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Abstract

Recent advancements in high throughput sequencing analysis have enabled the characterization of cancer-
driving fusions, improving our understanding of cancer development. Most fusion calling methods, however,
examine either RNA or DNA information alone and are limited to a rigid definition of what constitutes a
fusion. For this study we developed a pipeline that incorporates several fusion calling methods and considers
both RNA and DNA to capture a more complete representation of the tumour fusion landscape. Interestingly,
most of the fusions we identified were specific to RNA, with no evidence of corresponding genomic
restructuring. Further, while the average total number of fusions in tumour and normal brain tissue samples
is comparable, their overall fusion profiles vary significantly. Tumours have an over-representation of
fusions occurring between coding genes, whereas fusions involving intergenic or non-coding regions
comprised the vast majority of those in normals. Tumours were also more abundant in unique, sample-
specific fusions compared to normals, though several fusions exhibited strong recurrence in the tumour type
examined (diffuse intrinsic pontine glioma; DIPG) and were absent from both normal tissues and other
cancers. Intriguingly, tumours also show broad up- or down-regulation of spliceosomal gene expression,
which significantly correlates with fusion number (p=0.007). Our results show that RNA-specific fusions
are abundant in both tumour and normal tissue and are associated with spliceosomal gene dysregulation.
RNA-specific fusions should be considered as a potential mechanism that may contribute to cancer formation

initiation and maintenance alongside more traditional structural events.
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Introduction

Gene fusions represent an important class of genomic alterations. Fusion events can lead to increased
oncogene expression, decreased expression of tumour suppressors, and formation of fusion proteins with
oncogenic functions. The impacts of such changes are well documented in the tumourigenesis of multiple
cancers (Mertens et al. 2015; Mitelman et al. 2007; Xiao et al. 2018; Yoshihara et al. 2015), with estimates
suggesting that fusions account for nearly 20% of human cancer morbidity (Mitelman et al. 2007). They
have thus been classically associated with the development of cancer, and the recurrence of specific fusions
in some cases can act as a tumour-specific signature. Expression of fusion transcripts is typically taken to
indicate chromosomal rearrangement, however RNA-specific fusions have been previously found in non-
cancer cells and tissues (Babiceanu et al. 2016). Some recurrent fusions in normal tissues also show evidence
of functional roles, challenging the notion that these are predominantly cancer-specific events (Li et al.

2008).

The detection of gene fusions has been greatly improved by recent advancements in high throughput
sequencing (HTS). Approaches using multiple alignment steps for RNAseq analysis, such as EricScript,
have led to the discovery of fusions associated with lung cancer (Benelli et al. 2012; Saber et al. 2016).
deFuse allows for the identification of fusions at all possible locations within a genome, as opposed to solely
at exon boundaries (McPherson et al. 2011). FusionMap introduced the use of junction-spanning reads to
determine fusion junctions with base pair-level accuracy in either RNAseq or DNAseq data (Ge et al. 2011).
Coupling of whole genome sequencing (WGS) and RNAseq provides especially strong evidence for fusion
events, and has led to the discovery of oncogenic fusions in liver (Shiraishi et al. 2014), bladder (Guo et al.
2013) and lung cancers (Ju et al. 2012), as well as various other tumour types (Yoshihara et al. 2015). Recent

tools, such as INTEGRATE, can examine WGS and RNAseq individually or in tandem (Zhang et al. 2016).

To study the nature of gene fusions in cancer, we designed a pipeline that incorporates the above
four fusion callers. As individual callers can have biases towards specific categories of fusions, integrating

multiple fusion-calling methods allows for detection of a broader variety of fusions. Our pipeline combines
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the results of these callers and can examine WGS data to determine if DNA support is present for fusions,
which can yield insights into particularly complex cancers. With this, we examined RNAseq and WGS data
of brain tissue samples from patients with diffuse intrinsic pontine glioma (DIPG), an aggressive childhood
brainstem tumour with limited treatment options and a median survival of less than 1 year (Buczkowicz et
al. 2014a). We also extended our analysis to subsets of normal tissue samples from the Genotype-Tissue
Expression (GTEx) database (Lonsdale et al. 2013) and samples from various cancer types in The Cancer

Genome Atlas Portal (TCGA) (The Cancer Genome Atlas Research Network 2008).

Our study provides novel insight into the nature of the fusions found in the transcriptomes of DIPG
patients. Many of the fusions we identified, including ones that were successfully validated with RT-PCR,
did not have genomic support from WGS sequencing. Most fusions specific to tumours were non-recurrent
and occurred between coding genes. Moreover, DIPG tumour samples showed differential expression of
spliceosomal genes, which correlated positively with fusion count and suggests that gene fusions in DIPG
might be driven in part by transcriptional and splicing dysregulation. Our work expands the diversity of
mechanisms driving fusion formation, suggesting that RNA-based fusions are an important component of

the diversity in DIPG, and potentially in other tumours.

Results

Preliminary RNAseq and WGS analysis of DIPG samples

For this study, we obtained 34 DIPG tumour (DIPG-T) and 17 normal brain tissue (DIPG-N)
samples from autopsies of 36 DIPG patients at the Hospital for Sick Children, with approval from the
hospital Research Ethics Board. 15 DIPG-T samples and 15 DIPG-N samples comprised paired sets from
the same 15 patients. We performed transcriptome sequencing for all samples. Genome sequencing was
performed for 27 of these samples (14 DIPG-T and 13 DIPG-N) and published previously (Buczkowicz et
al. 2014b). Initial RNAseq analysis of the DIPG-T samples using the fusion caller deFuse (McPherson et al.
2011) revealed a fusion between the epidermal growth factor receptor gene (EGFR) and the histone

deacetylase 9 gene (HDACY) gene in sample DIPG18T (Figure 1). deFuse reported over 400 split reads
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supporting this fusion with high mappability scores for the sequences surrounding the breakpoints. We
subsequently validated its presence in RNA using RT-PCR and Sanger sequencing. Comparing EGFR and
HDACY gene orientations and the directions of their supporting read pairs, we found that the fusion is

composed of the EGFR sense strand and HDACY antisense strand.
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Figure 1. Illustration of the EGFR-HDAC9 fusion in sample DIPG18T. (A) Structure of the fusion between
the EGFR and HDAC9 genes in DIPG18T. The fusion could only be identified using the fusion caller deFuse,
and examination of the supporting reads revealed that it consists of the EGFR sense and HDACY antisense
strand. (B) Sanger sequencing of the DIPG18T transcriptome showed that EGFR-HDAC9 is expressed. The
sequencing trace is shown and the fusion junction indicated by the arrow.

