility upon CCR4-NOT
303 knockdown in *rrf-1(lf); fbf-2(lf)* compared to the *rrf-1(lf)* and *rrf-1(lf); fbf-1(lf)* (**Figure 3—figure**
304 **supplement 1B**).

305 CCR4-NOT knockdown might disrupt FBF-1 regulatory function or FBF-1 protein expression and
306 localization. To distinguish between these possibilities, we determined the abundance of
307 endogenous FBF-1 after *ccf-1(RNAi)* by immunoblotting using tubulin as a loading control. We
308 found that FBF-1 protein abundance is not decreased after CCF-1 knockdown compared to the
309 control (**Figure 3—figure supplement 1C and D**). Immunostaining for the endogenous FBF-1
310 showed that in control germlines FBF-1 localized in foci adjacent to perinuclear P granules
311 (**Figure 3—figure supplement 1E**) as previously reported (Voronina and others 2012). Upon
312 CCF-1 knockdown, FBF-1 foci were still observed next to P granules (**Figure 3—figure**
313 **supplement 1F**). Therefore, we conclude that CCR4-NOT is not required for FBF-1 expression
314 and localization, and CCR4-NOT knockdown specifically disrupts FBF-1 function.

315 In summary, we conclude that CCR4-NOT is required for FBF-1, but not FBF-2-mediated
316 regulation of target mRNA and germline SPC zone size. We further predicted that FBF-1
317 localizes together with CCR4-NOT to the same RNA-protein complex in SPCs.

318

319 **FBF-1 colocalizes with CCR4-NOT in germline SPCs**

320 Using co-immunostaining of endogenous FBF-1 or GFP::FBF-1 and 3xFLAG::CCF-1 followed by

321 Pearson's correlation coefficient analysis based on Costes' automatic threshold (Costes and

322 others 2004), we found that both endogenous FBF-1 and GFP::FBF-1 foci colocalize with

323 3xFLAG::CCF-1 foci in SPC cytoplasm (**Figure 4A and C; Figure 4—figure supplement 1A and B**).

324 By contrast, GFP::FBF-2 and 3xFLAG::CCF-1 do not colocalize (**Figure 4B and C**). As an

325 alternative metric of colocalization, we used proximity ligation assay (PLA) that can detect

326 protein-protein interactions *in situ* at the distances <40 nm (Fredriksson and others 2002). PLA

327 was performed in *3xflag::ccf-1; gfp::fbf-1*, *3xflag::ccf-1; gfp::fbf-2*, and *3xflag::ccf-1; gfp* animals

328 using the same antibodies and conditions for all three protein pairs. We observed significantly

329 more dense PLA signals in *3xflag::ccf-1; gfp::fbf-1* than in the control (**Figure 4D**; p<0.0001,

330 **Table 1**). By contrast, PLA foci density in mitotic germ cells of *3xflag::ccf-1; gfp::fbf-2* was not

331 different from the control (**Figure 4D; Table 1**), although the expression of GFP::FBFs or GFP

332 alone in mitotic germ cells appeared similar (**Figure 4—figure supplement 1C**). Together, these

333 data suggest that FBF-1, but not FBF-2, colocalizes with CCR4-NOT in SPCs, in agreement with

334 the dependence of FBF-1 function on CCR4-NOT.

335

336 **FBF-1 promotes deadenylation of its target mRNA**

337 Since a knockdown of CCR4-NOT deadenylase compromises FBF-1-mediated target repression,

338 we hypothesized that FBF-1 promotes deadenylation of target mRNAs. We investigated

339 whether the lower abundance of *cyb-2.1* mRNA in *fbf-2(lf)* correlated with a shorter poly(A) tail
340 length. Poly(A) tail (PAT)-PCR for *cyb-2.1* and control *tbb-2* were performed to determine the
341 poly(A) tail length using RNA samples extracted from *fbf-1(lf)*; *glp-1(gf)* and *fbf-2(lf)*; *glp-1(gf)*.
342 PAT-PCR assays revealed that the poly(A) tail length of the predominant *cyb-2.1* mRNA species
343 in *fbf-2(lf)* is shorter than that in *fbf-1(lf)* (**Figure 5A and C**). By contrast, the poly(A) tail lengths
344 of *tbb-2* tubulin mRNA in *fbf-2(lf)* and *fbf-1(lf)* are similar (**Figure 5B and D**). We conclude that
345 FBF-1 promotes deadenylation of its target mRNAs.

346

347 **Three variable regions outside of FBF-2 RNA binding domain are necessary to prevent**
348 **cooperation with CCR4-NOT**

349 Our findings suggest that FBF-1-mediated SPC maintenance depends on CCR4-NOT deadenylase
350 complex, while FBF-2 can function independent of CCR4-NOT. Since FBF proteins are very
351 similar in primary sequence except for the four variable regions (VRs, **Figure 6A**), we next
352 investigated whether the VRs were necessary for FBF-2-specific maintenance of germline SPCs
353 and prevented FBF-2 dependence on CCR4-NOT. We previously found that mutations/deletions
354 of the VRs outside of FBF-2 RNA-binding domain (VR1, 2 and 4, **Figure 6A**) produced GFP::FBF-
355 2(vrm) protein with a disrupted localization and compromised function (Wang and others
356 2016). We hypothesized that these three VRs might contribute to FBF-2-specific effects on SPC
357 zone size as well as prevent FBF-2 from cooperating with CCR4-NOT.

358 We first tested whether the three VRs are required for FBF-2-specific SPC zone size. To test this
359 hypothesis, SPC zone size was determined after crossing the GFP::FBF-2(vrm) transgene into *fbf*

360 double mutant background. We found that the SPC zone size maintained by GFP::FBF-2(vrm)
361 (**Figure 6Bv**) is significantly larger than that maintained by GFP::FBF-2(wt) (**Figure 6Biv**) and the
362 endogenous FBF-2 (**Figure 6Bii**) and significantly shorter than that maintained by FBF-1 ($P<0.01$,
363 **Figure 6C**), suggesting that the GFP::FBF-2(vrm) effect on SPC zone size is distinct from that of
364 FBF-2. To test whether the GFP::FBF-2(vrm) can rescue either of *fbf* single mutants, we
365 determined the SPC zone size after crossing GFP::FBF-2(vrm) into *fbf-1(lf)* and *fbf-2(lf)* genetic
366 backgrounds. As controls, the size of SPC zones were also measured after crossing the wild type
367 GFP::FBF-2(wt) and GFP::FBF-1(wt) transgenes into each *fbf* single mutant. As expected, the SPC
368 zone size of *fbf-2(lf); gfp::fbf-2(wt)* is significantly smaller than *fbf-2(lf)* ($P<0.01$) while the SPC
369 zone size of *fbf-2(lf); gfp::fbf-1(wt)* is similar to *fbf-2(lf)* (**Figure 6—figure supplement 1A**),
370 suggesting that GFP::FBF-2(wt), but not GFP::FBF-1(wt), rescues *fbf-2(lf)*. Likewise, GFP::FBF-
371 1(wt), but not GFP::FBF-2(wt), rescues *fbf-1(lf)* ($P<0.01$, **Figure 6—figure supplement 1B**).
372 Interestingly, we found that the SPC zone size of *fbf-2(lf); gfp::fbf-2(vrm)* is similar to that of *fbf-2(lf)* (**Figure 6—figure supplement 1A**), suggesting that GFP::FBF-2(vrm) does not rescue *fbf-2(lf)*. By contrast, the SPC zone of *fbf-1(lf); gfp::fbf-2(vrm)* is significantly larger than that of *fbf-1(lf)* ($P<0.01$, **Figure 6—figure supplement 1B**) and there is no significant difference in the SPC
373 zone between *fbf-1(lf); gfp::fbf-2(vrm)* and the wild type, suggesting that the GFP::FBF-2(vrm)
374 completely rescues *fbf-1(lf)*. We conclude that the three VRs outside of FBF-2 RNA-binding
375 domain (VR1, 2, and 4) are important for FBF-2-specific effect on germline SPC zone size and
376 mutation or deletion of these VRs resulted in a mutant protein FBF-2(vrm) that functions similar
377 to FBF-1.
378

381 Since FBF-1 function requires CCR4-NOT complex and FBF-2(vrm) appears similar to FBF-1, we
382 hypothesized that CCR4-NOT is required for FBF-2(vrm)-mediated function. To test this
383 hypothesis, we measured SPC zone size after knockdown of CCR4-NOT subunits in *fbf-1(lf) fbf-*
384 *2(lf); gfp::fbf-2(vrm)* animals by RNAi. We found that SPC zone size of *fbf-1(lf) fbf-2(lf); gfp::fbf-*
385 *2(vrm)* after RNAi of CCR4-NOT subunits becomes significantly shorter than the control (P<0.01,
386 **Figure 6D**), suggesting that GFP::FBF-2(vrm) function requires CCR4-NOT. We conclude that the
387 VRs outside of FBF-2 RNA-binding domain are required for FBF-2-specific effect on SPC zone size
388 and to prevent FBF-2 from cooperation with CCR4-NOT.

389

390 **The variable region 4 (VR4) of FBF-2 is sufficient to prevent cooperation with CCR4-NOT**
391 To test whether one of the three VRs outside of FBF-2 RNA-binding domain (VR1, 2, and 4) is
392 sufficient to support FBF-2-specific effects on SPC zone size, we established a transgenic FBF-1
393 chimera with VR4 swapped from FBF-2 (GFP::FBF-1(vr4sw); **Figure 7A**) and crossed it into *fbf*
394 double mutant. Since VR3 residing in FBF-2 RNA-binding domain was not sufficient for FBF-2-
395 specific function, *fbf-1(lf) fbf-2(lf); gfp::fbf-1(vr3sw)* (with VR3 swapped from FBF-2; **Figure 7A**)
396 chimeric transgene was made for comparison. SPC zone size assessment showed that the SPC
397 zone maintained by GFP::FBF-1(vr4sw) (**Figure 7Biii**) is significantly smaller than that
398 maintained by GFP::FBF-1(wt) (**Figure 7Bv**) and endogenous FBF-1 (P<0.0001; **Figure 7Bii and**
399 **C**). By contrast, the SPC zone maintained by GFP::FBF-1(vr3sw) (**Figure 7Biv**) is similar to that
400 maintained by the GFP::FBF-1(wt) (**Figure 7Biv and C**). This finding suggested that GFP::FBF-
401 1(vr4sw) might function similarly to FBF-2. To test whether GFP::FBF-1(vr4sw) rescues FBF-1- or

402 FBF-2-specific function, we measured the sizes of SPC zones after crossing GFP::FBF-1(vr4sw)
403 into *fbf-1(lf)* and *fbf-2(lf)* genetic backgrounds. For comparison, GFP::FBF-1(vr3sw) was also
404 crossed into each *fbf* single mutant. We found that the SPC zone size of *fbf-1(lf); gfp::fbf-1(vr4sw)*
405 is similar to that of *fbf-1(lf)* (**Figure 7—figure supplement 1A**), suggesting that
406 GFP::FBF-1(vr4sw) does not rescue *fbf-1(lf)*. Interestingly, SPC zone size of *fbf-2(lf); gfp::fbf-1(vr4sw)*
407 is significantly smaller than that of *fbf-2(lf)* ($P<0.01$, **Figure 7—figure supplement 1B**),
408 suggesting that GFP::FBF-1(vr4sw) rescues *fbf-2(lf)*. By contrast, GFP::FBF-1(vr3sw) rescues *fbf-1(lf)*,
409 but not *fbf-2(lf)* (**Figure 7—figure supplement 1A and B**). We conclude that the presence
410 of VR4 from FBF-2 in a chimeric GFP::FBF-1(vr4sw) protein is sufficient to impart FBF-2-specific
411 effect on SPC zone size.

412 To test whether VR4 is sufficient to inhibit cooperation of GFP::FBF-1(vr4sw) with CCR4-NOT,
413 we measured the size of SPC zone after knockdown of CCR4-NOT subunits in *fbf-1(lf) fbf-2(lf); gfp::fbf-1(vr4sw)*
414 animals by RNAi. As a control, CCR4-NOT knockdown was also performed on
415 *fbf-1(lf) fbf-2(lf); gfp::fbf-1(vr3sw)*. We found that the SPC zone of *fbf-1(lf) fbf-2(lf); gfp::fbf-1(vr4sw)*
416 after RNAi of CCR4-NOT subunits is similar to the control (**Figure 7D**), suggesting that
417 GFP::FBF-1(vr4sw) function in SPCs does not rely on CCR4-NOT. By contrast, the SPC zone of *fbf-1(lf) fbf-2(lf); gfp::fbf-1(vr3sw)*
418 is significantly shortened after RNAi of CCR4-NOT subunits
419 compared to the control ($P<0.01$, **Figure 7D**), indicating that GFP::FBF-1(vr3sw) maintains
420 dependence on CCR4-NOT. We conclude that FBF-2 VR4 in a chimeric GFP::FBF-1(vr4sw)
421 protein is sufficient to support FBF-2-specific effect on germline SPC zone size and to prevent
422 the chimera's cooperation with CCR4-NOT.

423

424 **DISCUSSION**

425 This manuscript focuses on the roles of PUF family FBF proteins in the control of proliferation
426 and differentiation of *C. elegans* germline stem and progenitor cells. Our results support three
427 main conclusions. First, FBF proteins affect SPC proliferation and differentiation through
428 translational control of FBF target mRNAs required for both processes. Second, FBF-mediated
429 repression of cyclin B affects SPC proliferation. Third, distinct effects of FBF homologs on SPC
430 development and their target mRNAs are mediated by differential cooperation of FBFs with
431 deadenylation machinery. In turn, activation of deadenylation machinery by FBFs depends on
432 the protein sequences outside of the conserved PUF RNA-binding domain. Collectively, our
433 results support a model where the output of stem cell population is controlled by two
434 paralogous proteins that have complementary effects on SPC proliferation and differentiation
435 achieved through distinct regulatory mechanisms (**Figure 8**).

436

437 ***FBFs affect the rates of both stem cell proliferation and differentiation***

438 Here we provide evidence that loss-of-function mutation of *fbf* homologs change the rates of
439 both proliferation and differentiation in *C. elegans* germline SPC. We find that slow
440 proliferation of SPCs in *fbf-2(lf)* is associated with a slower rate of progenitor meiotic entry
441 (differentiation), while the progenitors of *fbf-1(lf)* mutant have a faster rate of meiotic entry
442 (**Figure 8A**). We propose that differentiation and proliferation are simultaneously affected by
443 FBF-mediated control of target mRNAs encoding key molecular regulators of differentiation and
444 cell cycle. Slow meiotic entry rate in *fbf-2(lf)* likely results from translational repression of FBF
445 targets that regulate differentiation; indeed, slower accumulation of FBF target GLD-1 has been

446 documented in this genetic background (Brenner and Schedl 2016). In a similar fashion,
447 mutations of FBF targets *gld-2* and *gld-3* lead to a decrease in meiotic entry rate and to
448 accumulation of excessive numbers of SPCs (Eckmann and others 2004; Fox and Schedl 2015).
449 Conversely, higher meiotic entry rate of *fbf-1(lf)* SPCs might be explained by partial
450 derepression of GLD-1 (Brenner and Schedl 2016; Crittenden and others 2002) and other FBF
451 targets. We find that FBF-2 promotes SPC proliferation through facilitating progression of SPCs
452 through the G2-phase of cell cycle. Thus SPCs of the *fbf-2(lf)* mutant are characterized by longer
453 median G2-phase length. By contrast, the G2-phase of *fbf-1(lf)* SPCs is the same as in the wild
454 type, even though this genetic background shows an increase in the mitotic index. One possible
455 explanation for this observation is that faster meiotic entry rate of *fbf-1(lf)* SPCs depletes the
456 number of progenitors in the pre-meiotic S-phase. Lower total cell number in the distal region
457 then inflates SPC mitotic index. We could not address whether *fbf-1(lf)* germlines have a lower
458 number of progenitors in meiotic S-phase since there are no molecular markers for this
459 developmental stage. Finally, we find that disruption of FBF-mediated regulation of a single B-
460 type cyclin in slowly proliferating and slowly differentiating *fbf-2(lf)* SPCs is sufficient to disturb
461 stem cell homeostasis and leads to excessive SPC accumulation.

462

463 ***Regulation of Cyclin B by PUF-family proteins in stem cells***

464 PUF mRNA targets have been studied in multiple organisms including *C. elegans*, mouse and
465 human identifying thousands of target mRNAs (Chen and others 2012; Galgano and others
466 2008; Kershner and Kimble 2010; Morris and others 2008; Porter and others 2019; Prasad and
467 others 2016). One highly conserved group of PUF regulatory targets is related to the control of

468 cell cycle progression. In several developmental contexts stem cells undergo rapid G1/S
469 transitions and spend an extended time in G2, as observed for *C. elegans* germline stem cells
470 and mouse and human embryonic stem cells (Fox and others 2011; Lange and Calegari 2010;
471 Orford and Scadden 2008). PUF proteins facilitate the short G1 phase through repression of
472 proliferation inhibitors such as Cip/Kip family cyclin-dependent kinase inhibitors (Kalchhauser
473 and others 2011; Kedde and others 2010; Lin and others 2019). Additionally, mitotic cyclins B
474 and A are among the core targets of PUF proteins across species including nematode FBFs
475 (Kershner and Kimble 2010; Porter and others 2019; Prasad and others 2016), *Drosophila*
476 Pumilio (Asaoka-Taguchi and others 1999), human and mouse PUM1 and PUM2 (Chen and
477 others 2012; Galgano and others 2008; Hafner and others 2010; Morris and others 2008), and
478 yeast Puf proteins (Gerber and others 2004; Wilinski and others 2015). Cyclin B regulation by
479 PUFs contributes to cell cycle control of *Drosophila* embryonic cell divisions (Asaoka-Taguchi
480 and others 1999; Vardy and Orr-Weaver 2007) and to the control of meiotic resumption during
481 *Xenopus* and zebrafish oocyte maturation (Kotani and others 2013; Nakahata and others 2003;
482 Ota and others 2011). Here, we for the first time report the function of PUF-mediated
483 regulation of mitotic cyclins in the germline stem cells of *C. elegans*. A recent preprint suggests
484 that regulation of cyclin B by PUFs is also observed in mouse embryonic stem cells (Uyhazi and
485 others 2019).

486

487 ***mRNA deadenylation and PUF-mediated repression***

488 Multiple studies indicate that deadenylation contributes to PUF-mediated translational
489 repression (Goldstrohm and others 2006; Kadyrova and others 2007; Van Etten and others

490 2012; Weidmann and Goldstrohm 2012). CCR4-NOT deadenylation machinery is conserved in
491 evolution from yeast to humans (Collart and others 2017; Wahle and Winkler 2013). Although
492 deadenylation is required for germline stem cell maintenance in flies, nematodes and mice
493 (Berthet and others 2004; Fu and others 2015; Joly and others 2013; Nakamura and others
494 2004; Shan and others 2017; Suh and others 2009), the contribution of deadenylation to PUF
495 translational repression *in vivo* is still controversial (Weidmann and others 2014). Here, we find
496 that paralogous PUF proteins FBF-1 and FBF-2 differentially cooperate with CCR4-NOT
497 deadenylation machinery in *C. elegans* germline SPCs.

498 Multiple lines of evidence suggest that FBF-1's function *in vivo* is supported by the CCR4-NOT
499 deadenylation. First, the size of germline SPC zone maintained solely by FBF-1 is significantly
500 reduced by a knock-down of CCR4-NOT deadenylase components. Second, FBF-1-mediated
501 repression of FBF target reporter *in vivo* requires CCR4-NOT deadenylase. By contrast, SPC zone
502 maintained solely by FBF-2 and the reporter repression by FBF-2 are not affected by CCR4-NOT
503 component knock down. Taken together, these observations provide genetic evidence that
504 CCR4-NOT promotes FBF-1 function in germline SPCs. The increase in FBF-1 protein levels that
505 we observed after knocking down the CCR4-NOT subunit *ccf-1* (**Figure 3—figure supplement**
506 **1C**) might result from the relief of FBF-1 auto-regulation (Lamont and others 2004). Third, both
507 endogenous FBF-1 and GFP::FBF-1 colocalize with a core CCR4-NOT subunit 3xFLAG::CCF-1 *in*
508 *vivo* by co-immunostaining. An *in vivo* test of protein interaction between GFP::FBF-1 and
509 3xFLAG::CCF-1 using proximity ligation assay detects positive signal suggesting that these
510 proteins reside in the same complex. By contrast, there's significantly less *in vivo* colocalization
511 and proximity between GFP::FBF-2 and 3xFLAG::CCF-1. These data are consistent with the idea

512 that FBF-1 and FBF-2 form distinct RNP complexes, of which FBF-1 complex preferentially
513 includes CCR4-NOT deadenylase. Finally, we assessed the length of FBF target poly(A) tail length
514 in the nematodes mutant for each *fbf*, and found that the poly(A) tail length of FBF target *cyb*-
515 2.1 was relatively shorter in *fbf-2(lf)* background than in *fbf-1(lf)*. We conclude that FBF-1
516 selectively cooperates with deadenylation machinery to promote translational repression of
517 target mRNAs (**Figure 8**).

518 Transcript deadenylation can lead to translational repression or mRNA destabilization
519 (Goldstrohm and Wickens 2008). Measurement of steady-state transcript levels suggested that
520 FBF-1 together with CCR4-NOT decreased the target mRNAs abundance in SPCs. By contrast,
521 FBF-2 promoted accumulation of the target mRNAs. These findings are consistent with the
522 previous qualitative observations that FBF-1 promotes clearance of target mRNAs from the
523 mitotic region of the germline, while FBF-2 can sequester the targets in cytoplasmic foci
524 (Voronina and others 2012). We conclude that in *C. elegans* SPCs mRNA deadenylation
525 primarily results in transcript degradation.

526
527 The two FBF proteins are 91% identical in primary sequence (Zhang and others 1997). If FBFs
528 have distinct abilities to engage deadenylation machinery, what are the features of FBF-2 that
529 prevent it from cooperating with CCR4-NOT? PUF RNA-binding domain is sufficient for a direct
530 interaction with the CCF-1 subunit of CCR4-NOT and its homologs in multiple species, including
531 *C. elegans* (Goldstrohm and others 2006; Hook and others 2007; Kadyrova and others 2007; Suh
532 and others 2009; Van Etten and others 2012). However, protein sequences outside of the well-
533 structured RNA-binding domain can promote PUF-induced deadenylation, and are

534 hypothesized to function either through improved recruitment of CCR4-NOT complex or
535 through allosteric activation of CCR4-NOT (Webster and others 2019). We find that the Variable
536 Region (VR) sequences outside of the RNA-binding domain of FBF-1 and FBF-2 play a key role in
537 determining whether these proteins are able to cooperate with CCR4-NOT (Table 2). Mutations
538 of three VRs (VR1, 2, and 4) in FBF-2 result in a protein that now cooperates with CCR4-NOT,
539 suggesting that these regions are necessary to prevent the wild type FBF-2 from engaging with
540 the deadenylase. Conversely, swapping the VR4 of FBF-2 onto FBF-1 renders resulting the
541 chimeric protein FBF-1(vr4sw) insensitive to CCR4-NOT knockdown, indicating that VR4 of FBF-2
542 is sufficient to prevent cooperation with CCR4-NOT. By contrast, swapping VR3 residing within
543 FBF-2 RNA-binding domain into FBF-1 does not affect the FBF-1(vr3sw) chimera's cooperation
544 with CCR4-NOT, supporting the importance of protein sequences outside of the RNA-binding
545 domain affecting cooperation with CCR4-NOT. Overall, we conclude that the protein regions
546 outside of the conserved PUF RNA-binding domain regulate the repressive action mediated by
547 each PUF protein homolog. As a result, distinct sequences flanking the RNA-binding domain
548 may lead to differential preference of regulatory mechanisms exerted by individual PUF-family
549 proteins (**Figure 8B and C**). This model provides a foundation for future studies to understand
550 regulatory impact of PUF domain flanking sequences.

