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Abstract:   

The ability to regulate emotions in the service of meeting ongoing goals and task demands is a 

key aspect of adaptive human behavior in our volatile social world. Consequently, difficulties in 

processing and responding to emotional stimuli underlie many psychiatric diseases ranging from 

depression to anxiety, the common thread being effects on behavior. Behavior, which is made up 

of shifting, difficult to measure hidden states such as attention and emotion reactivity, is a 

product of integrating external input and latent mental processes. Directly measuring, and 

differentiating, separable hidden cognitive, emotional, and attentional states contributing to 

emotion conflict resolution, however, is challenging, particularly when only using task-relevant 

behavioral measures such as reaction time. State-space representations are a powerful method for 

investigating hidden states underlying complex systems. Using state-space modeling of behavior, 

we identified relevant hidden cognitive states and predicted behavior in a standardized emotion 

regulation task.  After identifying and validating models which best fit the behavior and 

narrowing our focus to one model, we used targeted intracranial stimulation of the emotion 

regulation-relevant neurocircuitry, including prefrontal structures and the amygdala, to causally 

modulate separable states. Finally, we focused on this one validated state-space model to 

perform real-time, bidirectional closed-loop adaptive stimulation in a subset of participants. 

These approaches enable an improved understanding of how to sample and understand emotional 

processing in a way which could be leveraged in neuromodulatory therapy for disorders of 

emotional regulation. 

Keywords and abbreviations: 

emotion regulation, cingulate cortex, stimulation, intracranial, state space model, hidden states 
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Introduction 

     To function in a complex world, humans must continuously regulate responses to conflicting 

emotional cues in the service of meeting ongoing, goal-directed demands.  Defined as emotion 

regulation, humans have the ability to adaptively influence which emotions are experienced, 

when they are experienced, and how they are expressed given a current context (1–4).  The 

process of emotion regulation has been well studied over the past 20 years (1, 3, 5–9) and it is 

clear that adaptive emotion regulation requires an ability to detect the salience of an internally or 

externally generated emotional cue, and to subsequently attend towards or away from this cue 

and adjust behavior accordingly dependent upon the current situational demands.  Deficits in 

emotion regulation have been shown to play a role and contribute to symptom severity across 

anxiety, mood, depression, PTSD, and related disorders (1–4, 9–18).  Thus, emotion 

dysregulation represents a key transdiagnostic dimension of psychiatric disease and a target for 

intervention. At the level of neurocircuitry, emotion regulation recruits a network of cortical 

regions implicated in executive control functions (e.g. attention orienting, working memory) 

including dorsal and ventrolateral prefrontal cortex (dlPFC, vlPFC), dorsomedial PFC (dmPFC) 

and rostral and dorsal anterior cingulate cortex (rACC, dACC; (18–28)). Increased activation in 

these regions is associated with decreased activation in subcortical limbic regions including 

amygdala (29–31).  Thus, successful emotion regulation increases executive control in the 

service of goal directed activities while subsequently decreasing salience processing (26, 28–31). 

     The development of novel neurotherapeutics to target emotion dysregulation requires a 

precise understanding of the relationship between activation along emotion regulation-related 

neurocircuitry and behavior (32–35).  Successful emotion regulation likely involves a large 

number of hidden cognitive dynamics that ultimately contribute to behavioral responses, 
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including shifts in attention, cognitive flexibility, emotion reactivity, and behavioral adaptability 

(1, 5). Therefore, understanding how regions within the identified neural circuitry of emotion 

regulation enhance or inhibit these hidden cognitive states is crucial to the identification of viable 

and directed targets for intervention using neurotherapeutics, including invasive and non-

invasive neuromodulation (34, 36–38).  Recent promising advancements in identifying states of 

mood relative to neural activity have led to the use of closed loop tools to stimulate based on 

these neural states, with stimulation in the orbitofrontal cortex resulting in the improvement of 

mood (35).  However, mood is the product of a numerous underlying hidden states and processes 

including emotion regulation (14, 39). To develop the therapy further for focused relief shaped 

by underlying mechanisms, we propose identifying the underlying dynamics to plan for more 

targeted, and tailored, approaches supporting the overall modulation of emotion regulation.  

State-space modeling is a powerful computational tool that can allow for the 

identification and examination of hidden features underlying behavior relevant to emotion 

regulation, including attention, cognitive flexibility, emotion reactivity, and adaptability. State-

space modelling involves arriving at an estimated probabilistic dependence between the latent 

state variable, such as hidden features, and an observed measurement, such as reaction time or 

accuracy. This comes with the main assumption that behavior such as reaction time or accuracy 

is driven by a combination of hidden features which can be modelled as multivariate, latent 

cognitive states. In state space modelling, these latent states can vary over time, exhibit inherent 

dynamics and vary with external inputs, such as visual stimuli or trial type. An advantage of 

state-space modeling is that each feature can be modeled as a hidden cognitive state and 

estimated on a per trial basis using an expectation maximization approach derived from the 

behavior (40–42). Furthermore, since the state space modeling approach can be used to factorize 
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the underlying cognitive components and estimate their dynamics over the course of experiment 

one can test a series of state-space models with different features and validate which best 

corresponds to behavior. This approach represents a significant improvement over multi-trial 

block-averaged approaches, wherein behavioral responses are examined cross-sectionally over 

entire task duration (e.g. >50-100 trials), thus losing potentially important information about the 

specific, nuanced states underlying behavior.  Further, state-space models may allow for more 

precise mapping of behavior to neural activity, which enables more precise identification of 

targets for neurostimulation.  The power of this state-space modeling approach has been shown 

in both learning and tests of cognitive flexibility (40, 43–47).   

 In the current study, we used a state space approach to capture specific hidden features of 

emotion regulation relevant to behavior during performance on the Emotion Conflict Resolution 

task (ECR; (6)), a well validated behavioral probe of emotion regulation that has been shown to 

induce activation of emotion regulation neurocircuitry (6, 22, 23).  Indeed, ECR performance 

and brain activation during the task has been shown to predict drug treatment responsiveness in 

depression (48). An important point is that emotion is a key part of the ECR task since it requires 

identifying the emotion on a presented face while ignoring the overlaid word, requiring emotion 

perception and the activation of emotion circuitry (6). Yet, since emotion regulation, at its core, 

not only involves emotion perception but resolving emotion conflict to regulate emotion 

responses (5, 10), we chose the the ECR task since it addresses both emotion perception and 

resolving emotion conflict. By focusing on ECR, we are addressing one aspect of implicit 

emotion regulation, namely the ability to maintain goal-directed behaviors in the presence of 

competing/conflicting affective information. With the notion that there are several factors, 

including latent cognitive states, affecting behavioral responses to the ECR task at any point in 
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time, thereby introducing unexplained ‘noise’ to the behavioral measure, we hypothesized that a 

state-space modeling approach would provide a more tractable measure that would allow access 

to the underlying, or hidden, cognitive states driving reaction time, such as attention or conflict 

resolution, on a per-trial basis. As such, performance on the ECR, as it is a modified Stroop task 

(49), requires a number of processes relevant to emotion regulation including salience processing 