To further confirm this fusion computationally, we analyzed the RNAseq data of DIPG18T using 3
additional fusion callers; however, none identified EGFR-HDAC9. Of all four fusion callers used, deFuse is
the only one that reports fusions in intergenic regions, making it possible that the additional 3 callers simply

dismissed EGFR-HDAC9 due to the involvement of the HDAC9 antisense strand.
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Intriguingly, we found no DNA evidence for EGFR-HDACY in the WGS data of DIPG18T. This
was despite rigorous bioinformatic and manual analysis and multiple (genomic) PCR attempts to amplify
the region using various experimental conditions with RNA-based primers, on the assumption that the
introns are not long enough to evade PCR. This indicated that the fusion is not likely to be caused by
underlying DNA structural variation, and led us to further investigate the presence of fusions in the

transcriptomes of DIPG patients and if they have support in the DNA.

Characterization of fusions in DIPG tumours compared to normal brain tissues from DIPG patients

Our EGFR-HDACY results demonstrate that not all callers are able to equally identify fusions with
specific characteristics. Therefore, to obtain a more complete picture of the fusion landscape in DIPG, we
developed a fusion detection pipeline that consolidates results from multiple fusion callers (see Methods for
details). As each caller has a unique methodology and definition of what constitutes a fusion, our pipeline
allows for broader fusion detection than would be possible using just one method. This pipeline also uses a
consistent annotation approach to name identified fusions based on specific categories as well as the distance
and order of the constituent genes (Figure 2). It classifies fusions into 7 categories and filters them for
uniqueness in mapping (BWAfilter), coverage (Covfilter) and supporting reads (Valfilter; all parameters

described further in Methods).


https://doi.org/10.1101/825570
http://creativecommons.org/licenses/by-nc-nd/4.0/

aCC-BY-NC-ND 4.0 International license.

bioRxiv preprint doi: https://doi.org/10.1101/825570; this version posted October 30, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

Chromosome 1 | GeneA || GeneB | | GeneC [ | Non-coding geneA | DNA
sequence
Chromosome 2 ~| Non-coding gene B | | GeneD | I
Head Gene Tail Gene Fusion RNA transcript Category
Gene B ReadThrough

CodingFusion

CodingFusion

| Non-coding gene |

>

\ Non-coding_|

TruncatedCoding

g

TruncatedCoding

[ Non-coding gene ]

E "

[ Non-coding\ A |

TruncatedNoncoding

| Non-coding gene A |

I Non-coding gene B |

| NCA \ NCB |

TruncatedNoncoding

| Non-coding gene |

TruncatedNoncoding

E "

EHE

b NoHeadGene
** | Non-coding gene | NoHeadGene
s+ * A N\ * Intergenic

* Where
** Where

represents any intergenic region that is not directly downstream of the head gene.
represents any intergenic region that is not directly upstream of the tail gene.

Figure 2. Depiction of the 7 categories used to distinguish fusions. Two chromosomes containing coding
(coloured) and non-coding (grey) genes are shown above, with intergenic sequences represented by orange
lines between genes. The chart below shows head and tail genes, the resultant fusion RNA transcript and the
fusion category that the transcript would be assigned to. NC = non-coding.

Computational validation of the fusion detection pipeline

Prior to analyses of DIPG-T and DIPG-N samples, we evaluated the sensitivity and precision of our
fusion detection pipeline using a previously published dataset of fusions in childhood glioma samples (Wu
et al., 2014) as a validation set (Table 1, Supplementary Table S1). When a fusion from this validation set
was required to have good mappability (BW Afilter30), at least 3 captured reads (Valfilter3) and at least 5
supporting reads (CovfilterS), our pipeline detected 90.9% of CodingFusions (50/55), 88.4% of

TruncatedCoding (38/43) and 100% of TruncatedNonCoding (3/3) fusions. Except for one TruncatedCoding
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fusion detected by both deFuse and INTEGRATE, all TruncatedCoding and TruncatedNonCoding fusions
were detected by deFuse alone. In previous works on fusion callers (Wu et al. 2013; Zhang et al. 2016;
Okonechnikov et al. 2016) or the comparison of them (Liu et al. 2016), deFuse did not belong to the best
performance group. This could be because most fusion callers do not report truncated fusions, leading to
their exclusion from the validation benchmark. This would make it appear like deFuse’s false positive rate

is much higher than it actually is.

Although the precision of our pipeline with respect to our validation dataset is low, it should be
noted that every fusion in our pipeline’s output has at least 3 reads captured (Valfilter3). This suggests that
all fusions reported by our pipeline are present in the RNAseq data, but are simply not included in the
validation set. Overall, our results illustrate that our pipeline has high sensitivity in identifying fusions from

RNAseq samples.

Table 1: Fusion detection pipeline performance across different fusion categories

. BWAfilter30 +
Wuetal Validated+ gy 5160030 + Covfilters Valfilter3 +
BWAfilter30
Covfilters

Category Number of fusions Sensitivity Precision Sensitivity Precision
CodingFusion 55 98.2% 7.4% 90.9% 26.0%
TruncatedCoding 43 93.0% 8.5% 88.4% 12.4%
TruncatedNoncoding 3 100.0% 1.5% 100% 2.6%
NoHeadGene 2 50.0%% 0.5% 50.0% 0.9%
SameGene 1 0% 0% 0% 0%
All 104 94.2% 4.3% 88.5% 11.1%