551

552 **Conclusions**

553 Our results suggest a new model of balancing stem cell self-renewal with differentiation at a
554 population level in *C. elegans* germline. We propose that translational regulation of key mRNA
555 targets by PUF family FBF proteins modulates SPC proliferation together with the rate of

556 meiotic entry or differentiation. Complementary activities of FBF-1 and FBF-2 combine to fine
557 tune SPC proliferation and differentiation to respond to proliferative demands of the tissue.
558 PUF proteins are conserved stem cell regulators in a variety of organisms, and their control of
559 target mRNAs that affect proliferation and differentiation is wide spread as well. The future
560 challenge will be to determine whether PUF-dependent RNA regulation in other stem cell
561 systems might be modulated to adjust stem cell division rate in concert with changing the rate
562 of differentiation.

563

564 **MATERIALS AND METHODS**

565 ***C. elegans* culture and strains**

566 All *C. elegans* hermaphrodite strains (supplemental Table S1) used in this study were cultured
567 on NNGM plates seeded with OP50 as per standard protocols (Brenner 1974). All GFP tagged
568 transgenic animals were cultured at 24°C to avoid GFP silencing. Temperature sensitive allele
569 *glp-1(ar202)* is a gain-of-function (gf) mutant and is referred to as *glp-1(gf)* in this study. *glp-*
570 *1(gf)* is fertile at 15°C, but sterile at 25°C because germ cells fail to enter meiosis and produce
571 tumorous germlines. *glp-1(gf)* was crossed with each single *fbf* loss-of-function (lf) mutant, *fbf-*
572 *1(ok91)* and *fbf-2(q738)*, to generate *fbf-1(lf)*; *glp-1(gf)* and *fbf-2(lf)*; *glp-1(gf)*. Double mutant
573 strains and *glp-1(gf)* single mutant were maintained at 15°C. Synchronized L1 larvae of *glp-1(gf)*
574 strains were cultured at 25°C until early adulthood. RNA was extracted from tumorous worms
575 and was subsequently used for qPCR and poly(A) tail length analysis.

576 **Generation of transgenic animals**

577 All transgene constructs were generated by Gateway cloning (Thermo Fisher Scientific).
578 GFP::FBF-1 and GFP::FBF-2 constructs were generated with the *gld-1* promoter, patcGFP
579 containing introns (Frøkjær-Jensen and others 2016), *fbf-1* or *fbf-2* genomic coding and 3'UTR
580 sequences in pCG150 (Frøkjær-Jensen and others 2008). GFP::FBF-1(vr4sw) and GFP::FBF-
581 1(vr3sw) constructs were generated similarly with *gld-1* promoter, patcGFP, *fbf-1* genomic
582 coding sequences with swapped variable regions 4 or 3 from *fbf-2*, and *fbf-1* 3'UTR sequences
583 in pCG150. 3xFLAG::CCF-1 construct contains *gld-1* promoter, *ccf-1* genomic coding and 3' UTR
584 sequences in pCFJ150. 3xFLAG::CYB-2.1wt and 3xFLAG::CYB-2.1fbm constructs contain *gld-1*
585 promoter, *cyb-2.1* genomic coding and 3' UTR sequences with either wild type (wt, 5'
586 **UGU**xxxAU 3') or mutated (fbm, 5' **ACA**xxxAU 3') FBF binding sites in pCFJ150.

587 A single-copy insertion of each GFP-tagged FBF transgene was generated by homologous
588 recombination into universal *Mos1* insertion site on chromosome III after Cas9-induced double-
589 stranded break (Dickinson and others 2013; Wang and others 2016). Similarly, single-copy
590 insertions of 3xFLAG-tagged CCF-1 and CYB-2.1 were generated by targeting universal *Mos1*
591 insertion site on chromosome II. Transgene insertion into universal *Mos1* insertion sites was
592 confirmed by PCR.

593 **Germline SPC zone measurement**

594 *C. elegans* were synchronized by bleaching, and hatched L1 larvae were plated on NNGM plates
595 with OP50 bacteria or RNAi culture, cultured at specified temperatures and harvested at
596 varying time points depending on the experiment. L1 larvae of *fbf-2(lf)*; *cyb-2.1fbm*, *fbf-2(lf)*;

597 *cyb-2.1wt* and *fbf-2(lf)* were grown at 15°C for 5 days until adult stage. For the time course of
598 SPC zone dynamics, L1 larvae of *fbf-1(lf)*, *fbf-2(lf)* and the wild type (N2) were cultured at 24°C
599 and dissected at 46 hour (late L4 stage), 52 hour (young adulthood) and 63 hour (older adult)
600 time points. In all other SPC zone quantification assays, L1 larvae of all worm strains were
601 cultured at 24°C and dissected for staining at 52 hour time point. Gonads were dissected and
602 stained for mitotic marker REC-8 (Hansen and others 2004), and the length of SPC zone in each
603 germline was measured by counting the number of germ cell rows positive for REC-8 staining
604 before transition zone.

605 **M phase index measurement**

606 Synchronous cultures of wild type (N2), *fbf-1(lf)* and *fbf-2(lf)* L1 larvae were cultured at 24°C for
607 52 hours. Gonads were dissected and stained for a mitotic marker REC-8 and an M phase
608 marker phospho-Histone H3 (pH3). Primary and secondary antibodies are described in
609 Supplementary Table S2. M phase index was calculated by dividing the number of pH3-positive
610 SPCs by the number of REC-8-positive SPCs. Percent differences in mitotic indices were
611 calculated through subtracting the mean value of mitotic index of each *fbf* mutant from that of
612 the wild type followed by dividing by the value of the wild type.

613 **Determination of G2-phase length and meiotic entry rate**

614 G2-phase length analysis and determination of meiotic entry rates were performed by feeding
615 *C. elegans* 5-ethynyl-2'-deoxyuridine (EdU)-containing bacteria as previously described
616 (Crittenden and others 2006; Fox and others 2011; Kocsisova and others 2018), see
617 supplemental materials for details. Germline images were captured as z-stacks spanning the

618 thickness of each germline using a Leica DM5500B microscope. For each replicate time point 7-
619 14 germlines were scored and the data represent 3 or 5 biological replicates. Nuclei were
620 manually counted using the Cell Counter plug-in in Fiji (Schindelin and others 2012) and the
621 Marks-to-Cells R script (Seidel and Kimble 2015) was used to remove multiply-counted nuclei.
622 Percent differences in median G2-phase length or differentiation rate were calculated as for
623 mitotic index above.

624 **RNAi treatment**

625 The following RNAi constructs were used: *ccr-4*, *let-711* (Kamath and Ahringer 2003), *ccf-1*
626 (*cenix*:341-*c12*; (Sönnichsen and others 2005) and *cyb-2.1* (genomic CDS) in pL4440 (Timmons
627 and Fire 1998). Empty vector pL4440 was used as a control in all RNAi experiments. All RNAi
628 constructs were verified by sequencing. RNAi plates were prepared as previously described
629 (Wang and others 2016) and synchronously hatched L1 larvae were plated directly on RNAi
630 plates, except for *let-711* and *ccf-1*(RNAi), where L1 larvae were initially grown on OP50 plates
631 and transferred to RNAi plates at the L2/L3 stage. The effect of *cyb-2.1*(RNAi) was confirmed by
632 western blot of 3xFLAG::CYB-2.1. The effectiveness of CCR4-NOT RNAi treatments was assessed
633 by scoring sterility (Figure 3-Figure supplement 1) or embryonic lethality (Supplemental Table 3)
634 in the F1 progeny of the fed animals.

635 **RNA extraction and RT-qPCR**

636 *glp-1*(*gf*), *fbf-1*(*lf*); *glp-1*(*gf*) and *fbf-2*(*lf*); *glp-1*(*gf*) *C. elegans* were synchronized using bleach,
637 hatched L1s were cultured at 25°C and worms were harvested after 52 hours. Worm pellets
638 were washed 2 times with 1x M9 to remove OP50 bacteria, weighed, flash-frozen using dry

639 ice/ethanol slurry and stored at -80°C. Worm pellets of each strain were collected in triplicate
640 and the qPCR data represent 3 biological replicates. Total RNA was isolated from the worm
641 pellets using Trizol (Invitrogen) and Monarch Total RNA miniprep kit (NEB). RNA concentration
642 was measured using Nanodrop (Thermo Fisher Scientific) or Qubit Fluorometric quantitation
643 (Invitrogen). cDNA was synthesized using the iScript cDNA Synthesis Kit (Bio-Rad) using 1 ug
644 RNA template per each 20 ul cDNA synthesis reaction. Quantitative PCR reactions were
645 performed in triplicate per each input cDNA using iQ SYBR Green Supermix (Bio-Rad) and cDNA
646 diluted 1:10 as template. Primers for *htp-1*, *htp-2*, *him-3*, *act-1*, and *tbb-2* were as described
647 (Merritt and Seydoux 2010; Voronina and others 2012). Primers for *cyb-1*, *cyb-2.1*, *cyb-2.2*, and
648 *cyb-3* were designed to span exon-exon boundaries to avoid amplification of residual genomic
649 DNA. Abundance of each mRNA in two *fbf* mutants relative to the wild type was calculated
650 using the comparative $\Delta\Delta Ct$ method (Pfaffl 2001) with actin *act-1* as a reference gene. After the
651 mRNA abundance of each tested gene was normalized to *act-1*, the fold change values from
652 three replicates were averaged. Finally, fold change values of each tested gene in *glp-1(gf)*; *fbf-*
653 *1(lf)* and *glp-1(gf)*; *fbf-2(lf)* genetic backgrounds were scaled to the values in *glp-1(gf)* in which
654 the mRNA abundance was set to 1. Differences in mRNA abundance were evaluated by one-
655 way ANOVA statistical tests with linear trend and Tukey's post-tests.

656 **Poly(A) tail length (PAT)-PCR**

657 PAT-PCR for the FBF target *cyb-2.1* and control *tbb-2* was performed using a Poly(A) Tail-Length
658 Assay Kit (Thermo Fisher Scientific). RNA templates from *fbf-1(lf)*; *glp-1(gf)* and *fbf-2(lf)*; *glp-*
659 *1(gf)* strains were the same as used in qPCR analysis. Briefly, G/I tailing, reverse transcription,
660 PCR amplification and detection were performed following the kit protocol. Each G/I tailing

661 reaction used 1 ug total RNA. During PCR amplification, 1 ul of diluted RT sample was used in
662 each PCR reaction and a two-step PCR program was used: 94°C for 2 min, (94°C for 10 sec, 60°C
663 for 1min 30sec) x 35 cycles, 72°C for 5 min. PCR products were assessed using 6%
664 polyacrylamide gel (made with 29:1 Acrylamide/Bis Solution, Bio-Rad) electrophoresis. PCR
665 products were visualized with SYBR Gold stain (Invitrogen) and recorded using ChemiDoc MP
666 Imaging System (Bio-Rad). Poly(A) tail lengths were compared using densitometry analysis in
667 ImageJ.

668 **Immunolocalization and image analysis**

669 For all immunostaining experiments, *C. elegans* hermaphrodites were dissected and fixed as
670 previously described (Wang and others 2016). All primary antibody incubations were overnight
671 at 4°C and all secondary antibody incubations were for 1.5 h at room temperature. For
672 colocalization analysis of endogenous FBF-1 and 3xFLAG::CCF-1, dissected gonads of *flag::ccf-1*
673 were stained with anti-FBF-1 (Rabbit) and anti-FLAG primary antibodies (Mouse) (Table S2). For
674 colocalization analysis of GFP::FBFs and 3xFLAG::CCF-1, dissected gonads of *3xflag::ccf-1*;
675 *gfp::fbf-2* and *3xflag::ccf-1*; *gfp::fbf-1* were stained with anti-GFP (Rabbit) and anti-FLAG
676 primary antibodies (Mouse) (Table S2). Secondary antibodies were Goat anti-Mouse or Goat
677 anti-Rabbit. Germline images were acquired using Zeiss 880 confocal microscope. Localization
678 of FBF granules relative to CCF-1 granules were analyzed in a single confocal section per
679 germline with 4-6 germ cells in SPC zone by Pearson's correlation coefficient analysis using the
680 JACoP plugin of ImageJ. For each worm strain, 4-8 independent germline images were analyzed
681 and Pearson's correlation coefficient values were averaged.

682 **Proximity ligation assay (PLA)**

683 PLA was performed on dissected *C. elegans* gonads following a modified Duolink® PLA Protocol.
684 Fixation was as previously described (Wang and others 2016). Blocking step included incubation
685 in 1xPBS/0.1% Triton-X-100/0.1% BSA for 2x 15 min at room temperature, in 10% normal goat
686 serum for 1 hr at room temperature and in Duolink blocking buffer for 1 hr at 37°C. Primary
687 anti-GFP and anti-FLAG antibodies were diluted in Duolink diluent (Table S2). After overnight
688 incubation with primary antibodies at 4°C, 1:5 dilutions of PLUS and MINUS Duolink® PLA
689 Probes were added to each slide and incubated at 37°C for 1 hr. Next, slides were incubated at
690 37°C for ligation (for 30 min) and amplification (for 100 min) steps and finally mounted with
691 Duolink Mounting medium with DAPI. Images were acquired using Zeiss 880 confocal
692 microscope. The ImageJ “Analyze Particles” plugin was used to quantify PLA foci in germline
693 images.

694 **FBF target reporter regulation assay**

695 Reporter transgene with GFP fused to Histone H2B and the 3' untranslated region (UTR) of *htp-*
696 2 (Merritt and others 2008; Merritt and Seydoux 2010) was crossed into *rrf-1(lf)*, *rrf-1(lf)/hT2*;
697 *fbf-1(lf)* and *rrf-1(lf); fbf-2(lf)* genetic backgrounds. RNAi targeting *let-711* and *ccf-1* were
698 conducted on these reporter strains as described above. The effectiveness of RNAi treatments
699 was assessed by scoring F1 embryo lethality. RNAi treated worms were dissected and
700 fluorescent germline images were acquired on a Leica DFC300G camera attached to a Leica
701 DM5500B microscope with a standard exposure. Percentage of germlines that exhibited target
702 reporter derepression in the SPC zone was scored for each strain.

703 **Immunoblotting**

704 Synchronous cultures of *C. elegans* were collected at the adult stage by washing in 1xM9 and
705 centrifugation and worm pellets were lysed by sonication. Proteins from worm lysate were
706 separated using SDS-PAGE gel electrophoresis and transferred to a 0.45 µm PVDF membrane
707 (EMD Millipore) as previously described (Ellenbecker and others 2019). Primary and secondary
708 antibodies are described in Supplementary Table S2. Blots were developed using Luminata
709 Crescendo Western HRP substrate (EMD Millipore) and visualized using ChemiDoc MP Imaging
710 System (Bio-Rad).

711

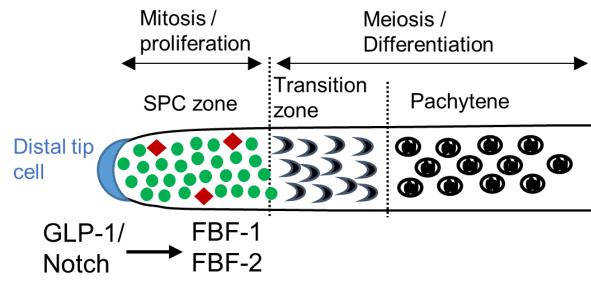
712 **ACKNOWLEDGEMENTS**

713 We thank the members of Voronina laboratory for insightful discussions and Geraldine Seydoux
714 for comments on our manuscript. We are grateful to Ella Baumgarten and Jessica Bailey for
715 help with cloning and crosses. We appreciate Ariz Mohammad for sharing the modified R script
716 (originally from the Kimble lab) and instructions on using R for cell counts. Confocal microscopy
717 was performed in the University of Montana BioSpectroscopy Core Research Laboratory
718 operated with support from NIH awards P20GM103546 and S10OD021806. This work was
719 supported by the NIH grants GM109053 to EV and P20GM103546 (S. Sprang, PI; EV Pilot Project
720 PI), American Heart Association Fellowship 18PRE34070028 to XW, and Montana Academy of
721 Sciences award to XW.

722 **FIGURES**

723 **Figure 1. FBF-1 and FBF-2 differentially regulate germline stem and progenitor cell (SPC) zone**

724 **size.** (A) Schematic of the distal germline of *C. elegans* adult hermaphrodite. GLP-1/Notch
725 signaling from the distal tip cell (blue) supports germline SPC proliferation. Progenitors enter
726 meiosis when they reach the transition zone. FBF-1 and FBF-2, downstream of GLP-1/Notch, are
727 required for SPC maintenance. Green circles, stem and progenitor cells; red diamonds,
728 mitotically dividing cells. (B) SPC zone sizes of the wild type, *fbf-1(lf)* and *fbf-2(lf)* germlines
729 were measured by counting germ cell diameters (gcd) spanning SPC zone. Genetic background
730 is indicated on the X-axis and SPC zone size on the Y-axis. (C) Distal germlines dissected from
731 adult wild type, *fbf-1(lf)*, and *fbf-2(lf)* hermaphrodites and stained with anti-REC-8 (green) and
732 anti-phospho-Histone H3 (pH3; red) to visualize the SPC zone and mitotic cells in M-phase.
733 Germlines are outlined with the dashed lines and the vertical dotted line marks the beginning
734 of transition zone as recognized by the 'crescent-shaped' chromatin and loss of REC-8. Scale
735 bar: 10 μ m. (D) Quantification of mitotic indices of germline SPCs in animals of different genetic
736 backgrounds (as indicated on the X-axis). (B, D) Plotted values are individual data points and
737 arithmetical means \pm S.E.M. Differences in SPC pool sizes and mitotic indices were evaluated by
738 one-way ANOVA with Dunnett's post-test. Data were collected from 3 independent
739 experiments and 20-43 germlines were scored for each genotype. (E) Median SPC G2-phase
740 length in different genetic backgrounds (as indicated on the X-axis). Plotted values are
741 individual data points and arithmetical means \pm S.E.M. Difference in median G2 length was
742 evaluated by one-way ANOVA with Dunnett's post-test. Data were collected from 3
743 independent experiments as shown in Figure 1—figure supplement 1B. (F) Meiotic entry rate of


744 germline progenitors in different genetic backgrounds (as indicated on the X-axis). Plotted
745 values are individual data points and arithmetical means \pm S.E.M. Differences in meiotic entry
746 rate between each *fbf* and the wild type were evaluated by one-way ANOVA with T-test with
747 Bonferroni correction post-test. Data were collected from 5 independent experiments as shown
748 in Figure 1—figure supplement 1C. (B-F) Asterisks mark statistically-significant differences
749 ($****, P<0.0001$; $***, P<0.001$; $**, P<0.01$; $*, P<0.05$). (G) Steady-state mRNA abundance of FBF
750 target genes and a control non-FBF target gene in *glp-1(gf)*, *glp-1(gf)*; *fbf-1(lf)* and *glp-1(gf)*; *fbf-*
751 *2(lf)* genetic backgrounds was determined by qRT-PCR and normalized to the levels of actin
752 (*act-1*). Tested FBF target genes are associated with meiotic entry (*htp-1*, *htp-2* and *him-3*) or
753 cell cycle regulation (*cyb-1*, *cyb-2.1*, *cyb-2.2* and *cyb-3*). The control gene is a tubulin subunit,
754 *tbb-2*. Reported abundance represents the arithmetical mean \pm S.E.M of 3 independent
755 biological replicates. Differences in mRNA abundance were evaluated by one-way ANOVA tests
756 with linear trend and Tukey's post-tests. Test for linear trend between column means (left to
757 right): t, $P <0.05$; T, $P<0.01$. Tukey's test for column means difference: a, $P<0.05$; A, $P <0.01$.

758

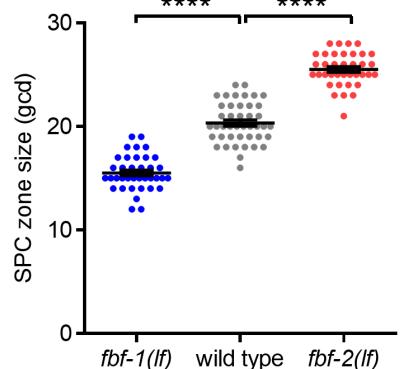
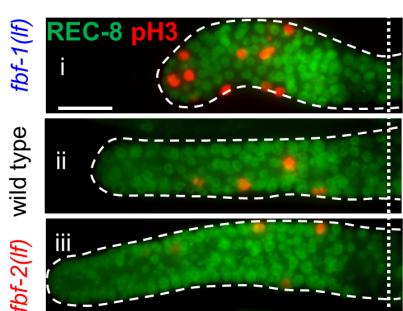
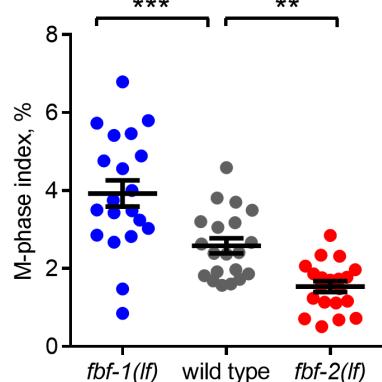
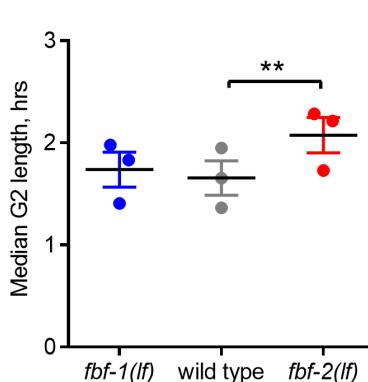
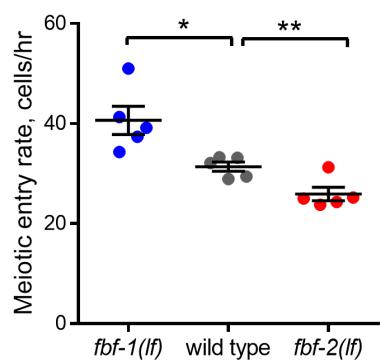

Wang et al.

