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Abstract

The possibility to sequence DNA in cancer samples has triggered much effort recently to identify the
forces at the genomic level that shape tumorigenesis and cancer progression. It has resulted in novel
understanding or clarification of two important aspects of cancer genomics: (i) intra-tumor heterogeneity
(ITH), as captured by the variability in observed prevalences of somatic mutations within a tumor, and (ii)
mutational processes, as revealed by the distribution of the types of somatic mutation and their immediate
nucleotide context. These two aspects are not independent from each other, as different mutational
processes can be involved in different subclones, but current computational approaches to study them
largely ignore this dependency. In particular, sequential methods that first estimate subclones and then
analyze the mutational processes active in each clone can easily miss changes in mutational processes
if the clonal decomposition step fails, and conversely information regarding mutational signatures is
overlooked during the subclonal reconstruction. To address current limitations, we present CloneSig, a
new computational method to jointly infer ITH and mutational processes in a tumor from bulk-sequencing
data, including whole-exome sequencing (WES) data, by leveraging their dependency. We show through
an extensive benchmark on simulated samples that CloneSig is always as good as or better than state-
of-the-art methods for ITH inference and detection of mutational processes. We then apply CloneSig to
a large cohort of 8,954 tumors with WES data from the cancer genome atlas (TCGA), where we obtain
results coherent with previous studies on whole-genome sequencing (WGS) data, as well as new promising
findings. This validates the applicability of CloneSig to WES data, paving the way to its use in a clinical
setting where WES is increasingly deployed nowadays.

1 Introduction

The advent and recent democratization of high-throughput sequencing technologies has triggered much effort
recently to identify the genomic forces that shape tumorigenesis and cancer progression. In particular, they
have begun to shed light on evolutionary principles happening during cancer progression, and responsible
for intra-tumor heterogeneity (ITH). Indeed, as proposed by Nowell in the 1970s, cancer cells progressively
accumulate somatic mutations during tumorigenesis and the progression of the disease, following similar
evolutionary principles as any biological population able to acquire heritable transformations [1]. As new
mutations appear in a tumor, either because they bring a selective advantage or simply through neutral
evolution, some cancer cells may undergo clonal expansion until they represent the totality of the tumor or a
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substantial part of it. This may result in a tumor composed of a mosaic of cell subpopulations with specific
mutations. Better understanding these processes can provide valuable insights with implications in cancer
detection and monitoring, patient stratification and therapeutic strategy [2, 3, 4, 5].

Bulk genome sequencing of a tumor sample allows us in particular to capture two important aspects of
ITH. First, by providing an estimate of the proportion of cells harboring each single nucleotide variant (SNV),
genome sequencing allows us to assess ITH in terms of presence and proportions of subclonal populations and,
to some extent, to reconstruct the evolutionary history of the tumor [6, 7, 8, 9]. This estimation is challenging,
both because a unique tumor sample may miss the full extent of the true tumor heterogeneity, and because
the computational problem of deconvoluting a bulk sample into subclones is notoriously difficult due to noise
and lack of identifiability [6, 10]. Second, beyond their frequency in the tumor, SNVs also record traces of
the mutational processes active at the time of their occurrence through biases in the sequence patterns at
which they arise, as characterized with the concept of mutational signature [11]. A mutational signature
is a probability distribution over possible mutation types, defined by the nature of the substitution and its
trinucleotide sequence context, and reflects exogenous or endogenous causes of mutations. Sixty-five such
signatures have been outlined [12], and are referenced in the COSMIC database, with known or unknown
aetiologies. Deciphering signature activities in a tumor sample, and their changes over time, can provide
valuable insights about the causes of cancer, the dynamic of tumor evolution and driver events, and finally
help us better estimate the patient prognosis and optimize the treatment strategy [2, 5]. A few computational
methods have been proposed to estimate the activity of different signatures in a tumor sample from bulk
genome sequencing [12, 13].

These two aspects of genome alterations during tumor development are not independent from each other.
For example, if a mutation triggers subclonal expansion because it activates a particular mutational process,
then new mutations in the corresponding subclone may carry the mark of this process, which may in turn be
useful to identify the subclone and its associated mutations from bulk sequencing. Consequently, taking into
account mutation types in addition to SNV frequencies may benefit ITH methods. Furthermore, identifying
mutational processes specific to particular subclones, and in particular detecting changes in mutational
processes during cancer progression, may be of clinical interest since prognosis and treatment options may
differ in that case. However, current computational pipelines for ITH and mutational process analysis largely
ignore the dependency between these two aspects, and typically treat them independently from each other
or sequentially. In the sequential approach, as for example implemented in Palimpsest [14], subclones are
first identified by an ITH analysis, and in a second step mutational signatures active in each subclone
are investigated. In such a sequential analysis, however, we can not observe changes in mutational signature
composition if the initial clonal decomposition step fails to detect correct subclones, and we ignore information
regarding mutational signatures during ITH inference. Recently, TrackSig [15] was proposed to combine these
two steps by performing an evolution-aware signature deconvolution, in order to better detect changes in
signature activity along tumor evolution. However, while TrackSig overcomes the need to rely on a previously
computed subclonal reconstruction, it does not leverage the possible association between mutation frequency
and mutation type to jointly infer ITH and mutation processes active in the tumor. Furthermore, by design
TrackSig can only work if a sufficient number of SNV is available, limiting currently its use to whole genome
sequencing (WGS) data. This is an important limitation given the popularity of whole exome sequencing
(WES) to characterize tumors, particularly in the clinical setting.

In this work, we propose CloneSig, the first method that leverages both the frequency and the mutation
type of SNVs to jointly perform ITH reconstruction and decipher the activity of mutational signatures in
each subclone. By exploiting the association between subclones and mutational processes to increase its
statistical power, we show that CloneSig performs accurate estimations with fewer SNVs than competing
methods, and in particular that it can be used with WES data. We show through extensive simulations that
CloneSig reaches state-of-the-art performance in subclonal reconstruction and mutation deconvolution from
WGS and WES data. We then provide a detailed CloneSig analysis of 8,954 pancancer WES samples from
the Cancer Genome Atlas (TCGA), where we recover results coherent with a previous study on WGS [15] as
well as novel promising findings of potential clinical relevance.
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2 Results

2.1 Joint estimation of ITH and mutational processes with CloneSig

We propose CloneSig, a method to jointly infer ITH and estimate mutational processes active in different
clones from bulk genome sequencing data of a tumor sample. The rationale behind CloneSig is illustrated
in Figure 1, which shows a scatter-plot of all SNVs detected by WES in a sarcoma (TCGA patient TCGA-
3B-A9HI) along two axis: horizontally, the mutation type of the SNV, and vertically, its cancer cell fraction
(CCF) estimated from WES read counts. Following previous work on mutational processes [11, 12], we
consider 96 possible mutation types, defined by the nature of the substitution involved and the two flanking
nucleotides. Standard methods for ITH assessment and clonal deconvolution only exploit the distribution
of CCF values in the sample, as captured by the histogram on the right panel of Figure 1, while standard
methods for mutational signature analysis only exploit the mutation profiles capturing the distribution of
mutation contexts, as represented by the histogram on the bottom panel. However, we clearly see in the
scatter-plot that these two parameters are not independent, e.g., C>A mutations tend to occur frequently
at low CCF, while C>T mutations occur more frequently at high CCF. CloneSig exploit this association
by working directly at the 2D scatter-plot level, in order to jointly infer subclones and mutational processes
involved in those subclones. Intuitively, working at this level increases the statistical power of subclone
detection when subclones are better separated in the 2D scatter-plot than on each horizontal or vertical axis,
i.e., when the activity of mutational processes varies between subclones.
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Figure 1: CloneSig analysis of 246 SNVs obtained by WES of a sarcoma sample (patient TCGA-
3B-A9HI). The main panel displays all SNVs in 2 dimensions: horizontally the mutation type, which
describes the type of substitution together with the flanking nucleotides, and vertically the estimated CCF,
as corrected by CloneSig with the estimated mutation multiplicity. From these data CloneSig infers the
presence of 2 clones and a number of mutational signatures active in the different clones. Each mutation in
the main panel is colored according to the most likely mutational signature according to CloneSig. On the
right panel, the CCF histogram is represented and colored with estimated clones, and superimposed with
mutational signature density. The bottom panel represents the total mutation type profile. The changing
pattern of mutation types with CCF is clearly visible, illustrating the opportunity for CloneSig to perform
joint estimation of ITH and signature activity, while most methods so far explore separately those data,
considering solely the CCF histogram in the right panel for ITH analysis, or the mutation profile of the
bottom panel to infer mutational processes.

More precisely, CloneSig is based on a probabilistic graphical model [16], summarized graphically in Fig-
ure 2, to model the distribution of allelic counts and trinucleotidic contexts of SNVs in a tumor. These
observed variables are statistically associated through shared unobserved latent factors, including the num-
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ber of clones in the tumor, the CCF of each clone, and the mutational processes active in each clone. CloneSig
infers these latent factors for each tumor from the set of SNVs by maximum likelihood estimation, using stan-
dard machinery of probabilistic graphical models. Once the parameters of the model are inferred for a given
tumor, we can read from them the estimated number of subclones together with their CCF, as well as the
set of mutational processes active in each clone along with their strength. In addition, for each individual
SNV, CloneSig allows us to estimate the clone and the signature that generated it, in a fully probabilistic
manner; for example, in Figure 1, each SNV in the scatter-plot is colored according to the most likely mu-
tational signature that generated it, according to CloneSig. Finally, we developed a likelihood ratio-based
statistical test to assess whether mutational signatures significantly differ between subclones, in order to help
characterize the evolutionary process involved in the life of the tumor. We refer the reader to the Material
and Methods section for all technical details regarding CloneSig.

UnCn

Mn

Bn Dn

p

Sn

Tn

n = 1 . . . N

Figure 2: Probabilistic graphical model for CloneSig. This plot summarizes the structure of the prob-
abilistic graphical model underlying CloneSig. Each node represents a random variable, shaded ones being
observed, and edges between two nodes describe a statistical dependency encoded as conditional distribution
in CloneSig. For a given tumor we observe p, the tumor purity of the sample, and for each SNV, Bn and
Dn are respectively the variant and total read counts, Cn is the copy number state, and Tn is the trinu-
cleotide context. Unobserved latent variable include Un, the clone or subclone where the SNV occurs, Sn,
the clone-dependent mutational process that generates the mutation, and Mn, the number of chromosomal
copies harboring the mutation. See the main text for details about the distributions and parameters of the
model.

2.2 Performance for subclonal reconstruction

We first assess the ability of CloneSig to correctly reconstruct the subclonal organization of a tumor on
simulated data. To simulate data we used the probabilistic graphical model behind CloneSig with a variety
of different parameters to investigate different scenarios, leading to a total of 6,300 simulations (see Materiel
and Methods). For each simulation, we run CloneSig and other methods described below, and measure
the correctness of the subclonal reconstruction using four different metrics adapted from [17] and described
in details in the Material and Method section. Briefly, score1B measures how similar the true and the
estimated number of clones are, score1C assesses in addition the correctness of frequency estimates for
each subclone, score2A measures the adequacy between the true and predicted co-clustering matrices, and
score2C the classification accuracy of clonal and subclonal mutations. We also assess the performance of
five other state-of-the-art methods for ITH estimation and compare them to CloneSig. First we evaluate
TrackSig [15], that reconstructs signature activity trajectory along tumor evolution by binning mutations
in groups of 100 with decreasing CCFs, and for each group performs signature deconvolution using an
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expectation-maximization (EM) algorithm. A segmentation algorithm is then applied to determine the
number of breakpoints, from which we obtain subclones with different mutational processes. Because of
this rationale, the authors recommend to have at least 600 observed mutations to apply TrackSig. For
sake of completeness, however, we also apply TrackSig with fewer mutations in order to compare it with
other methods in all settings. Second, we test Palimpsest [14], another method which associates mutational
signatures and evolutionary history of a tumor. In Palimpsest, a statistical test based on the binomial
distribution of variant and reference read counts for each mutation is performed, with correction for copy
number, in order to classify mutations as clonal or subclonal. Then, for each of the two groups, signature
deconvolution is performed using non-negative matrix factorization (NMF). This limitation to two populations
can induce a bias in the metrics 1B, 1C and 2A that are inspired from [17], so we introduce the metric 2C to
account for the specificity of Palimpsest. Finally, we test three popular methods for ITH reconstruction which
do not model mutational processes: PyClone [7], a Bayesian clustering model optimized with a Markov Chain
Monte Carlo (MCMC) algorithm, Ccube [8], another Bayesian clustering model, optimized with a variational
inference method, and SciClone [18], also a Bayesian clustering model, optimized with a variational inference
method, that only focuses on mutation in copy-number neutral regions.

Figures 3 summarize the performance of the different methods according to the different metrics, and under
different scenarios, where we vary respectively the number of clones in the simulation (more clones should be
more challenging), the number of mutations available (more mutations should help), and the percentage of
diploid genome (a higher percentage should be easier). In addition, we provide in Supplementary Note S2 a
more complete benchmark of the different methods when we vary as well the type of mutational signatures
used as prior knowledge.

Regarding the estimation of the number of clones (score1B), CloneSig is the best method in all settings,
except in the presence of 6 clones. It is in particular the only method achieving a perfect accuracy in
identifying samples with one or two clones, and exhibits the best performance for score1B up to 5 clones.
Both CloneSig and TrackSig see their performance decrease with the number of clones, as expected, while
surprisingly Ccube has the opposite behavior and achieves better results when the number of clones is large.
During the experiments we noticed that PyClone tends to find large numbers of clones with only one mutation,
so we ignore these clones when we compute score1B in order not to excessively penalize PyClone for this
problematic behavior. PyClone, SciClone and Palimpsest have overall a stable performance with varying
numbers of clones. Regarding the impact of the number of mutations on score1B, we see that CloneSig
outperforms all other methods in all settings. As expected, both CloneSig and TrackSig improve when the
number of SNV increases, and we confirm that TrackSig requires at least 1,000 SNVs to be competitive with
other methods in this experiment, while CloneSig reaches the best performance of TrackSig with as few as
100 SNVs. A surprising result is that for PyClone, SciClone and Ccube, score1B decreases with the number
of observed mutations, which may suggest a bad calibration of the clone number estimate for large numbers
of SNV; for CloneSig we designed a specific, adaptive estimator for the number of clones since we observed
that standard statistical approaches for model selection perform poorly in this setting (see Material and
Methods and Supplementary Section S1.2) . The percentage of diploid genome has no visible impact on the
performance of any method. Regarding score1C, which focuses not on the number of clones estimated but on
their ability to correctly recapitulate the distribution of CCF values, we also see that CloneSig outperforms all
other methods in all settings, while PyClone and Ccube are not far behind. TrackSig performs slightly worse,
especially as the number of clones increases, but this may be explained by its poor performance when the
number of mutations is too low, as performance matches the other methods for 5,000 mutations. Palimpsest
has comparatively a relatively poor performance, and seems particularly impacted when the proportion of
diploid regions decreases. Indeed, the number of mutated copies in Palimpsest is made under the assumption
that the CCF for the mutation is 1, which may jeopardize the correct detection of subclonal mutations.
Finally, SciClone is clearly the worse method for score1C, particularly with 1 to 3 clones.