Occurrence of fusions in DIPG tumour samples and normal brain tissues

We first used the detection pipeline to analyze RNAseq data from the 15 paired DIPG-T and -N
samples (n=30) for fusions that are specific to DIPG-T, specific to DIPG-N, or common to both sample
types. We categorized the fusions and filtered them under the same parameters used for validation of the

pipeline (BWAfilter30, Covfilter5, Valfilter3; Figure 3A, B).
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Figure 3: Distributions of fusions using BW Afilter30, Valfilter3 and Covfilter3 in paired (A,B) and unpaired
(C) DIPG patient samples. (A) Number of fusions per fusion category in 15 DIPG-T/DIPG-N sample pairs.
Counts are divided to represent fusions specific to DIPG-T samples (Tumour only), specific to DIPG-N
samples (Normal only), or those common to both (Both). (B) The proportion of fusions from each category
for each sample type in the 15 DIPG-T/DIPG-N samples pairs. Fusions between 2 coding genes appear to
have a bias towards DIPG-T samples. For (A) and (B) the number of samples a given fusion is found in is
not taken into account, only the sample type(s) it occurs in. (C) Distribution of total fusion counts for each
of the 51 total DIPG-T and DIPG-N samples. While the average number of fusions per sample is similar
between DIPG-T and DIPG-N, DIPG-T samples have a much larger variance in fusion number.

After filtering, we found a total of 201 fusions in DIPG-T samples and 114 fusions in DIPG-N
samples. 232 unique fusions were present across all 30 paired samples -- of these, 118 were DIPG-T-specific,
31 were DIPG-N-specific and 83 were present in both sample types (Figure 3A). Examining the fusion
category proportions per sample type revealed that TruncatedCoding, TruncatedNoncoding and
NoHeadGene fusions made up the majority of fusions in all sample groups (Figure 3B). They were
particularly abundant in DIPG-N, making up 28/31 (90.3%) of DIPG-N-specific fusions in the paired sample
set. SameGene fusions were most frequently found in both DIPG-N and DIPG-T. While their absolute

numbers were relatively low, ReadThroughs and CodingFusions were much more likely to be DIPG-T-
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specific. CodingFusions in particular were almost entirely absent from DIPG-N, with 16/18 (88.8%) being
unique to DIPG-T. Likewise, 19/24 (79%) ReadThroughs were DIPG-T-specific. These categories are the
only ones representing fusions between 2 coding genes. We observed similar trends when extending this

analysis to all 51 unpaired samples (Supplementary Figure S1).

As a given fusion may occur in multiple samples, we used 2 measures to calculate the average
number of fusions per sample: 1) the average total number of fusions, which considers all fusions present in
a given sample regardless of their occurrence in other samples, and 2) the average number of unique fusions,
which considers the number of unique fusions that individual samples contribute to the pool of 232 total
fusions. DIPG-T and DIPG-N had the same average total fusions per sample (33.4 and 33.7, respectively)
yet differed in the average number of unique fusions per sample (13.4 and 7.6, respectively). Of note, the
total number of fusions between individual DIPG-T samples varied widely compared to DIPG-N, which had
a much tighter distribution of fusions per sample; again, this was true for both paired (Supplementary Figure

S2) and unpaired (Figure 3C) sample sets.

Recurrence of fusions in DIPG-T and DIPG-N samples

Next, we examined the recurrence of fusions in DIPG and found that the vast majority of fusions
that are recurrent in DIPG-T could also be found in DIPG-N (Supplementary Table S2). This was particularly
true when requiring fusions to be found in 3 or more DIPG-T samples. This pattern was present across all
fusion categories for the paired sample set (Supplementary Table S2a) and in all categories except
ReadThroughs for the unpaired sample set (Supplementary Table S2b). These results indicate that fusions
specific to DIPG-T are more likely to be unique to a single sample, while recurrent fusions are likely to be

present in normal tissues as well as in tumours.

To confirm that fusions occur in normal tissues and that recurrent fusions present in both DIPG-T
and DIPG-N samples are not due to contamination, we investigated the occurrence of CodingFusions in
RNAseq data of normal brain tissue samples catalogued in the GTEx database. Our analysis revealed 51

CodingFusions in normal tissue GTEx samples, 4 of which were also found in DIPG-N samples

10
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(Supplementary Table S3). Finding such an abundance of fusions between coding genes in GTEx RNAseq
data that pass strict filtering by our pipeline further indicates that fusions in normal tissues cannot be simply

dismissed as false positives or contaminations.

Identifying fusions specific to DIPG tumours

Our above results show that although many fusions in DIPG-T are sample-specific, several recurrent
fusions are present as well. Such fusions may prove useful as biomarkers and provide insight into DIPG
pathogenesis. Previous studies conducted at St Jude’s Children’s Hospital indicate that 5 fusions involving
the 3 NTRK genes -- which promote differentiation and survival of neuronal cells throughout the nervous
system (Deinhardt and Chao 2014) -- are associated with pediatric high-grade gliomas (pHGG) including
DIPG (Wu et al. 2014). Two fusions (BTBDI-NTRK3 and VCL-NTRK?2) were present in DIPG, while the
other 3 (NTRK2-BENDS, ETV6-NTRK3, TPM3-NTRK1) were specific to supratentorial pHGG (Wu et al.
2014). All five fusions were present in RNAseq data, however only three were also identified in
corresponding WGS samples. Examining the St Jude’s RNAseq datasets with our own pipeline, we found
that the five NTRK fusions passed all filters (Supplementary Table S4). We also detected a BEND5-NTRK?2
fusion that was not previously reported in the St Jude’s RNAseq data. This fusion has substantially different
breakpoints from the reported NTRK2-BENDS5. NTRK fusions have been previously associated with various
tumours (Cocco et al. 2018), however both our pipeline and the analyses performed by Wu et al (2014)
showed that the DIPG-specific BTBDI-NTRK3 and VCL-NTRK?2 are unique to individual samples, and may

serve as patient-specific signatures.

