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Abstract:

The ability to regulate emotions in the service of meeting ongoing goals and task demands is a
key aspect of adaptive human behavior in our volatile social world. Consequently, difficulties in
processing and responding to emotional stimuli underlie many psychiatric diseases ranging from
depression to anxiety, the common thread being effects on behavior. Behavior, which is made up
of shifting, difficult to measure hidden states such as attention and emotion reactivity, is a
product of integrating external input and latent mental processes. Directly measuring, and
differentiating, separable hidden cognitive, emotional, and attentional states contributing to
emotion conflict resolution, however, is challenging, particularly when only using task-relevant
behavioral measures such as reaction time. State-space representations are a powerful method for
investigating hidden states underlying complex systems. Using state-space modeling of behavior,
we identified relevant hidden cognitive states and predicted behavior in a standardized emotion
regulation task. After identifying and validating models which best fit the behavior and
narrowing our focus to one model, we used targeted intracranial stimulation of the emotion
regulation-relevant neurocircuitry, including prefrontal structures and the amygdala, to causally
modulate separable states. Finally, we focused on this one validated state-space model to
perform real-time, bidirectional closed-loop adaptive stimulation in a subset of participants.
These approaches enable an improved understanding of how to sample and understand emotional
processing in a way which could be leveraged in neuromodulatory therapy for disorders of
emotional regulation.
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Introduction

To function in a complex world, humans must continuously regulate responses to conflicting
emotional cues in the service of meeting ongoing, goal-directed demands. Defined as emotion
regulation, humans have the ability to adaptively influence which emotions are experienced,
when they are experienced, and how they are expressed given a current context (1-4). The
process of emotion regulation has been well studied over the past 20 years (1, 3, 5-9) and it is
clear that adaptive emotion regulation requires an ability to detect the salience of an internally or
externally generated emotional cue, and to subsequently attend towards or away from this cue
and adjust behavior accordingly dependent upon the current situational demands. Deficits in
emotion regulation have been shown to play a role and contribute to symptom severity across
anxiety, mood, depression, PTSD, and related disorders (1-4, 9-18). Thus, emotion
dysregulation represents a key transdiagnostic dimension of psychiatric disease and a target for
intervention. At the level of neurocircuitry, emotion regulation recruits a network of cortical
regions implicated in executive control functions (e.g. attention orienting, working memory)
including dorsal and ventrolateral prefrontal cortex (dIPFC, vIPFC), dorsomedial PFC (dmPFC)
and rostral and dorsal anterior cingulate cortex (rACC, dACC; (18-28)). Increased activation in
these regions is associated with decreased activation in subcortical limbic regions including
amygdala (29-31). Thus, successful emotion regulation increases executive control in the
service of goal directed activities while subsequently decreasing salience processing (26, 28-31).

The development of novel neurotherapeutics to target emotion dysregulation requires a
precise understanding of the relationship between activation along emotion regulation-related
neurocircuitry and behavior (32-35). Successful emotion regulation likely involves a large

number of hidden cognitive dynamics that ultimately contribute to behavioral responses,
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including shifts in attention, cognitive flexibility, emotion reactivity, and behavioral adaptability
(1, 5). Therefore, understanding how regions within the identified neural circuitry of emotion
regulation enhance or inhibit these hidden cognitive states is crucial to the identification of viable
and directed targets for intervention using neurotherapeutics, including invasive and non-
invasive neuromodulation (34, 36-38). Recent promising advancements in identifying states of
mood relative to neural activity have led to the use of closed loop tools to stimulate based on
these neural states, with stimulation in the orbitofrontal cortex resulting in the improvement of
mood (35). However, mood is the product of a numerous underlying hidden states and processes
including emotion regulation (14, 39). To develop the therapy further for focused relief shaped
by underlying mechanisms, we propose identifying the underlying dynamics to plan for more
targeted, and tailored, approaches supporting the overall modulation of emotion regulation.
State-space modeling is a powerful computational tool that can allow for the
identification and examination of hidden features underlying behavior relevant to emotion
regulation, including attention, cognitive flexibility, emotion reactivity, and adaptability. State-
space modelling involves arriving at an estimated probabilistic dependence between the latent
state variable, such as hidden features, and an observed measurement, such as reaction time or
accuracy. This comes with the main assumption that behavior such as reaction time or accuracy
is driven by a combination of hidden features which can be modelled as multivariate, latent
cognitive states. In state space modelling, these latent states can vary over time, exhibit inherent
dynamics and vary with external inputs, such as visual stimuli or trial type. An advantage of
state-space modeling is that each feature can be modeled as a hidden cognitive state and
estimated on a per trial basis using an expectation maximization approach derived from the

behavior (40-42). Furthermore, since the state space modeling approach can be used to factorize
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the underlying cognitive components and estimate their dynamics over the course of experiment
one can test a series of state-space models with different features and validate which best
corresponds to behavior. This approach represents a significant improvement over multi-trial
block-averaged approaches, wherein behavioral responses are examined cross-sectionally over
entire task duration (e.g. >50-100 trials), thus losing potentially important information about the
specific, nuanced states underlying behavior. Further, state-space models may allow for more
precise mapping of behavior to neural activity, which enables more precise identification of
targets for neurostimulation. The power of this state-space modeling approach has been shown
in both learning and tests of cognitive flexibility (40, 43-47).

In the current study, we used a state space approach to capture specific hidden features of
emotion regulation relevant to behavior during performance on the Emotion Conflict Resolution
task (ECR; (6)), a well validated behavioral probe of emotion regulation that has been shown to
induce activation of emotion regulation neurocircuitry (6, 22, 23). Indeed, ECR performance
and brain activation during the task has been shown to predict drug treatment responsiveness in
depression (48). An important point is that emotion is a key part of the ECR task since it requires
identifying the emotion on a presented face while ignoring the overlaid word, requiring emotion
perception and the activation of emotion circuitry (6). Yet, since emotion regulation, at its core,
not only involves emotion perception but resolving emotion conflict to regulate emotion
responses (5, 10), we chose the the ECR task since it addresses both emotion perception and
resolving emotion conflict. By focusing on ECR, we are addressing one aspect of implicit
emotion regulation, namely the ability to maintain goal-directed behaviors in the presence of
competing/conflicting affective information. With the notion that there are several factors,