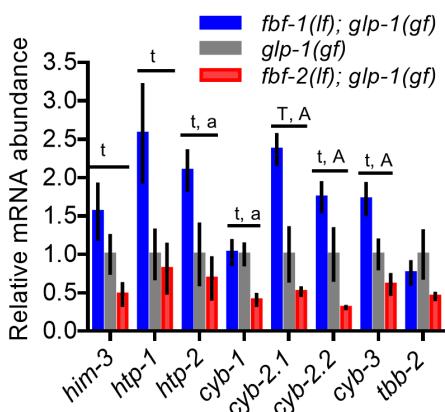
Figure 1


A


B


C


D

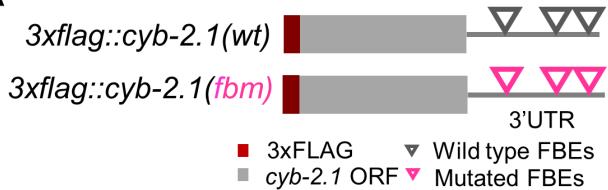

E

F

G

759

760


761 **Figure 2. FBF-mediated repression of cyclin B limits accumulation of germline progenitor cells.**

762 (A) Schematic representation of transgenes encoding 3xFLAG-tagged CYB-2.1(wt) with wild type
763 FBF binding elements (FBEs, UGUxxxAU) in 3'UTR and 3xFLAG-tagged CYB-2.1(fbm) with FBF
764 binding elements mutated (ACAxxxAU). (B) Immunoblot analysis of 3xFLAG::CYB-2.1 protein
765 levels in *3xflag::cyb-2.1(wt)* and *3xflag::cyb-2.1(fbm)* worms using α -tubulin as a loading
766 control. (C) Distal germlines dissected from the *fbf-2(lf)*, *fbf-2(lf); cyb-2.1(fbm)* and *fbf-2(lf); cyb-*
767 *2.1(wt)* animals and stained with anti-REC-8 (green) and anti-pH3 (red). Germlines are outlined
768 with dashed lines and the vertical dotted line marks the beginning of transition zone. Scale bar:
769 10 μ m. (D) Quantification of SPC zone size in the *fbf-2(lf)*, *fbf-2(lf); cyb-2.1(fbm)* and *fbf-2(lf);*
770 *cyb-2.1(wt)* genetic backgrounds. Plotted values are individual data points and arithmetical
771 means \pm S.E.M. Differences in SPC zone size were evaluated by one-way ANOVA with Dunnett's
772 post-test; asterisks mark statistically-significant difference ($P < 0.0001$). Data was collected from
773 3 independent experiments and 57~110 independent germlines were scored for each
774 genotype. (E) Quantification of SPC zone size in the *fbf-2(lf); cyb-2.1(fbm)* after *cyb-2.1(RNAi)*
775 compared to the empty vector RNAi control. Plotted values are individual data points and
776 arithmetical means \pm S.E.M. Differences in SPC zone size were evaluated by T-test; asterisks
777 mark statistically-significant difference ($P < 0.0001$). Data was collected from 2 independent
778 experiments and 44 independent germlines were scored for each condition. (F) Immunoblot
779 analysis of 3xFLAG::CYB-2.1 protein levels in *3xflag::cyb-2.1fbm* after *cyb-2.1(RNAi)* compared
780 to the empty vector RNAi control. Tubulin was used as a loading control.

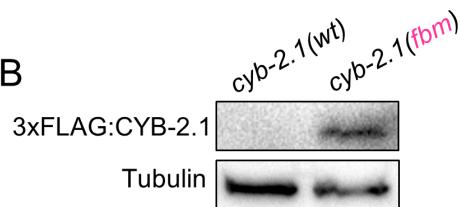
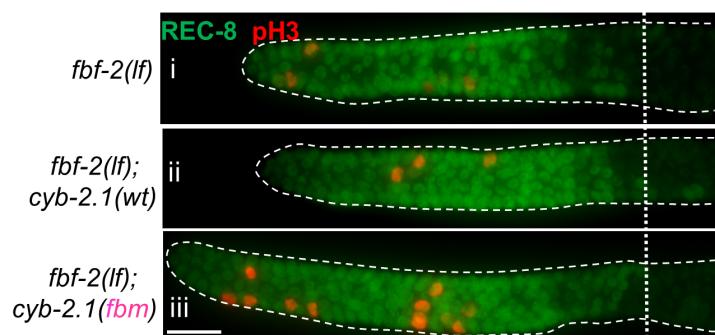
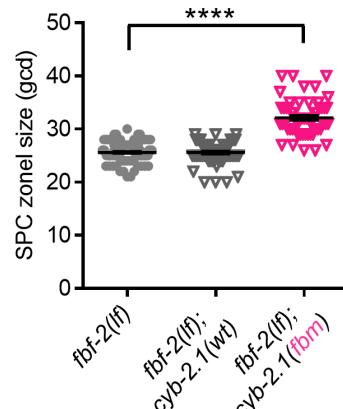
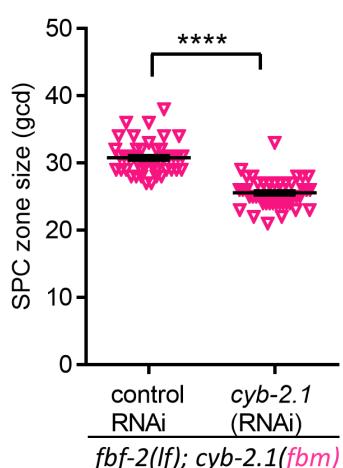
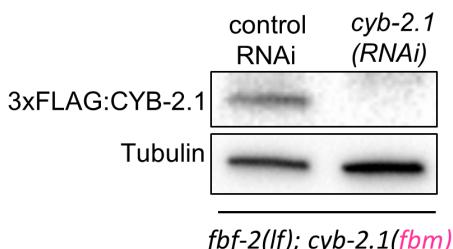

Wang et al.

Figure 2


A


B


C


D

E

F

781

782

783 **Figure 3. CCR4-NOT deadenylase complex promotes FBF-1 function in germline SPCs.**

784 (A) Schematic of CCR4-NOT deadenylase complex in humans and *C. elegans*. (B) Quantification

785 of SPC zone size after knocking down CCR4-NOT subunits in the wild type, *fbf-1(lf)* and *fbf-2(lf)*

786 genetic backgrounds. Genetic backgrounds and RNAi treatments are indicated on the X-axis and

787 the average size of SPC zone \pm S.E.M is plotted on the Y-axis. Differences in SPC zone size

788 between CCR4-NOT RNAi and the empty vector RNAi control were evaluated by one-way

789 ANOVA. Asterisks mark the group with significant changes in SPC zone sizes after CCR4-NOT

790 knockdown, $P < 0.01$. Data was collected from 3 independent experiments. N, the number of

791 hermaphrodite germlines scored in each RNAi treatment. (C) Distal germlines of *rrf-1(lf); fbf-2(lf)*

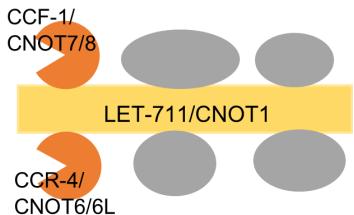
792 expressing a GFP::Histone H2B fusion under the control of the *htp-2* 3'UTR after the

793 indicated RNAi treatments. Germlines are outlined with dashed lines and vertical dotted lines

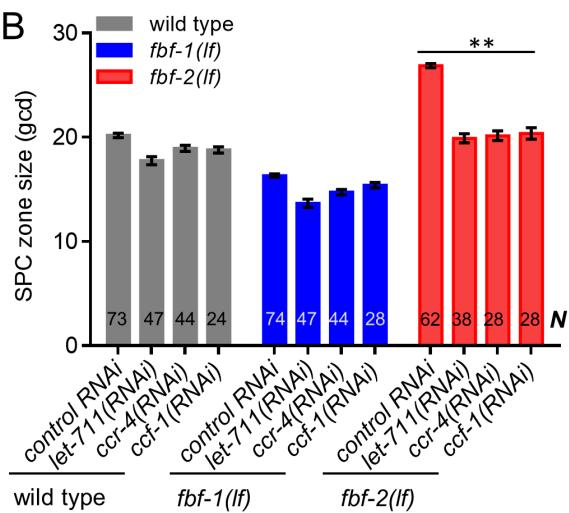
794 indicate the beginning of the transition zone. All images were taken with a standard exposure.

795 Scale bar: 10 μ m. (D) Percentage of germlines showing expression of GFP::H2B fusion extended

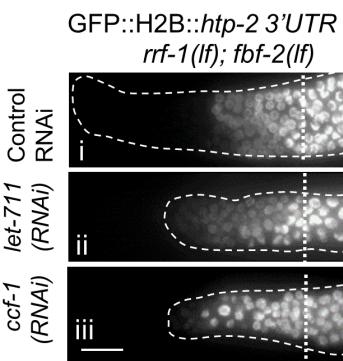
796 to the distal end in the indicated genetic backgrounds and knockdown conditions. Plotted

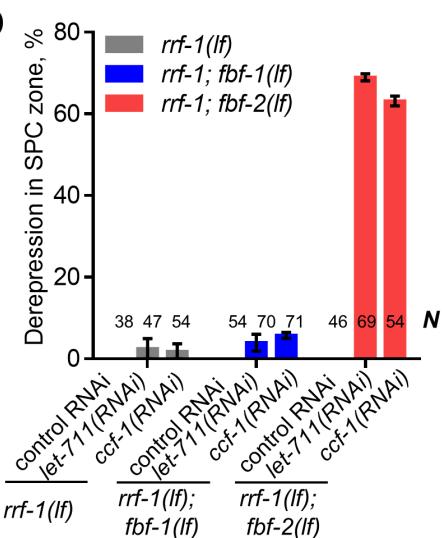

797 values are arithmetical means \pm S.E.M. Data was collected from 3 independent experiments. N,

798 the number of germlines scored. Efficiencies of RNAi treatments were confirmed by sterility


799 (Figure 3—figure supplement 1B) or embryonic lethality (Supplemental Table 3).

Wang et al.
Figure 3


A


B

C

D

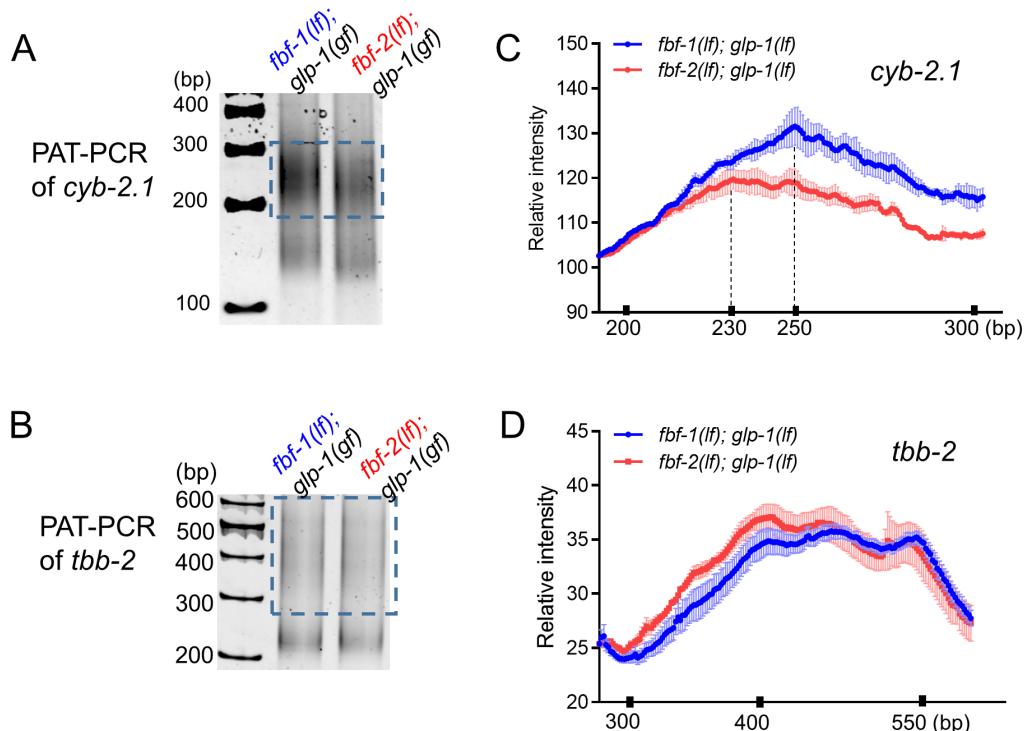
800

801

802 **Figure 4. FBF-1 colocalizes with CCR4-NOT complex in germline SPCs.** (A-B) Confocal images of
803 SPCs co-immunostained for endogenous FBF-1 (A) or GFP-tagged FBF-2 (B, red) and 3xFLAG-
804 tagged CCF-1 (green). DNA staining is in blue (DAPI). Arrows indicate complete overlap of FBF-1
805 and CCF-1 granules. Asterisks denote FBF-2 granules localizing close but not overlapping with
806 CCF-1 granules. Scale bars in A and B: 5 μ m. (C) Pearson's correlation analysis quantifying the
807 colocalization between FBF and CCF-1 granules in co-stained germline images. Plotted values
808 are arithmetical means \pm S.E.M. N , the number of analyzed germline images (single confocal
809 sections through the middle of germline SPC nuclei including 5-8 germ cells). Statistical analysis
810 was performed by Student's t-test, asterisks mark statistically significant difference, $P<0.01$. (D)
811 Confocal images of the distal germline SPC zones with PLA foci (grayscale) and DNA staining
812 (blue). Germlines are outlined with dashed lines and vertical dotted lines indicate the beginning
813 of the transition zone. Genotypes are indicated on top of each image group. Scale bar: 10 μ m.

Wang et al.

Figure 4


814

815

816 **Figure 5. FBF-1 promotes deadenylation of *cyb-2.1* mRNA (A, B)** Representative PAT-PCR
817 analysis of the poly(A) tail length of *cyb-2.1* mRNA (A) and control *tbb-2* mRNA (B) in *fbf-1(lf);*
818 *glp-1(gf)* and *fbf-2(lf); glp-1(gf)* genetic backgrounds. The positions of size markers are indicated
819 on the left. The areas boxed by dotted lines were quantified by densitometry in ImageJ. (C, D)
820 Densitometric quantification of the *cyb-2.1* and *tbb-2* PAT-PCR amplification products (boxed in
821 A, B). Y-axis, the relative intensity (arbitrary units) representing the average of PAT-PCR
822 reactions from three independent biological replicates. X-axis, sizes of analyzed polyadenylated
823 mRNA species. Values are arithmetical means \pm S.E.M. Vertical dashed lines in (C) mark the
824 sizes of the most abundant species of polyadenylated *cyb-2.1* mRNA in each *fbf* mutant
825 background.

Wang et al.

Figure 5

826

827 **Figure 6. Three variable regions of FBF-2 prevent its cooperation with CCR4-NOT.**

828 (A) Schematics of FBF-1, FBF-2 and GFP::FBF-2(vrm) mutant transgene (Wang and others 2016).

829 Red and blue colors indicate variable regions distinguishing FBF-1 and FBF-2 respectively, grey

830 box indicates the RNA binding domain, and green box indicates GFP tag. (B) Distal germlines of

831 the indicated genetic backgrounds stained with anti-REC-8 (green) and anti-pH3 (red).

832 Germlines are outlined with the dashed lines, and the vertical dotted line marks the beginning

833 of transition zone. Scale bar: 10 μ m. (C) Germline SPC zone sizes in the indicated genetic

834 backgrounds (indicated on the X-axis). FBF protein(s) present in each genetic background are

835 indicated above each data set. Plotted values are individual data points and arithmetical means

836 \pm S.E.M. Differences in SPC zone size between *fbf-1(lf)* *fbf-2(lf)*; *gfp::fbf-2(vrm)* and the other

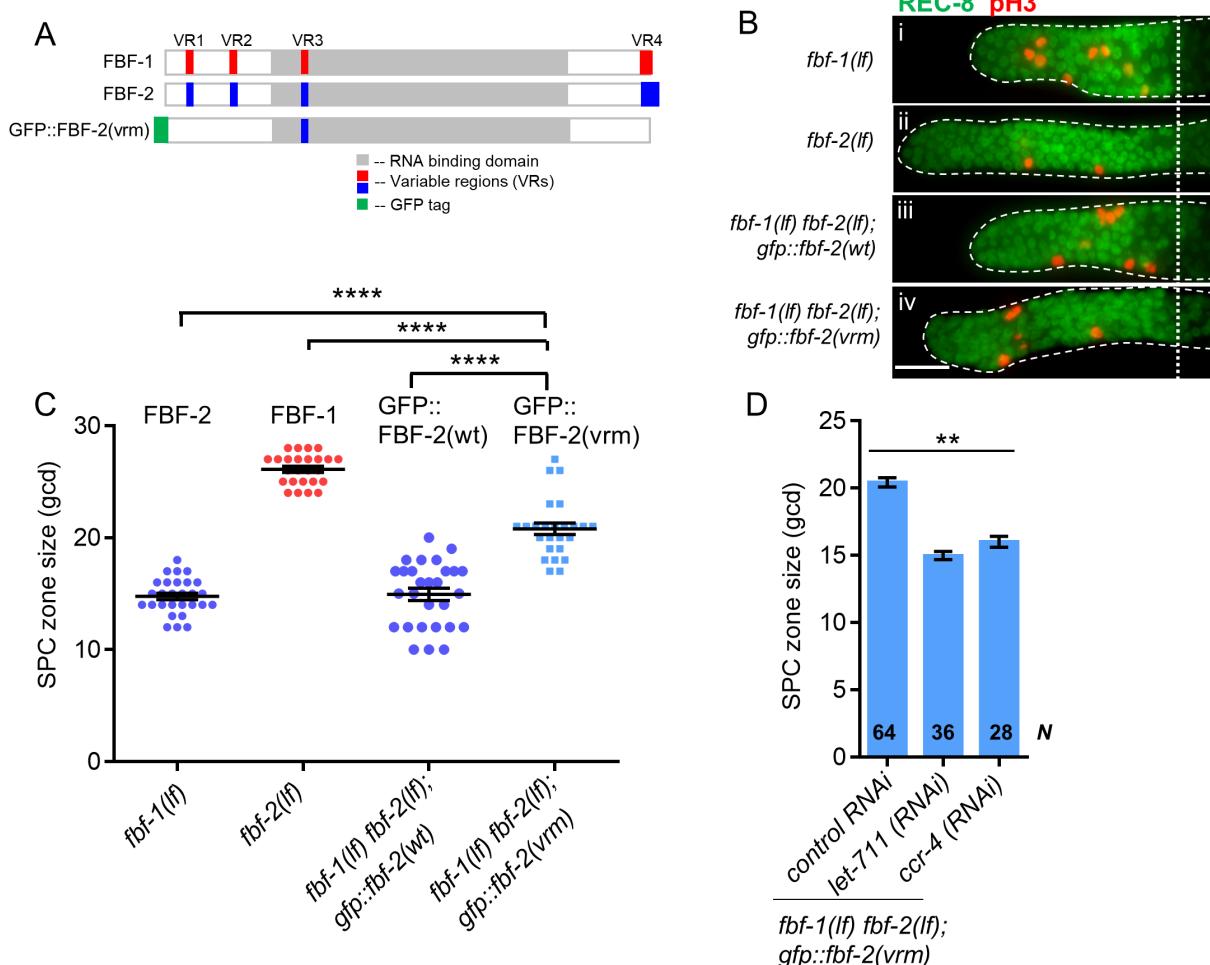
837 strains were evaluated by one-way ANOVA test with Dunnett's post-test; asterisks mark

838 statistically significant differences ($P < 0.0001$). Data were collected from 3 independent

839 experiments and 24-28 germlines were scored for each genotype. (D) Quantification of SPC

840 zone size after knocking down CCR4-NOT subunits in the *fbf-1(lf)* *fbf-2(lf)*; *gfp::fbf-2(vrm)*

841 genetic background. RNAi treatments are indicated on the X-axis and average size of SPC zone \pm


842 S.E.M on the Y-axis. Differences in SPC zone sizes between CCR4-NOT knockdowns and control

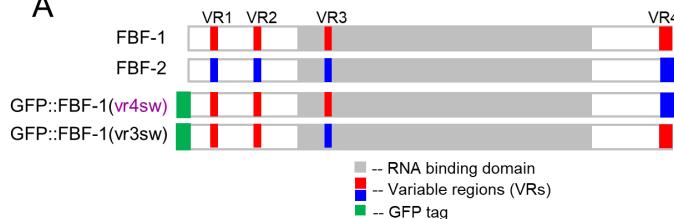
843 were evaluated by one-way ANOVA (asterisks, $P < 0.01$). Data were collected from 3

844 independent experiments. N , the number of independent germlines scored.

Wang et al.

Figure 6

845


846

847 **Figure 7. Variable region 4 (VR4) from FBF-2 is sufficient to prevent FBF-1 chimera from**
848 **cooperation with CCR4-NOT.** (A) Schematics of FBF-1, FBF-2, transgenic GFP::FBF-1(vr4sw)
849 chimera (with VR4 swapped from FBF-2) and transgenic GFP::FBF-1(vr3sw) chimera (with VR3
850 swapped from FBF-2). Red and blue colors indicate variable regions distinguishing FBF-1 and
851 FBF-2 respectively, grey box indicates RNA binding domain, and green box indicates GFP tag. (B)
852 Distal germlines dissected from the indicated genetic backgrounds stained with anti-REC-8
853 (green) and anti-pH3 (red). Germlines are outlined with the dashed lines and the vertical dotted
854 line marks the beginning of the transition zone. Scale bar: 10 μ m. (C) Germline SPC zone sizes in
855 the indicated genetic backgrounds (indicated on the X-axis). FBF protein present in each genetic
856 background is indicated above each data set. Plotted values are individual data points and
857 arithmetical means \pm S.E.M. Differences in SPC zone sizes between *fbf-1(lf) fbf-2(lf); gfp::fbf-*
858 *1(vr4sw)* and the other strains were evaluated by one-way ANOVA test with Dunnett's post-
859 test; asterisks mark statistically significant differences ($P < 0.0001$). Data were collected from 2
860 independent experiments and 31-60 germlines were scored for each genotype. (D)
861 Quantification of SPC zone size after knocking down CCR4-NOT subunits in the *fbf-1(lf) fbf-2(lf);*
862 *gfp::fbf-1(vr4sw)* and *fbf-1(lf) fbf-2(lf); gfp::fbf-1(vr3sw)* genetic backgrounds (indicated on the
863 X-axis). Plotted values are arithmetical means \pm S.E.M. Differences in SPC zone sizes between
864 CCR4-NOT RNAi and control RNAi were evaluated by one-way ANOVA. Asterisks mark the group
865 with significant changes in SPC zone sizes after CCR4-NOT knockdown ($P < 0.01$). Data was
866 collected from 2 independent experiments. N , the number of hermaphrodite germlines scored.