Besides the ability of different methods to reconstruct the correct number of subclones and their CCF,
as assessed by score1B and score1C, we measure with score2A their ability to correctly assign individual
mutations to their clones, an important step for downstream analysis of mutations in each subclone. Accord-
ing to score2A, CloneSig outperforms all other methods in all scenarios, illustrating the improved accuracy
of accounting for both CCF and mutational signatures when achieving ITH reconstruction. For all meth-
ods, score2A decreases when the number of clones increases and when the percentage of diploid genomes
decreases, as expected, but the relative order of methods does not change, with CloneSig followed by a group

5

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 31, 2019. ; https://doi.org/10.1101/825778doi: bioRxiv preprint 

https://doi.org/10.1101/825778
http://creativecommons.org/licenses/by/4.0/


0.4

0.6

0.8

1.0
sc

or
e1

B

0.4

0.6

0.8

1.0

sc
or

e1
C

0.0

0.5

1.0

sc
or

e2
A

1 2 3 4 5 6
nb_clones

0.25

0.50

0.75

1.00

sc
or

e2
C

ccube clonesig palimpsest pyclone sciclone tracksig

100 300 600 1000 5000
nb_mut

0 20 40 60 80 100
perc_diploid

Figure 3: Comparison of CloneSig, TrackSig, Palimpsest, PyClone, SciClone and Ccube for
subclonal reconstruction. Each row corresponds to one score, as detailed in the main text. All scores
are normalized between 0 and 1, with 1 being the best and 0 the worst. Each column corresponds to a
setting where one parameter in the simulation varies: the true number of clones (left), the observed number
of mutations (middle), and the diploid proportion of the genome (right). Each point represents the average
of the score over all available simulated samples. Bootstrap sampling of the scores was used to compute 95%
confidence intervals.

of three methods with similar performances: PyClone, Ccube and Palimpsest. SciClone performs poorly
except when the genome is fully diploid, in which case it gets competitive with Palimpsets but still below
CloneSig, PyClone and Ccube. The number of mutations has a limited impact on the performance of all
methods except for TrackSig, which only becomes competitive after 1,000 mutations. CloneSig with 100
mutations still outperforms TrackSig with 1,000 mutations, though. Finally, when we assess the capacity of
each method to simply discriminate clonal from subclonal mutations using score2C, a measure meant not to
penalize Palimpsets which only performs that task, we see again that CloneSig is the best in all scenarios,
closely followed by Ccube and PyClone, as well as TrackSig with 5,000 mutations. Palimpsest is a bit below
these methods, while SciClone and TrackSig with 1,000 mutations or less are clearly not competitive for this
metric.

Overall, these experiments show that CloneSig performs as well as or better than the state-of-the-art
according to all metrics considered and in all simulated scenarios, confirming that accounting for the mutation
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type for each mutation, in addition to its CCF, improves the accuracy of subclonal reconstruction. We also
confirm that TrackSig, the only existing method that combines CCF and mutational signature information
to detect subclones, requires at least 1,000 mutations to obtain results competitive with other methods in
our benchmark, while CloneSig reaches good accuracy in all scores with as few as 100 mutations.

CloneSig, like TrackSig, benefits from situations where mutational processes are not similarly active in
different subclones to better detect them and assign individual mutations to them. As expected, we observe
for example that the improvement of CloneSig over other methods in terms of score2A fades when there is
no difference of signature activity between clones, with CloneSig performing as well as PyClone and Ccube
in this situation (Supplementary Figure S12). To further illustrate the interplay between signature change
and ability to detect clones, we now test CloneSig on simulations with exactly two clones, and where we
vary how the clones differ in terms of CCF, on the one hand, and in terms of mutational processes, on the
other hand (quantified in terms of cosine distance between the two profiles of mutation type). Figure 4
shows the accuracy of the number of clones detected by CloneSig as a function of these two parameters.
We see an increased number of cases where the two clones are correctly distinguished by CloneSig as the
distance between the mutation type profiles increases, for a constant CCF difference. For example, when two
clones have similar signatures (small cosine distance), they can be detected with a 50% accuracy when the
difference between their CCF is around 0.3; when their signatures are very different (large cosine distance),
they can be detected with the same accuracy when their CCF only differ by 0.1. We show in Supplementary
Figure S58 how other parameters (number of mutations, sequencing depth, diploid proportion of the genome)
also impact the performance of CloneSig in this setting.
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Figure 4: Accuracy of correctly estimating the presence of two clones by CloneSig as a function of the differ-
ence in the CCF between the two clones (vertical axis), and of the cosine distance between their mutational
profiles. The accuracy denotes the proportion of runs where CloneSig rightfully identifies two clones.

2.3 Performance for signature deconvolution

In addition to ITH inference in terms of subclones, CloneSig estimates the mutational processes involved
in the tumor and in the different subclones. We now assess the accuracy of this estimation on simulated
data, using six performance scores detailed in the Material and Methods section. In short, score sig 1A is
the Euclidean distance between the normalized mutation type counts and the reconstructed profile (activity-
weighted sum of all signatures); score sig 1B is the Euclidean distance between the true and the reconstructed
profile; score sig 1C measures the identification of the true signatures; score sig 1D is the proportion of
signatures for which the true causal signature is correctly identified; and score sig 1E reports the median
of the distribution of the cosine distance between the true and the predicted mutation type profile that
generated each mutation. We compare CloneSig to the two other methods that perform both ITH and
mutational process estimation, namely, TrackSig and Palimpsest, and add also deconstructSigs [13] in the
benchmark, a method that optimizes the mixture of mutational signature of a sample through multiple linear
regressions without performing subclonal reconstruction.
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Figure 5 shows the performance of the different methods according to the different metrics. For Score sig 1A
and Score sig 1B, all methods exhibit overall similar performances, with a small advantage for CloneSig and
TrackSig over Palimpsets and deconstructSigs in several scenarios. For Score sig 1C, CloneSig and TrackSig
exhibit the best AUC to detect present signatures. It may be related to a better sensitivity as CloneSig and
TrackSig perform signature deconvolution in smaller subsets of mutations. All methods perform similarly
with respect to Score sig 1D, with CloneSig slightly better than all methods in all settings. The median
cosine distance (Score sig 1E) is also slightly better for CloneSig than for other methods in all settings. Sur-
prisingly, the performance for TrackSig is worse with 5000 mutations; we observed on a few examples that
this may be due to the fact that TrackSig tends to find several change points for a single clone change, due
to the gradual change in activities along CCF in the overlap zone between two clones.

Overall, as for ITH inference, we conclude that CloneSig is as good as or better than all other methods
in all scenarios tested. Further results where we vary other parameters in each methods, notably the set of
mutations used as inputs or the set of signatures used as prior knowledge, can be found in Supplementary Note
S2; they confirm the good performance of CloneSig in all settings tested.

2.4 Pan-cancer overview of signature changes

We now use CloneSig on real data, to analyze ITH and mutational process changes in a large cohort of 8,954
tumor WES samples from the TCGA spanning 31 cancer types. An overview of the main characteristics of
the cohort is presented in Table S3.

For each sample in the cohort, we estimate with CloneSig the number of subclones present in the tu-
mor, the signatures active in each subclone, and test for the presence of a signature change between clones.
Figure 6 shows a global summary of the signature changes found in the cohort. For each cancer type, it
shows the proportion of samples where a signature change is found, and a visual summary of the propor-
tion of samples where each individual signature is found to increase or to decrease in the largest subclone,
compared to the clonal mutations. The thickness of each bar, in addition, indicates the median change of
each signature. Overall, CloneSig detects a significant change in signature activity from the protected set
of mutations in 32% of all samples, and in 11% when it is trained on the public set of mutations, although
these proportions vary between cancer types. In terms of signature changes, we recover patterns already
observed in other cohorts, usually using WGS, which confirms that CloneSig is able to detect patterns of
ITH and signature activity change using WES data. For example, similarly to the cohort of 2,778 WGS
tumors analyzed by the International Cancer Genome Consortium’s Pan-Cancer Analysis of Whole Genomes
(PCAWG) initiative which represents the largest dataset of cancer WGS data to date [2], we observe that
signature 5, of unknown aetiology, varies in almost all cancer types, and can be both increasing or decreas-
ing. Lifestyle-associated signatures associated with tobacco-smoking (signature 4) and UV light exposure
(signature 7) decrease systematically in lung tumors and oral cancers and skin melanoma respectively.

More precisely, patterns of change detected by CloneSig on the TCGA are similar to what was described on
the PCAWG cohort for cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC), glioblas-
toma multiforme (GBM), uterine carcinosarcoma (UCS) and uterine corpus endometrial carcinoma (UCEC),
kidney chromophobe (KICH), lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), skin
cutaneous melanoma (SKCM) and stomach adenocarcinoma (STAD). In addition, CloneSig detects several
new patterns of variations. In bladder carcinoma (BLCA), signature 3, related to defective homologous
recombination-based DNA damage repair is found increasing. In breast cancer (BRCA), CloneSig detects
three new signature variation patterns: signature 8 is increasing, and signatures 26 and 30 are varying in
both directions, while signatures 1 (deamination of 5-methylcytosine to thymine) and 18 (possibly damage
by reactive oxygen species) tend to be preferentially decreasing and increasing respectively, instead of vary-
ing in both directions according to [2]. In prostate adenocarcinoma (PRAD), CloneSig finds signature 3
to be varying in both direction, contrary to solely increasing in [2], but similarly to the findings of [19].
Signature 37 is found to vary in both directions instead of decreasing. Additionally to changes identified
in [2], but already described in [19], CloneSig detects variations in signatures 8, 9 and 16. A new signature
seems to exhibit variations along tumor evolution: signature 15 (defective DNA mismatch repair), which
was not previously described in PRAD to the best of our knowledge. In lymphoid neoplasm diffuse large
B-cell lymphoma (DLBC), we observe the important increase in signature 17 as in [2], but no variation of
signature 9 (mutations induced during replication by polymerase η), and an undescribed increase in signa-
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Figure 5: Comparison of CloneSig, TrackSig, Palimpsest, and deconstructSigs for signature
deconvolution. Several metrics have been implemented, and are detailed in the main text. Scores 1A, 1B
and 1E (respectively first, second and fifth rows) are distance and are better when close to 0, while scores
1C and 1D (respectively third and fourth rows) are normalized between 0 and 1 and are better when close
to 1. The results are presented depending on several relevant covariates: the true number of clones (left),
the number of mutations (middle), and the diploid proportion of the genome (right). Each point represents
the average of the score over all available simulated samples. Bootstrap sampling of the scores was used to
compute 95% confidence intervals.

tures 18 and 6 (defective DNA mismatch repair). In esophageal carcinoma (ESCA), we do not observe the
important decrease of signature 17 [2], however, we describe an increase of signature 18 and a variation of
signature 16 in both directions. For head-neck squamous cell carcinoma (HNSC), we observe similar patterns
for signatures 5, 2 and 13 (related with APOBEC enzymes activity), and 18, but an undescribed increase
of signature 3 [2], and a decrease of signature 4 (related to tobacco smoking), probably in relation to the
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Figure 6: Mutational signature changes in the TCGA cohort. Each plot corresponds to one cancer
type, indicates the number of samples with a significant signature change compared to the total number of
samples, and shows on the right panel an increase of a signature in the largest subclone, compared to clonal
mutations, and on the left panel a decrease. The length of each bar corresponds to the number of patients
with such changes, and the thickness to the median observed change.
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fact that this cohort includes oral tumors. In ovary tumors (OV), increase of signature 40 and decrease of
signature 5 are coherent with the findings of [2], however, CloneSig finds an important number of samples
with an increase of signature 8, while a decrease of this signature was reported in [2]. For thyroid carcinoma
(THCA), the variations of signatures found are different, however the number of samples with a significant
change of signature activity is small. In liver hepatocellular carcinoma (LIHC), and pancreatic adenocarci-
noma (PAAD), we report important differences between patterns, in particular with signature 12 reported to
decrease systematically in LIHC [2] while we observe an increasing trend, and no variation of signature 40 in
PAAD. In colorectal cancer (COADREAD), we observe as described in [2] an strong increase in signatures 40
and 17, and a decrease in signature 18, a variation of signature 5 in both direction, and not only an increase,
and no variation of signature 1. We also observe an increase in signature 26, observed in one of the three
samples analyzed with single cells in [20], and an increase in signature 30 that was not previously reported.

In addition, CloneSig detects changes in signature activity in cancer types where they have not yet been
characterized to the best of our knowledge, though the number of samples is too low in some cases to detect
a strong trend. In adrenocortical carcinoma (ACC), we observe an increase in signature 36 (associated to
defective base excision repair) and variations in signature 3. In kidney renal papillary cell carcinoma (KIRP)
and kidney renal clear cell carcinoma (KIRC), signature 40 is strongly decreasing, and signature 5 increasing.
Additionally CloneSig uncovers variations in signature 3 in most samples with a signature change in KIRC;
activity of signature 3 in KIRC was previously outlined in [21].