(emotion reactivity), goal-directed processing (attentional control, response inhibition), 

recognition of a conflict between salience processing and goal-directed processing, resolution of 

this conflict through behavioral adaptation (cognitive flexibility and adaptability), and working 

memory (6, 19–23). As the task includes both difficult and easy trials, and the complexity of the 

responses, which include speed (reaction time) and accuracy, there could be numerous hidden 

cognitive dynamics contributing to behavioral responses.  To validate whether these hidden 

cognitive dynamics could be identified and then separately altered through neuromodulation, we 

performed a sequence of steps. First, we applied a state-space approach purely to behavior 

(reaction time and accuracy) during the ECR task to model hidden states and to use these models 

to predict reaction time from three separate cohorts (healthy volunteers, psychiatric patients, and 

patients with intractable epilepsy).  Second, after establishing a subset of behavioral models 

which were high-performing, in separate task sessions, we tested whether identified hidden states 

within these behavioral state space models can be driven by stimulation in specific brain 

networks. We hypothesized that direct electrical intracranial stimulation in different brain 

regions would have differential, and causal, effects on these behavioral features as has been 

hinted at with stimulation in other brain regions in learning and memory (50, 51), mood (35, 52), 

and OCD (36, 53, 54).  As a final test, we used the state-space model in closed-loop adaptive 

stimulation to modulate behavior predictably.  
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RESULTS 

Behavior in the Emotion Conflict Resolution task 

To understand the hidden cognitive state underlying emotion conflict resolution and 

emotion reactivity, we examined the behavioral dynamics of three different groups of individuals 

while they performed the Emotion Conflict Resolution (ECR) task (6): 1) Healthy control 

volunteers (N=42); 2) individuals with psychiatric diagnoses (N=16) and 3) participants with 

intractable epilepsy undergoing intracranial recordings (N=41; Supplemental Table 1). During 

the task, participants identified the emotion of a face while ignoring an overlaid word that was 

either congruent (C) or incongruent (I) with the face's emotion ((6); Fig. 1A, Supplemental 

Figure 1).  Consistent with prior literature and across the three groups, incongruent trials 

induced longer reaction times (RTs) compared to congruent trials, and overall accuracy was 

above 88% ((6, 48); z-scored relative to all trials per participant, p<0.0001; Kruskal-Wallis test; 

Fig. 1B, Supplemental Figure 1A). Valence (Happy vs fear) did not significantly affect overall 

behavior (Supplemental Fig. 2).   

Self-reported emotion reactivity and emotion regulation 

Self-report psychometric questionnaires were used as an independent measure of emotion 

reactivity, anxiety and emotion regulation to the central ECR task. Significant differences in 

responses to self-report psychometric scales between the three participant groups were found 

across three measures of emotion reactivity and regulation ability (Emotion Reactivity Scale, 

ERS; Difficulties in Emotion Regulation Scale, DERS; Anxiety Sensitivity Index, ASI; See 

Methods; see Supplemental Table 2 for details of average raw scale scores by participant 

group; Supplemental Fig. 2; (8, 55–57)). Consistent with the existing literature, relative to 

healthy controls, individuals diagnosed with psychiatric disorders endorsed significantly greater 
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emotion reactivity (p=0.00001; Wilcoxon rank sum; ERS),  and difficulties with emotion 

regulation (p=0.0003; Wilcoxon rank sum; DERS), but not anxiety sensitivity after correcting for 

multiple comparisons (p=0.032; Wilcoxon rank sum; ASI; Supplemental Fig. 2). Patients with 

epilepsy had responses which were widely distributed, overlapping between the other two groups 

(Supplemental Fig. 2) with scores not significantly different to either the healthy control group 

or the patients diagnosed with psychiatric disorders following corrections for multiple 

comparisons (p>0.0245; Wilcoxon rank sum), consistent with the known co-morbidity of 

epilepsy and psychiatric symptoms (58). No significant correlation was found between z-scored 

scale scores and block-averaged reaction time performance on the ECR task (average zscored RT 

difference between congruent to incongruent trials minus incongruent to incongruent trials (CI-

II), or accuracy). 

State-space modelling of conflict and adaptation behavior in the ECR task 

We developed and validated behavioral state estimate model(s) which best describe latent 

variables underlying reaction times and accuracy using only non-stimulated behavioral task 

sessions (see Methods; Supplemental Fig. 3-4). The approach involved modelling hidden 

(latent) cognitive states from the trial by trial behavior (e.g. RT) with the assumption that these 

states are driven both by their underlying dynamics and exogenous input such as trial type. To do 

this, we assumed the hidden states are influenced by, and therefore have a linear relationship 

with, indicator terms such as trial type or trial history (40, 41). Estimating those hidden states 

required an expectation maximization approach with multiple iterations per task session as well 

as estimations of noise inherent to the system (see Methods). In addressing the hidden states 

using state-space approaches, we could regress out unrelated components or RT or state-related 

changes in RT using state space approaches, thereby identifying, and measuring, features of 
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cognitive flexibility, attention, and conflict adaptation or conflict resolution. The methodology 

involved identifying state space models which addressed known task-related cognitive processes 

such as cognitive flexibility or reaction time bias, testing how well these models fit the non-

stimulated behavioral data, how well each model predicted reaction times, and their 

correspondence to psychometric measures of emotion reactivity, as compared to a healthy 

control group (8, 55–57) (Supplemental Fig. 3-4). The choice of the models tested, including 

what trial types (e.g. whether a trial was congruent or incongruent, trial history, etc.) and whether 

we used reaction time, accuracy, or both, to model, and predict, reaction time was informed by 

the large body of literature regarding the underlying hidden cognitive states driving behavior 

during ECR and, more generally, Stroop tasks ((6, 19–21, 23); see Methods). Each model was 

used to address an idea from the literature regarding Stroop tasks, such as the number of trials or 

trial difficulty, and whether the hidden cognitive states indeed varied over time (see Methods; 

Supplemental Fig. 3-4). Interestingly, when we included trial accuracy either alone or modeled 

along with reaction time in a mixed effects model, the models either did not converge or had 

very large noise terms, indicating models including accuracy did not fit, or predict, the reaction 

time or accuracy as well as a reaction time-only modelling approach (see Methods). Ultimately, 

eight of thirty models survived the criteria testing (Supplemental Fig. 3-4). All eight models had 

three features in common distinguishing them from the other criteria: 1) All viable models had a 

reaction time bias term which addresses the overall drift in reaction time over the task and 2) 5 of 

the 8 models had a transition term relating to whether the task trial type switched from congruent 

to incongruent (CI) or vice versa (incongruent to congruent, IC). We decided to focus on two of 

these eight viable models since these two models (Model 1:the Conflict-Adaptation model and 

Model 15: the Conflict-Adaptation equipoise model) included terms which relate to resolving 
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surprising emotion conflict (as when transitioning between an easy to difficult trial, e.g. 

congruent to incongruent trial, CI) and emotion adaptation (such as when adapting to increased 

difficulty following a previous difficult trial, e.g. incongruent trial to incongruent trial, II; (6, 22, 

48); Fig. 1). The emotion conflict (CI) and adaptation (II) terms have been proposed to relate to 

emotion regulation (6, 23). Thus, the Conflict-Adaptation model (specifically Conflict minus 