To identify which fusions in our sample cohort are exclusive to DIPG, we examined their occurrence
in other tissue and cancer types. For this we developed a fusion validation pipeline that determines if a given
fusion is present in an RNAseq dataset by examining that dataset for corresponding supporting reads (see
Methods for details). Briefly, the validation pipeline aligns reads to both the putative fusion and to a
combined annotation filter reference, and removes reads with stronger alignment to the filter reference, as

these are likely false positives. We used this pipeline on two sample cohorts from the TCGA and GTEx
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databases to identify potential tumour-specific fusions and further refine those into fusions which are
putative DIPG signatures. First we ran our pipeline (BWAfilter30, Valfilter3, Covfilter5) on our 51 unpaired
DIPG-T and DIPG-N samples, and identified 430 fusions across all samples. From this, we selected a subset
of 65 fusions present in 3 or more DIPG-T samples, and absent in DIPG-N samples (Supplementary Table
S5). We used this as input to our validation pipeline (see Methods, Figure 8A-C) to query for these fusions
in various tumour and normal samples from the TCGA and GTEx, as well as the DIPG/HGG dataset
published by Wu et al. (2014). Finally, we calculated the fraction of samples in each tested sample group

carrying each of the selected fusions (Figure 4).
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Figure 4. Heatmap of fusion expression across tumours and normal tissues. The expression of 65 DIPG-T-
specific fusions (columns) was assessed in various TCGA brain and non-brain tumour samples, GTEx brain
and non-brain normal tissue samples and DIPG and HGG samples from Wu et al 2014 (rows). Darkness of
red corresponds to fraction of samples in each sample set containing a given fusion. T = tumour; N = normal;
STJUDE = sample sets from Wu et al. 2014.

Seven fusions were unique to DIPG-T samples (Figure 4; Supplementary Table S6), including 2
CodingFusions (SSBPI-MGAM, NEDDI-CFAP54), 4 NoHeadGene fusions (N/A-RP11-152L7.1, N/A-

RP11-627D16.1, N/A-CHDC2, N/A-ZNF334) and a TruncatedNoncoding fusion (RPI1-419K12.1-N/A).
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Two NoHeadGene fusions and the TruncatedNoncoding fusion involve long non-coding RNA (IncRNA).
Little is known about how IncRNA fusions impact oncogenesis, however they appear to regulate wild-type
gene expression in prostate (Qin et al. 2017) and liver (Zhu et al. 2019) cancers. Patients with advanced liver
cancer are reported to have more IncRNA fusions compared to those with less severe diagnoses. We also
observed that our chosen cohort of 65 fusions generally had more abundant expression in tumours compared
to normal sample types across all sample sets. Some fusions were expressed almost ubiquitously across all
tumours and normal tissues, but were absent from DIPG-N. These fusions were less abundant in GTEx brain
cortex samples, and their absence in DIPG-N may be due to a lack of tissue-specific expression in the frontal
lobe. We cannot, however, discount the possibility that this is an artifact of the differences in sequencing

used between the various sample sets.

Intrachromosomal distances between fusion genes in tumours and normal tissues

Our results indicate that fusions in DIPG-T and DIPG-N largely differ in the characteristics of their
constituent genes. To determine if these differences extend to gene loci, we compared gene distances for
fusions composed of head and tail genes on the same chromosome. We calculated mean and median
distances for 2 sets of fusions that passed BWAfilter30, Valfilter3, and Covfilter5 in our 51 unpaired DIPG
samples: 1) the 56 intrachromosomal fusions present in both DIPG-T and -N samples, and 2) the 100 DIPG-
T-specific intrachromosomal fusions. The mean distance between genes in fusions common to DIPG-T and
-N was 16kb, while the median distance was Okb. The mean and median distances between genes for DIPG-
T-specific fusions were substantially larger at 5047.5kb and 7.7kb, respectively, suggesting that fusions

unique to tumours tend to occur between genes that are further apart.

Gene fusions resulting from interchromosomal events

Increased distances between intrachromosomal fusion gene pairs may indicate that broad structural
changes are occurring in DIPG to give rise to these observations. We further investigated this possibility by
comparing the frequency of fusions between RNA transcripts produced from loci on different chromosomes

in normal and tumour tissue samples. For this, we focused on interchromosomal fusions that passed
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BWA(filter30, Valfilter3, and CovfilterS. The fraction of unique interchromosomal events among DIPG-T-
specific fusions was higher than among those common to DIPG-T and DIPG-N samples (Table 2). For the
15 paired DIPG-T/DIPG-N samples, we observed that 5.1% (6/118) of DIPG-T-specific fusions and 4.4%
(5/114) of fusions found in DIPG-N were interchromosomal. For the total 51 samples, interchromosomal
events occurred in 12.8% (33/256) of DIPG-T-specific fusions and 6.9% (12/174) of fusions in DIPG-N.
We also analyzed the dataset published by Wu et al (2014), and found that 15.5% (167/1076) of fusions they
reported were interchromosomal. In contrast, 6.9% (49/711) of fusions in 157 brain tissue GTEx samples

were interchromosomal.

Table 2. Number of inter-chromosomal fusion events in tumour samples, normal samples and both tumour
and normal samples across various data sets (across all fusion categories).

Tumour-specific Normal-specific/Tumour&Normal
total Inter-chr (%) total Inter-chr (%)
DIPG paired 118 6 (5.08) 114 5(4.39)
DIPG all 256 33 (12.90) 174 12 (6.89)
Wu et al 2014 1076 167 (15.52) - --
GTEx -- -- 711 49 (6.89%)

Evaluating underlying DNA Support for fusions

Of our 51 DIPG samples, 14 DIPG-T and 13 DIPG-N had both WGS and RNAseq data available,
allowing us to compare the presence of fusions between their genomes and transcriptomes. We examined
the WGS data for evidence of fusions previously identified in RNAseq data using BWAfilter30, Covfilter5
and Valfilter3 (Table 3). The WGS data for each sample was sequenced to 1495 million average number of
reads per sample (max=2206 million; min=1021 million). We identified DNA support for 5 CodingFusions
(ERCI-FAM222B, LDLRAD3-NCAM1, TNRC6B-CELF2, NMU-PDGFRA, and WDFY3-FAM471-STBD1)
and 1 TruncatedCoding (DDXI-MYCNUN) (Table 3). All 6 of these fusions were specific to DIPG-T
samples. While DNA restructuring for ReadThrough fusions is not expected, as they are typically caused by
transcriptional read-through and cis-splicing of the resultant chimeric transcripts (Qin et al. 2015; Tang et
al. 2017), we also observed no evidence of genomic restructuring for TruncatedNoncoding, NoHeadGene or

SameGene fusions, which are all typically attributed to chromosomal translocations.
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Table 3. Fusion numbers of samples with WGS data for 14 DIPG-T and 13 DIPG-N samples using
BWAfilter30, Valfilter3 and Covfilter5. Number of fusions with DNA support is shown in brackets.