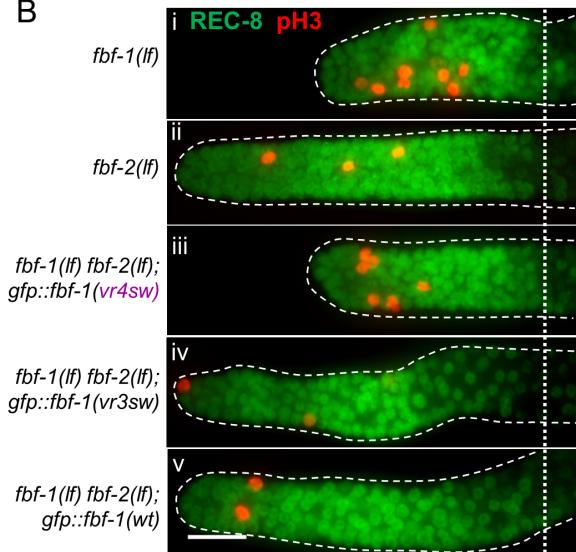
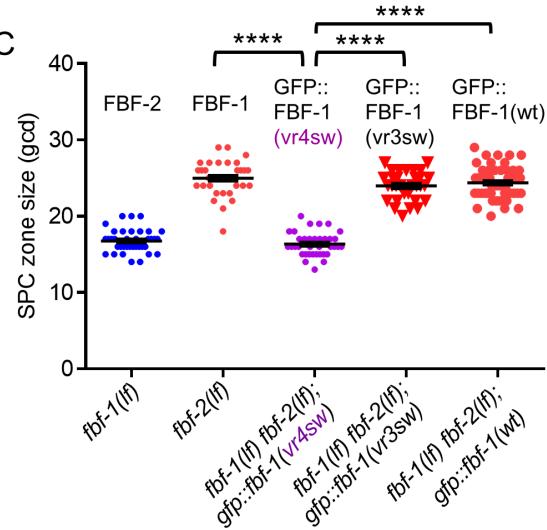
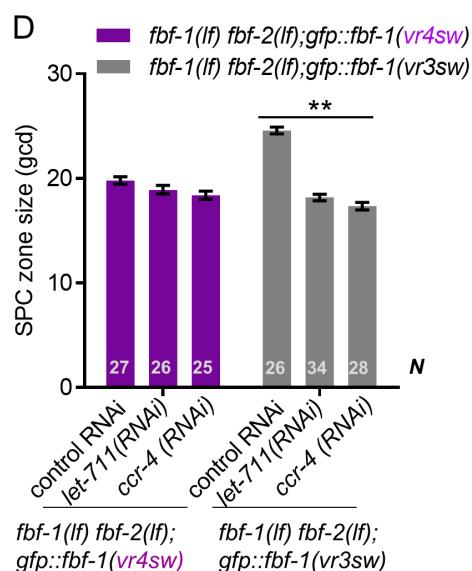

Wang et al.

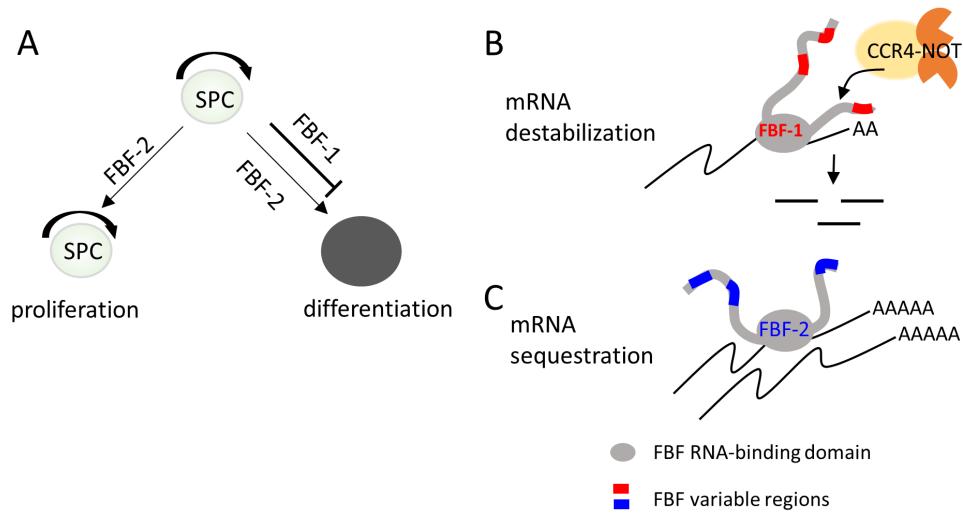
Figure 7


A


B

C

D


867

868

869 **Figure 8. Distinct effects of FBF-1 and FBF-2 on germline SPC dynamics are mediated by their**
870 **effects on target mRNAs in *C. elegans*.** (A) Complementary activities of FBFs in maintaining
871 germline SPC homeostasis: FBF-1 promotes SPC self-renewal by inhibiting differentiation, while
872 FBF-2 facilitates both proliferation and differentiation of SPCs. (B, C) FBFs differentially control
873 target mRNAs that regulate both stem cell proliferation and differentiation, and FBFs
874 differential cooperation with CCR4-NOT is determined by their variable regions, VRs, outside of
875 the RNA binding domain of FBFs. (B) FBF-1 cooperates with CCR4-NOT deadenylase and
876 destabilizes target mRNAs. FBF-1-dependent RNA regulation is required to restrict the rate of
877 germline stem cell differentiation. (C) FBF-2 does not rely on CCR4-NOT and promotes
878 accumulation of target mRNAs. FBF-2-dependent accumulation of mRNAs is required to sustain
879 both wild type rates of germline stem cell proliferation and of meiotic entry.

Wang et al.

Figure 8

880
881

882 **Table 1**

883 Proximity ligation assay density analysis

Genotype	PLA density in SPC zone (/ μm^2) $\times 10^{-2}$	P value, vs. control	N
<i>3xflag::ccf-1; gfp::fbf-1</i>	5.2 \pm 2.4	<0.0001	32
<i>3xflag::ccf-1; gfp::fbf-2</i>	1.1 \pm 0.8	ns	27
<i>3xflag::ccf-1; gfp</i>	0.6 \pm 0.2	n/a	12

884 PLA foci density was determined in maximal intensity projections of confocal image stacks

885 encompassing germline SPC zones of the indicated strains. Reported values are mean \pm S.E.M.

886 derived from three independent biological replicates (*3xflag::ccf-1; gfp::fbf-1* and *3xflag::ccf-1;*

887 *gfp::fbf-2*) or a single replicate (*3xflag::ccf-1; gfp*). Differences in PLA density between

888 *3xflag::ccf-1; gfp::fbf-1* or *3xflag::ccf-1; gfp::fbf-2* and the control *3xflag::ccf-1; gfp* were

889 analyzed by one-way ANOVA with Dunnett's post-test. N, number of germline images analyzed.

890

891

892

893

894

895

896

897 **Table 2**

898 Variable regions outside of RNA-binding domain regulate FBF function

Transgene	Mutated variable region (VR) sequence	Rescues <i>fbf-1(lf)</i> ?	Rescues <i>fbf-2(lf)</i> ?	Dependent on CCR4-NOT
GFP::FBF-2wt	N/A	No	Yes	No ^a
GFP::FBF-1wt	N/A	Yes	No	Yes ^a
GFP::FBF-2(vrm)	mutated VR1, 2; VR4 deleted	Yes	No	Yes ^b
GFP::FBF-1(vr4sw)	VR4 swapped with FBF-2	No	Yes	No ^b
GFP::FBF-1(vr3sw)	VR3 swapped with FBF-2	Yes	No	Yes ^b

899 Rescue assays were performed by crossing transgenic GFP::FBFs into loss of function mutant of
900 each *fbf*, followed by SPC zone size measurement (**Figure 6—figure supplement 1** and **Figure**
901 **7—figure supplement 1**). Dependence on CCR4-NOT was defined as a decrease in SPC zone size
902 after knocking down CCR4-NOT subunits. ^a – analyzed in single *fbf* loss-of-function mutants,
903 **Figure 3B**. ^b – analyzed in the strains containing GFP::FBF transgenes in *fbf-1 fbf-2* double-
904 mutant background, **Figures 6D** and **7D**.

905

906

907

908

909 **REFERENCES**

910 Aleem E, Kiyokawa H, Kaldis P. 2005. Cdc2-cyclin E complexes regulate the G1/S phase transition. *Nat Cell Biol* 7(8):831-6.

911 Asaoka-Taguchi M, Yamada M, Nakamura A, Hanyu K, Kobayashi S. 1999. Maternal Pumilio acts together with Nanos in germline development in *Drosophila* embryos. *Nat Cell Biol* 1(7):431-7.

912 Austin J, Kimble J. 1987. *glp-1* is required in the germ line for regulation of the decision between mitosis and meiosis in *C. elegans*. *Cell* 51(4):589-99.

913 Becker KA, Ghule PN, Therrien JA, Lian JB, Stein JL, van Wijnen AJ, Stein GS. 2006. Self-renewal of human embryonic stem cells is supported by a shortened G1 cell cycle phase. *J Cell Physiol* 209(3):883-93.

914 Bernstein D, Hook B, Hajarnavis A, Opperman L, Wickens M. 2005. Binding specificity and mRNA targets of a *C. elegans* PUF protein, FBF-1. *RNA* 11(4):447-58.

915 Berthet C, Morera AM, Asensio MJ, Chauvin MA, Morel AP, Dijoud F, Magaud JP, Durand P, Rouault JP. 2004. CCR4-associated factor CAF1 is an essential factor for spermatogenesis. *Mol Cell Biol* 24(13):5808-20.

916 Brenner JL, Schedl T. 2016. Germline Stem Cell Differentiation Entails Regional Control of Cell Fate Regulator GLD-1 in *Caenorhabditis elegans*. *Genetics* 202(3):1085-103.

917 Brenner S. 1974. The genetics of *Caenorhabditis elegans*. *Genetics* 77(1):71-94.

918 Chao HX, Fakhreddin RI, Shimerov HK, Kedziora KM, Kumar RJ, Perez J, Limas JC, Grant GD, Cook JG, Gupta GP et al. . 2019. Evidence that the human cell cycle is a series of uncoupled, memoryless phases. *Mol Syst Biol* 15(3):e8604.

919 Chen C, Fingerhut JM, Yamashita YM. 2016. The ins(ide) and outs(ide) of asymmetric stem cell division. *Curr Opin Cell Biol* 43:1-6.

920 Chen D, Zheng W, Lin A, Uyhazi K, Zhao H, Lin H. 2012. Pumilio 1 suppresses multiple activators of p53 to safeguard spermatogenesis. *Curr Biol* 22(5):420-5.

921 Chuykin IA, Lianguzova MS, Pospelova TV, Pospelov VA. 2008. Activation of DNA damage response signaling in mouse embryonic stem cells. *Cell Cycle* 7(18):2922-8.

922 Collart MA, Kassem S, Villanyi Z. 2017. Mutations in the. *Front Genet* 8:61.

923 Costes SV, Daelemans D, Cho EH, Dobbin Z, Pavlakis G, Lockett S. 2004. Automatic and quantitative measurement of protein-protein colocalization in live cells. *Biophys J* 86(6):3993-4003.

924 Cotsarelis G, Sun TT, Lavker RM. 1990. Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis. *Cell* 61(7):1329-37.

925 Crittenden SL, Bernstein DS, Bachorik JL, Thompson BE, Gallegos M, Petcherski AG, Moulder G, Barstead R, Wickens M, Kimble J. 2002. A conserved RNA-binding protein controls germline stem cells in *Caenorhabditis elegans*. *Nature* 417(6889):660-3.

926 Crittenden SL, Leonhard KA, Byrd DT, Kimble J. 2006. Cellular analyses of the mitotic region in the *Caenorhabditis elegans* adult germ line. *Mol Biol Cell* 17(7):3051-61.

927 Dickinson DJ, Ward JD, Reiner DJ, Goldstein B. 2013. Engineering the *Caenorhabditis elegans* genome using Cas9-triggered homologous recombination. *Nat Methods* 10(10):1028-34.

928 Eckmann CR, Crittenden SL, Suh N, Kimble J. 2004. GLD-3 and control of the mitosis/meiosis decision in the germline of *Caenorhabditis elegans*. *Genetics* 168(1):147-60.

929 Ellenbecker M, Osterli E, Wang X, Day NJ, Baumgarten E, Hickey B, Voronina E. 2019. Dynein Light Chain DLC-1 Facilitates the Function of the Germline Cell Fate Regulator GLD-1 in. *Genetics* 211(2):665-681.

930 Fox PM, Schedl T. 2015. Analysis of Germline Stem Cell Differentiation Following Loss of GLP-1 Notch Activity in *Caenorhabditis elegans*. *Genetics* 201(1):167-84.

955 Fox PM, Vought VE, Hanazawa M, Lee MH, Maine EM, Schedl T. 2011. Cyclin E and CDK-2 regulate
956 proliferative cell fate and cell cycle progression in the *C. elegans* germline. *Development*
957 138(11):2223-34.

958 Fredriksson S, Gullberg M, Jarvius J, Olsson C, Pietras K, Gústafsdóttir SM, Ostman A, Landegren U. 2002.
959 Protein detection using proximity-dependent DNA ligation assays. *Nat Biotechnol* 20(5):473-7.

960 Frøkjaer-Jensen C, Davis MW, Hopkins CE, Newman BJ, Thummel JM, Olesen SP, Grunnet M, Jorgensen
961 EM. 2008. Single-copy insertion of transgenes in *Caenorhabditis elegans*. *Nat Genet*
962 40(11):1375-83.

963 Frøkjær-Jensen C, Jain N, Hansen L, Davis MW, Li Y, Zhao D, Rebora K, Millet JRM, Liu X, Kim SK et al. .
964 2016. An Abundant Class of Non-coding DNA Can Prevent Stochastic Gene Silencing in the
965 *C. elegans* Germline. *Cell* 166(2):343-357.

966 Fu Z, Geng C, Wang H, Yang Z, Weng C, Li H, Deng L, Liu L, Liu N, Ni J et al. . 2015. Twin Promotes the
967 Maintenance and Differentiation of Germline Stem Cell Lineage through Modulation of Multiple
968 Pathways. *Cell Rep* 13(7):1366-1379.

969 Furuta T, Joo HJ, Trimmer KA, Chen SY, Arur S. 2018. GSK-3 promotes S-phase entry and progression in.
970 *Development* 145(10).

971 Galgano A, Forrer M, Jaskiewicz L, Kanitz A, Zavolan M, Gerber AP. 2008. Comparative analysis of mRNA
972 targets for human PUF-family proteins suggests extensive interaction with the miRNA regulatory
973 system. *PLoS One* 3(9):e3164.

974 Garcia-Muse T, Boulton SJ. 2005. Distinct modes of ATR activation after replication stress and DNA
975 double-strand breaks in *Caenorhabditis elegans*. *EMBO J* 24(24):4345-55.

976 Gerber AP, Herschlag D, Brown PO. 2004. Extensive association of functionally and cytotypically related
977 mRNAs with Puf family RNA-binding proteins in yeast. *PLoS Biol* 2(3):E79.

978 Goldstrohm AC, Hook BA, Seay DJ, Wickens M. 2006. PUF proteins bind Pop2p to regulate messenger
979 RNAs. *Nat Struct Mol Biol* 13(6):533-9.

980 Goldstrohm AC, Wickens M. 2008. Multifunctional deadenylase complexes diversify mRNA control. *Nat
981 Rev Mol Cell Biol* 9(4):337-44.

982 Guevara C, Korver W, Mahony D, Parry D, Seghezzi W, Shanahan F, Lees E. 1999. Regulation of G1/S
983 transition in mammalian cells. *Kidney Int* 56(4):1181-92.

984 Hafner M, Landthaler M, Burger L, Khorshid M, Hausser J, Berninger P, Rothbäller A, Ascano M,
985 Jungkamp AC, Munschauer M et al. . 2010. Transcriptome-wide identification of RNA-binding
986 protein and microRNA target sites by PAR-CLIP. *Cell* 141(1):129-41.

987 Hansen D, Hubbard EJ, Schedl T. 2004. Multi-pathway control of the proliferation versus meiotic
988 development decision in the *Caenorhabditis elegans* germline. *Dev Biol* 268(2):342-57.

989 Hansen D, Schedl T. 2013. Stem cell proliferation versus meiotic fate decision in *Caenorhabditis elegans*.
990 *Adv Exp Med Biol* 757:71-99.

991 Hook BA, Goldstrohm AC, Seay DJ, Wickens M. 2007. Two yeast PUF proteins negatively regulate a single
992 mRNA. *J Biol Chem* 282(21):15430-8.

993 Joly W, Chartier A, Rojas-Rios P, Busseau I, Simonelig M. 2013. The CCR4 deadenylase acts with Nanos
994 and Pumilio in the fine-tuning of Mei-P26 expression to promote germline stem cell self-
995 renewal. *Stem Cell Reports* 1(5):411-24.

996 K U. 2019. Pumilio Proteins Exert Distinct Biological Functions and Multiple Modes of Post-
997 Transcriptional Regulation in Embryonic Stem Cell Pluripotency and Early Embryogenesis. In: Y Y,
998 editor.: BioRxiv.

999 Kadyrova LY, Habara Y, Lee TH, Wharton RP. 2007. Translational control of maternal Cyclin B mRNA by
1000 Nanos in the *Drosophila* germline. *Development* 134(8):1519-27.

1001 Kalchhauser I, Farley BM, Pauli S, Ryder SP, Ciosk R. 2011. FBF represses the Cip/Kip cell-cycle inhibitor
1002 CKI-2 to promote self-renewal of germline stem cells in *C. elegans*. *EMBO J* 30(18):3823-9.

1003 Kamath RS, Ahringer J. 2003. Genome-wide RNAi screening in *Caenorhabditis elegans*. *Methods*
1004 30(4):313-21.

1005 Karella MS, Sage J, Wernig M. 2015. Crosstalk between stem cell and cell cycle machineries. *Curr Opin*
1006 *Cell Biol* 37:68-74.

1007 Kedde M, van Kouwenhove M, Zwart W, Oude Vrielink JA, Elkon R, Agami R. 2010. A Pumilio-induced
1008 RNA structure switch in p27-3' UTR controls miR-221 and miR-222 accessibility. *Nat Cell Biol*
1009 12(10):1014-20.

1010 Kershner AM, Kimble J. 2010. Genome-wide analysis of mRNA targets for *Caenorhabditis elegans* FBF, a
1011 conserved stem cell regulator. *Proc Natl Acad Sci U S A* 107(8):3936-41.

1012 Kimble J, Crittenden SL. 2007. Controls of germline stem cells, entry into meiosis, and the sperm/oocyte
1013 decision in *Caenorhabditis elegans*. *Annu Rev Cell Dev Biol* 23:405-33.

1014 Kocsisova Z, Mohammad A, Kornfeld K, Schedl T. 2018. Cell Cycle Analysis in the *C. elegans* Germline
1015 with the Thymidine Analog EdU. *J Vis Exp*(140).

1016 Kotani T, Yasuda K, Ota R, Yamashita M. 2013. Cyclin B1 mRNA translation is temporally controlled
1017 through formation and disassembly of RNA granules. *J Cell Biol* 202(7):1041-55.

1018 Kumsta C, Hansen M. 2012. *C. elegans* rrf-1 mutations maintain RNAi efficiency in the soma in addition
1019 to the germline. *PLoS One* 7(5):e35428.

1020 Lamont LB, Crittenden SL, Bernstein D, Wickens M, Kimble J. 2004. FBF-1 and FBF-2 regulate the size of
1021 the mitotic region in the *C. elegans* germline. *Dev Cell* 7(5):697-707.

1022 Lange C, Calegari F. 2010. Cdk5 and cyclins link G1 length and differentiation of embryonic, neural and
1023 hematopoietic stem cells. *Cell Cycle* 9(10):1893-900.

1024 Lin K, Qiang W, Zhu M, Ding Y, Shi Q, Chen X, Zsiros E, Wang K, Yang X, Kurita T et al. . 2019. Mammalian
1025 Pum1 and Pum2 Control Body Size via Translational Regulation of the Cell Cycle Inhibitor
1026 Cdkn1b. *Cell Rep* 26(9):2434-2450.e6.

1027 Lindqvist A, Rodríguez-Bravo V, Medema RH. 2009. The decision to enter mitosis: feedback and
1028 redundancy in the mitotic entry network. *J Cell Biol* 185(2):193-202.

1029 Merritt C, Rasoloson D, Ko D, Seydoux G. 2008. 3' UTRs are the primary regulators of gene expression in
1030 the *C. elegans* germline. *Curr Biol* 18(19):1476-82.

1031 Merritt C, Seydoux G. 2010. The Puf RNA-binding proteins FBF-1 and FBF-2 inhibit the expression of
1032 synaptonemal complex proteins in germline stem cells. *Development* 137(11):1787-98.

1033 Mesa KR, Kawaguchi K, Cockburn K, Gonzalez D, Boucher J, Xin T, Klein AM, Greco V. 2018. Homeostatic
1034 Epidermal Stem Cell Self-Renewal Is Driven by Local Differentiation. *Cell Stem Cell* 23(5):677-
1035 686.e4.

1036 Michaelson D, Korta DZ, Capua Y, Hubbard EJ. 2010. Insulin signaling promotes germline proliferation in
1037 *C. elegans*. *Development* 137(4):671-80.

1038 Morris AR, Mukherjee N, Keene JD. 2008. Ribonomic analysis of human Pum1 reveals cis-trans
1039 conservation across species despite evolution of diverse mRNA target sets. *Mol Cell Biol*
1040 28(12):4093-103.

1041 Morrison SJ, Kimble J. 2006. Asymmetric and symmetric stem-cell divisions in development and cancer.
1042 *Nature* 441(7097):1068-74.

1043 Nakahata S, Kotani T, Mita K, Kawasaki T, Katsu Y, Nagahama Y, Yamashita M. 2003. Involvement of
1044 Xenopus Pumilio in the translational regulation that is specific to cyclin B1 mRNA during oocyte
1045 maturation. *Mech Dev* 120(8):865-80.

1046 Nakamura T, Yao R, Ogawa T, Suzuki T, Ito C, Tsunekawa N, Inoue K, Ajima R, Miyasaka T, Yoshida Y et
1047 al. . 2004. Oligo-astheno-teratozoospermia in mice lacking Cnot7, a regulator of retinoid X
1048 receptor beta. *Nat Genet* 36(5):528-33.

1049 Nousch M, Techritz N, Hampel D, Millonigg S, Eckmann CR. 2013. The Ccr4-Not deadenylase complex
1050 constitutes the main poly(A) removal activity in *C. elegans*. *J Cell Sci* 126(Pt 18):4274-85.

1051 Orford KW, Scadden DT. 2008. Deconstructing stem cell self-renewal: genetic insights into cell-cycle
1052 regulation. *Nat Rev Genet* 9(2):115-28.

1053 Ota R, Kotani T, Yamashita M. 2011. Biochemical characterization of Pumilio1 and Pumilio2 in *Xenopus*
1054 oocytes. *J Biol Chem* 286(4):2853-63.

1055 Pfaffl MW. 2001. A new mathematical model for relative quantification in real-time RT-PCR. *Nucleic
1056 Acids Res* 29(9):e45.

