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Abstract 
Metastasis is the primary cause of cancer-related deaths, but the natural history, clonal 
evolution and patterns of systemic spread are poorly understood. We analyzed exome 
sequencing data from 458 paired primary tumors (P) or metastasis (M) samples from 136 
breast, colorectal and lung cancer patients, including both untreated (n=98) and treated 
(n=101) metastases. We find that treated metastases often harbored private driver gene 
mutations whereas untreated metastases did not, suggesting that treatment promotes 
clonal evolution. Polyclonal seeding was common in lymph node metastases (n=19/35, 
54%; mostly untreated) and untreated distant metastases (n=20/70, 29%), but less 
frequent in treated metastases (n=9/90, 10%). The low number of metastasis-private 
clonal mutations is consistent with early metastatic seeding, which commonly occurred 
several years prior to diagnosis in breast (2.4 years, range 0−3.3), lung (3.6 years, range 
2.8−3.7) and colorectal (4.1 years, range 3.1−4.6) cancers. Thus, this pan-cancer 
analysis reveals early systemic spread in three common cancer types. Further, these data 
suggest that the natural course of metastasis is selectively relaxed relative to early tumor 
development and that metastasis-private mutations are not drivers of cancer spread but 
are instead associated with drug resistance.  
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Introduction 
Metastasis remains poorly understood despite its critical clinical importance. For instance, 
metastases have been reported to originate from a single cell or clone in the primary tumor 
(monoclonal seeding) 1-4 or multiple clones (polyclonal seeding) 5-7,  but the prevalence of 
these patterns across distinct tumor types is unknown as is the impact of therapy and the 
timing of metastatic seeding 8-10.  While several recent studies have genomically 
characterized metastatic lesions 11-13 in the absence of the matched primary tumor, it is 
not feasible to disentangle the drivers of metastasis from those that are treatment 
associated since metastases are often sampled after treatment. However, comparisons of 
paired primary tumors and metastases have been far more limited due to the challenge in 
obtaining such samples 5,8,14-18. As such, there has yet to be a systematic analysis of 
monoclonal versus polyclonal seeding, the chronology of systemic spread and the effect 
of therapy across cancers.  
 
Here we analyzed whole-exome sequencing (WES) data from 458 paired primary tumor 
(P) and metastases (M) from 136 patients with colorectal, lung or breast cancers using a 
uniform bioinformatics pipeline. We assessed driver gene heterogeneity and evaluated the 
prevalence of monoclonal versus polyclonal seeding, revealing considerable variability 
between untreated and treated metastases across cancer types. Treatment was 
associated with high primary tumor versus metastasis (P/M) driver gene heterogeneity and 
monoclonal metastases. Metastatic seeding was estimated to occur two to four years prior 
to diagnosis of the primary tumor across three common cancer types, with breast cancers 
generally disseminating later and therefore closer to the time of detection relative to 
colorectal and lung cancers. Collectively, these observations suggest that systemic spread 
can begin early during tumor growth and that clonal architecture is remodeled by treatment, 
providing new insights into the clonal evolution of metastasis.  

Results 

The landscape of genomic alterations in paired primary tumors and 
metastases  
We performed a literature review to identify cohorts with genomic sequencing data from 
matched normals, primary tumors (P) and metastases (M) from patients with three 
common cancer types, namely,  colorectal16,17,19-22, lung23,24 and breast23,25-29 (Table S1, 
Fig. S1). All samples were processed within a uniform bioinformatics pipeline 16,30 to 
identify somatic single nucleotide variants (SSNVs), insertions/deletions (indels) and 
somatic copy number alterations (SCNAs) (Methods). Tumor purity/ploidy and cancer cell 
fraction (CCF) of SSNVs and indels (referred as SSNVs hereafter) were estimated in order 
to distinguish clonal (the upper bound of 95% confidence interval or CI of CCF ≥ 1) versus 
subclonal (the upper bound of 95% CI of CCF < 1) SSNVs (Methods). Following quality 
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control assessment (Methods), we retained 458 tumor samples from 136 patients 
(colorectal cancer, n=39; lung cancer, n=30; breast cancer, n=67) for downstream analysis 
(Table S1, Fig. S1).  
 