Category DIPG-T DIPG-N Both
ReadThrough 18 1 4
CodingFusion 20 (5) 0 2
TruncatedCoding 47 (1) 6 18
TruncatedNoncoding 20 9 20
NoHeadGene 31 13 20
SameGene 4 0 9
Total 140 (6) 29 (0) 73 (0)

We also performed Sanger sequencing and a series of PCRs to experimentally validate several
fusions either with or without WGS/WES support. First, we selected 4 of the above 6 fusions with
WGS/WES DNA support as well as 4 fusions with DNA support that did not pass BWAfilter30, Covfilter5
or Valfilter3 (Supplementary Table S7). We performed genomic PCRs for 7 out of 8 fusions and successfully
identified them in the DNA. Using RT-PCR, we were also able to identify all 8 of these fusions in the RNA.
We then selected 8 RNA-specific fusions, 3 of which passed all filters and 5 which failed at least one
(Supplementary Table S8). RNA transcripts for all 8 of these fusions were successfully identified using RT-

PCR. Sanger sequencing was used to confirm the head and tail genes of each PCR product.

Increased expression of spliceosomal genes correlates with fusion occurrence

Our initial WGS findings suggest that a majority of fusions in DIPG occur only in RNA. RNA-
specific fusions have been previously reported and can result from various splicing aberrancies (Li et al.
2008; Qin et al. 2015). We thus examined the expression of genes related to splicing activity and
spliceosomal function in DIPG-T patients. From the RNAseq data we estimated gene expression levels in
each DIPG-T sample and used this to cluster the expression of genes in the Kyoto Encyclopedia of Genes
and Genomes (KEGG) spliceosome category (Kanehisa and Goto 2000). Samples fell into 1 of 2 broad
groups with either increased or decreased spliceosomal gene expression (Figure 5). Samples with lower
spliceosomal expression also had fewer total fusions than samples with higher spliceosomal expression
(mean fusion number 40.5 and 57.3; p=0.007, Wilcoxon test), suggesting a link between expression of

spliceosomal genes and occurrence of fusions in the DIPG tumour samples.
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Figure 5: DIPG-T samples tend to broadly over- or under-express genes in the KEGG spliceosomal
category. Heatmap: DIPG-T samples cluster into two groups showing either increased expression (left) or
decreased expression (right) of 125 spliceosomal genes. Range of gene expression is shown in the scale on
the top left where red indicates higher gene expression and blue indicates lower gene expression. Bottom
panel: Measurement of the number of fusions in all categories per sample. DIPG-T samples that over-express
spliceosomal genes typically contain a greater number of fusions, while samples under-expressing
spliceosomal genes typically contain fewer fusions. The fusion count scale is depicted to the right, where
the mean number of fusions in DIPG-N was used as the midpoint. Fusion counts were determined using the
fusion detection pipeline with BWAfilter30, Valfilter3 and Covfilter5.

Comparison of expression levels and fusion counts
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Distributions of raw fusion counts are different between DIPG-T and DIPG-N samples (Figure 3C,
Figure 5). DIPG-T samples have a much broader range of fusion counts than DIPG-N samples, which are
generally more consistent across the sample cohort. Fusion counts also correlated positively with
spliceosomal gene expression within DIPG-T samples (Figure 5). DIPG28T, for example, has the highest
fusion count among paired samples and one of the highest expression level profiles for spliceosomal genes.
It likewise shows a marked increase in fusion number compared to its paired normal DIPG28N (Figure 3).
DIPG25T, on the other hand, has an extremely low fusion count (Figure 3) and exhibits the greatest reduction
in spliceosomal gene expression (Figure 5). It also has a substantially lower fusion count than its paired
normal sample, DIPG25N (Figure 3). DIPG71T has a relatively low number of fusions in comparison to
DIPG7IN, and generally under-expresses spliceosomal genes. Similar trends can be seen with

DIPG14BT/N.

NEDDI-CFAP54 is a fusion with characteristics of aberrant splicing without support in genomic DNA

Our results show that fusion formation in DIPG is complex and can be independent of chromosomal
restructuring. This is exemplified by the DIPG-specific fusion between the neural precursor cell expressed,
developmentally downregulated 1 (NVEDDI) gene and cilia and flagella-associated protein 54 (CFAP54)
gene, which is also known as C120rf55. Our pipeline identified supporting reads for NEDD[-CFAP54 in the
transcriptomes of 4/34 DIPG-T samples with no evidence of corresponding DNA rearrangements. We also
confirmed the presence of this fusion in the RNA of 3/4 samples using RT-PCR and Sanger sequencing
(Supplementary Figure S3). Interestingly, CFAP54 is immediately upstream of NEDDI on chromosome 12
(12923.1), yet the fusion contains NEDDI as the head gene and CFAP54 as the tail gene. The same
breakpoint in NEDD] is consistent across all NEDD1-CFAP54-positive samples, whereas two breakpoints
are present in CFAP54 — one that is ubiquitous and one in a second variant of NEDD I-CFAP54 in DIPG89T.
We also observed several instances of a DIPG-T-specific CFAP54-NEDDI ReadThrough with varying
breakpoint combinations in both genes, although the frequency of this fusion orientation was lower than that

of NEDDI1-CFAP54. Samples DIPG52T, DIPG62T and DIPG89T contained both the NEDDI1-CFAP54 and
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CFAP54-NEDD] fusions, potentially indicating the formation of a circular RNA. Of note, these samples all
show increased spliceosomal gene expression and fusion counts, with DIPG89T having the highest total
fusion number of all samples. While the exact processes remain to be determined, these results suggest that

dysregulated spliceosomal expression and RNA-specific fusion formation are interrelated.