including latent cognitive states, affecting behavioral responses to the ECR task at any point in
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time, thereby introducing unexplained ‘noise’ to the behavioral measure, we hypothesized that a
state-space modeling approach would provide a more tractable measure that would allow access
to the underlying, or hidden, cognitive states driving reaction time, such as attention or conflict
resolution, on a per-trial basis. As such, performance on the ECR, as it is a modified Stroop task
(49), requires a number of processes relevant to emotion regulation including salience processing
(emaotion reactivity), goal-directed processing (attentional control, response inhibition),
recognition of a conflict between salience processing and goal-directed processing, resolution of
this conflict through behavioral adaptation (cognitive flexibility and adaptability), and working
memory (6, 19-23). As the task includes both difficult and easy trials, and the complexity of the
responses, which include speed (reaction time) and accuracy, there could be numerous hidden
cognitive dynamics contributing to behavioral responses. To validate whether these hidden
cognitive dynamics could be identified and then separately altered through neuromodulation, we
performed a sequence of steps. First, we applied a state-space approach purely to behavior
(reaction time and accuracy) during the ECR task to model hidden states and to use these models
to predict reaction time from three separate cohorts (healthy volunteers, psychiatric patients, and
patients with intractable epilepsy). Second, after establishing a subset of behavioral models
which were high-performing, in separate task sessions, we tested whether identified hidden states
within these behavioral state space models can be driven by stimulation in specific brain
networks. We hypothesized that direct electrical intracranial stimulation in different brain
regions would have differential, and causal, effects on these behavioral features as has been
hinted at with stimulation in other brain regions in learning and memory (50, 51), mood (35, 52),
and OCD (36, 53, 54). As a final test, we used the state-space model in closed-loop adaptive

stimulation to modulate behavior predictably.
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RESULTS
Behavior in the Emotion Conflict Resolution task

To understand the hidden cognitive state underlying emotion conflict resolution and
emotion reactivity, we examined the behavioral dynamics of three different groups of individuals
while they performed the Emotion Conflict Resolution (ECR) task (6): 1) Healthy control
volunteers (N=42); 2) individuals with psychiatric diagnoses (N=16) and 3) participants with
intractable epilepsy undergoing intracranial recordings (N=41; Supplemental Table 1). During
the task, participants identified the emotion of a face while ignoring an overlaid word that was
either congruent (C) or incongruent (1) with the face's emotion ((6); Fig. 1A, Supplemental
Figure 1). Consistent with prior literature and across the three groups, incongruent trials
induced longer reaction times (RTs) compared to congruent trials, and overall accuracy was
above 88% ((6, 48); z-scored relative to all trials per participant, p<0.0001; Kruskal-Wallis test;
Fig. 1B, Supplemental Figure 1A). Valence (Happy vs fear) did not significantly affect overall
behavior (Supplemental Fig. 2).
Self-reported emotion reactivity and emotion regulation

Self-report psychometric questionnaires were used as an independent measure of emotion
reactivity, anxiety and emotion regulation to the central ECR task. Significant differences in
responses to self-report psychometric scales between the three participant groups were found
across three measures of emotion reactivity and regulation ability (Emotion Reactivity Scale,
ERS; Difficulties in Emotion Regulation Scale, DERS; Anxiety Sensitivity Index, ASI; See
Methods; see Supplemental Table 2 for details of average raw scale scores by participant
group; Supplemental Fig. 2; (8, 55-57)). Consistent with the existing literature, relative to

healthy controls, individuals diagnosed with psychiatric disorders endorsed significantly greater
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emotion reactivity (p=0.00001; Wilcoxon rank sum; ERS), and difficulties with emotion
regulation (p=0.0003; Wilcoxon rank sum; DERS), but not anxiety sensitivity after correcting for
multiple comparisons (p=0.032; Wilcoxon rank sum; ASI; Supplemental Fig. 2). Patients with
epilepsy had responses which were widely distributed, overlapping between the other two groups
(Supplemental Fig. 2) with scores not significantly different to either the healthy control group
or the patients diagnosed with psychiatric disorders following corrections for multiple
comparisons (p>0.0245; Wilcoxon rank sum), consistent with the known co-morbidity of
epilepsy and psychiatric symptoms (58). No significant correlation was found between z-scored
scale scores and block-averaged reaction time performance on the ECR task (average zscored RT
difference between congruent to incongruent trials minus incongruent to incongruent trials (Cl-
I1), or accuracy).
State-space modelling of conflict and adaptation behavior in the ECR task

We developed and validated behavioral state estimate model(s) which best describe latent
variables underlying reaction times and accuracy using only non-stimulated behavioral task
sessions (see Methods; Supplemental Fig. 3-4). The approach involved modelling hidden
(latent) cognitive states from the trial by trial behavior (e.g. RT) with the assumption that these
states are driven both by their underlying dynamics and exogenous input such as trial type. To do
this, we assumed the hidden states are influenced by, and therefore have a linear relationship
with, indicator terms such as trial type or trial history (40, 41). Estimating those hidden states
required an expectation maximization approach with multiple iterations per task session as well
as estimations of noise inherent to the system (see Methods). In addressing the hidden states
using state-space approaches, we could regress out unrelated components or RT or state-related

changes in RT using state space approaches, thereby identifying, and measuring, features of
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cognitive flexibility, attention, and conflict adaptation or conflict resolution. The methodology
involved identifying state space models which addressed known task-related cognitive processes
such as cognitive flexibility or reaction time bias, testing how well these models fit the non-
stimulated behavioral data, how well each model predicted reaction times, and their
correspondence to psychometric measures of emotion reactivity, as compared to a healthy
control group (8, 55-57) (Supplemental Fig. 3-4). The choice of the models tested, including
what trial types (e.g. whether a trial was congruent or incongruent, trial history, etc.) and whether
we used reaction time, accuracy, or both, to model, and predict, reaction time was informed by
the large body of literature regarding the underlying hidden cognitive states driving behavior
during ECR and, more generally, Stroop tasks ((6, 19-21, 23); see Methods). Each model was
used to address an idea from the literature regarding Stroop tasks, such as the number of trials or
trial difficulty, and whether the hidden cognitive states indeed varied over time (see Methods;
Supplemental Fig. 3-4). Interestingly, when we included trial accuracy either alone or modeled
along with reaction time in a mixed effects model, the models either did not converge or had
very large noise terms, indicating models including accuracy did not fit, or predict, the reaction
time or accuracy as well as a reaction time-only modelling approach (see Methods). Ultimately,
eight of thirty models survived the criteria testing (Supplemental Fig. 3-4). All eight models had
three features in common distinguishing them from the other criteria: 1) All viable models had a
reaction time bias term which addresses the overall drift in reaction time over the task and 2) 5 of
the 8 models had a transition term relating to whether the task trial type switched from congruent
to incongruent (CI) or vice versa (incongruent to congruent, IC). We decided to focus on two of
these eight viable models since these two models (Model 1:the Conflict-Adaptation model and