Adaptation; Fig. 1E; 2A, see Methods) reflects the idea that adaptation to a pattern of two 

difficult trials in a row (Incongruent trial to Incongruent trial, II) can be measured as an emotion 

adaptation state (EAS), whereas the switch burden of Congruent trial to Incongruent trial (CI) is 

measured as the emotion conflict state (ECS; (6, 23, 48)). One problem with Model 1 is that we 

had to estimate ECS and EAS separately and subtract the mean ECS-EAS terms (e.g. Conflict-

Adaptation) to derive a trial by trial term describing the balance of surprise (Conflict) and 

adapting to difficulty (Adaptation). For this reason, we developed Model 15, the Conflict-

Adaptation equipoise model, which is a reformulation that allowed us to measure the Conflict-

Adaptation balance, or equipoise, as a single hidden state variable with confidence bounds and 

associated noise and confidence metrics (see Methods). 
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Fig. 1. Emotion Conflict Resolution (ECR) task behavior as a model of human emotion 

regulation. A. Task. B. Participants respond to the emotion of the face while ignoring the word, 

which can match (congruent trials, C) or conflict (incongruent trials, I). Trials preceded by 

congruent or incongruent trials (e.g. CI, IC, II, and CC) induced different reaction times across 

the patient groups which included healthy control volunteers, participants diagnosed with 

psychiatric disorders, and participants with epilepsy. All reaction times were z-scored relative to 

the all trials per task run (RTs). The data set (N=99) included 42 healthy controls, 16 participants 

diagnosed with a psychiatric disorder, and 41 participants with epilepsy. Z-scored RTs are 

significantly different between trial types per group (p<0.00001, Kruskal-Wallis test). C. The 
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reaction times of two participants (EP004 and HC003) during the task demonstrating reaction 

time variability across trials. D. The ECR state estimate the Conflict-Adaptation Model and its 

three main components: the overall reaction time state (Bias), the emotion conflict state (CI), and 

the adaptation state (II).  State estimates during the task (top, participant EP004, bottom, HC03), 

with the confidence bounds highlighted as shaded regions.   

 

Modeling the emotion conflict (ECS) and adaptation (EAS) states. For the Conflict-Adaptation 

model (Model 1), maximum likelihood (ML) estimates over 1000 model iterations showed stable 

model convergence (Supplemental Figure 4), low average model noise (V=0.0317±0.0196; 

Supplemental Figure 4) and low average state variable noise (W<0.00601), suggesting good 

model fit to the reaction time behavior.  Further, the model demonstrated good predictive ability 

with the squared difference between predicted and actual log reaction times low (squared 

difference=0.05±0.031). Furthermore, the reaction time bias term in the Conflict-Adaptation 

model was significantly positively correlated with scores on psychometric measures of anxiety 

(ERS: r = 0.2900, p= 0.1271; DERS: r = 0.1343, p = 0.4957; ASI: r = 0.4452, p = 0.0155). In 

addition, the emotion conflict state (ECS; CI) was negatively correlated with scores on 

psychometric measures, significantly only for scores of emotion regulation (ERS: r = -0.2576, 

p= 0.1773; DERS: r = -0.4205, p = 0.0259; ASI: r = -0.1881, p = 0.3286). 

Modeling Conflict-Adaptation equipoise. For the Conflict-Adaptation equipoise model (Model 

15), maximum likelihood (ML) estimates over 1000 model iterations again showed stable model 

convergence (Supplemental Figure 4), low average model noise (V=0.0318±0.0196; Fig. 2A, 

E, F) and low average state variable noise (W<0.00604), suggesting good model fit to the 

reaction time behavior.  Further, the model demonstrated good predictive ability (squared 
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difference=0.05±0.031). The reaction time bias term in the conflict-avoidance model was 

significantly associated with scores on psychometric measures of anxiety (ERS: r = 0.2987, p= 

0.1155; DERS: r = 0.1386, p = 0.4819; ASI: r = 0.4471, p = 0.0150).  

In sum, we were able to identify a subset of models which both fit the ECR task reaction 

time behavior for a large data set of individuals which were interpretable, did not over-fit the 

data, which mapped somewhat to psychometric questionnaires, and which allowed us to 

presumptively understand the hidden states underlying emotion conflict resolution.  Narrowing 

our focus primarily to two models, namely the Conflict-Adaptation and the Conflict-Adaptation 

equipoise models, we then examined whether features of the models could be modulated with 

direct electrical stimulation during a separate set of task sessions performed by the participants 

with intractable epilepsy with implanted electrodes. 

Direct electrical stimulation can bidirectionally alter reaction time  

To examine whether stimulation in brain regions known to be involved in emotion 

regulation and engaged during the ECR task (22, 48) results in reaction time and accuracy 

changes, we performed targeted stimulation in dACC, rACC, amygdala, dmPFC, and dlPFC, 

during performance in the ECR task (stimulation locations in Supplemental Figure 6). During 

Test blocks, non-stimulation trials were interspersed with stimulated trials (Fig. 2A). Stimulation 

in dmPFC, rACC and amygdala significantly altered RTs (dmPFC: p=0.0391; rACC: p=0.0098; 

amygdala: p=0.002; Wilcoxon signed rank test; Fig. 2B) but did not change accuracy (all p-

values >0.31; Wilcoxon rank-sum). Stimulation of dmPFC, rACC, and amygdala increased RTs 

across all trial types (Fig. 2B), while stimulation in the dlPFC decreased RT (though not 

significant) and dACC stimulation produced split effects (Fig. 2B).  Across regions, the biggest 

difference in z-scored RT was between the amygdala and the dlPFC stimulation, confirming 
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existing literature on the dissociable roles these two brain regions may have during emotion 

regulation, processing, and reappraisal (26–29, 31). These effects were focal in time: z-scored 

reaction times during non-stimulated trials of stimulation blocks were not significantly different 

trials regardless of stimulation location during stimulated trials (p=0.1517; Chi-Sq.= 6.7149; 

Kruskal-Wallis test; Fig. 2C).  

Neural stimulation causally alters hidden cognitive states 

These results point to a brain region specific focal effect of stimulation on ECR task 

behavior.  However, this analysis reported average changes in reaction time regardless of trial 

type or trial number and did not address separate hidden cognitive states. As we had identified 

hidden cognitive states in a subset of viable state space models, we hypothesized we could 

differentially modulate these states using neural stimulation. If these state space models capture a 

hidden cognitive state, then it stood to reason that stimulation in certain brain regions could 

causally induce network changes resulting in behavioral changes corresponding with these 

altered hidden cognitive states. We, therefore, applied the state-space models to data obtained 

during stimulation experiments and measured the changes in the main components each model. 

Overall, across models, stimulation of the dlPFC resulted in significantly decreased reaction time 

bias relative to non-stimulation blocks in the same task session (p<.05, Wilcoxon signed rank 

test). This corresponded to the general decrease in reaction time (Fig. 2), a measure of attentional 

or effortful drift. The dlPFC stimulation effect on reaction time bias (RTB) was evident even in 

multiple viable behavioral state space models, including Model 2 which only included RTB, the 

current trial congruence (CvsI) or whether the trial was different to the previous trial (Tr., see 

Methods; Fig. 2E). In contrast, dACC stimulation resulted in significantly increased reaction 
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time bias across most, but not all, the viable state space behavioral models (p<.05, Wilcoxon 

signed rank test; Fig. 2; Supplemental Figure 7).  