1057 Porter DF, Prasad A, Carrick BH, Kroll-Connor P, Wickens M, Kimble J. 2019. Toward Identifying
1058 Subnetworks from FBF Binding Landscapes in. *G3 (Bethesda)* 9(1):153-165.

1059 Prasad A, Porter DF, Kroll-Conner PL, Mohanty I, Ryan AR, Crittenden SL, Wickens M, Kimble J. 2016. The
1060 PUF binding landscape in metazoan germ cells. *RNA* 22(7):1026-43.

1061 Quenault T, Lithgow T, Traven A. 2011. PUF proteins: repression, activation and mRNA localization.
1062 *Trends Cell Biol* 21(2):104-12.

1063 Roy D, Michaelson D, Hochman T, Santella A, Bao Z, Goldberg JD, Hubbard EJA. 2016. Cell cycle features
1064 of *C. elegans* germline stem/progenitor cells vary temporally and spatially. *Dev Biol* 409(1):261-
1065 271.

1066 Salvetti A, Rossi L, Lena A, Batistoni R, Deri P, Rainaldi G, Locci MT, Evangelista M, Gremigni V. 2005.
1067 DjPum, a homologue of *Drosophila* Pumilio, is essential to planarian stem cell maintenance.
1068 *Development* 132(8):1863-74.

1069 Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld
1070 S, Schmid B et al. . 2012. Fiji: an open-source platform for biological-image analysis. *Nat
1071 Methods* 9(7):676-82.

1072 Schultz E. 1974. A quantitative study of the satellite cell population in postnatal mouse lumbrical muscle.
1073 *Anat Rec* 180(4):589-95.

1074 Schultz E. 1985. Satellite cells in normal, regenerating and dystrophic muscle. *Adv Exp Med Biol* 182:73-
1075 84.

1076 Seidel HS, Kimble J. 2015. Cell-cycle quiescence maintains *Caenorhabditis elegans* germline stem cells
1077 independent of GLP-1/Notch. *Elife* 4.

1078 Shan L, Wu C, Chen D, Hou L, Li X, Wang L, Chu X, Hou Y, Wang Z. 2017. Regulators of alternative
1079 polyadenylation operate at the transition from mitosis to meiosis. *J Genet Genomics* 44(2):95-
1080 106.

1081 Sijen T, Fleenor J, Simmer F, Thijssen KL, Parrish S, Timmons L, Plasterk RH, Fire A. 2001. On the role of
1082 RNA amplification in dsRNA-triggered gene silencing. *Cell* 107(4):465-76.

1083 Simons BD, Clevers H. 2011. Strategies for homeostatic stem cell self-renewal in adult tissues. *Cell*
1084 145(6):851-62.

1085 Snow MH. 1977. The effects of aging on satellite cells in skeletal muscles of mice and rats. *Cell Tissue Res*
1086 185(3):399-408.

1087 Stead E, White J, Faast R, Conn S, Goldstone S, Rathjen J, Dhingra U, Rathjen P, Walker D, Dalton S. 2002.
1088 Pluripotent cell division cycles are driven by ectopic Cdk2, cyclin A/E and E2F activities.
1089 *Oncogene* 21(54):8320-33.

1090 Suh N, Crittenden SL, Goldstrohm A, Hook B, Thompson B, Wickens M, Kimble J. 2009. FBF and its dual
1091 control of gld-1 expression in the *Caenorhabditis elegans* germline. *Genetics* 181(4):1249-60.

1092 Sönnichsen B, Koski LB, Walsh A, Marschall P, Neumann B, Brehm M, Alleaume AM, Artelt J, Bettencourt
1093 P, Cassin E et al. . 2005. Full-genome RNAi profiling of early embryogenesis in *Caenorhabditis*
1094 elegans. *Nature* 434(7032):462-9.

1095 Timmons L, Fire A. 1998. Specific interference by ingested dsRNA. *Nature* 395(6705):854.

1096 Uyhazi K, Yang Y, Liu N, H. Q, Huang X, W. M, S. W, X. S, H. L. 2019. Pumilio Proteins Exert Distinct
1097 Biological Functions and Multiple Modes of Post-Transcriptional Regulation in Embryonic Stem
1098 Cell Pluripotency and Early Embryogenesis. *BioRxiv*. doi: <https://doi.org/10.1101/751909>

1099 van der Voet M, Lorson MA, Srinivasan DG, Bennett KL, van den Heuvel S. 2009. *C. elegans* mitotic
1100 cyclins have distinct as well as overlapping functions in chromosome segregation. *Cell Cycle*
1101 8(24):4091-102.

1102 Van Etten J, Schagat TL, Hrit J, Weidmann CA, Brumbaugh J, Coon JJ, Goldstrohm AC. 2012. Human
1103 Pumilio proteins recruit multiple deadenylases to efficiently repress messenger RNAs. *J Biol*
1104 *Chem* 287(43):36370-83.

1105 Vardy L, Orr-Weaver TL. 2007. The Drosophila PNG kinase complex regulates the translation of cyclin B.
1106 *Dev Cell* 12(1):157-66.

1107 Voronina E, Paix A, Seydoux G. 2012. The P granule component PGL-1 promotes the localization and
1108 silencing activity of the PUF protein FBF-2 in germline stem cells. *Development* 139(20):3732-40.

1109 Wahle E, Winkler GS. 2013. RNA decay machines: deadenylation by the Ccr4-not and Pan2-Pan3
1110 complexes. *Biochim Biophys Acta* 1829(6-7):561-70.

1111 Wang X, Olson JR, Rasoloson D, Ellenbecker M, Bailey J, Voronina E. 2016. Dynein light chain DLC-1
1112 promotes localization and function of the PUF protein FBF-2 in germline progenitor cells.
1113 *Development* 143(24):4643-4653.

1114 Webster MW, Stowell JA, Passmore LA. 2019. RNA-binding proteins distinguish between similar
1115 sequence motifs to promote targeted deadenylation by Ccr4-Not. *Elife* 8.

1116 Weidmann CA, Goldstrohm AC. 2012. Drosophila Pumilio protein contains multiple autonomous
1117 repression domains that regulate mRNAs independently of Nanos and brain tumor. *Mol Cell Biol*
1118 32(2):527-40.

1119 Weidmann CA, Raynard NA, Blewett NH, Van Etten J, Goldstrohm AC. 2014. The RNA binding domain of
1120 Pumilio antagonizes poly-adenosine binding protein and accelerates deadenylation. *RNA*
1121 20(8):1298-319.

1122 White J, Dalton S. 2005. Cell cycle control of embryonic stem cells. *Stem Cell Rev* 1(2):131-8.

1123 Wickens M, Bernstein DS, Kimble J, Parker R. 2002. A PUF family portrait: 3'UTR regulation as a way of
1124 life. *Trends Genet* 18(3):150-7.

1125 Wilinski D, Qiu C, Lapointe CP, Nevil M, Campbell ZT, Tanaka Hall TM, Wickens M. 2015. RNA regulatory
1126 networks diversified through curvature of the PUF protein scaffold. *Nat Commun* 6:8213.

1127 Zhang B, Gallegos M, Puoti A, Durkin E, Fields S, Kimble J, Wickens MP. 1997. A conserved RNA-binding
1128 protein that regulates sexual fates in the *C. elegans* hermaphrodite germ line. *Nature*
1129 390(6659):477-84.

1130

1131

1132

1133 **Complementary activities of PUF family proteins FBF-1 and FBF-2 regulate**
1134 **germline stem and progenitor cell proliferation and differentiation in *C. elegans***

1135

1136 Xiaobo Wang, Mary Ellenbecker, Benjamin Hickey, Nicholas J. Day

1137 and Ekaterina Voronina*

1138

1139

1140 **Supplemental Materials**

1141

1142

1143

1144

1145 **Supplemental Materials and Methods**

1146

1147 **EdU labeling**

1148 G2-phase length and differentiation rate of germ cells were measured by feeding *C. elegans* EdU-labeled
1149 bacteria for varying amounts of time at 24°C (Crittenden and others 2006; Fox and others 2011;
1150 Kocsisova and others 2018). Assays for G2 length and differentiation rate were repeated for 3 or 4 times.
1151 EdU bacteria plates were prepared by diluting an overnight culture of thymine deficient MG1693 *E. coli*
1152 (The Coli Genetic Stock Center; Yale University) 1/25 in 1% glucose, 1mM MgSO₄, 5 µg/mL thymine, 6
1153 µM thymidine and 20 µM EdU in M9 minimal media. This culture was grown at 37°C for 24 hours,
1154 pelleted by centrifugation, resuspended in 10 mL M9 minimal media and plated on 60-mm NNGM
1155 plates. Worm strains were synchronized by bleaching, hatched overnight and L1 larvae were cultured on
1156 OP50 plates at 24°C for ~50 hours to reach young adult stage, when they were exposed to EdU-labeled
1157 bacteria. After feeding for specified time, worms were picked off EdU plates, dissected on poly-L-lysine
1158 treated slides, frozen on dry ice and fixed in ice-cold 100% methanol for 1 min followed by 2%
1159 paraformaldehyde/100 mM K₂HPO₄ pH 7.2 for 5 min. Next, slides were blocked in PBS/0.1% BSA/0.1%
1160 Tween-20 (PBS-T/BSA) for 30 min at room temperature. Samples were incubated with primary
1161 antibodies against either phospho-Histone H3 or REC-8 (Supplemental Table 2). After overnight
1162 incubation with primary antibody slides were washed 3x10 min with PBS-T/BSA and incubated with
1163 secondary antibody for 1.5 hours at room temperature. Secondary antibodies were either Alexa Fluor
1164 594-conjugated goat anti-mouse IgG (H+L) or Alexa Fluor 594-conjugated goat anti-rabbit IgG (H+L)
1165 respectively (Supplemental Table 2). After incubation with secondary antibody slides were washed 4x15
1166 min with PBS-T/BSA. Next the Click-iT reaction was performed according to the manufacturer's
1167 instructions (Molecular Probes) with the exception that 2x30 min Click-iT reactions were performed to
1168 increase the signal of the Alexa 488 dye. After incubation with the second Click-iT reaction, slides were

1169 washed 4x15 min with PBS-T/BSA. Vectashield with DAPI (Vector Laboratories) was added to each
1170 sample before cover-slipping. Immunostained germline images were captured as z-stacks spanning the
1171 thickness of each germline using a Leica DM5500B microscope for a total of 7-14 germlines per each
1172 replicate time point. Nuclei were manually counted using the Cell Counter plug-in in Fiji (Schindelin and
1173 others 2012) and the Marks-to-Cells R script (Seidel and Kimble 2015) was used to remove multiply-
1174 counted nuclei.

1175

1176 **G2 length and differentiation rate analysis**

1177 To calculate the **median duration of G2-phase** animals were fed EdU and collected at 30-minute
1178 intervals from 0 to 3.5 hours. Germ cells were co-labeled with anti-pH3 antibody and the fraction of M-
1179 phase nuclei that have also completed G2-phase was determined by dividing the number of pH3 and
1180 EdU positive nuclei by the total number of pH3 positive nuclei. The percent pH3 and EdU positive nuclei
1181 was plotted on the y-axis against the duration of the EdU label on the x-axis and the data were fit to a
1182 sigmoidal varying slope curve using GraphPad Prism software, with top and bottom constrained at 100
1183 and 0 respectively (Figure 1—figure supplement 1B). The t_{50} value of the sigmoidal dose-response model
1184 was taken as the median duration of G2-phase, or the time at which 50% of pH3 positive cells are also
1185 EdU positive.

1186

1187 The **rate of meiotic entry** was calculated by feeding the worms EdU labeled bacteria for 3, 6 or 10 hours
1188 and co-labeling the germ cells with anti-REC-8 antibody. The number of nuclei that had entered meiosis
1189 in the time since EdU exposure based on being REC-8 negative and EdU positive were counted for each
1190 time point. The number of nuclei that entered meiosis was plotted on the y-axis and the duration of the
1191 EdU label was plotted on the x-axis in GraphPad Prism software. Linear regression analysis was used to
1192 calculate the slope, which corresponds to the number of cells that have entered meiosis per hour.

1193 **Supplemental Table 1**

1194 Nematode strains used in this study

Genotype	Transgene description	Strain	Reference
Mutant Strains; no transgene			
<i>fbf-1(ok91) II</i>	-	JK3022	(Crittenden and others 2002)
<i>fbf-2(q738) II</i>	-	JK3101	(Lamont and others 2004)
<i>glp-1(ar202) III</i>	-	GC833	(Pepper and others 2003)
<i>fbf-1(ok91) II; glp-1(ar202) III</i>	-	UMT321	this study
<i>fbf-2(q738)/mln1[mls14 dpy-10(e128)] II; glp-1(ar202) III</i>	-	UMT336	this study
Transgenes; GFP::H2B::3'UTR			
<i>rrf-1(pk1417) I; axls1922[pCM1.252]</i>	<i>pie-1</i> prom::GFP::H2B:: <i>htp-2</i> 3'UTR + <i>unc-119</i> (+)	UMT403	this study
<i>rrf-1(pk1417)/hT2 [bli-4(e937) let-?(q782) qls48] I; fbf-1(ok91) II; axls1922[pCM1.252]</i>	<i>pie-1</i> prom::GFP::H2B:: <i>htp-2</i> 3'UTR + <i>unc-119</i> (+)	UMT408	this study
<i>rrf-1(pk1417) I; fbf-2(q738) II; axls1922[pCM1.252]</i>	<i>pie-1</i> prom::GFP::H2B:: <i>htp-2</i> 3'UTR + <i>unc-119</i> (+)	UMT393	this study
Transgenes; ORF+3'UTR			
<i>fbf-2(q738) II; mntSi30 (pXW6.29; 3xFLAG::CYB-2.1) unc-119(ed3) III</i>	<i>gld-1</i> prom::3xFLAG::CYB-2.1::cyb-2.1 3'UTR + <i>unc-119</i> (+)	UMT409	this study
<i>fbf-2(q738) II; mntSi29 (pXW6.30; 3xFLAG::CYB-2.1fbm) unc-119(ed3) III</i>	<i>gld-1</i> prom::3xFLAG::CYB-2.1::cyb-2.1 3'UTR(fbm) + <i>unc-119</i> (+)	UMT406	this study
<i>mntSi23 (pXW6.24; 3xFLAG::CCF-1) II; unc-119(ed3) III</i>	<i>gld-1</i> prom::3xFLAG::CCF-1::ccf-1 3'UTR + <i>unc-119</i> (+)	UMT360	this study
<i>mntSi23 (pXW6.24; 3xFLAG::CCF-1) II; mntSi28 (pXW6.27; ceGFP::FBF-1) unc-119(ed3) III</i>	<i>gld-1</i> prom::3xFLAG::CCF-1::ccf-1 3'UTR + <i>unc-119</i> (+); <i>gld-1</i> prom::ceGFP::FBF-1:: <i>fbf-1</i> 3'UTR + <i>unc-119</i> (+)	UMT413	this study
<i>mntSi23 (pXW6.24; 3xFLAG::CCF-1) II; mntSi27 (pXW6.26; ceGFP::FBF-2) unc-119(ed3) III</i>	<i>gld-1</i> prom::3xFLAG::CCF-1::ccf-1 3'UTR + <i>unc-119</i> (+); <i>gld-1</i> prom::ceGFP::FBF-2:: <i>fbf-2</i> 3'UTR + <i>unc-119</i> (+)	UMT385	this study
<i>mntSi23 (pXW6.24; 3xFLAG::CCF-1) II; mntSi21 (pXW6.22; ceGFP) unc-119(ed3) III</i>	<i>gld-1</i> prom::3xFLAG::CCF-1::ccf-1 3'UTR + <i>unc-119</i> (+); <i>gld-1</i> prom::ceGFP:: <i>fbf-1</i> 3'UTR + <i>unc-119</i> (+)	UMT416	this study
<i>fbf-1(ok91) fbf-2(q704) II; mntSi28 (pXW6.27; ceGFP::FBF-1) unc-119(ed3) III; him-8(tm611) IV</i>	<i>gld-1</i> prom::patcGFP::FBF-1:: <i>fbf-1</i> 3'UTR + <i>unc-119</i> (+)	UMT392	this study
<i>fbf-1(ok91) fbf-2(q704) II; mntSi27 (pXW6.26; ceGFP::FBF-2) unc-119(ed3) III</i>	<i>gld-1</i> prom::patcGFP::FBF-2:: <i>fbf-2</i> 3'UTR + <i>unc-119</i> (+)	UMT382	this study

<i>fbf-1(ok91) fbf-2(q704) II; mntSi16 (pXW6.05; LAP::FBF-2(vrm)) unc-119(ed3) III</i>	<i>fbf-2</i> prom::LAP::FBF-2(vrm):: <i>fbf-2</i> 3'UTR + <i>unc-119</i> (+)	UMT295	(Wang and others 2016)
<i>fbf-1(ok91) fbf-2(q704) II; mntSi26 (pXW6.25; ceGFP::FBF-1(vr3sw)) unc-119(ed3) III</i>	<i>gld-1</i> prom::patcGFP::FBF-1(vr3 of FBF-2):: <i>fbf-1</i> 3'UTR + <i>unc-119</i> (+)	UMT381	this study
<i>fbf-1(ok91) fbf-2(q704) II; mntSi31 (pXW6.31; ceGFP::FBF-1(vr4sw)) unc-119(ed3) III</i>	<i>gld-1</i> prom::patcGFP::FBF-1(vr4 of FBF-2):: <i>fbf-1</i> 3'UTR + <i>unc-119</i> (+)	UMT418	this study
<i>fbf-1(ok91) II; axls1471 (pCM4.06; GFP::FBF-1)</i>	<i>pie-1</i> prom::GFP::FBF-1:: <i>fbf-1</i> 3'UTR + <i>unc-119</i> (+)	UMT240	this study
<i>fbf-1(ok91) II; axls2000 (pEV1.05; LAP::FBF-2)</i>	<i>pie-1</i> prom::LAP::FBF-2:: <i>fbf-2</i> 3'UTR + <i>unc-119</i> (+)	UMT136	this study
<i>fbf-1(ok91) II; mntSi26 (pXW6.25; ceGFP::FBF-1(vr3sw)) unc-119(ed3) III</i>	<i>gld-1</i> prom::patcGFP::FBF-1(vr3 of FBF-2):: <i>fbf-1</i> 3'UTR + <i>unc-119</i> (+)	UMT402	this study
<i>fbf-1(ok91) II; mntSi31 (pXW6.31; ceGFP::FBF-1(vr4sw)) unc-119(ed3) III</i>	<i>gld-1</i> prom::patcGFP::FBF-1(vr4 of FBF-2):: <i>fbf-1</i> 3'UTR + <i>unc-119</i> (+)	UMT419	this study
<i>fbf-1(ok91) II; mntSi16 (pXW6.05; LAP::FBF-2(vrm)) unc-119(ed3) III</i>	<i>fbf-2</i> prom::LAP::FBF-2(vrm):: <i>fbf-2</i> 3'UTR + <i>unc-119</i> (+)	UMT256	this study
<i>fbf-2(q738) II; axls1471 (pCM4.06; GFP::FBF-1) IV</i>	<i>pie-1</i> prom::GFP::FBF-1:: <i>fbf-1</i> 3'UTR + <i>unc-119</i> (+)	UMT166	this study
<i>fbf-2(q738) II; axls2000 (pEV1.05; LAP::FBF-2)</i>	<i>pie-1</i> prom::LAP::FBF-2:: <i>fbf-2</i> 3'UTR + <i>unc-119</i> (+)	UMT137	(Wang and others 2016)
<i>fbf-2(q738) II; mntSi26 (pXW6.25; ceGFP::FBF-1(vr3sw)) unc-119(ed3) III</i>	<i>gld-1</i> prom::patcGFP::FBF-1(vr3 of FBF-2):: <i>fbf-1</i> 3'UTR + <i>unc-119</i> (+)	UMT412	this study
<i>fbf-2(q738) II; mntSi31 (pXW6.31; ceGFP::FBF-1(vr4sw)) unc-119(ed3) III</i>	<i>gld-1</i> prom::patcGFP::FBF-1(vr4 of FBF-2):: <i>fbf-1</i> 3'UTR + <i>unc-119</i> (+)	UMT417	this study
<i>fbf-2(q738) II; mntSi16 (pXW6.05; LAP::FBF-2(vrm)) unc-119(ed3) III</i>	<i>fbf-2</i> prom::LAP::FBF-2(vrm):: <i>fbf-2</i> 3'UTR + <i>unc-119</i> (+)	UMT297	this study

1195

1196

1197 **Supplemental Table 2**

1198 **Antibodies used in the study**

1199

Antibody	Source or Reference	Catalog Number or Designation	Dilution
Immunostaining, Primary Antibodies			
Mouse anti-FLAG, IgG1	Sigma-Aldrich	F1804	1:1,000
Rabbit monoclonal anti-GFP, IgG	Thermo-Fisher	G10362	1:200
Mouse anti-phospho-Histone H3 pSer10 6G3, IgG1	Cell Signaling Technology	9706	1:400
Rabbit anti-REC-8, IgG	Novus Biologicals	29470002	1:500
Mouse anti-PGL-1, IgM	DSHB	K76	5.2 µg/ml
Rabbit anti-FBF-1, IgG	(Voronina and others 2012)	PA2388	3.5 µg/ml
Immunostaining, Secondary Antibodies			
Alexa Fluor 594-conjugated goat anti-mouse IgG (H+L)	Jackson ImmunoResearch		1:500
Alexa Fluor 594-conjugated goat anti-rabbit IgG (H+L)	Jackson ImmunoResearch		1:500
Alexa Fluor 488-conjugated goat anti-rabbit IgG	Jackson ImmunoResearch		1:500
Alexa-594 goat anti-mouse IgM	Jackson ImmunoResearch		1:500
PLA, Primary Antibodies			
Mouse anti-FLAG, IgG1	Sigma-Aldrich	F1804	1:1,000
Rabbit monoclonal anti-GFP, IgG	Thermo-Fisher	G10362	1:40,000
Western blotting, Primary Antibodies			
Mouse anti-FLAG, IgG1	Sigma-Aldrich	F1804	1:1,000
Mouse anti-Tubulin DM1A	Sigma-Aldrich	T6199	1:300
Rabbit anti-FBF-1, IgG	(Voronina and others 2012)	PA2388	5.2 µg/ml
Western blotting, Secondary Antibodies			
HRP anti-mouse	Jackson ImmunoResearch		1:5000
HRP anti-rabbit	Jackson ImmunoResearch		1:5000

1200

1201

1202

1203 **Supplemental Table 3**

1204 Embryo lethality resulting from CCR4-NOT knockdown in the parent generation. The data were obtained
1205 in two independent experiments.