2.5 Clinical relevance of ITH and signature changes

We now explore relations between the ITH detected by CloneSig and the potentially associated changes in
signature activity and relevant clinical features. Looking first at the pan-cancer scale, we assess whether ITH
measured either through the number of detected subclones or the presence of mutational signature changes is
associated to overall survival. For that purpose, we split all TCGA samples in three groups using two different
strategies, based on CloneSig’s output on the protected input mutation set. In the first strategy, the three
groups are based on the number of (sub-)clonal populations only (1, 2 or 3+ clones). A multivariate Cox model
fitted to the data indicates for 2 clones a hazard ratio (HR) of 1.25 (95% confidence interval (CI): [1.14, 1.37],
p = 2.27e − 6), and for 3 clones a HR of 1.41 (CI= [1.26, 1.58], p = 2.03e − 9). A univariate Cox model
fitted to compare the populations with 2 or 3+ clones indicates a HR of 1.12 for 3+ clones (CI=[1.02, 1.23],
p = 0.022). This confirms that the presence of subclones as estimated by CloneSig is associated to survival,
but that the difference between 2 and 3+ clones is limited in terms of survival. In the second strategy, we
still keep the group of samples with only a single clone, but split the other samples (with 2 or more clonal
populations) into two groups based on whether or not CloneSig detects a change in mutational signatures.
The Cox results shows a HR of 1.14 without signature change (CI= [1.04, 1.26], p = 7.11e − 3), and 1.51
with signature change (CI= [1.37, 1.67], p = 3.30e − 16). With a focus on heterogeneous tumors only, the
hazard ratio with a signature change compared to those without signature change is 1.33 (CI= [1.22, 1.44],
p = 5.22e−11). As with the first strategy, we observe a significant difference in survival between patients with
homogeneous and heterogeneous tumors. However, the presence of a significant change in signature activity
(second strategy) is more strongly associated to survival among heterogeneous tumors, compared to the case
when we split the heterogeneous tumors based on the number of clones (Figure 7). We get similar results
when using the public input mutation set (Supplementary Figure S59), illustrating CloneSig’s robustness to
the input signatures, and ability to detect ITH and signature activity changes with a very small number of
observed mutations.

When considering the same survival analysis for each cancer type separately, we find no significant dif-
ference in survival between the different groups (homogeneous and heterogeneous tumors) after correcting
for multiple tests. This may be due both to a lack of statistical power in the cancer-specific analysis be-
cause of the smaller number of samples available when we split them per cancer types, and to a confounding
effect of cancer types where, for example, cancer types with a bad prognosis are enriched in heterogeneous
tumors with a significant change in signature activity. Indeed, as shown in Figure 8, the proportion of
tumors harboring ITH and changes in mutational processes varies a lot between cancer types. Finally, we
also investigate whether patient stratification based on CloneSig output, in particular ITH and patterns of
signature changes, is correlated with other clinical characteristics such as sex, age, tumor size or grade, but
find overall no significant association; for sake of completeness we present detailed results of this analysis in
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Figure 7: Kaplan-Meier curves for all TCGA samples (8,954 patients with available survival data) distin-
guishing tumors only along the number of clones (left) or along the number of clones and the presence of
a significant change in signatures along tumor evolution (right) using the protected input mutation sets. A
multivariate Cox model was fitted in both cases, and indicates for 2 clones, hazard ratio (HR) of 1.25 (95%
confidence interval (CI): [1.14, 1.37], p = 2.27e− 6), and 3 clones (HR= 1.41, CI= [1.26, 1.58], p = 2.03e− 9).
Considering only heterogeneous tumors, the Cox model results in a HR of 1.12 (CI=[1.02, 1.23], p = 0.022)
for 3+ clones compared to 2 clones (left). For the distinction based on signature change, without signature
change (HR= 1.14, CI= [1.04, 1.26], p = 7.11e− 3), and with signature change (HR= 1.51, CI= [1.37, 1.67],
p = 3.30e − 16). For heterogeneous tumors with a signature change, compared to without, the HR is 1.33
(CI= [1.22, 1.44], p = 5.22e− 11) (right)
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Supplementary Note S3.

3 Discussion

In recent years, a large number of methods have been developed to unravel ITH in tumors [7, 18, 8, 22, 6], and
have been applied to different cohorts, including the TCGA. Recent analyses illustrate limits encountered
when applying those methods to bulk WES [23, 10], as the number of observed mutations is small, the variance
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in read counts can be high, and a unique sample may miss the heterogeneity of the tumor. As sequencing
costs are continuously decreasing, WGS, multi-sample sequencing and single cell sequencing will constitute
relevant alternatives and simplify the study of ITH. However, to date a much larger number of tumor samples
with sufficient clinical annotation (in particular survival data) is available with WES compared to other more
advanced technologies, and can lead to interesting insights. Beyond the number of clones present in a tumor,
another relevant aspect of tumor evolution is the presence of changes in mutational signatures activities [5],
which could have clinical implications in cancer prevention and treatment, and unravel the evolutionary
constraints shaping early tumor development. To the best of our knowledge, TrackSig [15] and Palimpsest [14]
are the only methods addressing the problem of systematic detection of signature changes, but they both
present serious limitations: Palimpsest first detects ITH, and then performs signature deconvolution, which
has the major drawback that if this first step fails, no signature change can be detected. Moreover, Palimpsest
simply aims to distinguish subclonal from clonal mutations, thus ignoring more complex patterns. TrackSig
is only applicable to WGS data, and though avoiding the caveat of relying on a previous detection of ITH,
the final step of associating signature changes to the subclonal reconstruction is manual. Finally, none of
these methods leverages the changes in signature activity to inform and improve the ITH detection step.
To overcome these limitations, we have developed CloneSig, the first method to offer joint inference of both
subclonal reconstruction and signature deconvolution, which can be applied to WGS as well as to WES data.

3.1 Improved ITH and signature detection in WES

CloneSig is a generative probabilistic graphical model that considers somatic mutations as derived from
a mixture of clones where different mutational signatures are active. We demonstrated with a thorough
simulation study the benefits of the joint inference in detecting ITH, both in WES and WGS samples. We
showed that CloneSig is competitive with or outperforms state-of-the art ITH methods, even in the absence of
signature activity change between the clones, and is particularly efficient for the detection of samples with one
or a few subclones. Interestingly, several other methods we considered including PyClone [7], SciClone [18]
and Ccube [8], are fully Bayesian and choose the number of clones by maximizing of the posterior probability
of the data. In those methods the prior has a regularizing role, and they exhibit a decrease of accuracy as the
number of observed mutations increases. This may be related to the fact that the regularizing prior is less
influential as more mutations are taken into account. We instead developed a specific adaptive criterion to
estimate the number of clones, as we observed that standard statistical tools for model selection performed
poorly in preliminary experiments.

When applied to real data, CloneSig’s results on the TCGA exhibit a strong association with survival
when comparing homogeneous and heterogeneous samples. This effect on survival is stronger than the one
reported in [24], also on the TCGA. This may be due to a better accuracy of CloneSig, as well as to the better
statistical power of our analysis with larger sample sizes. Regarding the signature deconvolution problem,
results on simulations (Score sig 1C) suggest that CloneSig exhibits an improved sensitivity. Application to
the TCGA also indicates such increased sensitivity: in the TCGA pancreatic ductal adenocarcinoma cohort
(PAAD), the original study using deconstructSigs could not detect signature 3 activity in samples with
somatic subclonal mutations in genes BRCA1 and BRCA2 [25], while CloneSig reports signature 3 exposure
in some PAAD tumors.

3.2 Clinical relevance of signature variations

An original result of this study is the ability to further stratify heterogeneous tumors based on the presence
of a significant change in signature activity, which seems associated with a worse prognosis. This could
be illustrative of a more advanced stage of tumor development where a new generation of driver events
supplant the initial drivers of the tumor. However, we could not reproduce those results observed on the
whole TCGA cohort in a cancer-type-specific way. There are several possibilities explaining this observation:
smaller cohorts may lack statistical power, or there could be a confounding effect where larger proportions of
cancer types of bad prognosis are heterogeneous and have a significant change in signature activity compared
to cancer types with better prognosis. Even in this latter hypothesis, this stratification can still be the
manifestation of a true biological process, and not just an artifact. Indeed, other factors may explain this
phenomena, like systematic later diagnosis.
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To further assess the clinical relevance of signature changes, we have systematically analyzed whether we
could identify an association between the exact pattern of signature change and clinical variables, but found
no significant association. However, more refined or complete analyses may be necessary to uncover the full
significance of signature activity changes. Previous studies report important signature activity differences
between early and metastatic tumors in endometrial and breast cancers [26, 27], with impact on the sur-
vival in the breast cancer study [27]. We could not perform a similar analysis using the TCGA with only
untreated primary tumors, but this constitutes new directions and opportunities of research using CloneSig
on metastatic cohorts, for instance to refine findings of [27], that compares signatures deconvoluted from the
whole metastasis, and could benefit from subclonal analysis to distinguish early and late mutations.

A final potential clinical application could be usage as a marker for personalized treatment. Signature 3
is associated with homologous recombination repair defect (HRD), and a targeted therapy, PARP inhibitors,
can successfully target cells with such defect. A first idea is to use detection of signature 3 to identify
patients that can benefit from such therapy, and CloneSig exhibits better identification of active signatures,
as illustrated in the simulation studies. Indeed, several mutations in genes like BRCA1 and 2, RAD51 are
known to cause HRD, but some other mutations are less frequent, or other events may result in HRD and be
undetectable using regular genome sequencing, such as epigenetic inactivation [28]. In addition, the intensity
of HRD mutational process may be predictive of the treatment response. Pursuing this line of thought, the
change in signature activity can also be exploited as an indicator of the current driver status of HRD in
tumor development. As the underlying processes of signatures will keep being uncovered, more examples of
such applications are likely to arise.

3.3 Importance of input signatures and challenges

As illustrated in simulations, and based on our experience with the TCGA, the choice of the input signatures is
key to CloneSig’s optimal performances. This is related to the unidentifiability of the signature deconvolution
problem. Several solutions have been proposed: use of a pre-defined cancer-specific matrix [12, 15], selection
of signatures based on other genomic information, such as patterns of indels or structural variants, or strand
biases [12], or with other molecular or clinical covariates [29]. The probabilistic framework of CloneSig is well
suited to integrate other mutation types (indels, structural variants), as well as prior knowledge on signature
co-occurrence, and a prior based on other molecular and clinical covariates. The difficulty of this approach
is the possibility to learn such association patterns. Another direction for further development would be to
use CloneSig’s model to learn the signatures, or to allow some variations, as suggested in [30].

4 Materials and methods

4.1 CloneSig model

CloneSig is a probabilistic graphical framework, represented in Figure 2, to model the joint distribution of
SNV frequency and mutational context using several latent variables to capture the subclonal composition
of a tumor and the mutational processes involved in each clone. For a given SNV it assumes that we observe
the following variables: D, the total number of reads covering the SNV; B ≤ D, the number of mutated
reads; T ∈ {1, . . . , 96} the index of the mutation type (i.e., the mutation and its flanking nucleotides, up
to symmetry by reverse complement); and C = (Cnormal, C

major
tumor , C

minor
tumor ) the allele-specific copy number at

the SNV locus, as inferred using existing tools such as ASCAT [31]. Here Cnormal is the total copy number
in normal cells, and (Cmajortumor , C

minor
tumor ) are respectively the copy number in the cancer cells of the major and

minor allele, respectively. We therefore also observe Ctumor = Cmajortumor + Cminortumor , the total copy number in
cancer cells. Finally, we assume observed the tumor sample purity p, i.e., the fraction of cancer cells in the
sample.

In addition to those observed variables, CloneSig models the following unobserved variables: U ∈ {1, . . . , J},
the index of the clone where the SNV occurs (assuming a total of J clones); S ∈ {1, . . . L} the index of the
mutational signature that generated the SNV (assuming a total of L possible signatures, given a priori); and
M ∈ {1, . . . , Cmajortumor }, the number of chromosomes where the SNV is present. Note that here we assume that
SNVs can only be present in one of the two alleles, hence the upper bound of M by Cmajortumor .
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Denoting for any integer d by Σd = {u ∈ Rd+ ,
∑d
i=1 ui = 1} the d-dimensional probability simplex,

and for u ∈ Σd by Cat(u) the categorical distribution over {1, . . . , d} with probabilities u1, . . . , ud (i.e.,
X ∼ Cat(u) means that P (X = i) = ui for i = 1, . . . , d), let us now describe the probability distribution
encoded by CloneSig for a single SNV; its generalization to several SNVs is simply obtained by assuming
they are independent and identically distributed (i.i.d.) according to the model for a single SNV. We do
not model the law of C and D, which are observed root nodes in Figure 2, and therefore only explicit the
conditional distribution of (U, S, T,M,B) given (C,D).

Given parameters ξ ∈ ΣJ , π ∈ (ΣL)J and µ ∈ (Σ96)L, we simply model U , S and T as categorical
variables:

U ∼ Cat(ξ) ,

S |U ∼ Cat(πU ) ,

T |S ∼ Cat(µS) .

Conditionally on C, we assume that the number of mutated chromosomes M is uniformly chosen between 1
and Cmajortumor , i.e.,

M |C ∼ Cat(1/Cmajortumor ) ,

where 1/Cmajortumor ∈ ΣCmajor
tumor

represents the vector of constant probability. Finally, to define the law of B,

the number of mutated reads, we follow a standard approach in previous studies that represent ITH as a
generative probabilistic model [7, 9, 8, 18] where the law of the mutated read counts for a given SNV must
take into account the purity of the tumor, the proportion of cells in the tumor sample carrying that mutation
(cancer cell fraction, CCF), as well as the various copy numbers of the normal and tumor cells. More precisely,
as reviewed by [6], one can show that the expected fraction of mutated reads (variant allele frequency, VAF)
satisfies

VAF =
p× CCF×M

p× Ctumor + (1− p)× Cnormal
.

Note that this only holds under the classical simplifying assumption that all copy number events are clonal
and affect all cells in the sample. If we now denote by φ ∈ [0, 1]J the vector of CCF for each clone, and
introduce a further parameter ρ ∈ R∗+ to characterize the possible overdispersion of mutated read counts
compared to their expected values, we finally model the number of mutated reads using a beta binomial
distribution as follows:

B |D,U,C,M ∼ BetaBinomial (D, ρφUη(M,C), ρ(1− φUη(M,C)))

with η(M,C) =
p×M

p× Ctumor + (1− p)× Cnormal
.

4.2 Parameter estimation

Besides the tumor purity p, we assume that the matrix of mutational processes µ ∈ (Σ96)L is known, as
provided by databases like COSMIC and discussed below in Section 4.10. We note that we could consider µ
unknown and use CloneSig to infer a new set mutational signatures from large cohorts of sequenced tumors,
but prefer to build on existing work on mutational processes in order to be able to compare the results of
CloneSig to the existing literature. Besides p and µ, the free parameters or CloneSig are J , the number of
clones, and θ = (ξ, φ, π, ρ) which define the distributions of all random variables. On each tumor, we optimize
θ separately for J = 1 to Jmax = 8 clones to maximize the likelihood of the observed SNV data in the tumor.
The optimization is achieved approximately by an expectation-maximization (EM) algorithm [32] detailed
in Supplementary Section S1.1. The number of clones J∗ ∈ [1, Jmax] is then estimated by maximizing an
adaptive model selection criterion, detailed in Supplementary Section S1.2.