When modeling Conflict versus Adaptation states, significant differences in stimulation-

related effects on reaction time were found (Fig. 2; Supplemental Figure 7; Supplemental 

Table 4). Stimulation of the amygdala resulted in significantly higher emotion conflict state 

(ECS) values compared to non-stimulated blocks, translating to an overall slower ECS-driven 

RT component (p=0.0371; Wilcoxon signed rank test; Model 1), but no significant change in the 

RT component corresponded with the emotion adaptation state (EAS) (p=0.9219; Wilcoxon 

signed rank test; Model 1).  In contrast, stimulation of the rACC resulted in a significantly faster 

reaction time EAS-component (p=0.0005; Wilcoxon signed rank test; Model 1). When modeling 

the equipoise between conflict (ECS) versus adaptation (EAS; Model 15), a state we labeled 

Conflict-Adaptation state (Fig. 2), stimulation of the dmPFC and rACC resulted in significantly 

positive deviations in Conflict-Adaptation equipoise, representing ECS-related slowing of RTs 

compared to the EAS-driven RTs (p=0.0215 for dmPFC stimulation; p=0.0025 for rACC 

stimulation; Wilcoxon signed rank test; Model 15).   In contrast, stimulation of the dACC and 

rACC resulted in significant negative deviations in Conflict-Adaptation equipoise, representing 

relatively slower EAS-driven reaction times relative to ECS-driven reaction times (p=0.0016 for 

dACC stimulation; Wilcoxon signed rank test; Model 15). The effects of dmPFC versus dACC 

stimulation were statistically separable upon post hoc testing (Supplemental Figure 7; 

p=0.0116; Kruskal-Wallis test; Supplemental Table 4). 
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Figure 2. Neural stimulation induces behavioral changes in reaction time and conflict-

adaptation state. A. RTs during Test and Control blocks with dACC and amygdala stimulation 

(participant EP05). X-axis breaks: ~8-minute pauses. B. Z-scored RTs were significantly 
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different between stimulation sites during stimulated trials (p=0.0022; Kruskal-Wallis test; Chi-

Sq.=31). C. The non-stimulated trials during Test blocks had no significant changes in zscored 

RTs (p=0.1517; Kruskal-Wallis test) D. ECR state estimate Conflict-Adaptation (Model 1) with 

three main components: the overall reaction time bias (Bias, RTB), the emotion conflict state 

(ECS, CI), and the adaptation state (EAS, II). RTB shifts with amygdala and dACC stimulation 

(95% confidence bounds indicated in shaded areas). E. RTB state estimate changes for both 

Models 1 and 2, particularly during dlPFC stimulation. F-G. Both the Conflict-Adaptation state 

(G) and EAS (F) varied significantly across stimulation sites (N=13; p>0.05; Kruskal-Wallis 

test). (the letters a-b along the x axis indicate statistically separable groups, post hoc Tukey-

Kramer testing; *- p<0.0033, significantly different from zero, Wilcoxon sign rank test). In B 

and F, error bars indicate standard error across trials. Abbreviations: Dorsolateral (dl) and 

dorsomedial (dm) prefrontal cortex- dlPFC, dmPFC; medial (m) orbitofrontal cortex – mOFC; 

dorsal (d) and rostral (r) anterior cingulate- dACC, rACC.  

 

Adaptive stimulation to test bidirectional control 

Based on these results, and to more directly test the hypothesis that these stimulation 

effects were bidirectional, we chose two regions, the dACC and dmPFC, to stimulate in a closed-

loop, real-time setting. We chose the dmPFC over the rACC since stimulation in the rACC 

produced highly variable results on a per block level (Fig. 2F).  Estimating the Conflict-

Adaptation state on a trial-by-trial basis (Fig. 2D, 3), we alternately set the real-time algorithm to 

stimulate dmPFC when the Conflict-Adaptation was low, representing decreased RT to conflict 

relative to adaptation, then to stimulate the dACC when the state was high, representing 

increased RT to conflict relative to adaptation. In essence, this would create a “state clamp” 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 31, 2019. ; https://doi.org/10.1101/825893doi: bioRxiv preprint 

https://doi.org/10.1101/825893
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

18 
 

which could maintain a state within specified bounds. In all three participants, dmPFC 

stimulation increased the Conflict-Adaptation state both during and after stimulated trials, 

representing an increase in RT to conflict trials relative to adaptation trials. In contrast, dACC 

stimulation decreased the Conflict-Adaptation state, representing a decrease in RT to conflict 

trials relative to adaptation trials (Fig. 3B-D). To examine the temporal extent of these changes, 

when we averaged the Conflict-Adaptation state for stimulated trials and the subsequent 4 trials, 

we found a significant difference between dmPFC and dACC stimulation in the Conflict-

Adaptation state equipoise values in two of the three participants  (EP23: p=0.0003 and EP24: 

p=0.0012; EP21: p=0.6438; Wilcoxon rank sum test; Fig. 3E-F). Two of the participants 

spontaneously volunteered their subjective impression of the adaptive stimulation testing 

following the final stimulation (Test) block. One participant (EP23) stated they felt like “the 

answers were more immediate…. [The image] shows up and it was a reactionary, I hit the 

button.”  A second participant (EP24) stated “It was harder to, like, think… but the task seemed 

easier… I didn’t have to think about [the task] as much.” 
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Figure 3. Real time estimate and bidirectional modulation of behavior using dmPFC and 

dACC stimulation. A. Experimental design. B-D. Top: Reaction time changes with dmPFC 

(orange) and dACC (teal) stimulated trials indicated by a color change (N=3). Bottom: The real-

time Conflict-Adaptation state (ECS-EAS) during Control blocks (with no stimulation) and 

model-based Blocks with dmPFC (orange stems) and dACC (teal stems) stimulated trials. Grey 

dots: no stimulation. EPxx indicate the different participants. E. After averaging the current 

stimulated trial and the subsequent 4 trials per dmPFC stimulation (orange) versus per dACC 

stimulation (teal), we found a significant difference between dmPFC and dACC stimulation for 

EP23 (p=0.0003) and EP24 (p=0.0012), but not exceeding significance for EP21 (p=0.6438; 
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Wilcoxon rank sum test). Error bars are standard error across trials. F. dmPFC stimulation 

induced higher Conflict-Adaptation state values when we subtracted the Conflict-Adaptation 

state with dACC versus dmPFC stimulated trials. Brain region abbreviations as in Fig. 2.   

 

DISCUSSION 

The current study sought to model and modulate the hidden cognitive states associated 

with emotion regulation using a combination of state-space modeling of the behavior and 

intracranial stimulation. Using a behavioral state space approach and a well-validated emotion 

regulation task, we were able to isolate and model emotion conflict (ECS) and emotion 

adaptation states (EAS) with good model fit, convergence, and predictive ability. Using 

intracranial electric stimulation applied to emotion regulation-related neurocircuitry, we were 

able to bi-directionally modulate these state-dependent behavioral responses.  Finally, we were 

able to use this state-space model to estimate changes in ECS-EAS equipoise (Conflict-

Adaptation equipoise) and to modulate these states upwards or downwards using predictive, 

adaptive, closed-looped stimulation, with observable behavioral effects.  