Model 15: the Conflict-Adaptation equipoise model) included terms which relate to resolving
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surprising emotion conflict (as when transitioning between an easy to difficult trial, e.g.
congruent to incongruent trial, Cl) and emotion adaptation (such as when adapting to increased
difficulty following a previous difficult trial, e.g. incongruent trial to incongruent trial, I1; (6, 22,
48); Fig. 1). The emotion conflict (CI) and adaptation (I1) terms have been proposed to relate to
emotion regulation (6, 23). Thus, the Conflict-Adaptation model (specifically Conflict minus
Adaptation; Fig. 1E; 2A, see Methods) reflects the idea that adaptation to a pattern of two
difficult trials in a row (Incongruent trial to Incongruent trial, 1) can be measured as an emotion
adaptation state (EAS), whereas the switch burden of Congruent trial to Incongruent trial (CI) is
measured as the emotion conflict state (ECS; (6, 23, 48)). One problem with Model 1 is that we
had to estimate ECS and EAS separately and subtract the mean ECS-EAS terms (e.g. Conflict-
Adaptation) to derive a trial by trial term describing the balance of surprise (Conflict) and
adapting to difficulty (Adaptation). For this reason, we developed Model 15, the Conflict-
Adaptation equipoise model, which is a reformulation that allowed us to measure the Conflict-
Adaptation balance, or equipoise, as a single hidden state variable with confidence bounds and

associated noise and confidence metrics (see Methods).
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Fig. 1. Emotion Conflict Resolution (ECR) task behavior as a model of human emotion
regulation. A. Task. B. Participants respond to the emotion of the face while ignoring the word,
which can match (congruent trials, C) or conflict (incongruent trials, 1). Trials preceded by
congruent or incongruent trials (e.g. CI, IC, Il, and CC) induced different reaction times across
the patient groups which included healthy control volunteers, participants diagnosed with
psychiatric disorders, and participants with epilepsy. All reaction times were z-scored relative to
the all trials per task run (RTs). The data set (N=99) included 42 healthy controls, 16 participants
diagnosed with a psychiatric disorder, and 41 participants with epilepsy. Z-scored RTs are

significantly different between trial types per group (p<0.00001, Kruskal-Wallis test). C. The
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reaction times of two participants (EP004 and HC003) during the task demonstrating reaction
time variability across trials. D. The ECR state estimate the Conflict-Adaptation Model and its
three main components: the overall reaction time state (Bias), the emotion conflict state (ClI), and
the adaptation state (I1). State estimates during the task (top, participant EP004, bottom, HCO03),

with the confidence bounds highlighted as shaded regions.

Modeling the emotion conflict (ECS) and adaptation (EAS) states. For the Conflict-Adaptation
model (Model 1), maximum likelihood (ML) estimates over 1000 model iterations showed stable
model convergence (Supplemental Figure 4), low average model noise (V=0.0317+0.0196;
Supplemental Figure 4) and low average state variable noise (W<0.00601), suggesting good
model fit to the reaction time behavior. Further, the model demonstrated good predictive ability
with the squared difference between predicted and actual log reaction times low (squared
difference=0.05+0.031). Furthermore, the reaction time bias term in the Conflict-Adaptation
model was significantly positively correlated with scores on psychometric measures of anxiety
(ERS: r =0.2900, p=0.1271; DERS: r = 0.1343, p = 0.4957; ASI: r = 0.4452, p = 0.0155). In
addition, the emotion conflict state (ECS; CI) was negatively correlated with scores on
psychometric measures, significantly only for scores of emotion regulation (ERS: r = -0.2576,
p=0.1773; DERS: r = -0.4205, p = 0.0259; ASI: r = -0.1881, p = 0.3286).

Modeling Conflict-Adaptation equipoise. For the Conflict-Adaptation equipoise model (Model
15), maximum likelihood (ML) estimates over 1000 model iterations again showed stable model
convergence (Supplemental Figure 4), low average model noise (V=0.0318+0.0196; Fig. 2A,
E, F) and low average state variable noise (W<0.00604), suggesting good model fit to the

reaction time behavior. Further, the model demonstrated good predictive ability (squared

12


https://doi.org/10.1101/825893
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/825893; this version posted October 31, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

difference=0.05+0.031). The reaction time bias term in the conflict-avoidance model was
significantly associated with scores on psychometric measures of anxiety (ERS: r = 0.2987, p=
0.1155; DERS: r = 0.1386, p = 0.4819; ASI: r = 0.4471, p = 0.0150).

In sum, we were able to identify a subset of models which both fit the ECR task reaction
time behavior for a large data set of individuals which were interpretable, did not over-fit the
data, which mapped somewhat to psychometric questionnaires, and which allowed us to
presumptively understand the hidden states underlying emotion conflict resolution. Narrowing
our focus primarily to two models, namely the Conflict-Adaptation and the Conflict-Adaptation
equipoise models, we then examined whether features of the models could be modulated with
direct electrical stimulation during a separate set of task sessions performed by the participants
with intractable epilepsy with implanted electrodes.

Direct electrical stimulation can bidirectionally alter reaction time

To examine whether stimulation in brain regions known to be involved in emotion
regulation and engaged during the ECR task (22, 48) results in reaction time and accuracy
changes, we performed targeted stimulation in dACC, rACC, amygdala, dmPFC, and dIPFC,
during performance in the ECR task (stimulation locations in Supplemental Figure 6). During
Test blocks, non-stimulation trials were interspersed with stimulated trials (Fig. 2A). Stimulation
in dmPFC, rACC and amygdala significantly altered RTs (dmPFC: p=0.0391; rACC: p=0.0098;
amygdala: p=0.002; Wilcoxon signed rank test; Fig. 2B) but did not change accuracy (all p-
values >0.31; Wilcoxon rank-sum). Stimulation of dmPFC, rACC, and amygdala increased RTs
across all trial types (Fig. 2B), while stimulation in the dIPFC decreased RT (though not
significant) and dACC stimulation produced split effects (Fig. 2B). Across regions, the biggest

difference in z-scored RT was between the amygdala and the dIPFC stimulation, confirming
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existing literature on the dissociable roles these two brain regions may have during emotion
regulation, processing, and reappraisal (2629, 31). These effects were focal in time: z-scored
reaction times during non-stimulated trials of stimulation blocks were not significantly different
trials regardless of stimulation location during stimulated trials (p=0.1517; Chi-Sq.= 6.7149;
Kruskal-Wallis test; Fig. 2C).
Neural stimulation causally alters hidden cognitive states

These results point to a brain region specific focal effect of stimulation on ECR task
behavior. However, this analysis reported average changes in reaction time regardless of trial
type or trial number and did not address separate hidden cognitive states. As we had identified
hidden cognitive states in a subset of viable state space models, we hypothesized we could
differentially modulate these states using neural stimulation. If these state space models capture a
hidden cognitive state, then it stood to reason that stimulation in certain brain regions could
causally induce network changes resulting in behavioral changes corresponding with these
altered hidden cognitive states. We, therefore, applied the state-space models to data obtained
during stimulation experiments and measured the changes in the main components each model.
Overall, across models, stimulation of the dIPFC resulted in significantly decreased reaction time
bias relative to non-stimulation blocks in the same task session (p<.05, Wilcoxon signed rank
test). This corresponded to the general decrease in reaction time (Fig. 2), a measure of attentional
or effortful drift. The dIPFC stimulation effect on reaction time bias (RTB) was evident even in
multiple viable behavioral state space models, including Model 2 which only included RTB, the
current trial congruence (Cvsl) or whether the trial was different to the previous trial (Tr., see

Methods; Fig. 2E). In contrast, dACC stimulation resulted in significantly increased reaction
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time bias across most, but not all, the viable state space behavioral models (p<.05, Wilcoxon
signed rank test; Fig. 2; Supplemental Figure 7).