4.3 Test of mutational signature changes

We use a likelihood ratio test to determine the significance of a signature change, by comparing a regular
CloneSig fit to a fit with a single mixture of signatures common to all clones. To adapt the test, the
parameter of the chi-squared distribution needs a calibration, that we perform on simulated data under the
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null hypothesis (without change of signatures between clones). We obtain the optimal parameter using a
ridge regression model with the number of clones and the degree of freedom of the input signature matrix as
covariates. The coefficient values are averaged over 10-fold cross-validation to ensure robustness. We provide
more details about this test in Supplementary Section S1.3.

4.4 Simulations

We use several simulation strategies to evaluate the performance of CloneSig and other methods in various
situations. We also use simulations to adjust several aspects of CloneSig, in particular the setting of a
custom stopping criterion and the calibration of the statistical test to detect a significant signature change
along tumor evolution.

4.4.1 Default simulations

We implemented a class SimLoader to perform data simulation in CloneSig package. The user sets the
number of clones J , the number of observed mutations N , and the matrix of L possible signatures µ. She
can also specify the desired values for the CCF of each clone φ ∈ [0, 1]J , the proportion of each clone ξ ∈ ΣJ ,
the exposure of each signature in each clone π ∈ (ΣL)J , and the overdispersion parameter ρ ∈ R+∗ for the
beta-binomial distribution, as well as the proportion of the genome that is diploid. If the user does not
provide values for one or several parameters, we generate them randomly as follows:

π the number of active signatures follows a Poisson(7) + 1 distribution, and the signatures are chosen
uniformly among the L available signatures. Then for each subclone, the exposures of active signatures
follow a Dirichlet distribution of parameter 1 for each active signature;

φ the cancer cell fraction of each clone is set such that the largest clone has a CCF of 1, and each subsequent
CCF is uniformly drawn in decreasing order to be greater than 0.1, and at a distance at least 0.05 from
the previous clone;

ξ the proportions of clones are drawn from a Dirichlet distribution of parameter 1 for each clone. The
proportions are repeatedly drawn until the minimal proportion of a clone is greater than 0.05;

ρ follows a normal distribution of mean 60 and of variance 5.

The same strategy is used for random initialization of the parameters for the EM algorithm.
The total copy number status is drawn for a user-set diploid proportion of the genome with a bell-like

distribution centered in 2, and skewed towards the right (see Supplementary Figure S57 for examples), or
from a rounded log-normal distribution of parameters 1 and 0.3. The minor copy number is then drawn as
the rounded product between a beta distribution of parameters 5 and 3 and the total copy number. The
multiplicity of each mutation n is uniformly drawn between 1 and Cn,tumormajor

. The purity is drawn as the
minimum between a normal variable of mean 0.7 and of variance 0.1, and 0.99. The other observed variables
(T , B, D) are drawn according to CloneSig probabilistic model.

4.4.2 Simulations for comparison with other ITH and signature methods

To calibrate the custom stopping criterion and for further evaluation of CloneSig, we simulated 6, 300 datasets
using the previously described setting, with a few adjustments: we set the minimal proportion of each clone to
0.1, the minimal difference between 2 successive clone CCFs to 0.1, and we chose the active signatures among
the active signatures for each of the 35 cancer types described in the file signatures in samples and cancer types.mat,
extracted from the SigProfiler MATLAB package (version 2.5.1.7, downloaded from Mathworks on May 16th
2019). We draw the number of active signatures as the minimum of a Pois(7) + 1 distribution and the
number of active signatures for this cancer type. We required a cosine distance of at least 0.05 between the
mutational profiles of two successive clones.

In total, for each of the 35 cancer types, we generated a simulated sample for each combination of a
number of mutations from the set {100, 300, 600, 1000, 5000} covering the range observed in WES and WGS
data, a percentage of the genome that is diploid from the set {0%, 20%, 40%, 60%, 80%, 100%} to assess the
impact of copy number variations, and finally, between 1 and 6 clones.
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4.4.3 Simulations without signature change between clones

We generated a set of simulations similar in all points to the one for comparison with other ITH and signature
methods, except that there is a unique signature mixture common to all clones. We used this dataset in two
contexts: (i) to evaluate CloneSig in comparison to other methods in the absence of signature change, and
(ii) to design a statistical test to assess the significance of a change in mutational signatures. For the latter,
the dataset was limited to the first ten cancer types to avoid unnecessary computations.

4.4.4 Simulations to assess the separating power of CloneSig

To assess the separating power of CloneSig, we generated a dataset of 5,400 simulated tumor samples with
two clones, where each clone represents 50% of the observed SNVs. Our objective was to explore the set of
the distance between two clones, in terms of CCF distance, and of cosine distance between the two mutational
profiles. For that purpose we first drew ten possible CCF distances evenly on a log scale between 0 and 1, and
set to 1 the largest clone CCF. We also generated 30 matrices π with cosine distances covering regularly the
possible cosine distances; to obtain them, we first generated 10,000 such π matrices to estimate an empirical
distance distribution, and we implemented a rejection sampling strategy to obtain 30 samples from a uniform
distribution. For each pair of CCF distance and π matrix, several samples were generated with the number
of mutations varying among {100, 300, 1000}, the diploid proportion of the genome among {0.1, 0.5, 0.9}, and
the sequencing depth among {100, 500}.

4.4.5 Simulations to assess the sensitivity of the statistical test

To measure the sensitivity of the statistical test to detect a significant signature change along tumor evolution,
we generated a dataset of 2,700 simulated tumor samples with 2 to 6 clones. We used again a rejection
sampling strategy to explore the space of the maximal distance between the profiles between any 2 clones,
but the target distribution is here a beta distribution of parameters 1.5 and 8 as a target distribution,
as the objective was to sample more thoroughly the small cosine distances. We repeated the sampling
of 30 π matrices for 2 to 6 clones, and in each case, and generated several samples with the number of
mutations varying among {100, 300, 1000}, the diploid proportion of the genome among {0.1, 0.5, 0.9}, and
the sequencing depth among {100, 500}.

4.5 Evaluation metrics

We use several evaluation metrics to assess the quality of CloneSig and other comparable methods. Some as-
sess specifically the accuracy of the subclonal decomposition, while others assess the performance of signature
deconvolution.

4.5.1 Metrics evaluating the subclonal decomposition

The metrics described in this section evaluate the accuracy of the subclonal deconvolution. They are adapted
from [17].

Score1B measures the adequacy between the true number of clones Jtrue and the estimated number of

clones Jpred. It is computed as
Jtrue+1−min(Jtrue+1,|Jpred−Jtrue|)

Jtrue+1 .

Score1C is the Wasserstein similarity, defined as 1 minus the Wasserstein distance between the true and
the predicted clustering, defined by the CCFs of the different clones and their associated weights
(proportion of mutations), implemented as the function stats.wasserstein distance in the Python
package scipy.

Score2A measures the correlation between the true and predicted binary co-clustering matrices in a vector
form, Mtrue and Mpred. It is the average of 3 correlation coefficients:

Pearson correlation coefficient PCC =
Cov(Mtrue,Mpred)
σMtrue ,σMpred

, implemented as the function pearsonr

in the Python package scipy,
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Matthews correlation coefficient MCC = TP×TN−FP×FN√
(TP+FP )(TP+FN)(TN+FP )(TN+FN)

, implemented as

the function metrics.matthews corrcoef in the Python package scikit-learn,

V-measure is the harmonic mean of a homogeneity score that quantifies the fact that each cluster
contains only members of a single class, and a completeness score measuring if all members of a
given class are assigned to the same cluster [33]; here the classes are the true clustering. We used
the function v measure score in the Python package scikit-learn.

Before averaging, all those scores were rescaled between 0 and 1 using the score of the minimal score
between two ”bad scenarios”: all mutations are in the same cluster, or all mutations are in their own
cluster (Mpred = 1N×N or Mpred = IN×N ).

Score2C quantifies the accuracy of each method prediction of clonal and subclonal mutations. We report
the accuracy, and the area under the ROC curve (implemented in function metrics.roc auc score in
the Python package scikit-learn), sensitivity and specificity in Supplementary Note S2

4.5.2 Metrics evaluating the identification of mutational signatures

The metrics described in this section evaluate the accuracy of the mutational signature deconvolution.

Score sig 1A computes the Euclidean distance between normalized mutation type counts (empirical), and
the reconstituted profile. This is the objective function of most signature reconstruction approaches
(including deconstructSigs[13] and Palimpsest [14]).

Score sig 1B is the Euclidean distance between simulated and estimated signature profiles (weighted sum
over all clones). This is closer to the objective of CloneSig and TrackSig [15].

Score sig 1C measures the ability of each method to correctly identify present signatures. For CloneSig,
no signature has a null contribution to the mixture, so for each clone, the signatures are considered in
the decreasing order of their contribution to the mixture, and selected until the cumulative sum reaches
0.95. This rule is applied to all methods. For that metric, the area under the ROC curve (implemented
in function metrics.roc auc score in the Python package scikit-learn) is reported, as well as the
accuracy, sensitivity, and specificity in Supplementary Note S2

Score sig 1D is the percent of mutations with the right signature. For each mutation, the most likely
signature is found by taking into account the distribution of each mutation type in each signature, and
the contribution of the signature to the mixture.

Score sig 1E measures for each mutation the cosine distance between the clonal mutation type distribution
that generated the mutation and the reconstituted one. We consider a unique global distribution
for deconstructSigs. This allows us to measure the relevance of the reconstruction even if the wrong
signatures are selected, as several signatures have very similar profiles. The result is a distribution
of distances over all mutations, and we report the median of this distribution. We also report in
Supplementary Note S2 more results with the minimum, the maximum, and the standard deviation
of this distribution (max diff distrib mut, median diff distrib mut), as well as the proportions of
mutations with a distance below 0.05 or 0.1 (perc dist 5 and perc dist 10).

4.6 Implementation

CloneSig is implemented in Python, and is available as a Python package at https://github.com/judithabk6/
clonesig. A wrapper function implements the successive optimization of CloneSig with increasing number
of clones. For two clones and more, the model is initialized using results from the precedent run with one
fewer clone, by splitting the subclone with the largest contribution to the mixture entropy as described
in [34]. This process is stopped when the maximum number of subclones is reached, or when the selection
criterion decreases for two successive runs. A class for simulating data according to the CloneSig model is
also implemented, as detailed above.
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4.7 Data

We downloaded data from the GDC data portal https://portal.gdc.cancer.gov/. We gathered annotated
somatic mutations, both raw variant calling output, whose access is restricted and public mutations, from
the new unified TCGA pipeline https://docs.gdc.cancer.gov/Data/Bioinformatics_Pipelines/DNA_

Seq_Variant_Calling_Pipeline/, with alignment to the GRCh38 assembly, and variant calling using 4
variant callers: MuSe, Mutect2, VarScan2 and SomaticSniper. Instructions for download can be found in the
companion Github repository (https://github.com/judithabk6/CloneSig_analysis).

4.8 Copy number calling and purity estimation

We obtained copy number alterations (CNA) data from the ASCAT complete results on TCGA data partly
reported on the COSMIC database [31, 35]. We then converted ASCAT results on hg19 to GRCh38 coordi-
nates using the segment liftover Python package [36]. ASCAT results also provide an estimate of purity,
which we used as input to ITH methods when possible. Other purity measures are available [37]; however
we selected the ASCAT estimate to ensure consistency with CNV data.

4.9 Variant calling filtering

Variant calling is known to be a challenging problem. It is common practice to filter variant callers output,
as ITH methods are deemed to be highly sensitive to false positive SNVs. We filtered out indels from the
public dataset, and considered the union of the 4 variant callers output SNVs. For the protected data, we also
removed indels, and then filtered SNVs on the FILTER columns output by the variant caller (”PASS” only
VarScan2, SomaticSniper, ”PASS” or ”panel of normals” for Mutect2, and ”Tier1” to ”Tier5” for MuSe). In
addition, for all variant callers, we removed SNVs with a frequency in 1000 genomes or Exac greater than 0.01,
except if the SNV was reported in COSMIC. A coverage filter was added, and we kept SNVs with at least 6
reads at the position in the normal sample, of which 1 maximum reports the alternative nucleotide (or with
a variant allele frequency (VAF) <0.01), and for the tumor sample, at least 8 reads covering the position, of
which at least 3 reporting the variant, or a VAF>0.2. The relative amount of excluded SNVs from protected
to public SNV sets varied significantly between the 3 cancer types (see Table S3). All annotations are the ones
downloaded from the TCGA, using VEP v84, and GENCODE v.22, sift v.5.2.2, ESP v.20141103, polyphen
v.2.2.2, dbSNP v.146, Ensembl genebuild v.2014-07, Ensembl regbuild v.13.0, HGMD public v.20154, ClinVar
v.201601. We further denote the filtered raw mutation set as ”Protected SNVs” and the other one, which is
publicly available, as ”Public SNVs”

4.10 Construction of a curated list of signatures associated with each cancer
type

A very important input for CloneSig is the signature matrix. For application to the TCGA data, we restrict
ourselves to signatures known to be active in each subtype. To that end, we downloaded the signatures found
in the TCGA using SigProfiler [12] from synapse table syn11801497. The resulting list was not satisfactory
as it lacked important known patterns; for instance signature 3, associated with homologous recombination
repair deficiency was not found to be active in any tumor of the prostate cohort, while signature 3 in prostate
cancer is well described in the literature [2, 19, 38]. We therefore completed the signatures present in each
cancer type based on the literature [2, 39, 20, 40, 41, 42, 21, 43, 19, 44, 26, 45, 46], and used the resulting
matrix in all CloneSig runs on the TCGA. Our curated list of signatures present in each cancer type is
provided in Table S4.