Taking a state-space approach to modeling behavior allowed for more precise mapping of 

relevant behavior to underlying cognitive processes. Using this approach with the ECR task, we 

were able to model and predict behavioral responses to emotion conflict (CI) and emotion 

conflict resolution (II) trials even during the presentation of alternative trial types (e.g. predicting 

how the participant would respond to a CI trial during a CC or IC trial). Importantly, the state 

estimate modeling approach allowed us to predict the Emotion Conflict (ECS) or the Emotion 

Adaptation (EAS) cognitive states. This represents a significant improvement over traditional 

behavioral modeling approaches, wherein behavioral responses to task conditions would be 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 31, 2019. ; https://doi.org/10.1101/825893doi: bioRxiv preprint 

https://doi.org/10.1101/825893
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

21 
 

averaged by condition across the entire task, masking potentially important nuanced processes 

contributing to behavioral responses.  Indeed, whereas our state-space approach was able to 

isolate specific features of ECR task trials, for example, trials that are directly affected by the 

immediately preceding trial (e.g. incongruent trials immediately preceded by a congruent trials 

(CI); incongruent trials immediately preceded by an incongruent trial (II)); taking a task 

condition-average approach did not reveal any significant differences in behavior between these 

trial types.  

Having the ability to isolate and predict behavior based upon these hidden cognitive 

states associated with emotion regulation opens up the possibility for the development of novel 

neurotherapeutic approaches to modulate emotion regulation behavior. The features captured by 

the state-space approach in the current study - namely, the ability to detect emotion conflict and 

the ability to adapt behavior following conflict - have direct clinical implications and may be 

viable targets for intervention.  For example, severe depression and anhedonia is associated with 

reduced reactivity to salient cues, potentially captured by deviations in the emotion conflict state 

(1, 2, 5, 48).  By contrast, many disorders including ADHD, OCD, or GAD are marked by 

persistent perseveration and an inability to adapt and update behavioral responses (1, 2, 5, 34), 

potentially captured by deviations in the emotion adaptation state .  Both these deviations from 

healthy, adaptive processing contribute to overall deficits in emotion regulation.  Isolating and 

modulating these features of emotion regulation can provide a novel therapeutic approach in 

which these separable states are driven clamped in a more normal state in a patient-specific 

manner. Indeed, we have made progress recently in mapping behavioral states through this state 

estimate approach to neural activity in a related Stroop task (47) and mood can be decoded from 

neural data (35, 59), which means that we could, in theory, identify the neural signatures mapped 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 31, 2019. ; https://doi.org/10.1101/825893doi: bioRxiv preprint 

https://doi.org/10.1101/825893
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

22 
 

to these underlying hidden states to then close the loop between stimulation and neural signatures 

of hidden cognitive states as surprise (ECS) or adaptation (EAS) (19–21).  

We were able to demonstrate an ability to drive these states, and modulate behavior 

accordingly, using intracranial electric stimulation to a subset of brain regions implicated in 

emotion regulation, namely the dlPFC, dACC, rACC, dmPFC, and amygdala. This is a direct 

probe of causality between driving neural activity and the alteration of separate cognitive 

processes underlying behavior during the ECR task. Specifically, dlPFC stimulation resulted in 

significantly faster reaction times overall, whereas stimulation of the amygdala resulted in 

significantly slower reaction times overall.  This finding is intriguing in light of the now well-

established cortical control theory of emotion regulation, wherein increased dlPFC engagement 

is associated with decreased amygdala activation, representing cortical control over salience 

processing (26, 28–30).  Location-specific effects were demonstrated both in the change in 

reaction times and behavioral changes within the state-space modeling framework. The state-

space model demonstrated that stimulation in the dACC accelerated emotion conflict processing 

while stimulation in the dmPFC and rACC slowed emotion conflict processing. This was further 

demonstrated in a predictive fashion using closed loop stimulation in two of three participants.  

The behavioral changes due to stimulation were illustrated within the context of the 

Conflict-Adaptation state, particularly for dmPFC and dACC stimulation.  However, a key 

feature of our investigation is that we could independently modulate different hidden states 

indicating that not only are these states separate but that they are supported by, and can be 

influenced differently by, changes in activity in identified brain regions. For instance, dlPFC and 

rACC stimulation had effects on individual components of the state estimate model, with dlPFC 

stimulation decreasing reaction time bias.  Interestingly, transcranial magnetic stimulation (TMS) 
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of the dlPFC has been shown to not only modulate attention in a threat task, but this response 

varied with intrinsic anxiety levels in the participants (60). These results may correlate to our 

highly consistent effect of dlPFC direct electrical stimulation on reaction time bias (likely 

includes attentional components). It would be interesting if additional TMS approaches or other 

non-invasive neuromodulatory techniques could replicate our results from direct electrical 

stimulation, particularly with regard to stimulation in the dmPFC versus the dlPFC (61). 

Alternately, rACC stimulation altering the emotion conflict resolution (EAS) value of the state 

estimate model which was not surprising considering this area has been shown to be a key part of 

the brain network supporting emotion processing and regulation in general (6, 22, 26–28, 31) and 

stimulation in this region has alleviated depression in a subset of patients (62–64). Stimulation of 

the amygdala resulted in significantly slower reaction times during emotion conflict, but not 

during emotion conflict resolution, suggesting increased processing of emotion salience during 

emotion conflict.  Therefore, we were able to isolate and modulate different features of the 

behavior, such as attention or the effects of trial history, using the state estimate approach.  In 

addition, the state space framework allowed us to address other features of the behavior, such as 

unexpected changes in trial types (e.g. Congruent to Incongruent trials). The Conflict-Adaptation 

model of behavior revealed a bidirectional effect of dmPFC/rACC versus dACC stimulation, 

both on the full block level and when implemented in real time in closed-loop control (dmPFC 

and dACC). Thus, the current study was able to isolate clinically-relevant behavior and was able 

to modulate this behavior in real time.  

Limitations 

There are several limitations to the interpretation of the current study.  First, whereas we 

were able to demonstrate the ability to model and modulate behavior in an emotion regulation 
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task, the ecological validity of this approach remains to be tested.  Future studies are needed to 

examine whether the benefits of stimulation parameters modeled based upon a behavioral task 

can be extended to functioning in the real world.  Second, the current study relied upon a sample 

of convenience (patients undergoing clinical monitoring for epileptic seizures).  Thus, electrode 

placement was limited to the clinical specifications of this sample.  There may be other, more 

effective targets for modulating emotion regulation, such as the ventrolateral prefrontal cortex or 

inferior parietal lobule (26, 27, 29, 31).  Future studies are needed to identify optimal targets for 

stimulation.  Third, in order to implement the state space behavioral approach of characterizing 

hidden cognitive states in a clinical setting, we would need to account for the wide variance in 

both the stimulation induced changes in reaction times and, to a lesser extent, in the state 

estimate values. We hypothesized this variance could be due to the noisy signal inherent to 

reaction time (40, 47), the temporal rarity of the sampling of state (we only captured behavior in 

discrete trials over time), and variability in electrode positions, as they were placed for clinical 

purposes related to epilepsy and not to specifically target subregions of cingulate, prefrontal 

cortex or other areas related to emotional control. Future studies are needed to disentangle these 

potential sources of variance.   