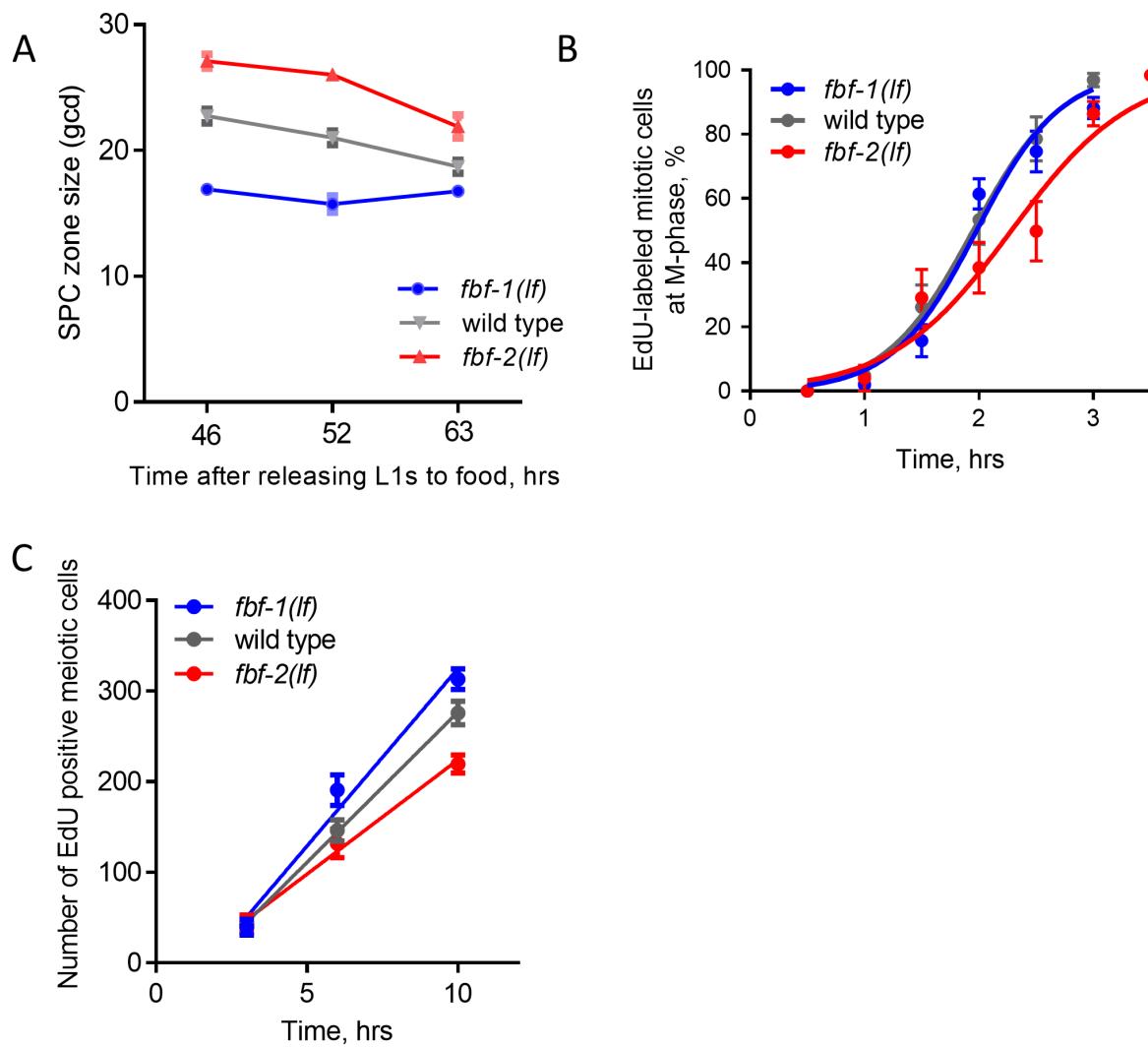
1206

genotype	RNAi	<i>N</i>	% Embryo lethality
wild type	vector	483	0
	<i>let-711</i>	287	49
	<i>ccf-1</i>	166	26
	<i>ccr-4</i>	556	19
<i>fbf-1(lf)</i>	vector	342	1
	<i>let-711</i>	209	62
	<i>ccf-1</i>	127	41
	<i>ccr-4</i>	271	20
<i>fbf-2(lf)</i>	vector	361	0
	<i>let-711</i>	375	63
	<i>ccf-1</i>	108	77
	<i>ccr-4</i>	191	22

1207

1208

1209 **Supplemental Figures**


1210

1211 **Figure 1—figure supplement 1. SPC dynamics in different genetic backgrounds.** (A) SPC zone length
1212 measured as the germ cell diameters (gcd) spanning the stem and progenitor cell zone. X-axis: the time
1213 after release of synchronized L1s from starvation at 24°C. 46 hrs, L4; 52 hrs, young adult; 63 hrs, older
1214 adult. Plotted values are arithmetical means \pm S.E.M. 15-20 germlines were scored for each genotype at
1215 each time point. (B) Representative time course of EdU labeling of mitotic cells in different genetic
1216 backgrounds in one biological replicate. X-axis displays the times when animals were dissected for
1217 staining for EdU and pH3. Y-axis indicates the percent of pH3-positive germ cells that are also EdU
1218 positive. Plotted values are arithmetical means \pm SEM. 9-14 germlines were scored for each genotype at
1219 each time point in each individual biological replicate. The median G2 lengths were interpolated as the
1220 times when 50% of nuclei in M phase (pH3-positive) were labeled with EdU. (C) Meiotic entry rate of
1221 progenitors in different genetic backgrounds. Representative time course of accumulating EdU-labeled,
1222 REC-8 negative germ cells in different genetic backgrounds in one biological replicate X-axis displays
1223 time points when animals were dissected for staining for EdU and REC-8. Y-axis indicates the number of
1224 EdU-positive cells that are negative for REC-8. Plotted values are arithmetical means \pm S.E.M. 7-9
1225 germlines were scored for each genotype at each time point in each individual biological replicate. The
1226 data were fit to linear regression models, R values were between 0.87 and 0.94. The rates of meiotic
1227 entry were determined as the slopes of the regression lines.

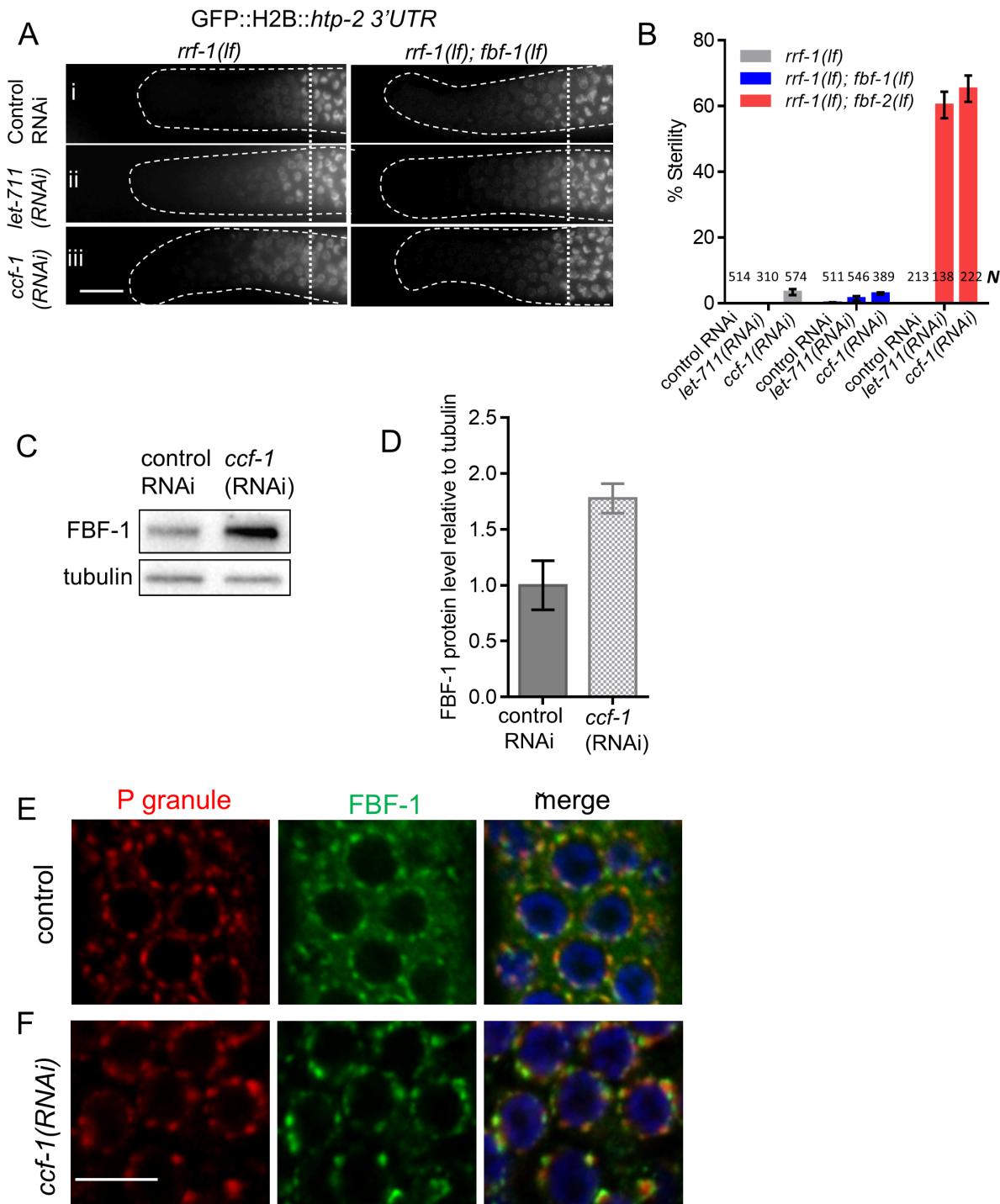
1228

Wang et al.

Figure 1- figure supplement 1

1229

1230


1231 **Figure 3—figure supplement 1. CCR4-NOT deadenylase complex promotes FBF-1 function in germline**

1232 **SPCs.** (A) Distal germlines of *rrf-1(lf)* and *rrf-1(lf); fbf-1(lf)* expressing GFP::Histone H2B fusion under the
1233 control of the *htp-2* 3'UTR after the indicated RNAi treatments. Genetic backgrounds are noted on top
1234 of each image column. Germlines are outlined with dashed lines and vertical dotted lines indicate the
1235 beginning of the transition zone. All images were taken with a standard exposure. Scale bar: 10 μ m.

1236 Efficiencies of RNAi treatments were assessed by sterility (panel B) or embryonic lethality (Supplemental
1237 Table 3). (B) Percentage of sterile worms after a knockdown of CCR4-NOT subunits in *rrf-1(lf)*, *rrf-1(lf);*
1238 *fbf-1(lf)* and *rrf-1(lf); fbf-2(lf)* genetic backgrounds. Data were collected from 3 independent
1239 experiments. *N*, the number of hermaphrodites scored. (C) A representative Western blot detecting
1240 endogenous FBF-1 following *ccf-1(RNAi)*. Tubulin is used as a control. (D) Endogenous FBF-1 protein
1241 levels following *ccf-1(RNAi)* determined by densitometry of the western blot results from 3 independent
1242 experiments normalized to tubulin. Plotted values are arithmetical means \pm S.E.M. (E, F) Confocal
1243 images of germline SPC zone co-immunostained for endogenous FBF-1 (green) and P granules (red) in
1244 empty vector RNAi control germlines (E) and after *ccf-1* knockdown (F). Scale bar: 5 μ m.

Wang et al.

Figure 3 – figure supplement 1

1246 **Figure 4—figure supplement 1. FBF-1 colocalizes with CCR4-NOT complex in germline SPCs. (A)**

1247 Confocal images of SPCs co-immunostained for GFP::FBF-1(red) and FLAG::CCF-1 (green). DNA staining

1248 (DAPI) is in blue. Arrows indicate complete overlap of FBF-1 and CCF-1 granules. Scale bar: 5 μ m. (B)

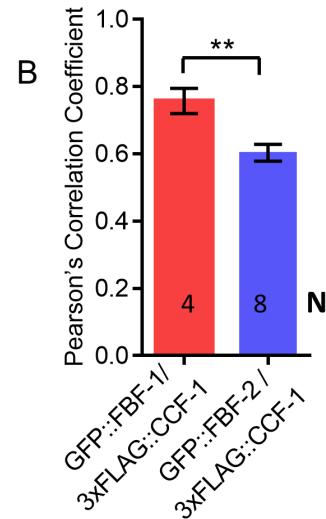
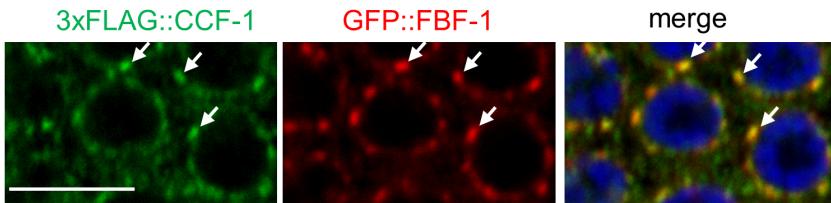
1249 Pearson's correlation analysis of the colocalization between GFP::FBF-1 and FLAG::CCF-1 granules in 4

1250 single confocal sections compared to GFP::FBF-2/FLAG::CCF-1. Plotted values are arithmetical means \pm

1251 S.E.M. Statistical analysis was performed by Student's t-test; asterisk marks statistically significant

1252 difference, $P<0.01$. The values for GFP::FBF-2/FLAG::CCF-1 colocalization are same as in Figure 4C. (C)

1253 Epifluorescent images showing PLA signals (greyscale) and expression of GFP::FBF-1, GFP::FBF-2, and



1254 GFP alone (green) in SPCs. DNA staining is in blue (DAPI). Genotypes are indicated above each image

1255 group. Scale bar: 10 μ m.

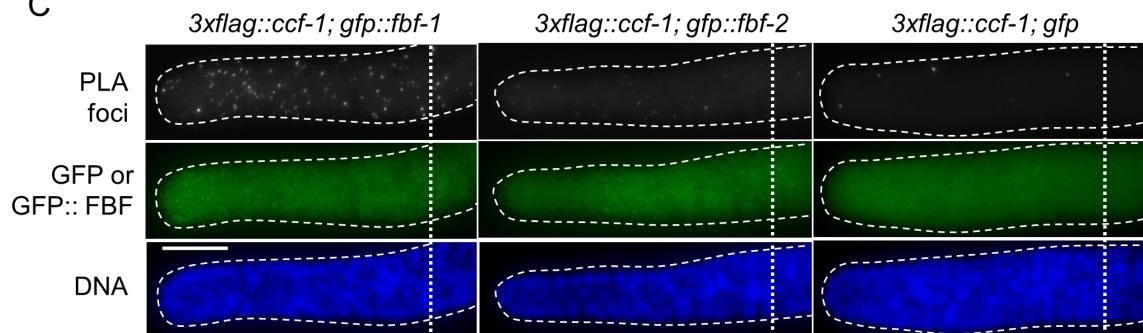
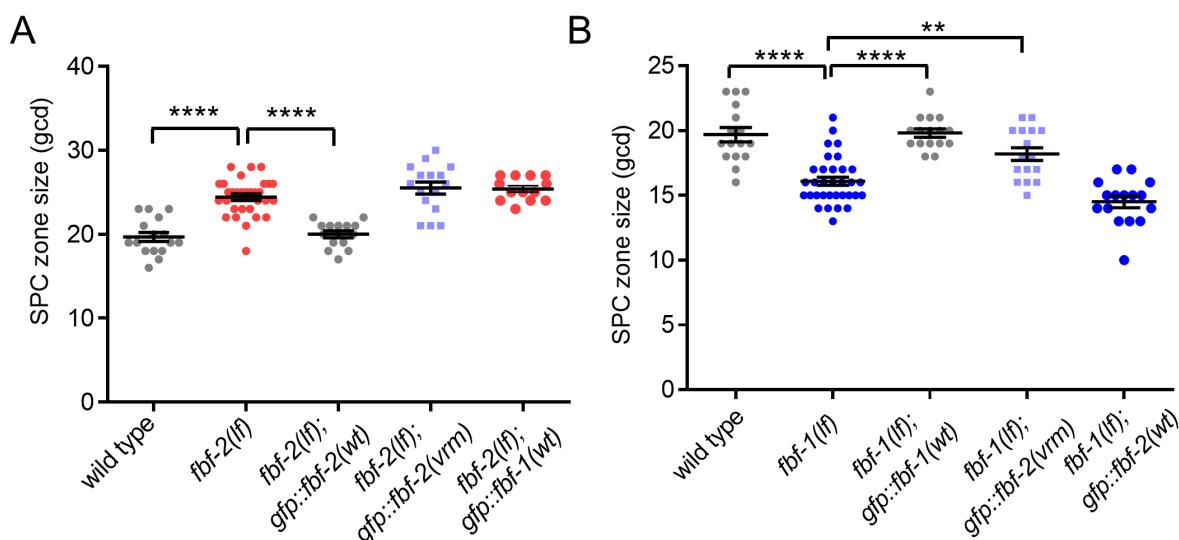

Wang et al.

Figure 4 – figure supplement 1

A

C


1256

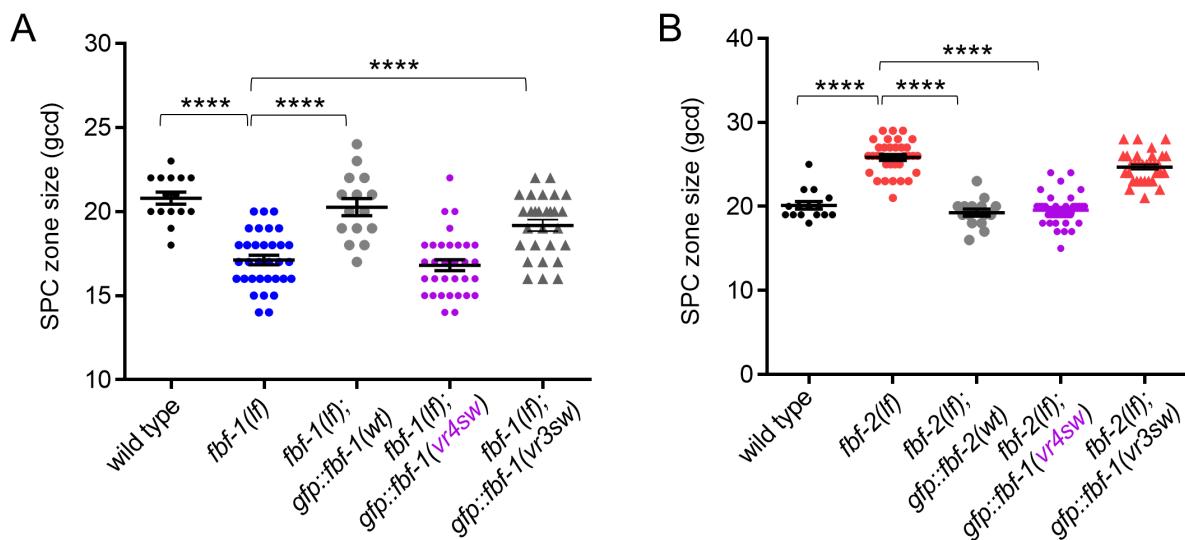
1257

1258 **Figure 6—figure supplement 1. Variable regions 1, 2 and 4 of FBF-2 are required to rescue FBF-2-**
1259 **specific function in germline SPCs.** (A) SPC zone sizes were measured after crossing the GFP::FBF-
1260 2(vrm), GFP::FBF-2(wt) and GFP::FBF-1(wt) transgenes into *fbf-2(lf)* genetic background. As controls, SPC
1261 zone sizes were also measured in *fbf-2(lf)* and the wild type. (B) SPC zone sizes were measured after
1262 crossing the GFP::FBF-2(vrm), GFP::FBF-1(wt) and GFP::FBF-2(wt) transgenes into *fbf-1(lf)* genetic
1263 background. As controls, SPC zone sizes were also measured in *fbf-1(lf)* and the wild type. (A, B) Plotted
1264 values are individual data points and arithmetical means \pm S.E.M. Differences in SPC zone size between
1265 *fbf-2(lf)* or *fbf-1(lf)* and all other strains in a given group were evaluated by one-way ANOVA test with
1266 Dunnett's post-test; asterisks mark statistically significant differences (****, $P < 0.0001$; ** $P < 0.01$). Data
1267 were collected from 2 independent experiments and 14-33 germlines were scored for each genotype.

Wang et al.

Figure 6 – figure supplement 1

1268


1269

1270 **Figure 7—figure supplement 1. Variable region 4 of FBF-2 allows chimeric FBF-1vr4 to rescue *fbf-2(lf)*.**

1271 (A) SPC zone sizes were measured after crossing the GFP::FBF-1(vr4sw), GFP::FBF-1(vr3sw) and
1272 GFP::FBF-1(wt) transgenes into *fbf-1(lf)* genetic background. As controls, SPC zone sizes were also
1273 measured in *fbf-1(lf)* and the wild type. (B) SPC zone sizes were measured after crossing the GFP::FBF-
1274 1(vr4sw), GFP::FBF-1(vr3sw) and GFP::FBF-2(wt) transgenes into *fbf-2(lf)* genetic background. As
1275 controls, SPC zone sizes were also measured in *fbf-2(lf)* and the wild type. (A, B) Plotted values are
1276 individual data points and arithmetical means \pm S.E.M. Differences in SPC zone size between *fbf-1(lf)* or
1277 *fbf-2(lf)* and all other strains in a given group were evaluated by one-way ANOVA test with Dunnett's
1278 post-test; asterisk marks statistically significant differences ($P < 0.0001$). Data were collected from 2
1279 independent experiments and 15-36 germlines were scored for each genotype.

Wang et al.

Figure 7 – figure supplement 1

1280

1281

1282 **Supplemental References:**

1283

1284 Crittenden SL, Bernstein DS, Bachorik JL, Thompson BE, Gallegos M, Petcherski AG, Moulder G, Barstead
1285 R, Wickens M, Kimble J. 2002. A conserved RNA-binding protein controls germline stem cells in
1286 *Caenorhabditis elegans*. *Nature* 417(6889):660-3.

1287 Crittenden SL, Leonhard KA, Byrd DT, Kimble J. 2006. Cellular analyses of the mitotic region in the
1288 *Caenorhabditis elegans* adult germ line. *Mol Biol Cell* 17(7):3051-61.

1289 Fox PM, Vought VE, Hanazawa M, Lee MH, Maine EM, Schedl T. 2011. Cyclin E and CDK-2 regulate
1290 proliferative cell fate and cell cycle progression in the *C. elegans* germline. *Development*
1291 138(11):2223-34.

1292 Kocsisova Z, Mohammad A, Kornfeld K, Schedl T. 2018. Cell Cycle Analysis in the *C. elegans* Germline
1293 with the Thymidine Analog EdU. *J Vis Exp*(140).

1294 Lamont LB, Crittenden SL, Bernstein D, Wickens M, Kimble J. 2004. FBF-1 and FBF-2 regulate the size of
1295 the mitotic region in the *C. elegans* germline. *Dev Cell* 7(5):697-707.

1296 Pepper AS, Killian DJ, Hubbard EJ. 2003. Genetic analysis of *Caenorhabditis elegans* glp-1 mutants
1297 suggests receptor interaction or competition. *Genetics* 163(1):115-32.

1298 Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld
1299 S, Schmid B et al. . 2012. Fiji: an open-source platform for biological-image analysis. *Nat*
1300 *Methods* 9(7):676-82.