4.11 Survival analysis

We used the Python package lifelines to compute the Kaplan-Meier curves and multivariate Cox models.
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List of abbreviations

WES whole exome sequencing

WGS whole genome sequencing

SNV single nucleotide variant

ITH intra-tumor heterogeneity

VAF variant allele frequency

CCF cancer cell fraction

EM expectation maximization

TCGA the cancer genome atlas

ICGC international cancer genome consortium

ACC Adrenocortical carcinoma

BLCA Bladder Urothelial Carcinoma

LGG Brain Lower Grade Glioma

BRCA Breast invasive carcinoma

CESC Cervical squamous cell carcinoma and endocervical adenocarcinoma

CHOL Cholangiocarcinoma

COAD Colon adenocarcinoma

ESCA Esophageal carcinoma

GBM Glioblastoma multiforme

HNSC Head and Neck squamous cell carcinoma

KICH Kidney Chromophobe

KIRC Kidney renal clear cell carcinoma

KIRP Kidney renal papillary cell carcinoma

LIHC Liver hepatocellular carcinoma

LUAD Lung adenocarcinoma

LUSC Lung squamous cell carcinoma

DLBC Lymphoid Neoplasm Diffuse Large B-cell Lymphoma

MESO Mesothelioma

OV Ovarian serous cystadenocarcinoma

PAAD Pancreatic adenocarcinoma

PCPG Pheochromocytoma and Paraganglioma

PRAD Prostate adenocarcinoma

READ Rectum adenocarcinoma

SARC Sarcoma

SKCM Skin Cutaneous Melanoma

STAD Stomach adenocarcinoma

TGCT Testicular Germ Cell Tumors

THYM Thymoma

THCA Thyroid carcinoma

UCS Uterine Carcinosarcoma

UCEC Uterine Corpus Endometrial Carcinoma

UVM Uveal Melanoma
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Note S1 Supplementary methods

S1.1 EM algorithm for parameter estimation

In this section we detail the EM algorithm used to estimate the parameters θ = (ξ, φ, π, ρ) of CloneSig, for a given
number of clones J . To lighten notations, we use in this section the notation Mmaxn = (Cmajortumor )n for the maximum
value that Mn can take. We do not model the distributions of the observed variables Cn (copy number information)
and Dn (total read count), and therefore only consider the following complete conditional log-likelihood:

L(θ) = log

[
N∏
n=1

P(Bn, Tn, Un, Sn,Mn|Dn, Cn;θ, p, µ)

]

= log

 N∏
n=1

J∏
u=1

L∏
s=1

Mmaxn∏
m=1

(P(Un = u;θ)P(Sn = s|Un = u;θ)P(Tn = t|Sn = s;µ)

P(Mn = m|Cn)P(Bn|Dn, Cn,Mn = m,Un = u;θ, p))I(Sn=s,Un=u,Mn=m)

]

=

N∑
n=1

J∑
u=1

L∑
s=1

Mmaxn∑
m=1

I(Sn = s, Un = u,Mn = m) log
[
ξuπusµstM

−1
maxn BB(Bn ; Dn, ρφuηnm, ρ(1− φuηnm))

]
,

where BB is the beta-binomial density:

BB(k ; n, α, β) =

(
n

k

)
Γ(k + α)Γ(n− k + β)Γ(α+ β)

Γ(n+ α+ β)Γ(α)Γ(β)
,

and
ηnm =

pm

p× (Ctumor)n + (1− p)× (Cnormal)n
.

To maximize L(θ), we introduce the auxiliary function Q(θ,θ′) as the expected value of the loglikelihood function
of θ when the latent variables follow the law with parameters θ′, that will be alternatively computed and maximized
in the two steps of the EM algorithm. For that purpose, let us denote by Xn = (Cn, Tn, Bn, Dn) the set observed
variables for the n-th SNV, and D = (X1, . . . ,XN ) the totality of observed variables. Then we define:

Q(θ,θ′) = E(L(θ)|D;θ′, p, µ)

=

N∑
n=1

J∑
u=1

L∑
s=1

Mmaxn∑
m=1

qnurnusvmnu log
[
ξuπusµstM

−1
maxn BB(Bn ; Dn, ρφuηnm, ρ(1− φuηnm))

]
,

(1)

with

qnu = P(Un = u|Xn;θ′) , (2)

rnus = P(Sn = s|Un = u,Xn;θ′) , (3)

vmnu = P(Mn = m|Un = u,Xn;θ′) . (4)

The EM algorithm iteratively builds a sequence of estimate θ1,θ2, . . . by solving recursively

θi = argmaxθ Q(θ,θi−1) .

For that purpose, at each iteration i, the expectation (E) step first consists in computing the function Q(θ,θi−1)
with the current parameters θi−1. In other words, we must estimate the variables (2)-(4). Given the conditional
independence relationships encoded in the graphical model (Figure 2), one easily gets:

qnu =

∑L
s=1

∑Mmaxn
m=1 ξi−1

u BB(Bn|Dn, ρi−1φi−1
u ηi−1

nm , ρ
i−1(1− φi−1

u ηi−1
nm ))µsTnπ

i−1
us∑J

u′=1

∑L
s=1

∑Mmaxn
m=1 ξi−1

u′ BB(Bn|Dn, ρi−1φi−1
u′ ηi−1

nm , ρi−1(1− φi−1
u′ ηi−1

nm ))µsTnπ
i−1
u′s

, (5)

rnus =
µsTnπ

i−1
us∑M

s′=1 µs′Tnπ
i−1
us′

, (6)

vmnu =

∑L
s=1 ξ

i−1
u BB(Bn|Dn, ρi−1φi−1

u ηi−1
nm , ρ

i−1(1− φi−1
u ηi−1

nm ))µsTnπ
i−1
us∑L

s=1

∑Mmaxn
m′=1 ξi−1

u BB(Bn|Dn, ρi−1φi−1
u ηi−1

nm′ , ρi−1(1− φi−1
u ηi−1

nm′))µsTnπ
i−1
us

. (7)
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In the maximization (M) step, we compute θi by plugging the estimates of the E-step (5)-(7) onto (1) and
maximizing Q(θ,θi−1) separately for each component of θ. The maximization in ξ and π are easily obtained as:

∀u ∈ (1 . . . J), ξiu =

N∑
n=1

qnu
N

,

∀u ∈ (1 . . . J), ∀s ∈ (1 . . . L), πius =

∑N
n=1 rnusqnu∑N
n′=1 qn′u

.

The optimization of φ and ρ inside the beta-binomial density term are not computable using a close formula. We
therefore resort to numerical optimization and use a projected Newton method, with line search to set the Newton
step at each iteration [47], in order to compute approximations of φi and ρi that respect constraints on their domain.
Indeed, ρ must be non-negative and φ is a proportion so in the unit interval. For that purpose, we now compute the
first and second derivatives of Q with respect to φ and τ = 1/ρ:

Q(θ,θi−1) =

N∑
n=1

J∑
u=1

L∑
s=1

Mmaxn∑
m=1

rnusqnuvmnu

[
log(ξuµstπusM

−1
maxn) + log(

(
dn
bn

)
)

+ log(Γ(bn +
φuηnm
τ

)) + log(Γ(
1− φuηnm

τ
+ dn − bn)) + log(Γ(

1

τ
))

− log(Γ(
1

τ
+ dn))− log(Γ(

φuηnm
τ

))− log(Γ(
1− φuηnm

τ
))

]
Let’s now compute derivatives. ψ0 and ψ1 denote the digamma and trigamma functions respectively.

∂Q(θ,θi−1)

∂τ
=

N∑
n=1

J∑
u=1

Mmaxn∑
m=1

qnuvmnu
τ2

[
−ηnmφuψ0(bn +

φuηnm
τ

)− (1− ηnmφu)ψ0(
1− φuηnm

τ
+ dn − bn)

−ψ0(
1

τ
) + ψ0(

1

τ
+ dn) + ηnmφu ψ0(

ηnmφu
τ

) + (1− ηnmφu) ψ0(
1− ηnmφu

τ
)

]
∂2Q(θ,θi−1)

∂τ2
=

N∑
n=1

J∑
u=1

Mmaxn∑
m=1

qnuvmnu

[
2

τ3

(
ηnmφuψ0(bn +

φuηnm
τ

) + (1− ηnmφu)ψ0(
1− φuηnm

τ
+ dn − bn)

+ψ0(
1

τ
)− ψ0(

1

τ
+ dn)− ηnmφu ψ0(

ηnmφu
τ

)− (1− ηnmφu) ψ0(
1− ηnmφu

τ
)

)
+

1

τ4

(
ηnm2φu2ψ1(bn +

φuηnm
τ

) + (1− ηnmφu)2ψ1(
1− φuηnm

τ
+ dn − bn) + ψ1(

1

τ
)

−ψ1(
1

τ
+ dn)− ηnm2φu2 ψ1(

ηnmφu
τ

)− (1− ηnmφu)2 ψ1(
1− ηnmφu

τ
)

)]
∂Q(θ,θi−1)

∂φu
=

N∑
n=1

Mmaxn∑
m=1

qnuvmnu
ηnm
τ

[
ψ0(bn +

φuηnm
τ

)− ψ0(
1− φuηnm

τ
+ dn − bn)

− ψ0(
ηnmφu
τ

) + ψ0(
1− ηnmφu

τ
)

]
∂2Q(θ,θi−1)

∂φ2
u

=

N∑
n=1

Mmaxn∑
m=1

qnuvmnu
η2nm
τ2

[
ψ1(bn +

φuηnm
τ

) + ψ1(
1− φuηnm

τ
+ dn − bn)

− ψ1(
ηnmφu
τ

)− ψ1(
1− ηnmφu

τ
)

]
∂2Q(θ,θi−1)

∂φu∂τ
=

N∑
n=1

Mmaxn∑
m=1

qnuvmnu
ηnm
τ2

[
−ψ0(bn +

φuηnm
τ

)− ηnm φu
τ

ψ1(bn +
φuηnm
τ

) + ψ0(
1− φuηnm

τ
+ dn − bn)

+
(1− ηnmφu)

τ
ψ1(

1− φuηnm
τ

+ dn − bn) + ψ0(
ηnmφu
τ

) +
φuηnm
τ

ψ1(
ηnmφu
τ

)

−ψ0(
1− ηnmφu

τ
)− 1− φuηnm

τ
ψ1(

1− ηnmφu
τ

)

]
∂2Q(θ,θi−1)

∂φu∂φu′
= 0
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For sake of completeness, we provide below a second, equivalent computation using another formulation follow-
ing [48].

Q(θ,θi−1) =

N∑
n=1

J∑
u=1

L∑
s=1

Mmaxn∑
m=1

rnusqnuvmnu

log

[
ξuµstπusM

−1
maxn

(
dn
bn

)
Γ(bn + ρφuηnm)Γ(ρ(1− φuηnm) + dn − bn)

Γ(ρ+ dn)

Γ(ρ)

Γ(ρφuηnm)Γ(ρ(1− φuηnm)

]

=

N∑
n=1

J∑
u=1

L∑
s=1

Mmaxn∑
m=1

rnusqnuvmnu

log

[
ξuµstπusM

−1
maxn

(
dn
bn

)∏bn−1
i=0 (φuηnm + i

ρ
)
∏dn−bn−1
i=0 (1− φuηnm + i

ρ
)∏dn−1

i=0 (1 + i
ρ
)

]

=

N∑
n=1

J∑
u=1

L∑
s=1

Mmaxn∑
m=1

rnusqnuvmnu

[
log(ξuµstπusM

−1
maxn) + log(

(
dn
bn

)
) +

bn−1∑
i=0

[
log(φuηnm +

i

ρ
)

]

+

dn−bn−1∑
i=0

[
log(1− φuηnm +

i

ρ
)

]
−
dn−1∑
i=0

[
log(1 +

i

ρ
)

]]

Let’s set τ = 1
ρ
. We are trying to compute maximum likelihood estimates for φu and τ .

∂Q(θ,θi−1)

∂τ
=

N∑
n=1

J∑
u=1

Mmaxn∑
m=1

qnuvmnu

[
bn−1∑
i=0

[
i

φuηnm + iτ

]
+

dn−bn−1∑
i=0

[
i

1− φuηnm + iτ

]
−
dn−1∑
i=0

[
i

1 + iτ

]]

∂2Q(θ,θi−1)

∂τ2
=

N∑
n=1

J∑
u=1

Mmaxn∑
m=1

qnuvmnu

[
−
bn−1∑
i=0

[
i2

(φuηnm + iτ)

]
−
dn−bn−1∑

i=0

[
i2

(1− φuηnm + τ)2

]
+

dn−1∑
i=0

[
i2

(1 + τ)2

]]

∂2Q(θ,θi−1)

∂φu∂τ
=

N∑
n=1

Mmaxn∑
m=1

qnuvmnu

[
−
bn−1∑
i=0

[
iηnm

(φuηnm + iτ)2

]
+

dn−bn−1∑
i=0

[
iηnm

(1− φuηnm + iτ)2

]]

∂Q(θ,θi−1)

∂φu
=

N∑
n=1

Mmaxn∑
m=1

qnuvmnu

[
bn−1∑
i=0

[
ηnm

φuηnm + iτ

]
+

dn−bn−1∑
i=0

[
−ηnm

1− φuηnm + iτ

]]

∂2Q(θ,θi−1)

∂φ2
u

=

N∑
n=1

Mmaxn∑
m=1

qnuvmnu

[
−
bn−1∑
i=0

[
ηnm

φuηnm + iτ

]2
−
dn−bn−1∑

i=0

[
ηnm

1− φuηnm + iτ

]2]
∂2Q(θ,θi−1)

∂φu′∂φu
= 0

We can then plug these formulas in the projected Newton algorithm to estimate φi and ρi. We repeat the E and M
steps until ‖θi − θi−1‖ < 10−5 × J × L.

S1.2 Selecting the number of clones

As explained in Supplementary Section S1.1, the EM algorithm allows us to optimize all parameters of the CloneSig
model for a given number of clones J . Here we explain how to estimate J .A first idea to automatize that choice is to
rely on a model selection heuristics, such as the widely used Bayesian Information Criterion (BIC) [49], an asymptotic
Bayesian criterion aiming at selecting the model best supported by the data. BIC is defined as

BIC(J) = `(D;θJ)− DJ
2

logN,

where `(D;θJ) is the maximum log-likelihood as estimated by the EM procedure with J clones, and DJ is the degree
of freedom of the model; by default, we take it equal to the number of free parameters, namely, DJ = J ∗ (L− 1 + 2)
for J clones, where L is the number of signatures. Indeed, for each clone, we have L− 1 parameters for the signature
proportions (π), the frequency of the clone (φu), and the proportion of the clone ξu. We have to remove 1 because∑J
u=1 ξu = 1, and add 1 for the overdispersion parameter τ .

On simulations, however, we found that while BIC correctly identifies the number of clones when the number of
SNVs is large, it tends to performs poorly when the number of mutations is low (a few hundreds) in which case it
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quasi systematically selects a single clone. On the other hand, when we observe the variation of the log-likelihood
with the number of components J as for example in Supplementary Figure S1, we clearly see an ”elbow” for some
J > 1, suggesting that the information about J is properly captured by CloneSig’s likelihood but not by BIC.
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Figure S1: Evolution of the loglikelihood and BIC criterion for 2 simulated samples, with the same parameters
and 200 mutations (up panels), and 2000 mutations (bottom panels). In both cases, the loglikelihood has
an ”elbow” at 3 clones indicating that the likelihood of the data increases much less at the addition of an
additional mixture component beyond 3 components. The BIC criterion is maximal at 3 clones when 2000
mutations are observed, but at 1 clone in the case with 200 mutations.