Conclusion 

The current study represents a significant step towards delineating and modulating 

identified and dissociable, relevant hidden cognitive features associated with emotion regulation 

using intracranial neuromodulation at multiple brain regions. Further, it is, to our knowledge, the 

first study of its kind to demonstrate closed-loop modulation of emotion regulation. These results 

suggest a potential pathway towards the development of novel neurotherapeutics by leveraging 

our understanding of neural activity from fMRI from previous studies with the use of neural 
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stimulation and multiple metrics of behavior (psychometric questionnaires, behavioral tasks, and 

state estimate modeling) to arrive at a therapeutic strategy, in this instance for emotion 

dysregulation. In this context, the possibility bidirectional altering of emotion regulation-related 

behavior with dmPFC/rACC versus dACC as outlined in the current study suggests a therapeutic 

approach that can help maintain an optimal balance of emotion processing and prevent behavior 

from being driven too far toward either end of the continuum. These results, therefore, could 

provide an informed basis for the use of intermittent and targeted neuromodulation to aid 

individuals experiencing severe emotion dysregulation at both extremes of the spectrum. Indeed, 

this approach, applied to other domains and across cognitive and emotional tasks, could allow us 

to arrive at a more refined view of how to use neural stimulation to therapeutically alter the 

circuitry underlying important domains of functioning, such as maladaptive emotional 

processing and decision making, with implications for a wide array of neuropsychiatric diseases 

(33, 34, 51, 52).  
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Materials and Methods 

Participants 

All participants provided fully informed consent according to NIH and Army HRPO 

guidelines as monitored by the local MGH Institutional Review Board. ECR task data from three 

separate cohorts (N=99) were included in the state-space models: healthy control volunteers 

(n=42, mean age = 32.9, range = 20-55, 36% female); psychiatric patients (n=16, mean age = 33, 

range = 20-59, 62.5% female; see Supplemental Table 1 for diagnostic details), and patients 

with epilepsy (n=41, mean age = 36.15, range = 14-68, 65% female). Only the patients with 

long-standing pharmaco-resistant complex partial seizures were included in the subsequent 

intracranial stimulation study in the context of ongoing clinical care, and three of these patients 

participated in the closed-loop (adaptive) stimulation trial.  The patients with epilepsy were 

implanted with electrodes as part of a course of clinical monitoring using intracranial 

electroencephalogram (iEEG) recordings.  Patients with epilepsy were implanted with multi-lead 

depth or grid electrodes (a.k.a iEEG) to confirm the hypothesized seizure focus, and locate 

epileptogenic tissue in relation to essential cortex, thus directing surgical treatment 

(Supplemental Table 3). The decision to implant electrodes, the number, types and location of 

the implantations were all determined on clinical grounds by a team of caregivers independent of 

this study. Participants with epilepsy were informed that participation in the current study would 

not alter their clinical treatment in any way, and that they may withdraw at any time without 

jeopardizing their clinical care. Healthy control participants and participants diagnosed with 

psychiatric disorders completed the behavioral task but were not implanted with any electrodes.  
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All participants voluntarily participated after fully informed consent according to NIH and Army 

HRPO guidelines as monitored by the local MGH Institutional Review Board.  

Behavioral Task  

The ECR task is a well-validated task designed to assess the effects of emotional conflict 

that arises from the incompatibility between task-relevant and task-irrelevant emotional 

dimensions of a stimulus. Faces with fearful and happy expressions are presented with the words 

“happy” or “fear” written across them.  Words are either congruent (e.g. “happy” written across 

an image with a happy expression) or incongruent (e.g. “happy” written across an image with a 

fearful expression; Fig. 1A; Subjects are asked to identify the emotional expression of the face 

while ignoring the word.  Thus, successful completion of the task requires regulation of 

responses to task irrelevant emotional stimuli in order to focus on task relevant goals. Trials can 

be analyzed with regard to immediately preceding trials: incongruent trials preceded by 

congruent trials (CI trials) measure emotion conflict, and incongruent trials preceded by 

incongruent trials (II trials) measure resolution of emotion conflict.  The images were presented 

in a pseudorandom order such that the identity, gender, and valence were shown randomly.  

Congruence changes were balanced in that there were no more than three congruent or 

incongruent trials in sequential order.  Task stimuli were presented with either Presentation 

software (Neurobehavioral Systems) or Psychophysics toolbox in MATLAB (65–67) ( 

Mathworks, Natick, MA).  The task in the epilepsy monitoring unit (EMU) was composed of at 

least one and up to six 64-trial blocks of images presented for 1 second, with a fixation cross 

presented for 2-4 seconds in between images.  The task performed outside of the EMU included 

one 152 trial block collected during MEG/EEG monitoring (data outside the scope of the current 

study). Aside from the number of trials, the timing of the task trials was the same between 
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settings. Behavioral data were analyzed using MATLAB (Mathworks, Natick, MA) and 

consisted of reaction times and response accuracy.  

Psychometric Questionnaires  

In addition to the ECR behavioral task, all participants were asked to complete a set of 

self-report questionnaires assessing emotion reactivity and regulation ability. They completed 

Emotional Reactivity Scale (ERS) is a 21-item self-report measure designed to address emotion 

sensitivity, intensity and persistence (55). The Difficulties in Emotion Regulation Scale (DERS) 

is a 36-item self-report measure reflecting difficulties in emotional understanding and awareness 

as well as the acceptance of emotions and the ability to refrain from impulsive behavior when 

experiencing negative emotions (8). The Anxiety Sensitivity Index (ASI) is a 16-item 

questionnaire that measures an individual’s concern about the possible negative consequences of 

anxiety symptoms (56, 57, 68). We used the average and standard deviation of the 42 healthy 

control participant score response to zscore all the participant responses using the distribution of 

healthy control participant responses as the reference group. This was done to allow for the 

comparison and combination of substantially different score values from the psychometric 

questionnaires and to correlate values with the behavioral data. 

Developing and Validating Models of ECR Hidden States  

Using only the subset of data from sessions of ECR without any direct electrical 

stimulation and the COMPASS state-space toolbox ((40); https://github.com/Eden-Kramer-

Lab/COMPASS), we derived a set of behavioral state-space models of underlying hidden states 

for ECR.  The model structure was similar between models with differences being what features 

of the task and responses from the participants were used to generate the model. Choices in the 

model parameters and features (e.g. trial type) were informed by the existing ECR literature to 
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reflect emotion conflict and emotion conflict resolution (6, 19–23, 48). Included features of the 

task were whether we include the reaction time, reaction times during specific trial types (such as 

incongruent vs congruent trials), and accuracy (correct/incorrect; Supplemental Figure 3).  