Overall, the mutational burden (SSNVs or SCNAs), tumor ploidy and SCNA frequency was 
highly concordant between P/M pairs (Figs. S2-4, Table S2), although differences 
between cancer types were noted. For instance, in breast cancer, the SCNA burden 
between P/M pairs was highly concordant but SSNV burden was only moderately 
concordant (Fig. S2), consistent with breast cancer being a copy number driven 
malignancy31. In all three cancer types, metastases exhibited a slight increase in the 
number of clonal SSNVs and fewer subclonal SSNVs (Fig. S3), consistent with an 
evolutionary bottleneck during metastasis. The mutational spectrum of M-private SSNVs 
(clonal or subclonal) between treated and untreated metastases was also highly 
concordant except that treated colorectal metastases were characterized by an 
enrichment of T>G transversions relative to untreated samples (Fig. S5).  Indeed, all 
treated colorectal metastases (n=7) were biopsied after 5-fluorouracil (5-FU) 
chemotherapy in this cohort, which was recently shown to be associated with this 
mutational pattern 32,33.  
 
We next evaluated the enrichment of functional driver gene mutations in paired primary 
tumors and metastases. Three methods, namely PolyPhen-2 34, FATHMM-XF 35  and 
CHASMplus 36, were employed to assess the functionality (“driverness”) of 
nonsynonymous SSNVs in putative driver genes according to TCGA and COSMIC 
(Methods, Table S3). In total, 1085 functional driver SSNVs/indels were detected across 
these three cancer types (Fig. 1a-b, Table S4), in which 84%, 86% and 59% clonal drivers 
(including shared clonal, P-private clonal or M-private clonal) and 20%, 50% and 23% 
subclonal drivers (including shared subclonal, P subclonal/M clonal, P-private subclonal 
or M-private subclonal) were shared by P/M pairs for colorectal, lung and breast cancer, 
respectively (Fig. 1c). Amongst all driver mutations, M-private clonal and subclonal driver 
mutations were significantly enriched in breast cancer than colorectal and lung cancers 
(Fig. 1c). Gene ontology (GO) analysis of M-private driver genes revealed enrichment for 
chromatin binding, modification and organization genes (Fig. S6, Table S5), implicating 
chromatin regulators in metastatic progression 37.  
 
Amongst all non-silent clonal SSNVs in metastases, functional driver mutations were 
highly enriched on the trunk (P/M shared clonal) of the phylogenetic tree in both colorectal 
and breast cancers (Fig. 1d, Methods). However, this pattern was much weaker in lung 
cancer (Fig. 1d), presumably due to the large number of tobacco-associated non-silent 
clonal SSNVs (C>A mutations) induced early during lung cancer development (Fig. S7) 
as most of the lung cancer patients in this cohort (~90%) had a smoking history 23,24. In 
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line with these results, the decreased ratio of nonsynonymous versus synonymous SSNVs 
(dN/dS) 38 in metastases (Fig. S8) suggests relaxed selective pressure relative to early 
cancer development in colorectal and breast cancers, but not lung cancer. Only 25%, 33% 
and 48% of colorectal, lung and breast cancer metastases, respectively, harbored one or 
more private clonal driver mutations (Fig. 1e) and these values were lower when restricted 
to untreated metastases (19%, 22% and 22%, respectively). Copy number analysis 
revealed a small number of putative driver genes that were more frequently amplified or 
deleted in metastases relative to paired primary tumors (increasing from P to M by 15%, 
Fig. S9). These include amplification of RAC1 and deletions of FAT1 and ALB in colorectal 
cancer, amplifications of PLCG1 and SALL4 and deletions of NOTCH2, CDKN1B in lung 
cancer and amplifications of IL7R, NIPBL and deletions of NOTCH1, PTEN in breast 
cancer (Fig. S9). Collectively, these data suggest that the genomic drivers required for 
invasion and metastasis often occur early in the primary tumor (Fig. 1f). Amongst treated 
metastases, the proportion of private-clonal drivers increased dramatically across all three 
cancer types with 71%, 75% and 53% in colorectal, lung and breast cancer, respectively 
(Fig. 1e). Amongst treated metastases, the proportion of private-clonal drivers increased 
dramatically across all three cancer types with 71%, 75% and 53% in colorectal, lung and 
breast cancer, respectively (Fig. 1e). This pattern was similarly evident in patients where 
both untreated and treated metastases were sampled (Table S2) where all (10/10) treated 
metastases harbored private functional driver mutation(s), but few (2/10) untreated lymph 
node metastases did (Table S4). Therefore, these data suggest that relapse after adjuvant 
therapy arises from a minor subclone in the primary tumor (Fig. 1g). In contrast, untreated 
metastases likely originate from the major clone in the primary tumor (Fig. 1e). Hence, 
treatment confers a stringent selective pressure and promotes clonal evolution of the 
metastasis.   
 