Discussion

Gene fusions are causal to several cancers, and understanding their effects and formation is critical
for understanding cancer pathology. Most fusion-calling methods, however, are hindered by the ways in
which they define what constitutes a true gene fusion. We have thus developed a pipeline that consolidates
information from 4 fusion callers with varied definitions, allowing for a greater capture of fusions in a given
sample set. This pipeline also examines WGS data to determine if DNA support is present for fusions found
in RNAseq. The pipeline is designed to be easily updated with additional fusion calling methods, making it

versatile and applicable to research beyond the scope of this paper.

We used our pipeline to compare tumours and normal brain tissue samples from DIPG patients,
revealing that although these tissues have a comparable total number of fusions per sample, DIPG-T samples
have a bias for non-recurrent fusions and fusions between coding genes. An increase in sample-specific
fusions is not surprising; cancer genomes harbour more instability, and thus contain more translocations and
fusion events, many of which are thought to be non-recurrent (Bunting and Nussenzweig 2013; Kim and
Jinks-Robertson 2012; Yoshihara et al. 2015). Furthermore, both intra- and inter-tumour heterogeneity is
well-documented in various cancers, including gliomas (Abou-El-Ardat et al. 2017; Alizadeh et al. 2000;
Aum et al. 2014). We also show that ReadThroughs and CodingFusions were almost exclusively found in
DIPG-T (Figure 3A, B). ReadThroughs typically result from cis-splicing, in which two neighbouring genes
are transcribed into a single pre-mRNA (Qin et al. 2015; Tang et al. 2017) and, thus, typically do not have
DNA support. CodingFusions, on the other hand, consist of non-adjacent genes and, unlike ReadThroughs,
they cannot be accounted for by transcriptional read-through and cis-splicing. Instead, they are typically

attributed to chromosomal rearrangements or translocations. In a recent study, nearly half of the paediatric
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DIPG patients examined had fusion-forming structural variants in their DNA (Wu et al. 2014), suggesting

that chromosomal translocation is relatively common in DIPG.

Surprisingly, we found DNA support for only 6 of 242 fusions for which genomic data was available
(Table 3). Fusions specific to RNA are increasingly reported in cancers and normal cell lines (Babiceanu et
al. 2016; Grosso et al. 2015; Jia et al. 2016; Li et al. 2008; Qin et al. 2015; Yun et al. 2014). Similarly, in
our study we have not been able to identify DNA support for most fusion events, suggesting they appear
exclusively in the transcriptome. This lack of DNA support indicates that these fusions are likely driven by
dysregulation of RNA transcription, splicing or processing. Multiple breakpoint combinations and gene
orientations in individual samples, such as those in fusions involving the NEDDI and CFAP54 genes,

likewise point to impaired RNA mechanisms.

In keeping with a dysregulation of RNA mechanisms, DIPG-T samples generally over- or under-
expressed genes in the KEGG spliceosomal category, and showed a positive correlation between
spliceosomal gene expression and fusion number (Figure 5). Co-occurrence of gene fusions and splicing
gene mutations has been previously reported in mesothelioma (Bueno et al. 2016), and correlations between
splicing factor dysregulation and fusion expression have been established in prostate cancer (Qin et al. 2015).
In DIPG, increased spliceosomal gene expression may result in over-activation of splicing mechanisms to
give rise to an accumulation of RNA fusions. ReadThroughs form via cis-splicing, while trans-splicing of
two separately transcribed pre-mRNA molecules can drive RNA-specific formation of fusions typically
thought to be caused by genomic restructuring, such as CodingFusions (Gingeras 2009; Li et al. 2008). Cis-
splicing, trans-splicing and splicing to produce truncated- and NoHeadGene-like fusions have all been
previously reported in various cancers (Bartonicek et al. 2017; Li et al. 2008; Jia et al. 2016; Qin et al. 2015).
While the relationship between spliceosomal gene dysregulation and the occurrence of fusions in DIPG
remains unclear, our results point to mechanisms of fusion formation beyond chromosomal rearrangement
that should be taken into account when investigating potential routes to oncogenic transformation in cancer

in general.
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Materials and methods

Sample cohorts

DIPG patient tissue samples

Our study cohort comprised of 51 samples from 36 DIPG patients. We obtained 34 samples from
DIPG tumour biopsies (DIPG-T) and 17 normal brain tissue samples from autopsy of the frontal lobe (DIPG-
N). Of these, 30 were DIPG-N/DIPG-T paired samples obtained from 15 patients. The remaining 19 DIPG-
T and 2 DIPG-N samples were singletons. We excluded corresponding DIPG-T data for these 2 DIPG-N
samples due to low RNAseq quality. All samples have 100bp paired-end RNAseq data. 27 samples (14
DIPG-T, 13 DIPG-N) have 100bp paired-end WGS data. Total RNA was extracted from tissues using an

RNeasy mini kit (Qiagen).

Additional tumour and normal tissue samples

We obtained RNAseq datasets for tumour and corresponding normal tissue samples from the TCGA,
totalling 283 samples. We selected samples from breast cancer (BRCA; 20 tumour, 20 normal), colon
adenocarcinoma (COAD; 20 tumour, 20 normal), glioblastoma multiforme (GBM; 20 tumour, 5 normal),
kidney renal clear cell carcinoma (KIRC; 20 tumour, 20 normal), brain lower grade glioma (LGG; 20
tumour), liver hepatocellular carcinoma (LIHC; 19 tumour, 20 normal), prostate adenocarcinoma (PRAD;
20 tumour, 20 normal), and thyroid carcinoma (THCA; 19 tumour, 20 normal). See Supplementary Table
S9 for complete list of TCGA samples. From GTEx, we obtained RNAseq data of a total 1277 samples from
53 normal tissue types (Supplementary Table S10). Finally, we utilize a validation dataset composed of

RNAseq data from 73 glioma (DIPG and HGG) samples (Wu et al. 2014).