To illustrate how we built each state estimate model, we will demonstrate how we 

modeled Conflict-Adaptation (Fig. 1E; Supplemental Figure 4) informed by the current 

thinking that adaptation to Incongruent-Incongruent (II) trial sequences was captured in an 

emotion adaptation state (EAS), whereas the switch burden of Congruent-Incongruent (CI) trial 

sequences was captured as an emotion conflict state (ECS; (6, 23)). The model was composed of 

three main components which varied trial to trial: trial-independent, baseline reaction time or 

drift state, also called the RTB (Xk,bias), ECS (CI trials; Xk,CI) and EAS (II trials; Xk,II). We used 

these three state estimates to determine both overall and trial-to-trial changes in reaction time 

behavior, separating the effects of drifts in attention or distraction (the bias term RTB) from the 

effects of the relevant trial types (CI or II) on behavior, which we could observe in the resulting 

state estimates on a trial by trial basis (Fig. 1 D). The difference between ECS and EAS would 

then reflect the balance of the effects of surprise related to a change in conflict on behavior 

versus adapting to conflict. Therefore, we could regress out latent variables likely corresponding 

to hidden cognitive states as well as identify interactions between these independent latent 

variables (Supplemental Figure 3-4).  

Since bias, CI, and II trials do not fully describe all features of ECR, to more fully 

explore the hidden features which could be underlying ECR task behavior, we ran 30 additional 

models on the behavioral data set with different state parameters using the state estimate 

approach using the following metrics to compare the models: 1) Interpretability: whether the 

terms in the model could be mapped to independent features of the task or behavior; 2) 
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Convergence: if the models could converge using expectation maximization (EM) and maximum 

(ML) likelihood measures; 3) Variability: explanation of the variability without over-specifying 

the number of terms needed to predict behavior (relevant to the noise terms); 4) Predictability: 

identifying which models best predicted reaction time; and 5) Psychometric correspondence: 

correlation of an underlying emotion reactivity state with self-report questionnaires 

(Supplemental Figure 2-4).  

The goal of this work was to arrive at one or a subset of validated state estimate models 

which quantify changes in hidden cognitive states, and which operate across a population of 

participants from the non-stimulated ECR behavioral task sessions (N=99). Therefore, each of 

these measurements were examined in turn using the data set from 99 individuals performing the 

ECR task both in and outside the EMU, exclusively with data from task sessions without neural 

stimulation (Supplemental Figure 3-4).  We also confirmed the models could converge for both 

larger and smaller data sets with tolerable noise ranges (data not shown).    

Model interpretability directly related to chosen model features informed by both the 

behavior during the task and the literature surrounding Stroop and ECR tasks (Supplemental 

Figure 3-4; (6, 19–22)).  For instance, several models have a term for reaction time bias, a trial-

independent, baseline reaction time or drift state, which could correspond to an overall attention 

signal or effort. Other models include trial feature-relevant changes in behavior. In addition, 

some models include a state variable measuring how reaction time is influenced by the transition 

term (Tr.), namely a term indicating whether the previous trial was different to the current trial 

versus the two trials being the same (Supplemental Figure 3-4), a correlate of cognitive 

flexibility from trial to trial. Goal-oriented and conflict resolution hidden states could be 

addressed by a state variable related to whether the current trial is congruent or incongruent 
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(CvsI), which details the effects of the current trial difficulty on reaction time which is 

represented in several models as well (Supplemental Figure 3-4). Finally, we included models 

which incorporate state variables related to the valence of the face or the word (Supplemental 

Figure 3-4). In addition to the trial types, state estimate models could also incorporate and 

predict different behavioral components such as reaction time or accuracy (Supplemental 

Figure 3-4). We developed reaction time-only behavioral models, accuracy-only models, and 

mixed models (Supplemental Figure 3-4).  

A key point to creating these models is that we had to use indicator (e.g. trial type) and 

state estimate variables which could be independent of one another. For instance, we could not 

include indicator terms which were mutually exclusive, such as whether the trial was congruent 

or incongruent, as separate state estimate terms.  Second, we also tested whether we could ‘fix’ 

some model terms such that, in the process of estimating the coefficients for each model to 

describe the behavior, we did not iteratively determine the state per trial.  For instance, when we 

identified the congruence term as ‘fixed’, this means that we assumed the behavioral responses 

to trial congruence does not vary from trial to trial. The fixed terms as well as the per trial state 

space variability were both tested along with the different types of trial features to determine if 

we could identify both the least number of features and what features in a state space model 

could be used to describe and predict behavior. Of course, considering the large number of 

different parameters we could use to model behavior (Supplemental Figure 3-4), we could be 

overfitting the behavior with too many interrelated and dependent terms. For this reason, we 

generated 30 separate models so that, in each model, the state variable terms, behavioral 

measure, and trial-relevant features used in the models could be independent from one another in 
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each formulation while minimizing the number of state estimates used per model (Supplemental 

Figure 3-4). 

Convergence Varies Between Models. Following feature selection to generate these state 

estimate models, we then performed an expectation maximization (EM) algorithm to measure the 

maximum likelihood estimates of the model parameters and filter solutions per task run to arrive 

at task run-specified parameters. We addressed convergence by identifying whether the models 

converged on a solution as measured by their maximum likelihood estimate. We found many of 

the state space models converged on a solution, though some did not (Supplemental Figure 3-

5). Setting a criterion threshold to reject models, we could eliminate six state space models since 

they took more iterations to converge or never converged on a stable solution, as reflected by the 

lower maximum likelihood slopes in the first 500 iterations after normalizing to the maximum 

per curve (p<0.000001; Chi-sq= 1,053; Friedman test; Supplemental Figure 3-5). Most of the 

models that failed to converge involved fixing the reaction time bias (or reaction time drift) to a 

constant value across trials or estimating reaction time bias without taking into account trial 

transitions or trial types (Supplemental Figure 3-5).  

Model Variability and Noise Can Used to Reject Models. The models were compared based on 

the width of the confidence bounds of each state estimate, a variability term Wk (extent of the 

state process noise per each state variable), and an observed behavior (RT) noise V (for the 

estimated noise of the model, Supplemental Figure 3-5). We identified which models had the 

least predicted observation noise and per state variable (Supplemental Figure 4). Model 5 had 

no estimate of the reaction time bias state and the predicted observation noise was significantly 

higher than for other models (V; p<0.000001; Chi-sq= 1,225; Friedman test; Supplemental 

Figure 4). For each state variable, per-state estimate noise (Wk) was higher for an additional five 
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models (Models 7, 9, 11, 20, and 14), thereby eliminating them from the list (p<0.000001; Chi-

sq= 20,663; Friedman test; Supplemental Figure 4).  These rejected models, interestingly, did 

not contain an adaptation (II) term.  

Models Vary in the Behavioral Prediction. As the models could be used to predict reaction times 

per each trial (40, 41), we performed a leave-one-out cross validation test where we predicted 

behavior (reaction time) by iteratively removing one trial, performing the model fit to predict 

that reaction time, and then moving on to the next trial. We then calculated the root mean square 

(RMS) difference between the actual and predicted reaction times and compared results across 

models. This step allowed us to determine how well each state space model could predict 

behavior. To test the predictive power of each model, we ran the model fitting iteratively, 

removing a single trial but including all the other trials iteratively across all trials and using the 

censor capabilities of the COMPASS package to replace, or predict, the missing reaction time 

per session across the data set (40). We found that most of the models could predict reaction 

times at similar levels. In fact, the differences between the actual and predicted log reaction 

times were not significantly different between models except for the significantly lower 

differences for Models 6 and 8 and significantly higher values for Model 5 (p<0.00001; 

Friedman test; Supplemental Figure 4), resulting in model rejection. 