We observed similar behaviors with other classical criteria such as the Akaike Information Criterion (AIC) [50],
the Integrated Classification Likelihood (ICL) [51]), or the slope heuristics as described in [52]. This difficulty can be
related to results from statistical theory of model selection and penalization suggesting that asymptotic results are
known up to a factor when applied to smaller datasets [53], and therefore propose now as an alternative an empirical
criterion that can be fit on data with known model, such as simulations. More precisely, we consider the following
criterion:

BICα(J) = `(D;θJ)− αDJ logN . (8)

with α > 0 is a free parameter to be user-defined or estimated, and DJ is a measure complexity of the model.
While we leave α as a user-defined parameter in the CloneSig software, we now propose a systematic approach

to estimate it when we can simulate samples. For each simulated sample, we fit CloneSig for 1 to 10 clones. The
objective is to estimate a parameter α such that BICα,J is maximal for the true number of clones Jtrue on all or
most simulations. To achieve that, we formulate it as a standard supervised classification problem where for each
simulation and each J 6= Jtrue, we want BICα(Jtrue) > BICα(J); since BICα(J) is itself a linear function of α, we
estimate α by minimizing a convex proxy to the number of errors, namely,

min
α

∑
D

∑
J 6=Jtrue

φ (BICα(Jtrue)−BICα(J)) , (9)

where φ(u) = max(0, 1− u) is the hinge loss that pushes its argument to be larger than one when minimized; solving
(9) is a simple support vector machine (SVM) problem that we solve with a standard SVM solver.

The second important aspect of (8) is DJ , that measures the complexity of the model with J clones. The original
BIC penalizes the ”dimension of the model” [49], that can be interpreted as the degree of freedom of the model, and

27

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 31, 2019. ; https://doi.org/10.1101/825778doi: bioRxiv preprint 

https://doi.org/10.1101/825778
http://creativecommons.org/licenses/by/4.0/


we now discuss different possible definitions for it. The parameters φ, ξ and ρ determining the CCFs and proportions
of the different clones in the mixture must clearly be counted as in BIC. Regarding the signatures however, one can
notice that the signatures are neither orthogonal (some signatures are very similar), nor independent (some signatures
are associated with the same underlying biological process). Instead of just counting the number of signatures, we
therefore propose to estimate the degree of freedom dofL of the matrix with L signatures by the number of eigenvalues
of the cosine similarity matrix greater than 0.5 in absolute value. As shown in Figure S2, dofL is roughly proportional
to L, at least for L up to 20. Another source of degree of freedom is the copy number. Indeed, for each observed
mutation, several values of the number of mutated copies are considered, so if the maximal average multiplicity for
mutations in the sample is Mmaxavg , a unique clone CCF corresponds in average to Mmaxavg possible VAFs, adding
some freedom to the model. We therefore consider four possible definitions for DJ , indexed with letters A to D.

DA
J = J × (L+ 1)×Mmaxavg , (10)

DB
J = J × (L+ 1) , (11)

DC
J = J × (dofL + 1)×Mmaxavg , (12)

DD
J = J × (dofL + 1) . (13)
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Figure S2: Variation of the degree of freedom of a subset of cancer type-specific signatures (35 distinct types)
or for all available signatures depending on the number of signatures. The left panel shows the dependence
for subsets of the 65 signatures only, and the right panel for the 65 signatures additionally. We see that the
dependence with the number of signature (slope) is different in the two cases.

Moreover, if we consider the variations of the degree of freedom associated with L signatures, dofL, as a function
of L for the 35 available cancer types, and for the all 65 signatures, we note that there is a gap, as the maximal
number of signatures in one cancer type is 19, and that the slope seems different for a subset or for all the signatures
(see Supplementary Figure S2). The dependency being quite different, this raises the question of whether we should
estimate a single α for all situations (i.e., a unique BIC model), or whether we should fit two BIC models: one for
the cases where CloneSig is run with only cancer type-specific signatures, and one for the case where CloneSig is run
with all the 65 signatures.

For each possible definition of DJ (10)-(13), and for each setting (estimating a unique or two separate BIC models),
we ran simulations to estimate the value of α such that BICα,j , j ∈ {1, . . . , 10} is maximal for the true value of J ,
by solving (9). To evaluate the results, we split the dataset into a train (80% of data) and a test set (20%), and
assess the accuracy of J estimation on the test set. To evaluate the stability of the learnt parameter α, we compute
the 95% confidence interval over 10 independent train-test splits. The values for learnt coefficients, averaged over 10
independent train/test splits for each case are presented in Table S1. The test accuracies for different criteria and
different learning settings are presented in Figure S3. We first see that, as mentioned earlier, standard model selection
criteria (BIC, AIC, ICL) perform overall poorly. Second, we notice that the “separate” strategy is usually slightly
better than the “full” strategy, i.e., learning a single α for CloneSig with all 65 signatures or only a subset is not as
good as learning two different α’s. As for the definition of DJ , we see in both cases that using the degree of freedom
of the signature matrix is better than counting the number of columns, and that taking into account the variations
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DA
J DB

J DC
J DD

J

separate model
(subset)

−0.037± 0.000215 −0.061± 0.000268 −0.056± 0.000336 −0.092± 0.000404

unique model −0.014± 0.000072 −0.023± 0.000101 −0.034± 0.000173 −0.055± 0.000233

separate model
(65 signatures)

−0.012± 0.000060 −0.020± 0.000087 −0.030± 0.000146 −0.0490.000214±

Table S1: Values for the coefficients α for different penalty shapes and training subset. We see that the
coefficients for the whole dataset and for the 65 signatures examples are close. Overall, the confidence
interval for the coefficients are small.
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Figure S3: Test accuracy of various model selection criteria. BIC, AIC and ICL are standard model selection.
The others are attempts to learn a valid criterion on simulated data.

in copy numbers through Mmaxavg does not bring any benefit. A complete overview of the number of clones found
over the test set for each penalization strategy is given in Figure S4. In conclusion, we use in all our experiments an
adaptive BIC criterion based on DD

j as a measure of degree of freedom, and α estimated separately when CloneSig is
fitted with 65 signatures or with a cancer-specific subset.

S1.3 Statistical test for signature change

To assess whether a signature change between clones is statistically significant, we design and calibrate a statistical
test. To that end, we compare the likelihood of a CloneSig model with J clones as determined by the model selection
criterion, and the likelihood of a model with the same clones but a single mixture of signatures common to all the
clones (and found by fitting all observed mutations together). The objective of the test is to determine whether the
difference between the two likelihoods is significant. To that end, we implement a likelihood-ratio test based on the
statistics:

λ =
`sigCst

`sigChange
.

Following Neyman-Pearson lemma [54] one can set a threshold c to reject the null hypothesis that there is no
signature change if λ is lower or equal to c with a certain level of significance α determined by the distributions of the
likelihood of the model. As this distribution is unknown, we apply the Wilks theorem stating that asymptotically,
−2 log(λ) follows a chi-squared distribution of parameter the difference in dimensionality between the two alternative
models [55].

As previously illustrated for the model selection criterion, the number of parameters is different from the degree
of freedom in the case of CloneSig, so we resort to simulations to fit the degree of freedom of the test. We simulate
a dataset with a similar mixture of signatures for all clones of each sample, and focused on samples with at least 2
clones, as described in Material and Methods. For the purpose of calibration, we use the true number of clones to
fit the two alternative models. The objective of this approach is to fit a chi-squared distribution on the empirical
distribution of −2 log(λ) obtained in simulations. This is achieved again in two settings: fitting with all 65 signatures
or with a cancer type-specific subset of signatures. In both cases, the distribution for each number of clones J evokes
indeed a chi-squared distribution (Figure S5)

To fit the degree of freedom to use in the implementation of the test, as the degree of freedom of a chi-squared-
distributed variable is its mean, we train a linear ridge regression model to fit −2 log(λ) to relevant covariates. Four
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Figure S4: Number of clones found with different model selection criteria on the test set (not used to fit the
model selection criteria). This illustrates the improved accuracy of the adapted BIC criterion compared to
classical criteria
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Figure S5: Empirical distribution of −2 log(λ), with λ =
`sigCst

`sigChange
obtained by fitting CloneSig with the

true number of clones on simulated data, either with all 65 signatures (left), or with a subset of cancer
type-specific signatures. The distribution is estimated separately for each number of clones.

covariates were initially considered: the number of clones, the degree of freedom of the input signature matrix, the
number of mutations, and the diploid proportion of the genome. We found that the last two variables have no visible
correlation with the target variable (see Supplementary Figure S6). Additionally, when added to the model, with
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Figure S6: Correlation of −2 log(λ), with λ =
`sigCst

`sigChange
with potentially relevant covariates.

standard scaling of input variables, they have coefficients more than ten times smaller than the ones of the number
of clones, and the signature degree of freedom. We therefore compute the final model on the two retained (unscaled)
variables, and we average the values of the coefficients over 10-fold cross-validation. The resulting coefficients are
reported in Table S2.

To finally ascertain the validity of the test, we now check the uniform distribution of the p-values for negative
samples in Figure S7. There is a slight deviation from the uniform distribution, probably due to the fact that CloneSig
does not necessarily converge to the true model likelihood (and instead to a local maxima), and thus does not respect
the conditions of application of Wilks theorem.
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Intercept
Number of Clones

coefficient
Degree of freedom

coefficient

separate model
(subset)

−13.677± 0.0778 4.777± 0.0117 1.662± 0.00991

unique model −19.420± 0.0589 7.124± 0.0169 1.069± 0.00210

separate model
(65 signatures)

−1.156± 0.107 9.470± 0.0279 0± 0

Table S2: values for the coefficient α for different penalty shapes and training subset. We see that the
coefficients for the whole dataset and for the 65 signatures examples are close. Overall, the confidence
interval for the coefficients are small.
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Figure S7: Empirical distribution of the p-values of the calibrated test of significance of signature change for
negative simulated samples.

We finally explore the sensitivity of the test on the maximum cosine distance between signatures. The dataset
used for that purpose consists of 2,700 samples with the number of clones varying between 2 and 6. For each number
of clones, we drew 30 distinct π matrices with distinct maximal cosine distances between the mutation type profiles.
For each number of clones and π matrix, we generated a sample with varying number of observed mutations, diploid
percent of the genome, and sequencing depth. Figure S8 illustrates the proportion of samples where the test p-value is
below 0.05 depending on the maximal distance between two subclones. We observe that detection is more efficient as
the distance between clones becomes larger. Dependence on other variables is explored in Supplementary Figure S9.
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Figure S8: Percentage of significant tests depending on the max distance between 2 clones, quantized in 30
bins.
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Figure S9: Percentage of significant tests depending several variables: number of mutations, and percentage
of diploid genome, and sequencing depth

S1.4 Several ”modes” to run CloneSig

A crucial difficulty in performing mutational signature deconvolution is the identifiability of the problem. Indeed,
several mixtures of signatures may provide satisfying results. The most common approach to address this issue
is to reduce the number of candidate signatures, in particular by using only signatures known to be active in the
cancer type of the considered tumor sample [12] (approach cancer type). An alternative approach is to perform
two successive fits, the first one on all mutations in the sample in order to select potentially active signatures by
keeping those with a contribution greater than a threshold, and the second one to refit those selected signatures with
varying number of clones. This avoids the situation where a lot of signatures have very small contributions to the
final mixture [15] (approach prefit). Those two alternatives are implemented in CloneSig (see Figure S10) and also
tested for all methods tested (see supplementary Figures S11-S24). For the subclonal reconstruction problem, we see
that the two approaches that limit the number of signatures have similar performance and improve the accuracy of
CloneSig, especially in cases with few mutations. However, for the signature deconvolution problem, even though
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the prefit approach exhibits improved performance compared to taking all signatures, the cancer type approach
shows significantly better results. The results were similar for the other signature deconvolution methods, so for the
rest of the analysis, we retain the cancer type approach, and report only one result per method, to simplify the
interpretation.
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Figure S10: CloneSig’s performance for 3 different input signature strategies: use all available signature
(all), a subset of cancer type-specific signatures (cancer type), or proceed in two steps by first fitting all
mutations together to select potential signatures, and then actally run CloneSig with the selected subset
(prefit). Additionally, the contribution of CloneSig’a approach for accounting for copy number was evaluated,
by implementing the simpler approach from Palimpsest [40] (all nuclonal).
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Note S2 Full benchmarking results

To fully assess CloneSig’s performance in simulations, in comparison with other state-of-the-art approaches for sub-
clonal reconstruction and signature deconvolution, we report here the full results with all tested ”modes” (all signa-
tures, a subset of cancer-type-specific signatures, or a pre-fit step where only the most prominent signatures found
on the whole set of mutations are then retained for the true signature deconvolution for CloneSig, TrackSig and
Palimpsest). In this extensive version of the results, we report all metrics used to create score2C (AUC, speci-
ficity, sensitivity), score sig 1C and score sig 1E (max diff distrib mut, median diff distrib mut, perc dist 5 and
perc dist 10).

Regarding the subclonal reconstruction problem, for all metrics, there is little difference between the different
modes of each signature-aware method, except for score2C sensitivity for CloneSig, where the use of the cancer-
type-specific subset exhibits better results. For signature deconvolution, there is a higher variability of results with
respect to the run mode. CloneSig is the best performing method, except for one metric: max diff distrib mut. For
Score sig 1C, the mode cancer-type-specific subset for CloneSig achieves a very good specificity, but the other modes
have a high proportion of false positive signatures.

Additionally, we conduct a similar benchmark in the case where there is no signature change between subclones,
and present results in Supplementary Figures S11 to S25, panels b, c, f. The improvement of CloneSig over other
methods in subclonal reconstruction is partially lost in this setting, but CloneSig remains competitive, and the best
performing method for score 1B up to 3 clones. A similar trend is visible for all scores for the subclonal reconstruction
problem, with slightly worse scores, and higher inter-quartile space when there is no signature variation between
clones. For the signature deconvolution problem, most metrics are unaffected, except for score sig 1E, where all
methods perform better and close the gap with CloneSig. Overall, CloneSig performs better than other methods
when there are differences of signature activities between subclones, and remains competitive with other approaches
in the absence of signature change.