When modeling Conflict versus Adaptation states, significant differences in stimulation-
related effects on reaction time were found (Fig. 2; Supplemental Figure 7; Supplemental
Table 4). Stimulation of the amygdala resulted in significantly higher emotion conflict state
(ECS) values compared to non-stimulated blocks, translating to an overall slower ECS-driven
RT component (p=0.0371; Wilcoxon signed rank test; Model 1), but no significant change in the
RT component corresponded with the emotion adaptation state (EAS) (p=0.9219; Wilcoxon
signed rank test; Model 1). In contrast, stimulation of the rACC resulted in a significantly faster
reaction time EAS-component (p=0.0005; Wilcoxon signed rank test; Model 1). When modeling
the equipoise between conflict (ECS) versus adaptation (EAS; Model 15), a state we labeled
Conflict-Adaptation state (Fig. 2), stimulation of the dmPFC and rACC resulted in significantly
positive deviations in Conflict-Adaptation equipoise, representing ECS-related slowing of RTs
compared to the EAS-driven RTs (p=0.0215 for dmPFC stimulation; p=0.0025 for rACC
stimulation; Wilcoxon signed rank test; Model 15). In contrast, stimulation of the dACC and
rACC resulted in significant negative deviations in Conflict-Adaptation equipoise, representing
relatively slower EAS-driven reaction times relative to ECS-driven reaction times (p=0.0016 for
dACC stimulation; Wilcoxon signed rank test; Model 15). The effects of dmPFC versus dACC
stimulation were statistically separable upon post hoc testing (Supplemental Figure 7;

p=0.0116; Kruskal-Wallis test; Supplemental Table 4).
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Figure 2. Neural stimulation induces behavioral changes in reaction time and conflict-
adaptation state. A. RTs during Test and Control blocks with dACC and amygdala stimulation

(participant EPO5). X-axis breaks: ~8-minute pauses. B. Z-scored RTs were significantly
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different between stimulation sites during stimulated trials (p=0.0022; Kruskal-Wallis test; Chi-
Sqg.=31). C. The non-stimulated trials during Test blocks had no significant changes in zscored
RTs (p=0.1517; Kruskal-Wallis test) D. ECR state estimate Conflict-Adaptation (Model 1) with
three main components: the overall reaction time bias (Bias, RTB), the emotion conflict state
(ECS, CI), and the adaptation state (EAS, I1). RTB shifts with amygdala and dACC stimulation
(95% confidence bounds indicated in shaded areas). E. RTB state estimate changes for both
Models 1 and 2, particularly during dIPFC stimulation. F-G. Both the Conflict-Adaptation state
(G) and EAS (F) varied significantly across stimulation sites (N=13; p>0.05; Kruskal-Wallis
test). (the letters a-b along the x axis indicate statistically separable groups, post hoc Tukey-
Kramer testing; *- p<0.0033, significantly different from zero, Wilcoxon sign rank test). In B
and F, error bars indicate standard error across trials. Abbreviations: Dorsolateral (dl) and
dorsomedial (dm) prefrontal cortex- dIPFC, dmPFC; medial (m) orbitofrontal cortex — mOFC;

dorsal (d) and rostral (r) anterior cingulate- dACC, rACC.

Adaptive stimulation to test bidirectional control

Based on these results, and to more directly test the hypothesis that these stimulation
effects were bidirectional, we chose two regions, the dACC and dmPFC, to stimulate in a closed-
loop, real-time setting. We chose the dmPFC over the rACC since stimulation in the rACC
produced highly variable results on a per block level (Fig. 2F). Estimating the Conflict-
Adaptation state on a trial-by-trial basis (Fig. 2D, 3), we alternately set the real-time algorithm to
stimulate dmPFC when the Conflict-Adaptation was low, representing decreased RT to conflict
relative to adaptation, then to stimulate the dACC when the state was high, representing

increased RT to conflict relative to adaptation. In essence, this would create a “state clamp”
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which could maintain a state within specified bounds. In all three participants, dmPFC
stimulation increased the Conflict-Adaptation state both during and after stimulated trials,
representing an increase in RT to conflict trials relative to adaptation trials. In contrast, dACC
stimulation decreased the Conflict-Adaptation state, representing a decrease in RT to conflict
trials relative to adaptation trials (Fig. 3B-D). To examine the temporal extent of these changes,
when we averaged the Conflict-Adaptation state for stimulated trials and the subsequent 4 trials,
we found a significant difference between dmPFC and dACC stimulation in the Conflict-
Adaptation state equipoise values in two of the three participants (EP23: p=0.0003 and EP24:
p=0.0012; EP21: p=0.6438; Wilcoxon rank sum test; Fig. 3E-F). Two of the participants
spontaneously volunteered their subjective impression of the adaptive stimulation testing
following the final stimulation (Test) block. One participant (EP23) stated they felt like “the
answers were more immediate.... [The image] shows up and it was a reactionary, | hit the
button.” A second participant (EP24) stated “It was harder to, like, think... but the task seemed

easier... I didn’t have to think about [the task] as much.”
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Figure 3. Real time estimate and bidirectional modulation of behavior using dmPFC and

dACC stimulation. A. Experimental design. B-D. Top: Reaction time changes with dmPFC

(orange) and dACC (teal) stimulated trials indicated by a color change (N=3). Bottom: The real-

time Conflict-Adaptation state (ECS-EAS) during Control blocks (with no stimulation) and

model-based Blocks with dmPFC (orange stems) and dACC (teal stems) stimulated trials. Grey

dots: no stimulation. EPxx indicate the different participants. E. After averaging the current

stimulated trial and the subsequent 4 trials per dmPFC stimulation (orange) versus per dACC

stimulation (teal), we found a significant difference between dmPFC and dACC stimulation for

EP23 (p=0.0003) and EP24 (p=0.0012), but not exceeding significance for EP21 (p=0.6438;
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Wilcoxon rank sum test). Error bars are standard error across trials. F. dmPFC stimulation
induced higher Conflict-Adaptation state values when we subtracted the Conflict-Adaptation

state with dACC versus dmPFC stimulated trials. Brain region abbreviations as in Fig. 2.

DISCUSSION

The current study sought to model and modulate the hidden cognitive states associated
with emotion regulation using a combination of state-space modeling of the behavior and
intracranial stimulation. Using a behavioral state space approach and a well-validated emotion
regulation task, we were able to isolate and model emotion conflict (ECS) and emotion
adaptation states (EAS) with good model fit, convergence, and predictive ability. Using
intracranial electric stimulation applied to emotion regulation-related neurocircuitry, we were
able to bi-directionally modulate these state-dependent behavioral responses. Finally, we were
able to use this state-space model to estimate changes in ECS-EAS equipoise (Conflict-
Adaptation equipoise) and to modulate these states upwards or downwards using predictive,
adaptive, closed-looped stimulation, with observable behavioral effects.