Models Using Reaction Time Can Describe the Behavior Without Accuracy. While we did 

include models which had binomial state variables which took into account trial accuracy 

(Supplemental Figure 3), we found that models which only included trial accuracy (Models 23-

26) either did not converge or had very high confidence bounds and noise terms. Models which 

included both reaction time and trial accuracy, interestingly, were not different in the state 

estimates to when we included only the reaction time in the models (data not shown).  We took 
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this result to mean that the high accuracy (88% correct) and the intermittent incorrect trials (Fig. 

1) were not informative to drive these hidden cognitive states. For this reason, we did not include 

these models (Models 23-30) in the remaining results.  

State Variables Correspond with Psychometric Questionnaire scores. We also tested whether 

these state estimates correlated with psychometric questionnaire scores (Supplemental Fig. 2, 

4). We calculated the correlation between the state space variables per model and each 

psychometric scale z-scored relative to the healthy control group using only the data set when 

there was no stimulation in the entire session (Supplemental Figure 4).    

Intracranial (open-loop) stimulation  

As part of clinical monitoring for seizures, patients with epilepsy were implanted with 

depth electrodes (Ad-tech Medical, Racine WI, USA, or PMT, Chanhassen, MN, USA) with 

diameter ranges of 0.8–1.0 mm and consisted of 8-16 platinum/iridium-contact leads at between 

1-2.4 mm long. Electrodes were localized by using a volumetric image coregistration procedure. 

Using Freesurfer scripts (69, 70) (http://surfer.nmr.mgh.harvard.edu), the preoperative T1-

weighted MRI (showing the brain anatomy) was aligned with a postoperative CT (showing 

electrode locations). Electrode coordinates were manually determined from the CT and placed 

into the native space (71). Mapping to brain regions was performed using an electrode labeling 

algorithm (ELA; (72); https://github.com/pelednoam/ieil). We mapped electrodes to regions in a 

given location which can be flexibly chosen within Freesurfer, using the DKT atlas in 

combination with a subcortical mapping (69, 70, 73).  

To alter behavior in the ECR task using open loop stimulation, we used brief trains of 

focal high frequency open loop electrical stimulation (50, 51, 74) targeting the dACC, rACC, 

amygdala, dmPFC, and dlPFC in 16 of the total 41 participants with epilepsy where stimulation 
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was performed during single, alternating blocks per brain region.  Specifically, participants 

performed 64-trial blocks (Test Blocks) during which 130 Hz (N=2) or 160 Hz (N=14) 

stimulation for 400 ms was delivered at image onset at 4-6 mA at a single site.  Stimulation was 

delivered in a bipolar configuration using CereStim (Blackrock, Salt Lake City, Utah). Pulses 

were charge balanced with a 90 µsecond negative deflection, a 53 µsecond interval and a 90 

µsecond positive deflection. During Test Blocks, stimulation trials were interspersed with non-

stimulation trials (Fig. 2A, Supplemental Table 1; Supplemental Figure 6).  In the same 

session, participants also performed 64-trial blocks without stimulation (Control Blocks, Fig. 

2A).  

In all cases, we performed safety tests of multiple levels of current in each stimulation 

site to look for signs of epileptogenic activity as well as to ask participants if they experienced 

any sensations with stimulation. Only if there was neither epileptiform activity nor subjective 

awareness of the stimulation did we perform the task. We did not include a forced choice task to 

determine that there was no subjective effect. We balanced the ECR stimulation protocol to 

study within-testing effects of neural stimulation on the reaction times of the participants in 

alternating blocks and trials. labeled. Each participant was unaware if the stimulation was 

occurring in a particular trial or block. To examine changes in reaction time or state estimates 

due to stimulation, we z-scored all reaction times relative to the Control blocks to be able to 

compare across participants.   

Adaptive (closed-loop) stimulation  

We used our Model 1, which we call the Conflict-Adaptation state (Fig. 1), to track the 

Conflict-Adaptation equipoise in real time and to deliver during adaptive stimulation in two 

separate sites, the dmPFC and the dACC. The dmPFC and the dACC were chosen based on the 
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open loop stimulation results.  These two sites were selected based upon the results of our 

intracranial stimulation experiments (see Results section). The computer displaying the ECR task 

was interfaced via the Psychophysics toolbox with a separate computer. The interface registered 

the trial type, trial history, and the reaction time on a trial by trial basis as the participants 

performed the task, using a National Instruments digital data acquisition board (NI USB-6501; 

NI) and a custom MATLAB program to calculate the Conflict-Adaptation state in real time.  

This closed-loop approach involved ‘training’ the model on prior non-stim ECR task sessions 

from the same participant to arrive at a convergent estimate of model parameters with 1000 

iterations. We validated this approach by applying the same model estimates for sessions across 

multiple days and found generally similar state estimates could be arrived at per patient across 

days (data not shown). We chose 1000 iterations since this was well beyond the point when the 

maximum likelihood value stabilized, or reached an asymptote, following the expectations 

maximization step while the maximum likelihood did not always asymptote at 500 iterations 

(Supplemental Figure 4-5). The resultant model and model parameters could then be used in 

real time such that, for each trial, the resultant emotion conflict state (ECS), emotion adaptation 

state (EAS), and reaction time bias (RTB) values could be estimated. We hypothesized that we 

could use dmPFC and dACC stimulation to bidirectionally alternate the Conflict-Adaptation 

(ECS>EAS) state based on the opposite effects of dACC and dmPFC stimulation during open 

loop stimulation (Fig. 2).  To test this, we applied stimulation based on the real-time values for 

the Conflict-Adaptation state. We alternately set the real-time algorithm to stimulate dmPFC 

when the Conflict-Adaptation state was below zero to drive the value upward closer to zero, then 

to stimulate dACC while the state was above zero to drive the value downward. In essence, this 

would create a “state clamp” which could maintain a state within specified bounds, with zero 
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representing equipoise between the conflict and adaptation state. The primary goal was to 

alternate between stimulation sites to determine if we could shift the Conflict-Adaptation state 

bidirectionally within the same task block. Further analyses of the behavior involved taking the 

dACC and dmPFC stimulation trials and the 4 trials subsequent to the stimulation, averaging 

these four sequential trials, and comparing dynamics between the dACC and dmPFC stimulation 

trials. 

Statistical analysis  

All statistical comparisons were performed using non-parametric statistical approaches.  

We tested comparisons across brain regions with the Kruskal–Wallis test for non-equivalence of 

multiple medians followed by post hoc Tukey-Kramer tests to determine statistically separable 

groups. For correlations to reaction time or changes in z-scored reaction times relative to Control 

blocks, we used a Wilcoxon signed rank test within brain regions to determine if a distribution's 

mean was significantly different from zero.  For comparisons between Control and Test blocks in 

power and reaction time, we used the Wilcoxon rank sum test (two-sided) for comparisons 

between individual medians. We additionally used the Wilcoxon signed rank test (two-sided) for 

determining if a distribution's median was significantly different from zero.  

Data and materials availability  

All data underlying the study is available upon request. 

Code availability 

All code, including custom MATLAB code, underlying the study will be made available upon 

request. 
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