1301 Seidel HS, Kimble J. 2015. Cell-cycle quiescence maintains *Caenorhabditis elegans* germline stem cells
1302 independent of GLP-1/Notch. *Elife* 4.

1303 Voronina E, Paix A, Seydoux G. 2012. The P granule component PGL-1 promotes the localization and
1304 silencing activity of the PUF protein FBF-2 in germline stem cells. *Development* 139(20):3732-40.

1305 Wang X, Olson JR, Rasoloson D, Ellenbecker M, Bailey J, Voronina E. 2016. Dynein light chain DLC-1
1306 promotes localization and function of the PUF protein FBF-2 in germline progenitor cells.
1307 *Development* 143(24):4643-4653.

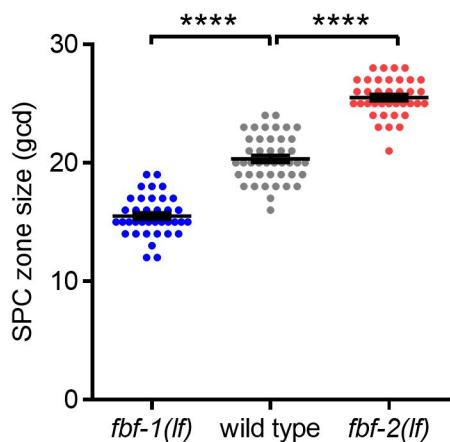
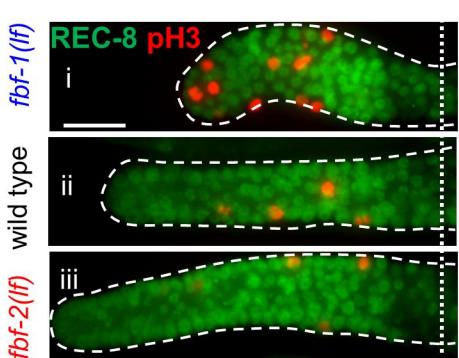
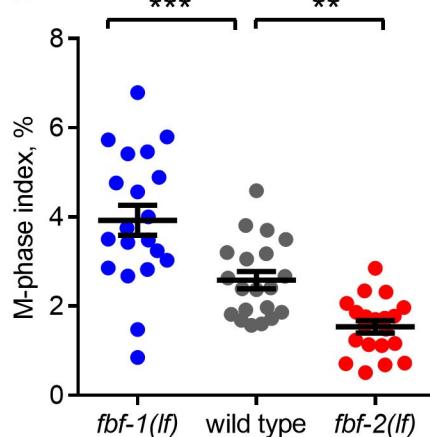
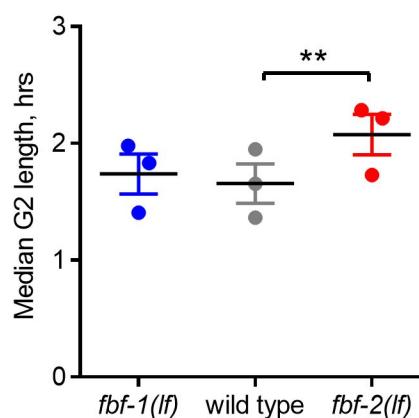
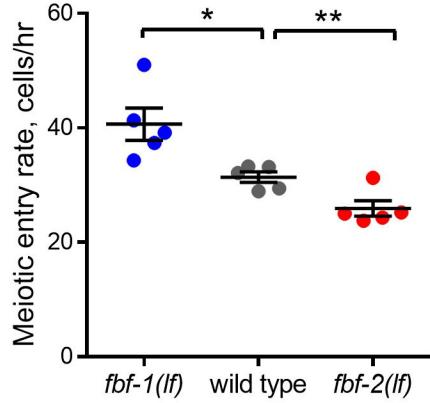

1308

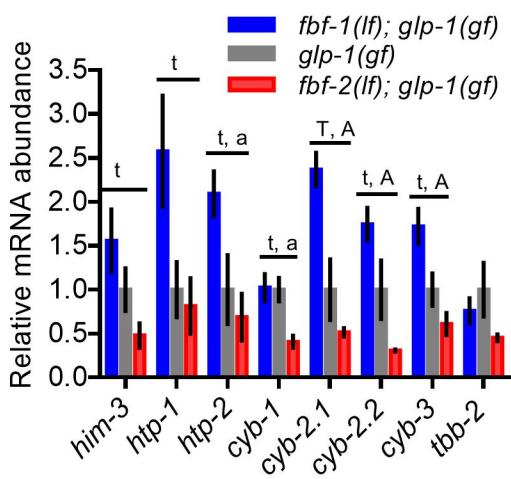
Figure 1

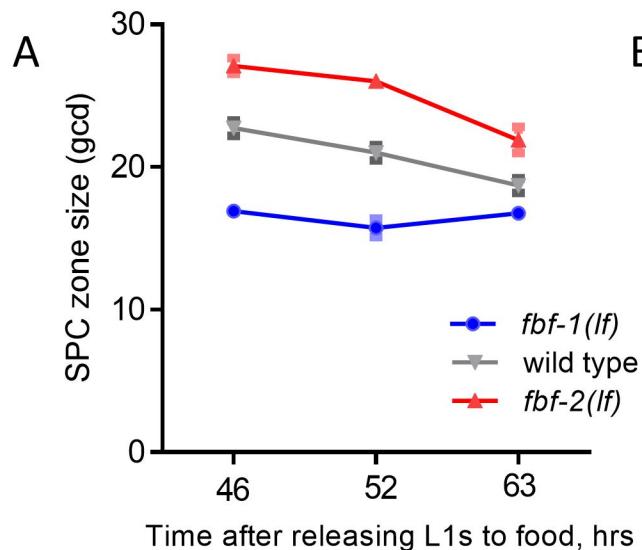
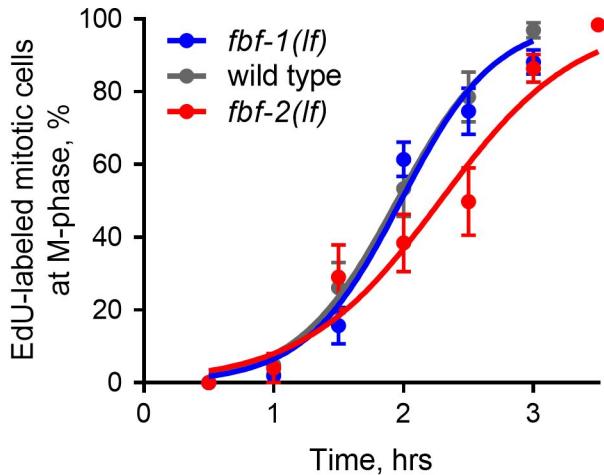
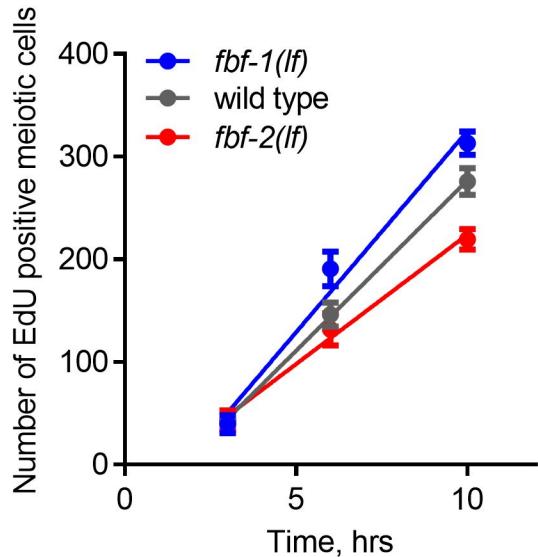

A

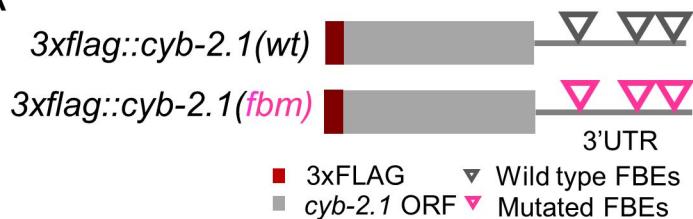
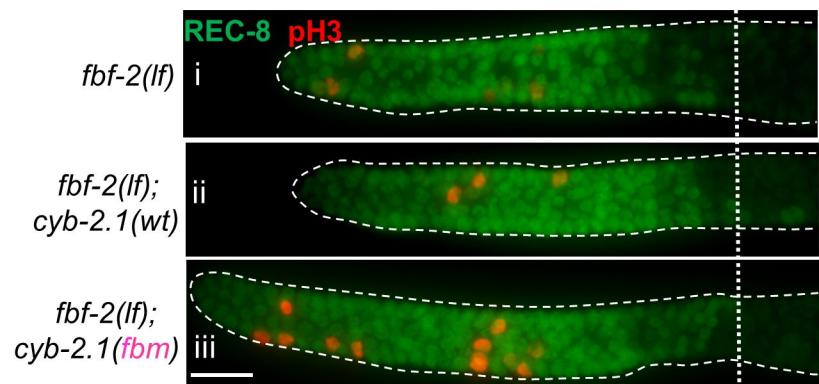
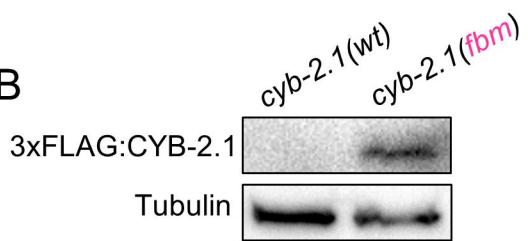
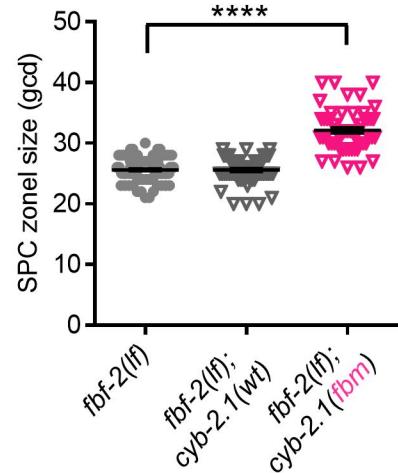
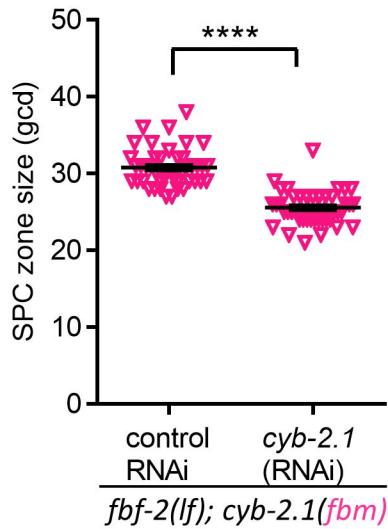
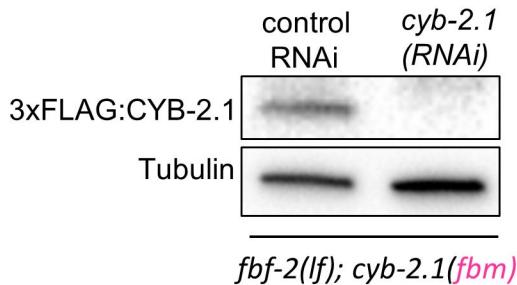

B


C


D


E




F

G

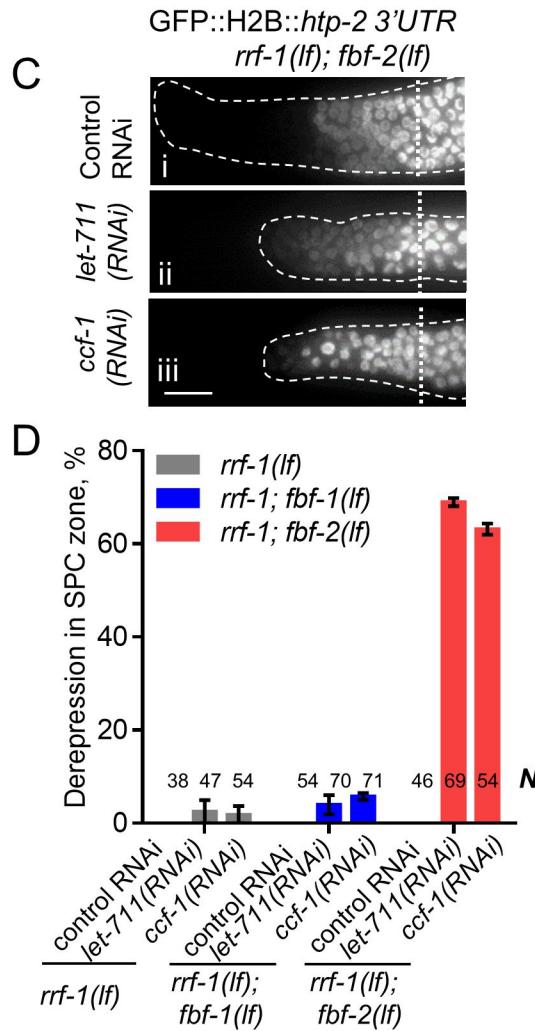
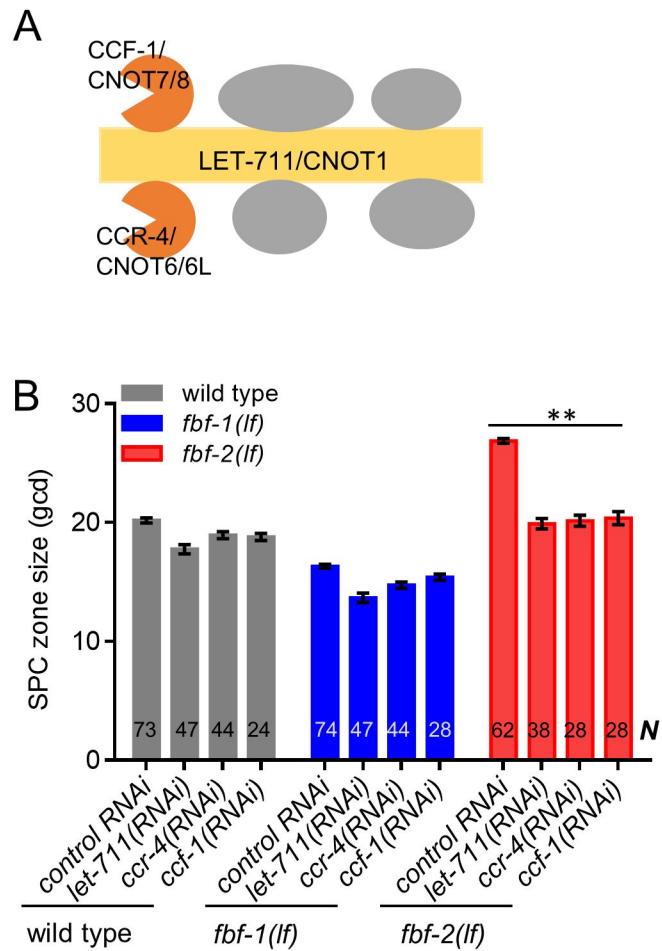



Figure 1- figure supplement 1

B**C**

Figure 2**A****C****B****D****E****F**

Figure 3

Figure 3 – figure supplement 1

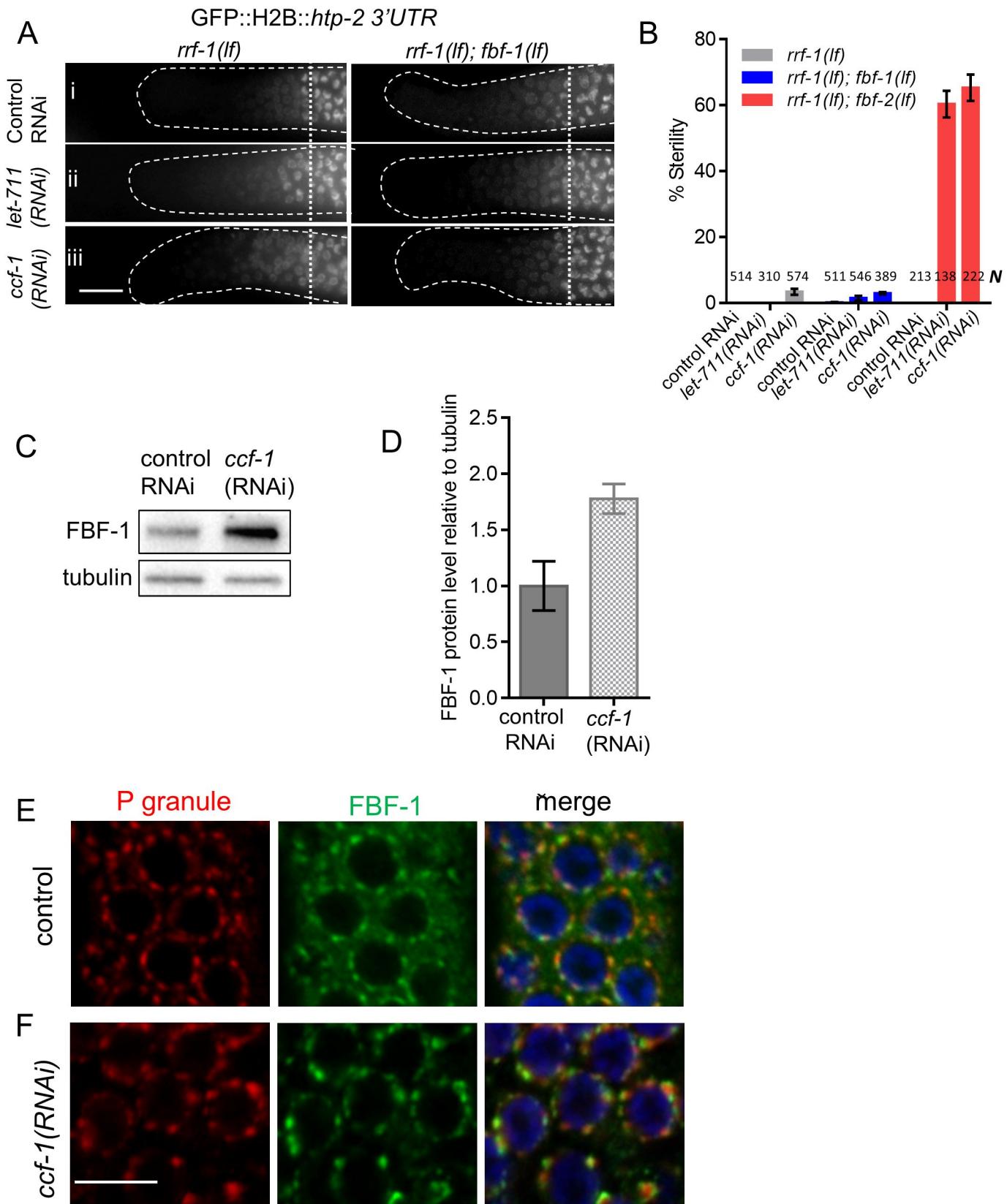
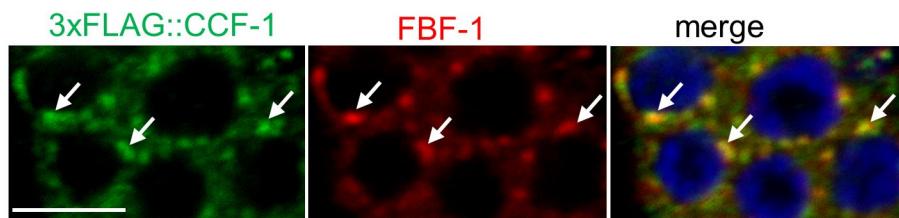
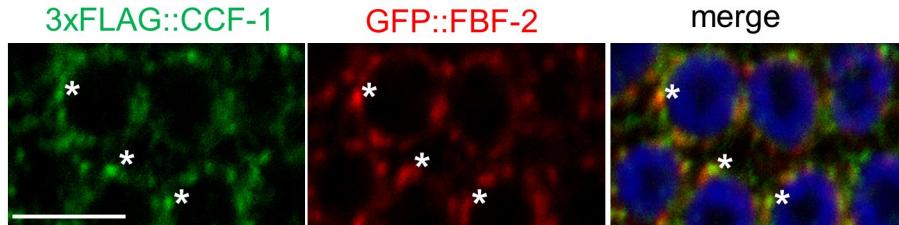
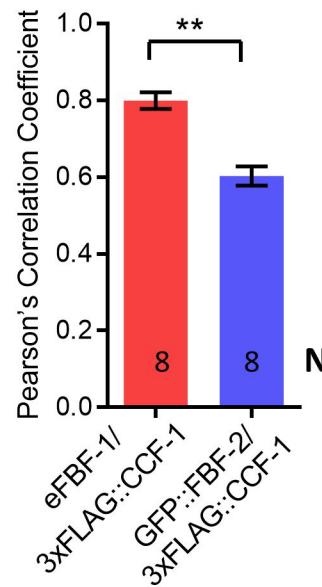
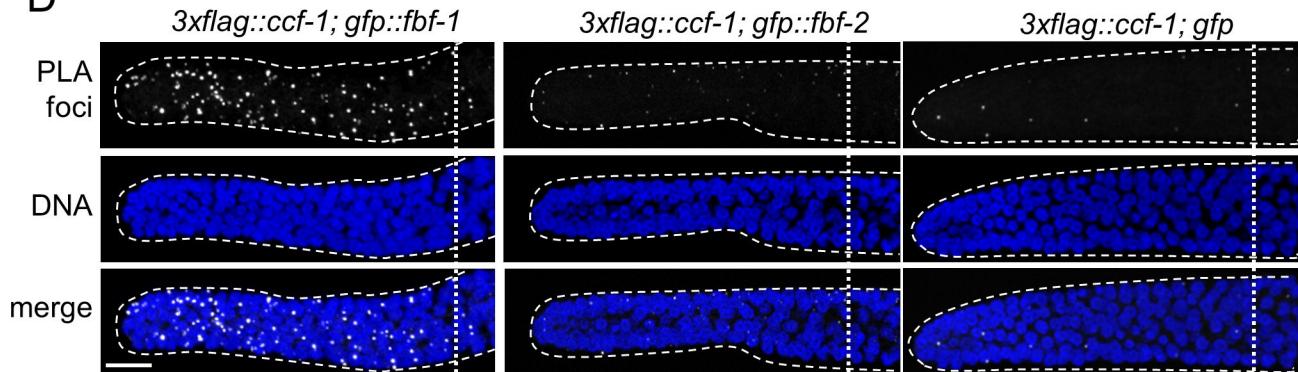
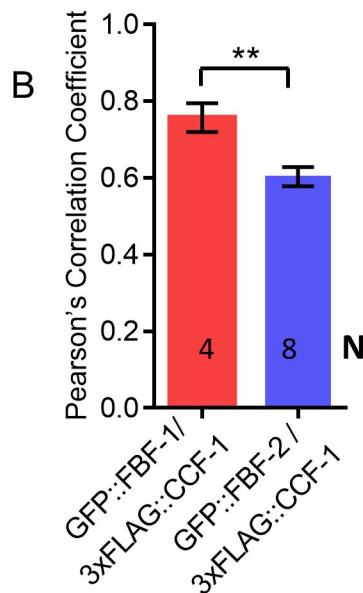
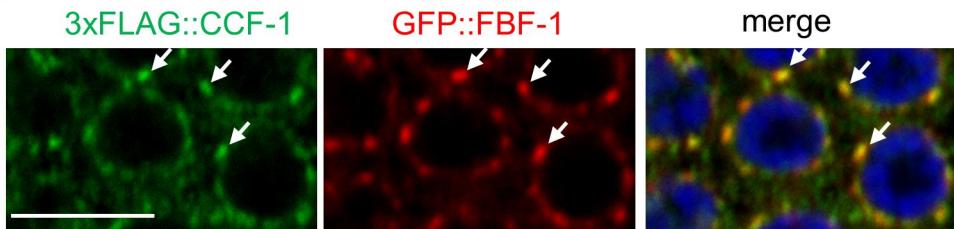