Taking a state-space approach to modeling behavior allowed for more precise mapping of
relevant behavior to underlying cognitive processes. Using this approach with the ECR task, we
were able to model and predict behavioral responses to emotion conflict (CI) and emotion
conflict resolution (1) trials even during the presentation of alternative trial types (e.g. predicting
how the participant would respond to a Cl trial during a CC or IC trial). Importantly, the state
estimate modeling approach allowed us to predict the Emotion Conflict (ECS) or the Emotion
Adaptation (EAS) cognitive states. This represents a significant improvement over traditional

behavioral modeling approaches, wherein behavioral responses to task conditions would be
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averaged by condition across the entire task, masking potentially important nuanced processes
contributing to behavioral responses. Indeed, whereas our state-space approach was able to
isolate specific features of ECR task trials, for example, trials that are directly affected by the
immediately preceding trial (e.g. incongruent trials immediately preceded by a congruent trials
(CI); incongruent trials immediately preceded by an incongruent trial (I1)); taking a task
condition-average approach did not reveal any significant differences in behavior between these
trial types.

Having the ability to isolate and predict behavior based upon these hidden cognitive
states associated with emotion regulation opens up the possibility for the development of novel
neurotherapeutic approaches to modulate emotion regulation behavior. The features captured by
the state-space approach in the current study - namely, the ability to detect emotion conflict and
the ability to adapt behavior following conflict - have direct clinical implications and may be
viable targets for intervention. For example, severe depression and anhedonia is associated with
reduced reactivity to salient cues, potentially captured by deviations in the emotion conflict state
(1, 2, 5, 48). By contrast, many disorders including ADHD, OCD, or GAD are marked by
persistent perseveration and an inability to adapt and update behavioral responses (1, 2, 5, 34),
potentially captured by deviations in the emotion adaptation state . Both these deviations from
healthy, adaptive processing contribute to overall deficits in emotion regulation. Isolating and
modulating these features of emotion regulation can provide a novel therapeutic approach in
which these separable states are driven clamped in a more normal state in a patient-specific
manner. Indeed, we have made progress recently in mapping behavioral states through this state
estimate approach to neural activity in a related Stroop task (47) and mood can be decoded from

neural data (35, 59), which means that we could, in theory, identify the neural signatures mapped
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to these underlying hidden states to then close the loop between stimulation and neural signatures
of hidden cognitive states as surprise (ECS) or adaptation (EAS) (19-21).

We were able to demonstrate an ability to drive these states, and modulate behavior
accordingly, using intracranial electric stimulation to a subset of brain regions implicated in
emotion regulation, namely the dIPFC, dACC, rACC, dmPFC, and amygdala. This is a direct
probe of causality between driving neural activity and the alteration of separate cognitive
processes underlying behavior during the ECR task. Specifically, dIPFC stimulation resulted in
significantly faster reaction times overall, whereas stimulation of the amygdala resulted in
significantly slower reaction times overall. This finding is intriguing in light of the now well-
established cortical control theory of emotion regulation, wherein increased dIPFC engagement
is associated with decreased amygdala activation, representing cortical control over salience
processing (26, 28-30). Location-specific effects were demonstrated both in the change in
reaction times and behavioral changes within the state-space modeling framework. The state-
space model demonstrated that stimulation in the dACC accelerated emotion conflict processing
while stimulation in the dmPFC and rACC slowed emotion conflict processing. This was further
demonstrated in a predictive fashion using closed loop stimulation in two of three participants.

The behavioral changes due to stimulation were illustrated within the context of the
Conflict-Adaptation state, particularly for dmPFC and dACC stimulation. However, a key
feature of our investigation is that we could independently modulate different hidden states
indicating that not only are these states separate but that they are supported by, and can be
influenced differently by, changes in activity in identified brain regions. For instance, dIPFC and
rACC stimulation had effects on individual components of the state estimate model, with dIPFC

stimulation decreasing reaction time bias. Interestingly, transcranial magnetic stimulation (TMS)
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of the dIPFC has been shown to not only modulate attention in a threat task, but this response
varied with intrinsic anxiety levels in the participants (60). These results may correlate to our
highly consistent effect of dIPFC direct electrical stimulation on reaction time bias (likely
includes attentional components). It would be interesting if additional TMS approaches or other
non-invasive neuromodulatory techniques could replicate our results from direct electrical
stimulation, particularly with regard to stimulation in the dmPFC versus the dIPFC (61).
Alternately, rACC stimulation altering the emotion conflict resolution (EAS) value of the state
estimate model which was not surprising considering this area has been shown to be a key part of
the brain network supporting emotion processing and regulation in general (6, 22, 26-28, 31) and
stimulation in this region has alleviated depression in a subset of patients (62—-64). Stimulation of
the amygdala resulted in significantly slower reaction times during emotion conflict, but not
during emotion conflict resolution, suggesting increased processing of emotion salience during
emotion conflict. Therefore, we were able to isolate and modulate different features of the
behavior, such as attention or the effects of trial history, using the state estimate approach. In
addition, the state space framework allowed us to address other features of the behavior, such as
unexpected changes in trial types (e.g. Congruent to Incongruent trials). The Conflict-Adaptation
model of behavior revealed a bidirectional effect of dmPFC/rACC versus dACC stimulation,
both on the full block level and when implemented in real time in closed-loop control (dmPFC
and dACC). Thus, the current study was able to isolate clinically-relevant behavior and was able
to modulate this behavior in real time.
Limitations

There are several limitations to the interpretation of the current study. First, whereas we

were able to demonstrate the ability to model and modulate behavior in an emotion regulation
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task, the ecological validity of this approach remains to be tested. Future studies are needed to
examine whether the benefits of stimulation parameters modeled based upon a behavioral task
can be extended to functioning in the real world. Second, the current study relied upon a sample
of convenience (patients undergoing clinical monitoring for epileptic seizures). Thus, electrode
placement was limited to the clinical specifications of this sample. There may be other, more
effective targets for modulating emotion regulation, such as the ventrolateral prefrontal cortex or
inferior parietal lobule (26, 27, 29, 31). Future studies are needed to identify optimal targets for
stimulation. Third, in order to implement the state space behavioral approach of characterizing
hidden cognitive states in a clinical setting, we would need to account for the wide variance in
both the stimulation induced changes in reaction times and, to a lesser extent, in the state
estimate values. We hypothesized this variance could be due to the noisy signal inherent to
reaction time (40, 47), the temporal rarity of the sampling of state (we only captured behavior in
discrete trials over time), and variability in electrode positions, as they were placed for clinical
purposes related to epilepsy and not to specifically target subregions of cingulate, prefrontal
cortex or other areas related to emotional control. Future studies are needed to disentangle these
potential sources of variance.
Conclusion