The runtimes of all methods for those simulations are presented in Figure S25. The main determinant of runtime
is the number of input mutations for all methods. CloneSig is slower than methods involving variational inference
for the subclonal reconstruction problem, but is significantly faster than PyClone, especially for high numbers of
mutations, thus illustrating its scalability to both WES and WGS data.
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Figure S11: Score 1B for ITH methods on simulated data, with varying number of clones (a,b), number of
observed mutations (c,d) and diploid percent of the genome (e,f). Panels a, c and e correspond to simulations
with varying signature between clones, and b, d, f to simulations with constant signatures.
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Figure S12: Score 2A for ITH methods on simulated data, with varying number of clones (a, b), number
of observed mutations (c, d) and diploid percent of the genome (e, f). Panels a, c and e correspond to
simulations with varying signature between clones, and b, d, f to simulations with constant signatures.
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Figure S13: Score 2C (area under the curve) for ITH methods on simulated data, with varying number of
clones (a, b), number of observed mutations (c, d) and diploid percent of the genome (e, f). Panels a, c and
e correspond to simulations with varying signature between clones, and b, d, f to simulations with constant
signatures.
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Figure S14: Score 2C (sensitivity) for ITH methods on simulated data, with varying number of clones (a, b),
number of observed mutations (c, d) and diploid percent of the genome (e, f). Panels a, c and e correspond
to simulations with varying signature between clones, and b, d, f to simulations with constant signatures.
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Figure S15: Score 2C (specificity) for ITH methods on simulated data, with varying number of clones (a, b),
number of observed mutations (c, d) and diploid percent of the genome (e, f). Panels a, c and e correspond
to simulations with varying signature between clones, and b, d, f to simulations with constant signatures.
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Figure S16: Score sig 1B for signature deconvolution methods on simulated data, with varying number of
clones (a, b), number of observed mutations (c, d) and diploid percent of the genome (e, f). Panels a, c and
e correspond to simulations with varying signature between clones, and b, d, f to simulations with constant
signatures.
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Figure S17: Score sig 1C (accuracy) for signature deconvolution methods on simulated data, with varying
number of clones (a, b), number of observed mutations (c, d) and diploid percent of the genome (e, f). Panels
a, c and e correspond to simulations with varying signature between clones, and b, d, f to simulations with
constant signatures.
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Figure S18: Score sig 1C (sensitivity) for signature deconvolution methods on simulated data, with varying
number of clones (a, b), number of observed mutations (c, d) and diploid percent of the genome (e, f). Panels
a, c and e correspond to simulations with varying signature between clones, and b, d, f to simulations with
constant signatures.
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Figure S19: Score sig 1C (specificity) for signature deconvolution methods on simulated data, with varying
number of clones (a, b), number of observed mutations (c, d) and diploid percent of the genome (e, f). Panels
a, c and e correspond to simulations with varying signature between clones, and b, d, f to simulations with
constant signatures.
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Figure S20: Score sig 1D for signature deconvolution methods on simulated data, with varying number of
clones (a, b), number of observed mutations (c, d) and diploid percent of the genome (e, f). Panels a, c and
e correspond to simulations with varying signature between clones, and b, d, f to simulations with constant
signatures.
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Figure S21: Maximal cosine distance between the true and estimated mutation type profile for signature
deconvolution methods on simulated data, with varying number of clones (a, b), number of observed mutations
(c, d) and diploid percent of the genome (e, f). Panels a, c and e correspond to simulations with varying
signature between clones, and b, d, f to simulations with constant signatures.
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Figure S22: Median cosine distance between the true and estimated mutation type profile for signature
deconvolution methods on simulated data, with varying number of clones (a, b), number of observed mutations
(c, d) and diploid percent of the genome (e, f). Panels a, c and e correspond to simulations with varying
signature between clones, and b, d, f to simulations with constant signatures.
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Figure S23: Proportion of SNVs with cosine distance between the true and estimated mutation type profile
under 0.05 for signature deconvolution methods on simulated data, with varying number of clones (a, b),
number of observed mutations (c, d) and diploid percent of the genome (e, f). Panels a, c and e correspond
to simulations with varying signature between clones, and b, d, f to simulations with constant signatures.
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Figure S24: Proportion of SNVs with cosine distance between the true and estimated mutation type profile
under 0.10 for signature deconvolution methods on simulated data, with varying number of clones (a, b),
number of observed mutations (c, d) and diploid percent of the genome (e, f). Panels a, c and e correspond
to simulations with varying signature between clones, and b, d, f to simulations with constant signatures.
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Figure S25: Runtime for ITH reconstruction and signature deconvolution methods on simulated data, with
varying number of clones (a), number of observed mutations (b) and diploid percent of the genome (c). Results
with varying signature between clones only are shown but similar results were obtained on simulations with
constant signatures.
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Note S3 Complete overview of TCGA results

To complete the analysis of the TCGA, we present here heatmaps to delineate an overview of each cancer type in
Figures S26 to S56. For each type, the first panel represents the difference between subclonal and clonal signature
activities (in case of a significant change in activity), and the bottom panel represents the absolute values of each
signature activity for clonal SNVs (belonging to the clone of largest CCF estimated by CloneSig), and in the main
subclone (in terms of number of SNVs). This allows researchers to fully explore CloneSig’s results on the TCGA,
and further compare their results in future studies. For each panel, we have added several clinical variables, in
particular, the patient’s age at diagnosis, the stage of the tumor, the size class of the primary tumor, and the patient’s
sex. Overall, we found no trend of association between signature activities or change in activities and those clinical
characteristics, as previously observed in the particular case of prostate cancer [19].

In most types, like CESC (Figure S29), HNSC (Figure S35) and others, we observe groups of patients with different
patterns of signature activity. The clinical significance of such groups remains to be further explored.
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Figure S26: Panel a: Stratification of patients depending on their pattern of signature change for ACC
patients (77 patients, including 12 with a significant signature change). The heatmap represents the difference
between the signature activity in the largest subclone (in terms of number of mutations) and the clonal
mutations (defined as belonging to the clone of highest CCF).Panel b: Stratification of patients depending
on their complete pattern of signature exposure. The heatmap represents the signature activity in the largest
subclone (in terms of number of mutations) and the clonal mutations (defined as belonging to the clone of
highest CCF).
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Figure S27: Panel a: Stratification of patients depending on their pattern of signature change for BLCA
patients (354 patients, including 147 with a significant signature change). The heatmap represents the
difference between the signature activity in the largest subclone (in terms of number of mutations) and
the clonal mutations (defined as belonging to the clone of highest CCF).Panel b: Stratification of patients
depending on their complete pattern of signature exposure. The heatmap represents the signature activity
in the largest subclone (in terms of number of mutations) and the clonal mutations (defined as belonging to
the clone of highest CCF).
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Figure S28: Panel a: Stratification of patients depending on their pattern of signature change for BRCA
patients (931 patients, including 200 with a significant signature change). The heatmap represents the
difference between the signature activity in the largest subclone (in terms of number of mutations) and
the clonal mutations (defined as belonging to the clone of highest CCF).Panel b: Stratification of patients
depending on their complete pattern of signature exposure. The heatmap represents the signature activity
in the largest subclone (in terms of number of mutations) and the clonal mutations (defined as belonging to
the clone of highest CCF).
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Figure S29: Panel a: Stratification of patients depending on their pattern of signature change for CESC
patients (275 patients, including 168 with a significant signature change). The heatmap represents the
difference between the signature activity in the largest subclone (in terms of number of mutations) and
the clonal mutations (defined as belonging to the clone of highest CCF).Panel b: Stratification of patients
depending on their complete pattern of signature exposure. The heatmap represents the signature activity
in the largest subclone (in terms of number of mutations) and the clonal mutations (defined as belonging to
the clone of highest CCF).
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Figure S30: Panel a: Stratification of patients depending on their pattern of signature change for CHOL
patients (35 patients, including 4 with a significant signature change). The heatmap represents the difference
between the signature activity in the largest subclone (in terms of number of mutations) and the clonal
mutations (defined as belonging to the clone of highest CCF).Panel b: Stratification of patients depending
on their complete pattern of signature exposure. The heatmap represents the signature activity in the largest
subclone (in terms of number of mutations) and the clonal mutations (defined as belonging to the clone of
highest CCF).
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Figure S31: Panel a: Stratification of patients depending on their pattern of signature change for COAD-
READ patients (458 patients, including 318 with a significant signature change). The heatmap represents
the difference between the signature activity in the largest subclone (in terms of number of mutations) and
the clonal mutations (defined as belonging to the clone of highest CCF).Panel b: Stratification of patients
depending on their complete pattern of signature exposure. The heatmap represents the signature activity
in the largest subclone (in terms of number of mutations) and the clonal mutations (defined as belonging to
the clone of highest CCF).
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Figure S32: Panel a: Stratification of patients depending on their pattern of signature change for DLBC
patients (37 patients, including 13 with a significant signature change). The heatmap represents the difference
between the signature activity in the largest subclone (in terms of number of mutations) and the clonal
mutations (defined as belonging to the clone of highest CCF).Panel b: Stratification of patients depending
on their complete pattern of signature exposure. The heatmap represents the signature activity in the largest
subclone (in terms of number of mutations) and the clonal mutations (defined as belonging to the clone of
highest CCF).
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Figure S33: Panel a: Stratification of patients depending on their pattern of signature change for ESCA
patients (180 patients, including 76 with a significant signature change). The heatmap represents the differ-
ence between the signature activity in the largest subclone (in terms of number of mutations) and the clonal
mutations (defined as belonging to the clone of highest CCF).Panel b: Stratification of patients depending
on their complete pattern of signature exposure. The heatmap represents the signature activity in the largest
subclone (in terms of number of mutations) and the clonal mutations (defined as belonging to the clone of
highest CCF).
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Figure S34: Panel a: Stratification of patients depending on their pattern of signature change for GBM
patients (327 patients, including 202 with a significant signature change). The heatmap represents the
difference between the signature activity in the largest subclone (in terms of number of mutations) and
the clonal mutations (defined as belonging to the clone of highest CCF).Panel b: Stratification of patients
depending on their complete pattern of signature exposure. The heatmap represents the signature activity
in the largest subclone (in terms of number of mutations) and the clonal mutations (defined as belonging to
the clone of highest CCF).
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Figure S35: Panel a: Stratification of patients depending on their pattern of signature change for HNSC
patients (445 patients, including 148 with a significant signature change). The heatmap represents the
difference between the signature activity in the largest subclone (in terms of number of mutations) and
the clonal mutations (defined as belonging to the clone of highest CCF).Panel b: Stratification of patients
depending on their complete pattern of signature exposure. The heatmap represents the signature activity
in the largest subclone (in terms of number of mutations) and the clonal mutations (defined as belonging to
the clone of highest CCF).
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Figure S36: Panel a: Stratification of patients depending on their pattern of signature change for KICH
patients (60 patients, including 35 with a significant signature change). The heatmap represents the difference
between the signature activity in the largest subclone (in terms of number of mutations) and the clonal
mutations (defined as belonging to the clone of highest CCF).Panel b: Stratification of patients depending
on their complete pattern of signature exposure. The heatmap represents the signature activity in the largest
subclone (in terms of number of mutations) and the clonal mutations (defined as belonging to the clone of
highest CCF).
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Figure S37: Panel a: Stratification of patients depending on their pattern of signature change for KIRC
patients (271 patients, including 23 with a significant signature change). The heatmap represents the differ-
ence between the signature activity in the largest subclone (in terms of number of mutations) and the clonal
mutations (defined as belonging to the clone of highest CCF).Panel b: Stratification of patients depending
on their complete pattern of signature exposure. The heatmap represents the signature activity in the largest
subclone (in terms of number of mutations) and the clonal mutations (defined as belonging to the clone of
highest CCF).
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Figure S38: Panel a: Stratification of patients depending on their pattern of signature change for KIRP
patients (242 patients, including 53 with a significant signature change). The heatmap represents the differ-
ence between the signature activity in the largest subclone (in terms of number of mutations) and the clonal
mutations (defined as belonging to the clone of highest CCF).Panel b: Stratification of patients depending
on their complete pattern of signature exposure. The heatmap represents the signature activity in the largest
subclone (in terms of number of mutations) and the clonal mutations (defined as belonging to the clone of
highest CCF).
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Figure S39: Panel a: Stratification of patients depending on their pattern of signature change for LGG pa-
tients (455 patients, including 20 with a significant signature change). The heatmap represents the difference
between the signature activity in the largest subclone (in terms of number of mutations) and the clonal
mutations (defined as belonging to the clone of highest CCF).Panel b: Stratification of patients depending
on their complete pattern of signature exposure. The heatmap represents the signature activity in the largest
subclone (in terms of number of mutations) and the clonal mutations (defined as belonging to the clone of
highest CCF).
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Figure S40: Panel a: Stratification of patients depending on their pattern of signature change for LIHC
patients (347 patients, including 102 with a significant signature change). The heatmap represents the
difference between the signature activity in the largest subclone (in terms of number of mutations) and
the clonal mutations (defined as belonging to the clone of highest CCF).Panel b: Stratification of patients
depending on their complete pattern of signature exposure. The heatmap represents the signature activity
in the largest subclone (in terms of number of mutations) and the clonal mutations (defined as belonging to
the clone of highest CCF).
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Figure S41: Panel a: Stratification of patients depending on their pattern of signature change for LUAD
patients (433 patients, including 217 with a significant signature change). The heatmap represents the
difference between the signature activity in the largest subclone (in terms of number of mutations) and
the clonal mutations (defined as belonging to the clone of highest CCF).Panel b: Stratification of patients
depending on their complete pattern of signature exposure. The heatmap represents the signature activity
in the largest subclone (in terms of number of mutations) and the clonal mutations (defined as belonging to
the clone of highest CCF).
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Figure S42: Panel a: Stratification of patients depending on their pattern of signature change for LUSC
patients (423 patients, including 180 with a significant signature change). The heatmap represents the
difference between the signature activity in the largest subclone (in terms of number of mutations) and
the clonal mutations (defined as belonging to the clone of highest CCF).Panel b: Stratification of patients
depending on their complete pattern of signature exposure. The heatmap represents the signature activity
in the largest subclone (in terms of number of mutations) and the clonal mutations (defined as belonging to
the clone of highest CCF).
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Figure S43: Panel a: Stratification of patients depending on their pattern of signature change for MESO
patients (78 patients, including 5 with a significant signature change). The heatmap represents the difference
between the signature activity in the largest subclone (in terms of number of mutations) and the clonal
mutations (defined as belonging to the clone of highest CCF).Panel b: Stratification of patients depending
on their complete pattern of signature exposure. The heatmap represents the signature activity in the largest
subclone (in terms of number of mutations) and the clonal mutations (defined as belonging to the clone of
highest CCF).
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Figure S44: Panel a: Stratification of patients depending on their pattern of signature change for OV patients
(390 patients, including 201 with a significant signature change). The heatmap represents the difference
between the signature activity in the largest subclone (in terms of number of mutations) and the clonal
mutations (defined as belonging to the clone of highest CCF).Panel b: Stratification of patients depending
on their complete pattern of signature exposure. The heatmap represents the signature activity in the largest
subclone (in terms of number of mutations) and the clonal mutations (defined as belonging to the clone of
highest CCF).
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Figure S45: Panel a: Stratification of patients depending on their pattern of signature change for PAAD
patients (150 patients, including 18 with a significant signature change). The heatmap represents the differ-
ence between the signature activity in the largest subclone (in terms of number of mutations) and the clonal
mutations (defined as belonging to the clone of highest CCF).Panel b: Stratification of patients depending
on their complete pattern of signature exposure. The heatmap represents the signature activity in the largest
subclone (in terms of number of mutations) and the clonal mutations (defined as belonging to the clone of
highest CCF).
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Figure S46: Panel a: Stratification of patients depending on their pattern of signature change for PCPG
patients (141 patients, including 1 with a significant signature change). The heatmap represents the difference
between the signature activity in the largest subclone (in terms of number of mutations) and the clonal
mutations (defined as belonging to the clone of highest CCF).Panel b: Stratification of patients depending
on their complete pattern of signature exposure. The heatmap represents the signature activity in the largest
subclone (in terms of number of mutations) and the clonal mutations (defined as belonging to the clone of
highest CCF).
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Figure S47: Panel a: Stratification of patients depending on their pattern of signature change for PRAD
patients (458 patients, including 18 with a significant signature change). The heatmap represents the differ-
ence between the signature activity in the largest subclone (in terms of number of mutations) and the clonal
mutations (defined as belonging to the clone of highest CCF).Panel b: Stratification of patients depending
on their complete pattern of signature exposure. The heatmap represents the signature activity in the largest
subclone (in terms of number of mutations) and the clonal mutations (defined as belonging to the clone of
highest CCF).
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Figure S48: Panel a: Stratification of patients depending on their pattern of signature change for SARC
patients (210 patients, including 45 with a significant signature change). The heatmap represents the differ-
ence between the signature activity in the largest subclone (in terms of number of mutations) and the clonal
mutations (defined as belonging to the clone of highest CCF).Panel b: Stratification of patients depending
on their complete pattern of signature exposure. The heatmap represents the signature activity in the largest
subclone (in terms of number of mutations) and the clonal mutations (defined as belonging to the clone of
highest CCF).
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Figure S49: Panel a: Stratification of patients depending on their pattern of signature change for SKCM
patients (423 patients, including 210 with a significant signature change). The heatmap represents the
difference between the signature activity in the largest subclone (in terms of number of mutations) and
the clonal mutations (defined as belonging to the clone of highest CCF).Panel b: Stratification of patients
depending on their complete pattern of signature exposure. The heatmap represents the signature activity
in the largest subclone (in terms of number of mutations) and the clonal mutations (defined as belonging to
the clone of highest CCF).
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Figure S50: Panel a: Stratification of patients depending on their pattern of signature change for STAD
patients (418 patients, including 127 with a significant signature change). The heatmap represents the
difference between the signature activity in the largest subclone (in terms of number of mutations) and
the clonal mutations (defined as belonging to the clone of highest CCF).Panel b: Stratification of patients
depending on their complete pattern of signature exposure. The heatmap represents the signature activity
in the largest subclone (in terms of number of mutations) and the clonal mutations (defined as belonging to
the clone of highest CCF).
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Figure S51: Panel a: Stratification of patients depending on their pattern of signature change for TGCT
patients (128 patients, including 5 with a significant signature change). The heatmap represents the difference
between the signature activity in the largest subclone (in terms of number of mutations) and the clonal
mutations (defined as belonging to the clone of highest CCF).Panel b: Stratification of patients depending
on their complete pattern of signature exposure. The heatmap represents the signature activity in the largest
subclone (in terms of number of mutations) and the clonal mutations (defined as belonging to the clone of
highest CCF).
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Figure S52: Panel a: Stratification of patients depending on their pattern of signature change for THCA
patients (467 patients, including 9 with a significant signature change). The heatmap represents the difference
between the signature activity in the largest subclone (in terms of number of mutations) and the clonal
mutations (defined as belonging to the clone of highest CCF).Panel b: Stratification of patients depending
on their complete pattern of signature exposure. The heatmap represents the signature activity in the largest
subclone (in terms of number of mutations) and the clonal mutations (defined as belonging to the clone of
highest CCF).
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Figure S53: Panel a: Stratification of patients depending on their pattern of signature change for THYM
patients (121 patients, including 28 with a significant signature change). The heatmap represents the differ-
ence between the signature activity in the largest subclone (in terms of number of mutations) and the clonal
mutations (defined as belonging to the clone of highest CCF).Panel b: Stratification of patients depending
on their complete pattern of signature exposure. The heatmap represents the signature activity in the largest
subclone (in terms of number of mutations) and the clonal mutations (defined as belonging to the clone of
highest CCF).
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Figure S54: Panel a: Stratification of patients depending on their pattern of signature change for UCEC
patients (487 patients, including 213 with a significant signature change). The heatmap represents the
difference between the signature activity in the largest subclone (in terms of number of mutations) and
the clonal mutations (defined as belonging to the clone of highest CCF).Panel b: Stratification of patients
depending on their complete pattern of signature exposure. The heatmap represents the signature activity
in the largest subclone (in terms of number of mutations) and the clonal mutations (defined as belonging to
the clone of highest CCF).
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Figure S55: Panel a: Stratification of patients depending on their pattern of signature change for UCS patients
(53 patients, including 35 with a significant signature change). The heatmap represents the difference between
the signature activity in the largest subclone (in terms of number of mutations) and the clonal mutations
(defined as belonging to the clone of highest CCF).Panel b: Stratification of patients depending on their
complete pattern of signature exposure. The heatmap represents the signature activity in the largest subclone
(in terms of number of mutations) and the clonal mutations (defined as belonging to the clone of highest
CCF).
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Figure S56: Panel a: Stratification of patients depending on their pattern of signature change for UVM
patients (80 patients, including 3 with a significant signature change). The heatmap represents the difference
between the signature activity in the largest subclone (in terms of number of mutations) and the clonal
mutations (defined as belonging to the clone of highest CCF).Panel b: Stratification of patients depending
on their complete pattern of signature exposure. The heatmap represents the signature activity in the largest
subclone (in terms of number of mutations) and the clonal mutations (defined as belonging to the clone of
highest CCF).
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Figure S57: An example of empirical distribution of the total copy number for samples with 2000 mutations.
In the first panel, labeled ”default behavior”, the user does not specify the percentage of genome that is
diploid, and the total copy number values are drawn as specified in the Methods section. On the other
panels, the user specifies a desired percentage of genome that is diploid (0, 0.2, 0.4, 0.6, 0.8, 1) respectively
for the cases shown. The distribution is slightly different from the default behavior.
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Figure S58: CloneSig’s ability to distinguish 2 clones depending on the CCF distance between the two clones,
and other relevant variables: number of mutations, and percentage of diploid genome, and sequencing depth
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Figure S59: Kaplan-Meier curves for all TCGA samples (8625) distinguishing tumors only along the number
of clones (left) or along the number of clones and the presence of a significant change in signatures along tumor
evolution (right) using the public input mutation sets. A multivariate Cox model was fitted in both cases, and
indicates for 2 clones, hazard ratio (HR) of 1.38 (95% confidence interval (CI): [1.27, 1.49], p = 2.62e − 15),
and 3 clones (HR= 1.54, CI= [1.36, 1.74], p = 4.53e − 12) (left). For the distinction based on signature
change, without signature change (HR= 1.32, CI= [1.22, 1.43], p = 7.55e − 12), and with signature change
(HR= 1.80, CI= [1.60, 2.02], p = 4.89e− 23) (right)
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Supplementary tables