Development of a gene fusion detection pipeline

Overview of the gene fusion detection pipeline
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To systematically identify a broader range of fusions from RNAseq data, we developed a detection
pipeline that incorporates multiple fusion calling approaches. We incorporated deFuse (McPherson et al.
2011), FusionMap (Ge et al. 2011), Ericscript (Benelli et al. 2012) and INTEGRATE (Zhang et al. 2016)
into our pipeline, which was developed under the GenPipes framework (Bourgey et al. 2019), as shown in
Figure 6. Each fusion caller runs on the input data to identify fusions independently. The gene names,
breakpoints and strand information are taken from each caller’s output file and converted into a Common
Fusion Format (CFF) -- which unifies the file formats of each caller into a single, consistent output -- and
re-annotated using custom annotation scripts. The fusion calls are then assigned to 1 of 7 categories (Figure
2 and see below). Fusions are then checked for evidence of DNA support using available genomic data.
Next, fusions that map to low mappability regions and fusions with fewer than 3 supporting split reads from
our validation pipeline are removed (BWAfilter30 and Valfilter3, respectively; see below). Fusion calls are
then merged/clustered based on similarity of head/tail genes and proximity of their breakpoints. Finally,
merged entries are kept only if they have both 5 split and 5 spanning reads (Covfilter5). Since our pipeline
uses a Common Fusion Format, it is straight-forward to incorporate additional callers as they become

available.
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Figure 6: Workflow of the fusion detection pipeline used to identify fusions from RNAseq data.

Consistent categorization of fusions

Gene fusions are classified into 7 broad categories according to the features of the constituent genes
and the breakpoint loci (Figure 2). For a given fusion, we refer to the upstream gene the “head gene” and the
downstream gene the “tail gene.” When both genes are coding and the head gene is immediately upstream
of the tail gene, the fusion is categorized as a "ReadThrough." If both genes are coding and are either on
different chromosomes or on the same chromosome but not in a ReadThrough orientation, the fusion is
categorized as a "CodingFusion.” In cases where the head gene is coding and the tail gene is non-coding or
absent, such as if the downstream breakpoint falls into an intergenic region, the fusion is assigned to the
"TruncatedCoding" category. Similarly, when the head gene is non-coding, the fusion is assigned to the
"TruncatedNonCoding" category. It should be noted that TruncatedCoding and TruncatedNoncoding fusions
likely undergo nonsense-mediated decay before translation can occur (Mendell et al. 2004). Fusions with no
meaningful head genes, such as those in which the upstream breakpoint can only be mapped to intergenic

region, are assigned to the "NoHeadGene" category (Figure 2). In some cases, the two breakpoints of a
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fusion can be mapped to two different genes as well as to a longer gene overlapping those two genes. Such

fusions are assigned to the "SameGene" category.

Establishing fusion filters for the detection pipeline

Though the four fusion callers incorporated into our detection pipeline all have their own filters, we
added additional filters in downstream analyses to increase confidence in the result we obtained. We use 3

filters in our pipeline: BWAfilter30, Valfilter3 and Covfilter5.

The BWAfilter30 is used to check the uniqueness, or “mappability” of boundary sequences
surrounding fusion breakpoints. Fusions picked up due to non-unique boundary sequences are more likely
to be false positives, and are therefore removed. We extract 30 nucleotides upstream and 30 nucleotides
downstream of a given breakpoint, and then map these 60 nucleotide contigs to the human genome using the
Burrows-Wheeler Aligner (BWA). Fusions with boundary sequences that are found to be less than 100%

unique are then removed by this filter.

Next, we use our validation pipeline (Valfilter3) to directly check for supporting split reads in a
sample’s RNA-seq data (see Methods below and Figure 8 for details). Only calls for which our validation
pipeline captures 3 or more split reads are kept. Additionally, our validation pipeline can identify fusions
that were not called by the detection pipeline. This may occur, for example, in instances where a fusion is
present in a given sample, but is expressed at a level that is too low to pass the detection pipeline filtering
steps. We use this feature to obtain a more accurate number of the samples a given fusion is present in.
Following this step, calls from multiple callers that correspond to the same fusion event are merged into a

single entry.

After merging calls together, we set a coverage filter of at least 5 split reads and 5 pair/spanning
reads (Covfilter5). Higher read coverage for a fusion indicates it is more likely to be true. FusionMap does

not provide spanning read counts, so we only applied Covfilter5 to split reads for this caller.

Validation dataset creation
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To evaluate the accuracy of the fusion detection pipeline, we used a previously published dataset of
75 glioma samples (31 DIPGs and 44 HGGs) (Wu et al. 2014). Two of the samples (SJHGG139 D and
SJHGG141 D) were excluded due to damaged data files, leaving 73 samples in our final validation set. The
dataset contained 144 chromosomal structural variants (SVs) that were reported to result in the formation of
fusions. From these we removed the SVs that were not validated, whose breakpoints could not be mapped
to genes, or who were present in samples STHGG139 D and SJHGG141 _D. After filtering, reannotation

and merging by our pipeline, a validation set of 104 fusions remained.
Assessing fusion caller preference for fusion categories

We applied our fusion detection pipeline to all DIPG-T and DIPG-N samples. First, we used each
of our 4 chosen fusion callers to identify fusions in our sample set, and then categorized the fusions (Figure
7A). In total, 430 fusions were reported by the combined results of the 4 callers for all categories, and 92 for
ReadThrough/CodingFusion only. We then used the BW Afilter30 and Covfilter5 fusion filters and compared
the overlap in the number of fusions reported by each caller (Figure 7B). With this, we show that the 4 callers

do not predict fusion categories equally.
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Figure 7. Breakdown of calls made by individual fusion callers. (A) Bar graphs showing the number of
fusions from each category called by the 4 individual fusion callers used in our pipeline. Category legend is
shown below. Not all callers are able to equally identify fusions from all 7 categories. Most of the
TruncatedCoding and TruncatedNoncoding fusions were reported by deFuse. FusionMap mainly reports
CodingFusions. More than half of the fusions reported by INTEGRATE belong to the ReadThrough
category. EricScript primarily reports CodingFusions and ReadThroughs. (B) Set intersections for fusions
from all 7 categories for the 4 callers used. (C) Set intersections for ReadThrough and CodingFusions only
for the 4 callers used. All analyses were performed for fusions identified using BWAfilter30, Valfilter3 and
Covfilter5 in the total 51 DIPG patient samples.