The current study represents a significant step towards delineating and modulating
identified and dissociable, relevant hidden cognitive features associated with emotion regulation
using intracranial neuromodulation at multiple brain regions. Further, it is, to our knowledge, the
first study of its kind to demonstrate closed-loop modulation of emotion regulation. These results
suggest a potential pathway towards the development of novel neurotherapeutics by leveraging

our understanding of neural activity from fMRI from previous studies with the use of neural
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stimulation and multiple metrics of behavior (psychometric questionnaires, behavioral tasks, and
state estimate modeling) to arrive at a therapeutic strategy, in this instance for emotion
dysregulation. In this context, the possibility bidirectional altering of emotion regulation-related
behavior with dmPFC/rACC versus dACC as outlined in the current study suggests a therapeutic
approach that can help maintain an optimal balance of emotion processing and prevent behavior
from being driven too far toward either end of the continuum. These results, therefore, could
provide an informed basis for the use of intermittent and targeted neuromodulation to aid
individuals experiencing severe emotion dysregulation at both extremes of the spectrum. Indeed,
this approach, applied to other domains and across cognitive and emotional tasks, could allow us
to arrive at a more refined view of how to use neural stimulation to therapeutically alter the
circuitry underlying important domains of functioning, such as maladaptive emotional
processing and decision making, with implications for a wide array of neuropsychiatric diseases
(33, 34, 51, 52).
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Materials and Methods
Participants

All participants provided fully informed consent according to NIH and Army HRPO
guidelines as monitored by the local MGH Institutional Review Board. ECR task data from three
separate cohorts (N=99) were included in the state-space models: healthy control volunteers
(n=42, mean age = 32.9, range = 20-55, 36% female); psychiatric patients (n=16, mean age = 33,
range = 20-59, 62.5% female; see Supplemental Table 1 for diagnostic details), and patients
with epilepsy (n=41, mean age = 36.15, range = 14-68, 65% female). Only the patients with
long-standing pharmaco-resistant complex partial seizures were included in the subsequent
intracranial stimulation study in the context of ongoing clinical care, and three of these patients
participated in the closed-loop (adaptive) stimulation trial. The patients with epilepsy were
implanted with electrodes as part of a course of clinical monitoring using intracranial
electroencephalogram (iEEG) recordings. Patients with epilepsy were implanted with multi-lead
depth or grid electrodes (a.k.a iEEG) to confirm the hypothesized seizure focus, and locate
epileptogenic tissue in relation to essential cortex, thus directing surgical treatment
(Supplemental Table 3). The decision to implant electrodes, the number, types and location of
the implantations were all determined on clinical grounds by a team of caregivers independent of
this study. Participants with epilepsy were informed that participation in the current study would
not alter their clinical treatment in any way, and that they may withdraw at any time without
jeopardizing their clinical care. Healthy control participants and participants diagnosed with

psychiatric disorders completed the behavioral task but were not implanted with any electrodes.
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All participants voluntarily participated after fully informed consent according to NIH and Army
HRPO guidelines as monitored by the local MGH Institutional Review Board.
Behavioral Task

The ECR task is a well-validated task designed to assess the effects of emotional conflict
that arises from the incompatibility between task-relevant and task-irrelevant emotional
dimensions of a stimulus. Faces with fearful and happy expressions are presented with the words
“happy” or “fear” written across them. Words are either congruent (e.g. “happy” written across
an image with a happy expression) or incongruent (e.g. “happy” written across an image with a
fearful expression; Fig. 1A; Subjects are asked to identify the emotional expression of the face
while ignoring the word. Thus, successful completion of the task requires regulation of
responses to task irrelevant emotional stimuli in order to focus on task relevant goals. Trials can
be analyzed with regard to immediately preceding trials: incongruent trials preceded by
congruent trials (CI trials) measure emotion conflict, and incongruent trials preceded by
incongruent trials (11 trials) measure resolution of emotion conflict. The images were presented
in a pseudorandom order such that the identity, gender, and valence were shown randomly.
Congruence changes were balanced in that there were no more than three congruent or
incongruent trials in sequential order. Task stimuli were presented with either Presentation
software (Neurobehavioral Systems) or Psychophysics toolbox in MATLAB (65-67) (
Mathworks, Natick, MA). The task in the epilepsy monitoring unit (EMU) was composed of at
least one and up to six 64-trial blocks of images presented for 1 second, with a fixation cross
presented for 2-4 seconds in between images. The task performed outside of the EMU included
one 152 trial block collected during MEG/EEG monitoring (data outside the scope of the current

study). Aside from the number of trials, the timing of the task trials was the same between
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settings. Behavioral data were analyzed using MATLAB (Mathworks, Natick, MA) and
consisted of reaction times and response accuracy.
Psychometric Questionnaires

In addition to the ECR behavioral task, all participants were asked to complete a set of
self-report questionnaires assessing emotion reactivity and regulation ability. They completed
Emotional Reactivity Scale (ERS) is a 21-item self-report measure designed to address emotion
sensitivity, intensity and persistence (55). The Difficulties in Emotion Regulation Scale (DERS)
is a 36-item self-report measure reflecting difficulties in emotional understanding and awareness
as well as the acceptance of emotions and the ability to refrain from impulsive behavior when
experiencing negative emotions (8). The Anxiety Sensitivity Index (ASI) is a 16-item
questionnaire that measures an individual’s concern about the possible negative consequences of
anxiety symptoms (56, 57, 68). We used the average and standard deviation of the 42 healthy
control participant score response to zscore all the participant responses using the distribution of
healthy control participant responses as the reference group. This was done to allow for the
comparison and combination of substantially different score values from the psychometric
questionnaires and to correlate values with the behavioral data.
Developing and Validating Models of ECR Hidden States

Using only the subset of data from sessions of ECR without any direct electrical
stimulation and the COMPASS state-space toolbox ((40); https://github.com/Eden-Kramer-
Lab/COMPASS), we derived a set of behavioral state-space models of underlying hidden states
for ECR. The model structure was similar between models with differences being what features
of the task and responses from the participants were used to generate the model. Choices in the

model parameters and features (e.g. trial type) were informed by the existing ECR literature to
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reflect emotion conflict and emotion conflict resolution (6, 19-23, 48). Included features of the
task were whether we include the reaction time, reaction times during specific trial types (such as
incongruent vs congruent trials), and accuracy (correct/incorrect; Supplemental Figure 3).