Cancer type
Mean

nb mutations
(protected)

Mean
nb mutations

(public)

Standard
deviation

nb mutations
(protected)

Standard
deviation

nb mutations
(public)

Number of
samples

Median
followup
(months)

Number
of events

ACC 324.34 110.58 467.43 240.88 77 39.22 27
BLCA 732.18 350.38 886.65 424.23 354 17.21 153
BRCA 472.91 121.88 981.68 372.65 931 27.00 123
CESC 921.07 366.51 2869.13 1323.24 275 21.42 67
CHOL 358.97 100.97 505.33 225.34 35 12.65 15
COADREAD 2085.67 621.14 6247.55 1708.77 458 21.42 93
DLBC 568.30 203.68 276.72 123.15 37 24.67 5
ESCA 707.39 247.19 560.34 251.02 180 13.02 75
GBM 790.05 245.66 2583.80 1191.70 327 11.27 246
HNSC 454.21 201.73 543.69 271.16 445 20.96 185
KICH 209.32 50.12 264.68 142.42 60 85.66 8
KIRC 330.32 73.08 338.69 52.35 271 36.33 64
KIRP 280.86 82.57 130.50 37.90 242 25.13 37
LGG 212.73 76.89 1462.32 770.54 455 20.04 115
LIHC 511.53 157.00 445.93 174.27 347 19.25 117
LUAD 892.89 381.00 985.35 393.91 433 22.01 146
LUSC 909.66 382.83 686.09 289.58 423 22.27 169
MESO 203.23 47.08 114.19 48.74 78 NA 0
OV 593.79 160.15 562.30 152.24 390 31.34 227
PAAD 560.23 203.05 3780.28 1828.93 150 15.14 83
PCPG 78.70 14.09 16.71 7.43 141 NA 0
PRAD 171.30 61.78 824.76 467.50 458 30.80 8
SARC 424.27 130.72 723.66 309.04 210 30.96 81
SKCM 1876.97 886.84 2621.06 1204.90 423 35.28 184
STAD 989.96 455.07 1822.53 909.56 418 14.01 163
TGCT 148.88 22.16 33.90 11.64 128 43.05 3
THCA 120.98 16.22 95.88 14.59 467 31.01 12
THYM 253.69 36.40 175.18 83.19 121 39.17 8
UCEC 4647.22 1791.01 12341.73 4832.10 487 30.12 80
UCS 680.43 198.00 1743.77 738.28 53 NA 0
UVM 88.54 24.60 96.34 62.57 80 27.52 11

Table S3: Characteristics of the TCGA cohort used in this study.
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SBS1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
SBS2 1 1 1 1 1 1 1 1 0 1 1 1[21] 1 1 0 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1
SBS3 1 1 1 0 0 0 0 1 0 1[46] 0 1[21] 0 0 1 0 0 0 1 1 [2] 1 1 [2] 1 0 1[45] 1 0 0 1 [2] 0 1
SBS4 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1[40] 1 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0
SBS5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
SBS6 0 0 1[39] 1 1[41] 1[20] 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1[26] 0 1[43]
SBS7a 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 1 1 0 0 1
SBS7b 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0
SBS7c 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0
SBS7d 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 1 0 0 1
SBS8 0 0 1[39] 0 1[41] 0 0 0 1[2] 0 1 0 0 0 0 0 0 0 1[2] 0 0 1[19] 1 0 0 0 0 1 0 0 0
SBS9 0 0 0 0 0 0 1[42] 0 0 0 0 1[21] 0 0 1 0 0 0 0 0 0 1[19] 0 0 0 0 0 0 0 0 0
SBS10a 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 1 0 0
SBS10b 1 0 1 1 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 1 1 1 0 0 0 1 1 1 1 1 0
SBS11 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SBS12 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1[40] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1[43]
SBS13 1 1 1 1 1 1 1 1 0 1 1[2] 1[21] 1 1 0 1 1 1 1 1 1 0 1 0 1 1 1 0 1 1 1
SBS14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
SBS15 0 0 0 0 0 1 0 0 0 0 1 1 0 1 0 0 1 1 0 1 1 1 1 0 1 1 1 1 1 0 1
SBS16 0 0 0 0 1[41] 0 0 1 0 0 0 0 0 0 1 0 0 0 1[44] 0 1 1[19] 0 0 0 0 1 1 0 0 1[43]
SBS17a 0 0 1[39] 0 1[41] 1 1 1 0 0 1 1[21] 0 0 1[40] 0 0 0 0 1 [2] 1 0 0 0 1 1 0 1 0 0 0
SBS17b 0 0 1[39] 0 1[41] 1 1 1 0 0 0 1[21] 0 0 1[40] 0 0 0 0 1 [2] 0 0 0 0 1 0 0 0 0 0 0
SBS18 0 0 1[2] 0 0 1[2] 1[42] 1 0 1[2] 0 0 0 0 1[2] 0 1[2] 0 0 1 [2] 0 1 [2] 1 0 1[2] 0 1 [2] 1 1 [2] 0 0
SBS19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0
SBS20 0 0 1[39] 0 1[41] 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
SBS21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SBS22 0 0 0 0 1[41] 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
SBS23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1[40] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SBS24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0
SBS25 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SBS26 0 0 1[39] 0 0 1[20] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SBS27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SBS28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
SBS29 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
SBS30 0 0 1 0 0 1 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
SBS31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0
SBS32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
SBS33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SBS34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 [2] 0 0 0 0 0 0 0 0 0
SBS35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1[2] 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
SBS36 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 [2] 0 0 0 0 0 0 0 0 0 0 0
SBS37 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 [2] 0 0 0 0 0 0 0 0 0
SBS38 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0
SBS39 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1[2] 0 0 0 0 0 0 1 0 0 0 0 0
SBS40 0 0 1[2] 0 1 1 1 0 1 0 1 1 1 0 1 1 0 1 1 0 0 1 1 0 1 1 0 1 1 0 0
SBS41 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SBS42 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 0 0 1
SBS43 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SBS44 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0
SBS45 0 1 0 0 0 0 0 0 1 1 0 1 1 1 0 1 1 0 0 0 0 1 0 1 0 0 1 0 0 0 0
SBS46 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SBS47 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
SBS48 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SBS49 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0
SBS50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SBS51 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SBS52 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0
SBS53 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SBS54 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0
SBS55 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SBS56 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SBS57 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
SBS58 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0
SBS59 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1
SBS60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table S4: Table of presence of signatures in the different cancer types. A 1 indicates the presence of the
signature, and a 0 an absence. The background color indicates whether the presence of the signature comes
from SigProfiler detection in the TCGA (lavender) or from the literature (green), in which case, the matching
paper is referenced in the table cell.
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