Developing a fusion validation pipeline
Overview of the fusion validation pipeline

The validation pipeline checks whether a given fusion exists in an RNAseq dataset by looking for
supporting split reads for that fusion (Figure 8A-C). It can function as part of the detection pipeline (Valfilter)
or independently. To query for a fusion, we extract 100bp from either side of the breakpoint to build a

“capture reference” (Figure 8A), and then align all reads to this reference in order to capture potential
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supporting reads (Figure 8B). Reads that successfully align to the “capture reference” are termed “captured
reads”. To ensure captured reads are not from other regions of the genome or from junctions of exons, we
build a “filter reference”, comprising of whole genome sequences and all transcriptome sequences based on
our combined annotation (ensembl genes plus known genes). We align captured reads to this filter reference
and remove captured reads which align better to the filter reference (Figure 8C). Reads remaining after
filtering are considered “supporting reads” for fusions. In the capture alignment (Figure 8B), the read set is
large and reference set small (only fusion sequences). In the filter alignment (Figure 8C), the reference set
is large (consisting of the whole human genome plus the transcriptome), and read set small (consisting of
only the filtered read set). This enables the two steps to have better running time than fusion caller tools,
which require aligning of the full read set to the whole genome or transcriptome. Thus, our fusion validation
pipeline is much faster than our fusion detection pipeline. The fusion validation pipeline is also more
sensitive than the fusion detection pipeline, as it can validate fusions in samples where they were not found
initially. This fusion validation pipeline is able to query the transcriptome for provided fusions, but is unable

to call fusions from scratch like fusion callers do.
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Figure 8: Diagram of the fusion validation pipeline (A-C) and DNA support step of the fusion detection
pipeline (D). (A) Creation of 200bp capture mini-contigs for both fusion breakpoint and head gene exon-
exon junction sequence. (B) Alignment of RNAseq reads to both contigs to allow for the capture of
supporting reads (top). Filter reference (bottom). (C) Removal of reads which align to filter reference. (D)
Capture of discordant reads using WGS data, which is indicative of structural variations in DNA.

Identification of DNA support for known fusions

Gene fusions caused by structural variants in the genome, such as deletions, inversions or
translocations, can be expected to have supporting read pairs in WGS data. Thus, for samples with available
WGS data, we search for read pairs supporting the fusions identified in those samples. We searched for pairs
in which 1 read mapped to the region from the upstream breakpoint to the end of head gene and the other
read mapped in the region from the start of tail gene to the downstream breakpoint (Figure 8D). We clustered

these pairs with a minimal requirement of 3 pairs, and considered these clusters as DNA support for fusions.
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Experimental validation of the fusion pipeline by PCR

In order to validate our pipeline and the fusions identified, we selected 16 fusions from the 7 fusion
categories in our DIPG samples (Supplementary Table S6). Seven of these fusions passed filtering using
BWA(filter30, Valfilter3 and CovfilterS. The remaining 9 fusions failed either one or two filters yet had some
interesting features, such as being recurrent, having both breakpoints on exon boundaries, or having DNA
support. Of the 16 fusions, 8/16 were CodingFusion category fusions. Using PCR, we validated the presence

of all 16 fusions in RNA and 7/16 in DNA.

Total RNA from normal and tumorous brain tissues was isolated by using a Qiagen RNeasy Mini
Kit and quantified on a NanoDrop spectrophotometer (Thermo Fisher Scientific). 1 pg of each RNA sample
was converted into single-strand cDNA with random hexamers using an iScript™ Select cDNA Synthesis
Kit (Bio-Rad). To validate fusion transcripts, regular PCR assays were carried out on a SimpliAmp™
Thermal Cycler (Thermo Fisher Scientific) with a final volume of 50 pl reaction mixture containing cDNA
template, 25 pl HotStarTaq Master Mix (Qiagen) and 10 pmol of each primer. The PCR cycling conditions
were an initial “Hot Start” activation step at 95°C for 15 min, followed by 40 cycles of 30 s at 94°C, 30 s at
60°C and 1 min at 72°C, and a final extension at 72°C for 10 min. The sequences of all primer pairs are
listed in Supplementary Table S7 and S8. The housekeeping B-actin gene was amplified for cDNA quality
control and a non-template negative control was included in each PCR run. PCR products were separated on
1% agarose gel, purified with a QIAquick Gel Extraction kit (Qiagen) and sequenced in both directions with
the original set of primers on a 3730XL DNA Analyzer (Applied Biosystems) at the Sanger Sequencing
Facility of the Centre for Applied Genomics, the Hospital for Sick Children. Sequences were then compared
with the fusion transcripts identified by RNA-Seq by using the BLAST program from NCBI

(http://blast.ncbi.nlm.nih.gov/Blast.cgi).

Gene expression estimates

Raw sequences were mapped to the GRCh37 version of the human genome and transcriptome using

STAR (version 2.5.0c) (Dobin et al. 2013). The resulting bam files were merged based on sample identities,
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sorted by coordinates and marked for duplicates using Picard Tools (version 1.123;

https://broadinstitute.github.io/picard/). The final bam files were used to estimate gene expression (FPKM)

using Cufflinks (version 2.2.1) (Trapnell et al. 2012).

Clustering of the data

We used the R package “pheatmap” for clustering the data based on average linkage and euclidean

distance for both genes and samples using the FPKM values estimated using Cufflinks.

Construction of the “filter reference” for the validation pipeline

The filter reference is a .fasta file consisting of the whole hgl9 genome reference and transcript
junction sequences. To build these transcript junction sequences, we use the function
“build_junction seq for gene bed(ref, ensbed)” in our custom annotation pipeline “pygeneann.py”. The
“ref” is the hgl19 genome reference, and the “ensbed” is a .bed format file genomic feature file containing
ENSEMBL genes and known genes, which was generated using the Table browser feature of the UCSC

genome browser. The filter reference, ensbed and ref files are provided as part of our pipeline.

Data access

All RNAseq data generated from this study will be submitted to the Gene Expression Omnibus (GEO;

https://www.ncbi.nlm.nih.gov/geo/) upon acceptance of the manuscript.
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