To illustrate how we built each state estimate model, we will demonstrate how we
modeled Conflict-Adaptation (Fig. 1E; Supplemental Figure 4) informed by the current
thinking that adaptation to Incongruent-Incongruent (I1) trial sequences was captured in an
emotion adaptation state (EAS), whereas the switch burden of Congruent-Incongruent (Cl) trial
sequences was captured as an emotion conflict state (ECS; (6, 23)). The model was composed of
three main components which varied trial to trial: trial-independent, baseline reaction time or
drift state, also called the RTB (Xkpias), ECS (Cl trials; Xkci1) and EAS (Il trials; Xku). We used
these three state estimates to determine both overall and trial-to-trial changes in reaction time
behavior, separating the effects of drifts in attention or distraction (the bias term RTB) from the
effects of the relevant trial types (CI or 1) on behavior, which we could observe in the resulting
state estimates on a trial by trial basis (Fig. 1 D). The difference between ECS and EAS would
then reflect the balance of the effects of surprise related to a change in conflict on behavior
versus adapting to conflict. Therefore, we could regress out latent variables likely corresponding
to hidden cognitive states as well as identify interactions between these independent latent
variables (Supplemental Figure 3-4).

Since bias, Cl, and 11 trials do not fully describe all features of ECR, to more fully
explore the hidden features which could be underlying ECR task behavior, we ran 30 additional
models on the behavioral data set with different state parameters using the state estimate
approach using the following metrics to compare the models: 1) Interpretability: whether the

terms in the model could be mapped to independent features of the task or behavior; 2)

30


https://doi.org/10.1101/825893
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/825893; this version posted October 31, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Convergence: if the models could converge using expectation maximization (EM) and maximum
(ML) likelihood measures; 3) Variability: explanation of the variability without over-specifying
the number of terms needed to predict behavior (relevant to the noise terms); 4) Predictability:
identifying which models best predicted reaction time; and 5) Psychometric correspondence:
correlation of an underlying emotion reactivity state with self-report questionnaires
(Supplemental Figure 2-4).

The goal of this work was to arrive at one or a subset of validated state estimate models
which quantify changes in hidden cognitive states, and which operate across a population of
participants from the non-stimulated ECR behavioral task sessions (N=99). Therefore, each of
these measurements were examined in turn using the data set from 99 individuals performing the
ECR task both in and outside the EMU, exclusively with data from task sessions without neural
stimulation (Supplemental Figure 3-4). We also confirmed the models could converge for both
larger and smaller data sets with tolerable noise ranges (data not shown).

Model interpretability directly related to chosen model features informed by both the
behavior during the task and the literature surrounding Stroop and ECR tasks (Supplemental
Figure 3-4; (6, 19-22)). For instance, several models have a term for reaction time bias, a trial-
independent, baseline reaction time or drift state, which could correspond to an overall attention
signal or effort. Other models include trial feature-relevant changes in behavior. In addition,
some models include a state variable measuring how reaction time is influenced by the transition
term (Tr.), namely a term indicating whether the previous trial was different to the current trial
versus the two trials being the same (Supplemental Figure 3-4), a correlate of cognitive
flexibility from trial to trial. Goal-oriented and conflict resolution hidden states could be

addressed by a state variable related to whether the current trial is congruent or incongruent
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(Cvsl), which details the effects of the current trial difficulty on reaction time which is
represented in several models as well (Supplemental Figure 3-4). Finally, we included models
which incorporate state variables related to the valence of the face or the word (Supplemental
Figure 3-4). In addition to the trial types, state estimate models could also incorporate and
predict different behavioral components such as reaction time or accuracy (Supplemental
Figure 3-4). We developed reaction time-only behavioral models, accuracy-only models, and
mixed models (Supplemental Figure 3-4).

A key point to creating these models is that we had to use indicator (e.g. trial type) and
state estimate variables which could be independent of one another. For instance, we could not
include indicator terms which were mutually exclusive, such as whether the trial was congruent
or incongruent, as separate state estimate terms. Second, we also tested whether we could ‘fix’
some model terms such that, in the process of estimating the coefficients for each model to
describe the behavior, we did not iteratively determine the state per trial. For instance, when we
identified the congruence term as ‘fixed’, this means that we assumed the behavioral responses
to trial congruence does not vary from trial to trial. The fixed terms as well as the per trial state
space variability were both tested along with the different types of trial features to determine if
we could identify both the least number of features and what features in a state space model
could be used to describe and predict behavior. Of course, considering the large number of
different parameters we could use to model behavior (Supplemental Figure 3-4), we could be
overfitting the behavior with too many interrelated and dependent terms. For this reason, we
generated 30 separate models so that, in each model, the state variable terms, behavioral

measure, and trial-relevant features used in the models could be independent from one another in
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each formulation while minimizing the number of state estimates used per model (Supplemental
Figure 3-4).

Convergence Varies Between Models. Following feature selection to generate these state
estimate models, we then performed an expectation maximization (EM) algorithm to measure the
maximum likelihood estimates of the model parameters and filter solutions per task run to arrive
at task run-specified parameters. We addressed convergence by identifying whether the models
converged on a solution as measured by their maximum likelihood estimate. We found many of
the state space models converged on a solution, though some did not (Supplemental Figure 3-
5). Setting a criterion threshold to reject models, we could eliminate six state space models since
they took more iterations to converge or never converged on a stable solution, as reflected by the
lower maximum likelihood slopes in the first 500 iterations after normalizing to the maximum
per curve (p<0.000001; Chi-sq=1,053; Friedman test; Supplemental Figure 3-5). Most of the
models that failed to converge involved fixing the reaction time bias (or reaction time drift) to a
constant value across trials or estimating reaction time bias without taking into account trial
transitions or trial types (Supplemental Figure 3-5).

Model Variability and Noise Can Used to Reject Models. The models were compared based on
the width of the confidence bounds of each state estimate, a variability term Wy (extent of the
state process noise per each state variable), and an observed behavior (RT) noise V (for the
estimated noise of the model, Supplemental Figure 3-5). We identified which models had the
least predicted observation noise and per state variable (Supplemental Figure 4). Model 5 had
no estimate of the reaction time bias state and the predicted observation noise was significantly
higher than for other models (V; p<0.000001; Chi-sg= 1,225; Friedman test; Supplemental

Figure 4). For each state variable, per-state estimate noise (W) was higher for an additional five
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models (Models 7, 9, 11, 20, and 14), thereby eliminating them from the list (p<0.000001; Chi-
sg= 20,663; Friedman test; Supplemental Figure 4). These rejected models, interestingly, did
not contain an adaptation (I1) term.

Models Vary in the Behavioral Prediction. As the models could be used to predict reaction times
per each trial (40, 41), we performed a leave-one-out cross validation test where we predicted
behavior (reaction time) by iteratively removing one trial, performing the model fit to predict
that reaction time, and then moving on to the next trial. We then calculated the root mean square
(RMS) difference between the actual and predicted reaction times and compared results across
models. This step allowed us to determine how well each state space model could predict
behavior. To test the predictive power of each model, we ran the model fitting iteratively,
removing a single trial but including all the other trials iteratively across all trials and using the
censor capabilities of the COMPASS package to replace, or predict, the missing reaction time
per session across the data set (40). We found that most of the models could predict reaction
times at similar levels. In fact, the differences between the actual and predicted log reaction
times were not significantly different between models except for the significantly lower
differences for Models 6 and 8 and significantly higher values for Model 5 (p<0.00001;
Friedman test; Supplemental Figure 4), resulting in model rejection.