Figure 4

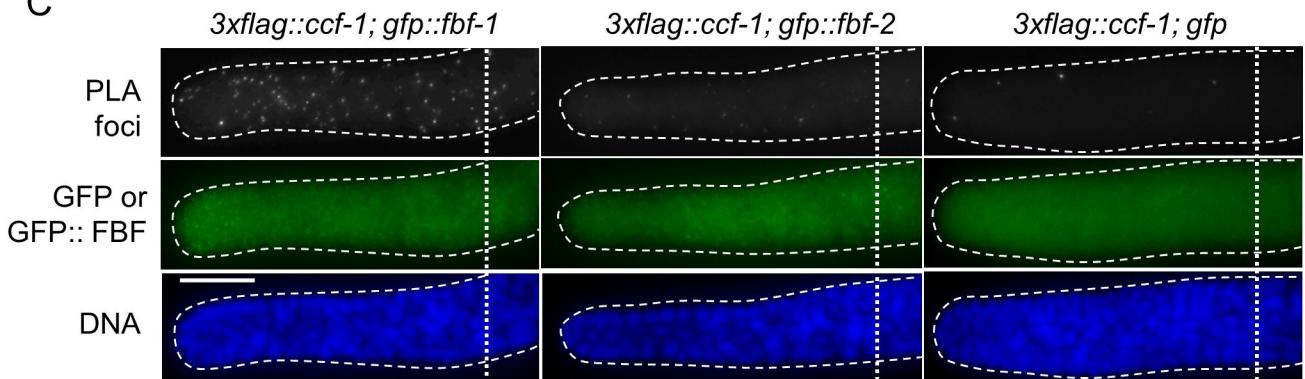

A

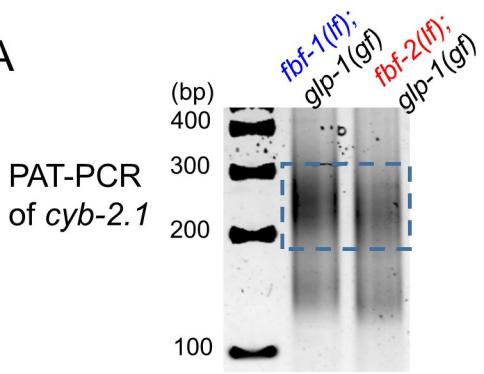
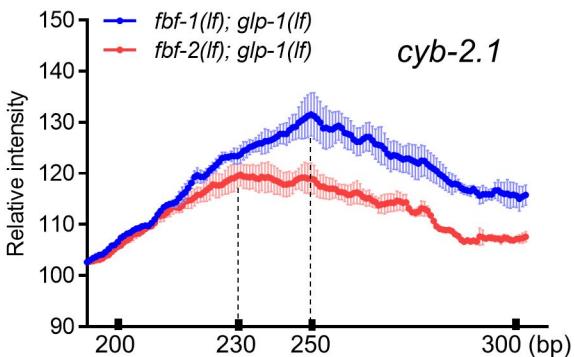
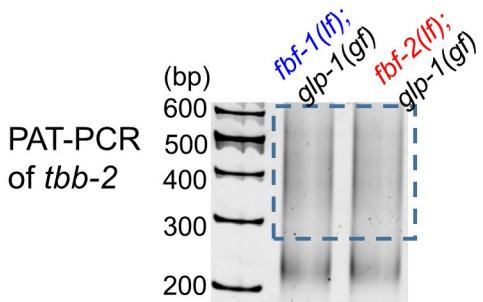
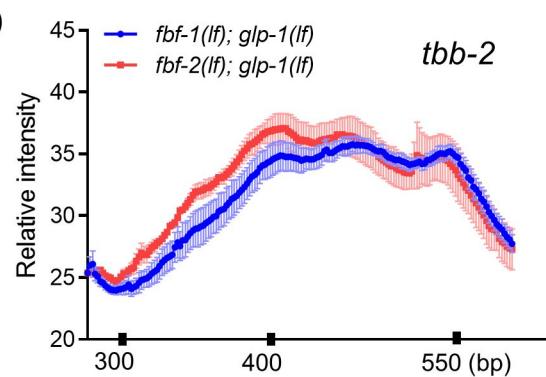

B

C

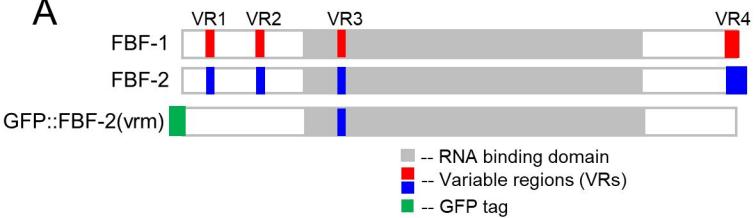



D







Figure 4 – figure supplement 1

A


C

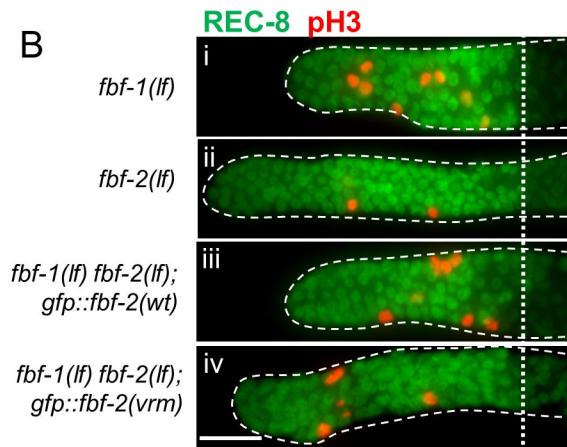
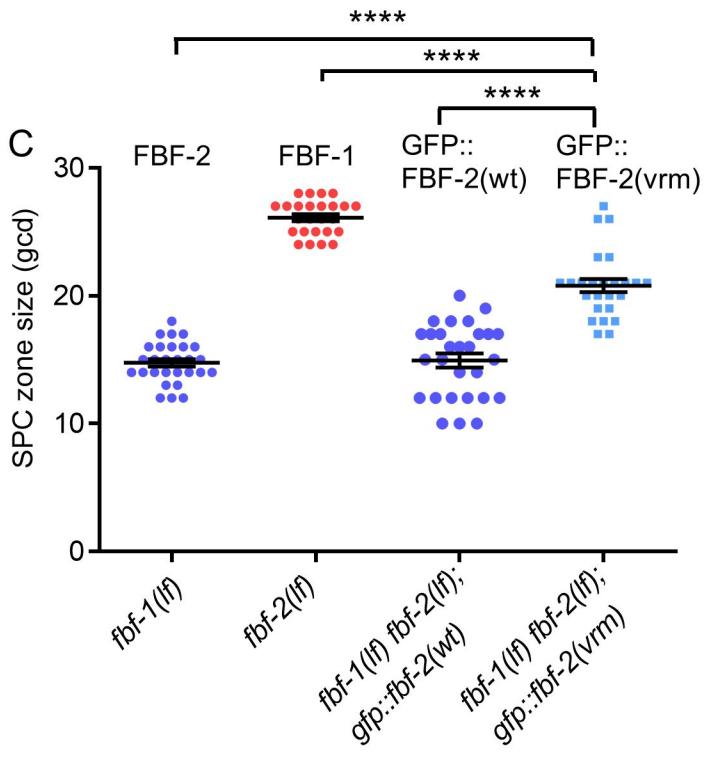
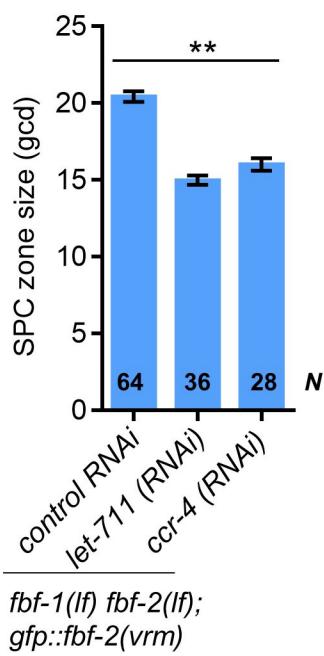
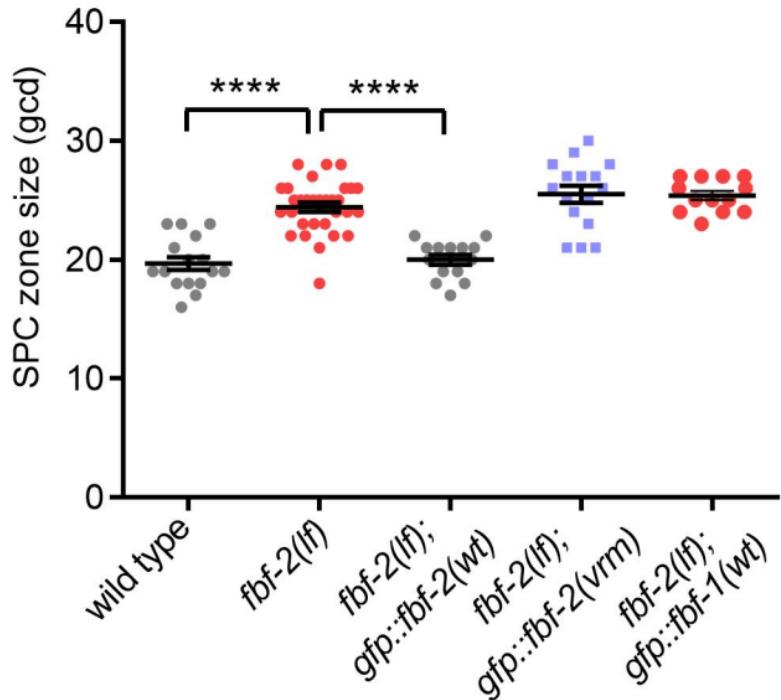

Figure 5**A****C****B****D**

Figure 6


A


B

C



D

Figure 6 – figure supplement 1

A

B

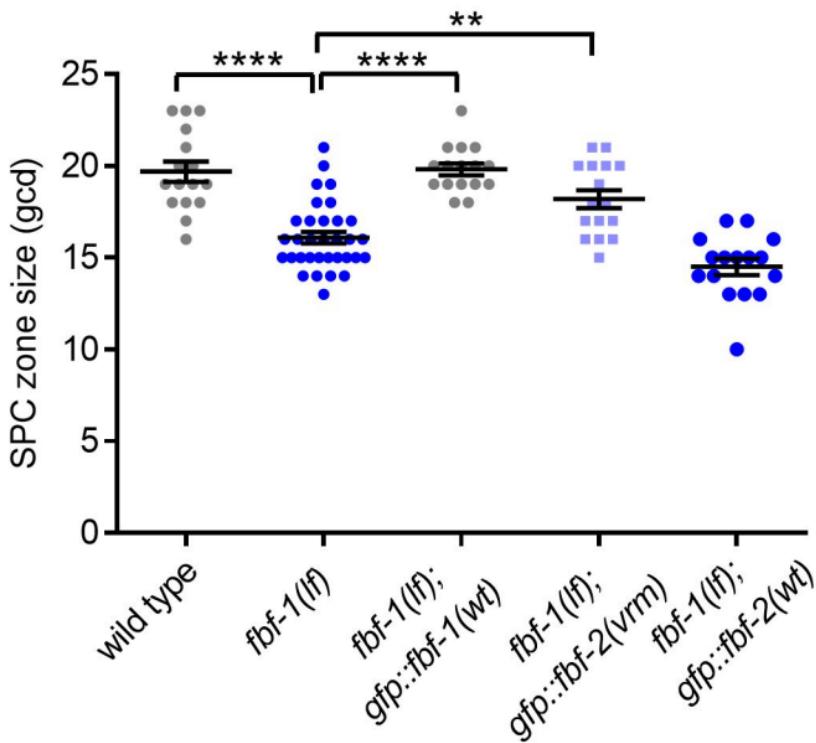
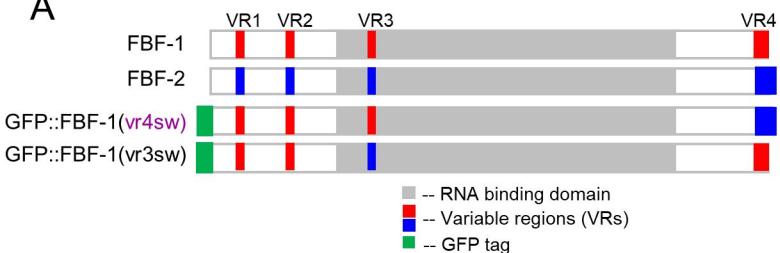
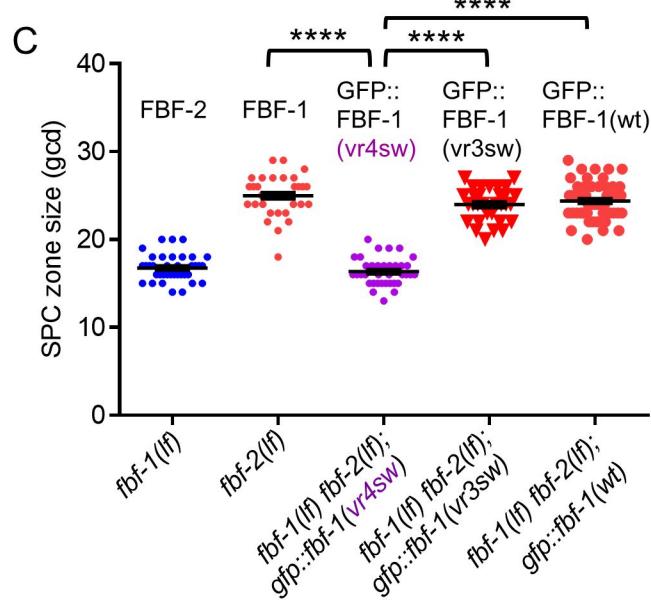
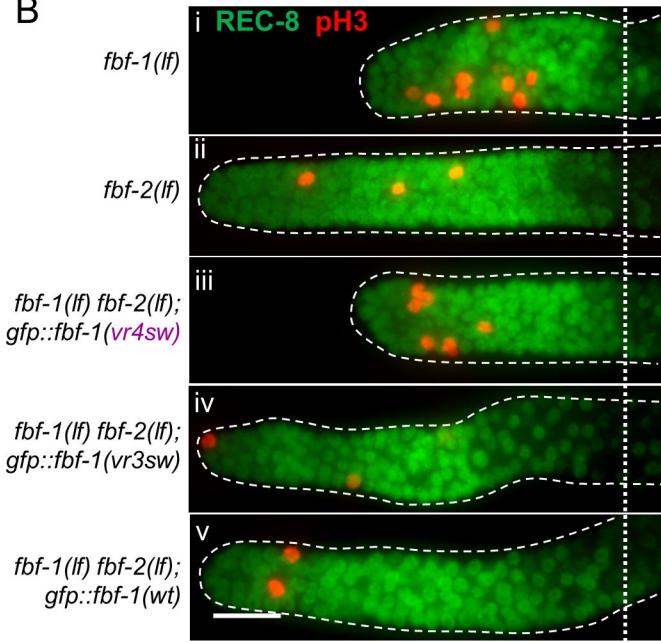
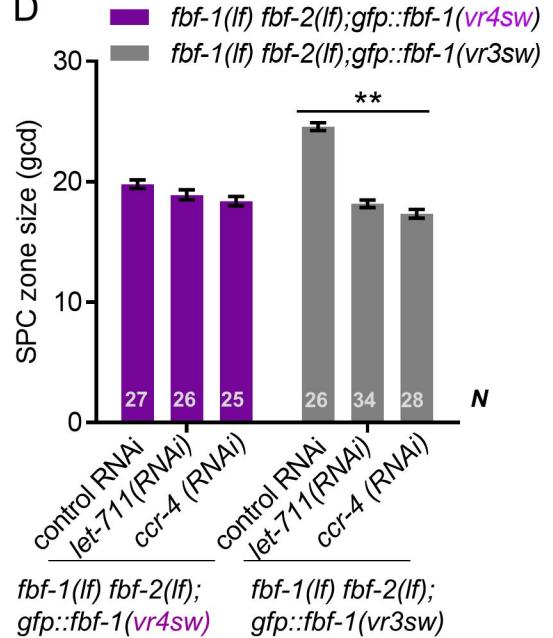





Figure 7


A

B

D

Figure 7 – figure supplement 1

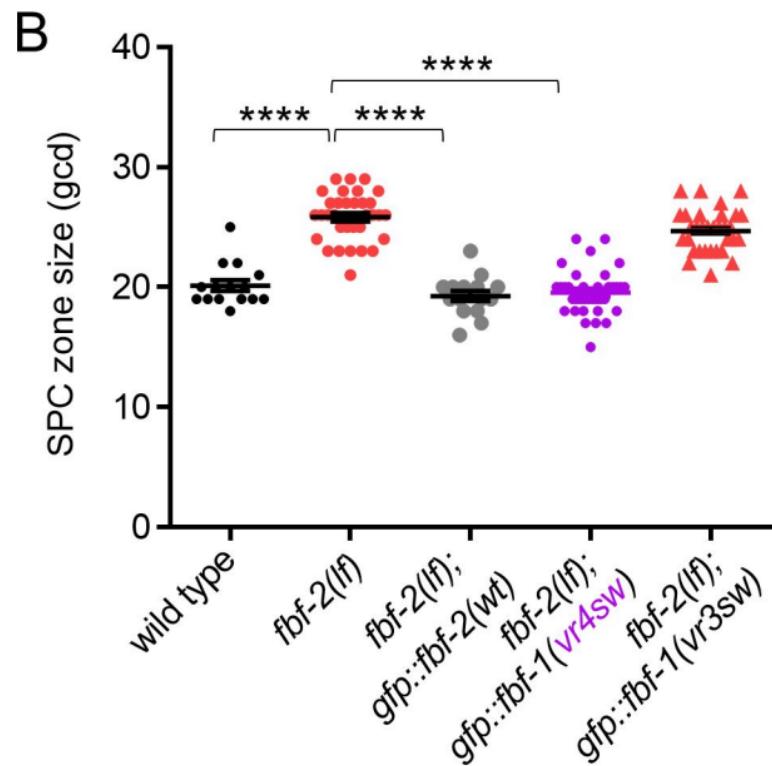
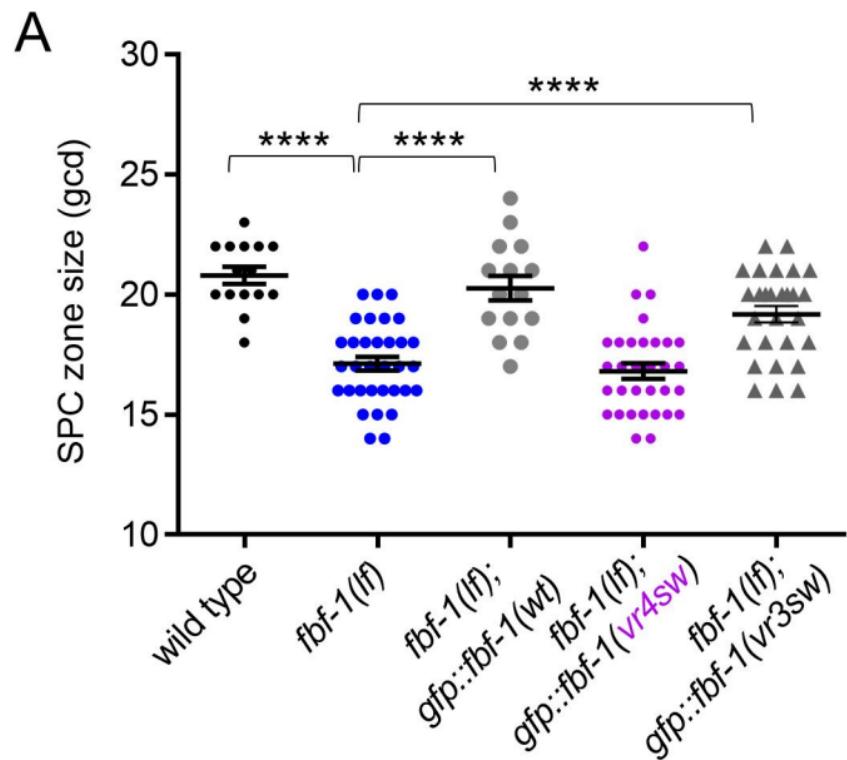
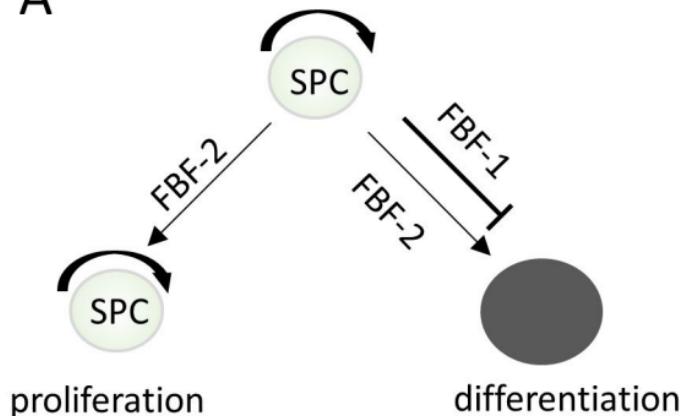
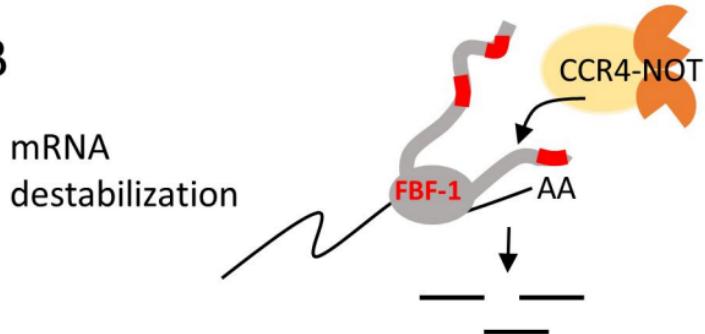





Figure 8

A

B

C

● FBF RNA-binding domain
■ FBF variable regions