Models Using Reaction Time Can Describe the Behavior Without Accuracy. While we did
include models which had binomial state variables which took into account trial accuracy
(Supplemental Figure 3), we found that models which only included trial accuracy (Models 23-
26) either did not converge or had very high confidence bounds and noise terms. Models which
included both reaction time and trial accuracy, interestingly, were not different in the state

estimates to when we included only the reaction time in the models (data not shown). We took
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this result to mean that the high accuracy (88% correct) and the intermittent incorrect trials (Fig.
1) were not informative to drive these hidden cognitive states. For this reason, we did not include
these models (Models 23-30) in the remaining results.
State Variables Correspond with Psychometric Questionnaire scores. We also tested whether
these state estimates correlated with psychometric questionnaire scores (Supplemental Fig. 2,
4). We calculated the correlation between the state space variables per model and each
psychometric scale z-scored relative to the healthy control group using only the data set when
there was no stimulation in the entire session (Supplemental Figure 4).
Intracranial (open-loop) stimulation

As part of clinical monitoring for seizures, patients with epilepsy were implanted with
depth electrodes (Ad-tech Medical, Racine WI, USA, or PMT, Chanhassen, MN, USA) with
diameter ranges of 0.8-1.0 mm and consisted of 8-16 platinum/iridium-contact leads at between
1-2.4 mm long. Electrodes were localized by using a volumetric image coregistration procedure.
Using Freesurfer scripts (69, 70) (http://surfer.nmr.mgh.harvard.edu), the preoperative T1-
weighted MRI (showing the brain anatomy) was aligned with a postoperative CT (showing
electrode locations). Electrode coordinates were manually determined from the CT and placed
into the native space (71). Mapping to brain regions was performed using an electrode labeling
algorithm (ELA,; (72); https://github.com/pelednoam/ieil). We mapped electrodes to regions in a
given location which can be flexibly chosen within Freesurfer, using the DKT atlas in
combination with a subcortical mapping (69, 70, 73).

To alter behavior in the ECR task using open loop stimulation, we used brief trains of
focal high frequency open loop electrical stimulation (50, 51, 74) targeting the dACC, rACC,

amygdala, dmPFC, and dIPFC in 16 of the total 41 participants with epilepsy where stimulation
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was performed during single, alternating blocks per brain region. Specifically, participants
performed 64-trial blocks (Test Blocks) during which 130 Hz (N=2) or 160 Hz (N=14)
stimulation for 400 ms was delivered at image onset at 4-6 mA at a single site. Stimulation was
delivered in a bipolar configuration using CereStim (Blackrock, Salt Lake City, Utah). Pulses
were charge balanced with a 90 psecond negative deflection, a 53 psecond interval and a 90
psecond positive deflection. During Test Blocks, stimulation trials were interspersed with non-
stimulation trials (Fig. 2A, Supplemental Table 1; Supplemental Figure 6). In the same
session, participants also performed 64-trial blocks without stimulation (Control Blocks, Fig.
2A).

In all cases, we performed safety tests of multiple levels of current in each stimulation
site to look for signs of epileptogenic activity as well as to ask participants if they experienced
any sensations with stimulation. Only if there was neither epileptiform activity nor subjective
awareness of the stimulation did we perform the task. We did not include a forced choice task to
determine that there was no subjective effect. We balanced the ECR stimulation protocol to
study within-testing effects of neural stimulation on the reaction times of the participants in
alternating blocks and trials. labeled. Each participant was unaware if the stimulation was
occurring in a particular trial or block. To examine changes in reaction time or state estimates
due to stimulation, we z-scored all reaction times relative to the Control blocks to be able to
compare across participants.

Adaptive (closed-loop) stimulation

We used our Model 1, which we call the Conflict-Adaptation state (Fig. 1), to track the

Conflict-Adaptation equipoise in real time and to deliver during adaptive stimulation in two

separate sites, the dmPFC and the dACC. The dmPFC and the dACC were chosen based on the
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open loop stimulation results. These two sites were selected based upon the results of our
intracranial stimulation experiments (see Results section). The computer displaying the ECR task
was interfaced via the Psychophysics toolbox with a separate computer. The interface registered
the trial type, trial history, and the reaction time on a trial by trial basis as the participants
performed the task, using a National Instruments digital data acquisition board (N1 USB-6501;
NI) and a custom MATLAB program to calculate the Conflict-Adaptation state in real time.
This closed-loop approach involved ‘training’ the model on prior non-stim ECR task sessions
from the same participant to arrive at a convergent estimate of model parameters with 1000
iterations. We validated this approach by applying the same model estimates for sessions across
multiple days and found generally similar state estimates could be arrived at per patient across
days (data not shown). We chose 1000 iterations since this was well beyond the point when the
maximum likelihood value stabilized, or reached an asymptote, following the expectations
maximization step while the maximum likelihood did not always asymptote at 500 iterations
(Supplemental Figure 4-5). The resultant model and model parameters could then be used in
real time such that, for each trial, the resultant emotion conflict state (ECS), emotion adaptation
state (EAS), and reaction time bias (RTB) values could be estimated. We hypothesized that we
could use dmPFC and dACC stimulation to bidirectionally alternate the Conflict-Adaptation
(ECS>EAS) state based on the opposite effects of dACC and dmPFC stimulation during open
loop stimulation (Fig. 2). To test this, we applied stimulation based on the real-time values for
the Conflict-Adaptation state. We alternately set the real-time algorithm to stimulate dmPFC
when the Conflict-Adaptation state was below zero to drive the value upward closer to zero, then
to stimulate dACC while the state was above zero to drive the value downward. In essence, this

would create a “state clamp” which could maintain a state within specified bounds, with zero
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representing equipoise between the conflict and adaptation state. The primary goal was to
alternate between stimulation sites to determine if we could shift the Conflict-Adaptation state
bidirectionally within the same task block. Further analyses of the behavior involved taking the
dACC and dmPFC stimulation trials and the 4 trials subsequent to the stimulation, averaging
these four sequential trials, and comparing dynamics between the dACC and dmPFC stimulation
trials.
Statistical analysis

All statistical comparisons were performed using non-parametric statistical approaches.
We tested comparisons across brain regions with the Kruskal-Wallis test for non-equivalence of
multiple medians followed by post hoc Tukey-Kramer tests to determine statistically separable
groups. For correlations to reaction time or changes in z-scored reaction times relative to Control
blocks, we used a Wilcoxon signed rank test within brain regions to determine if a distribution's
mean was significantly different from zero. For comparisons between Control and Test blocks in
power and reaction time, we used the Wilcoxon rank sum test (two-sided) for comparisons
between individual medians. We additionally used the Wilcoxon signed rank test (two-sided) for
determining if a distribution's median was significantly different from zero.
Data and materials availability
All data underlying the study is available upon request.
Code availability
All code, including custom MATLAB code, underlying the study will be made available upon

request.
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