Patterns of metastatic seeding in lymph node and distant metastases  
 
In order to infer the clonality of individual metastases (Fig. 2a), we compared the CCFs of 
SSNVs in each P/M pair and the number of M-private clonal SSNVs, P-private clonal 
SSNVs and P/M shared subclonal SSNVs was denoted as Lm, Lp and Ws, respectively 
(Fig.  2b). We used the Jaccard similarity index (JSI) where 𝐽𝑆𝐼 = 𝑊( (𝐿+ + 𝐿- +𝑊()⁄  to 
quantify mutational similarity between P/M pairs 39 (Methods). Polyclonal seeding is 
expected to result in a higher JSI than monoclonal seeding due to the higher proportion of 
shared subclonal SSNVs (higher Ws) and the presence of fewer M or P-private clonal 
SSNVs (lower Lm and Lp) (Fig.  2b). These patterns were verified by simulation studies 
using an established agent-based model of spatial tumor progression 16,30 (Figs. S10-S11, 
Methods). By analyzing data from virtual tumors simulated under varied parameters 
(Methods), we found that a JSI value of 0.3 maximizes the classification accuracy (91.1%) 
in distinguishing monoclonal versus polyclonal seeding (Fig. 2c). Hence, this cutoff was 
applied to the patient genomic data (Fig. 2c). Most metastases exhibited patterns 
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consistent with monoclonal seeding (n=151, 76% of metastases; median JSI=0.075, 
interquartile range, IQR=0.021-0.138), whereas polyclonal seeding was less frequent 
(n=48, 24% of metastases; median JSI=0.523, IQR=0.469-0.800) (Figs. 2c).   
 
As expected, monoclonal metastases (n=151) exhibited significantly higher Lm and Lp 
values than polyclonal metastases (n=48) (P=6.2e-16 and P=2.1e-09 for Lm and Lp, 
respectively, two-sided Wilcoxon Rank Sum Test) and significantly lower Ws values 
(P=2.1e-12, two-sided Wilcoxon Rank Sum Test) (Fig. 2d). Metastases of monoclonal 
origin also harbored significantly more SCNAs relative to paired primary tumors than 
polyclonal metastases (P=1.9e-08, two-sided Wilcoxon Rank Sum Test; Fig. 2e). Indeed, 
Lm is highly correlated with the number of P-to-M altered SCNAs (Pearson’s R=0.52, 
P=5.0e-15; Fig. 2f), indicating that both SSNVs and SCNAs reflect the clonality of 
metastases. Polyclonal seeding was more prevalent in axillary lymph node metastases 
(19/35 or 54%) relative to distant metastases (29/164 or 18%) (P=1.8e-05, two-sided 
Fisher’s exact test; Figs. 2g and S12a), potentially reflecting greater lymphatic spread of 
disseminated cells to the lymph nodes. Amongst distant metastases, polyclonal seeding 
was more prevalent in untreated metastases (20/70 or 29%) than treated metastases (9/90 
or 10%) (P=0.002, two-sided Fisher’s exact test; Fig. 2g), presumably because treatment 
selects for resistant subclones that dominate the relapse resulting in monoclonal 
metastases (Fig. 2h). The higher P/M driver gene heterogeneity observed in treated 
versus untreated metastases (Fig. 1e) is consistent with this scenario. The prevalence of 
polyclonal seeding differed across metastatic sites (lymph node, liver, brain and lung), with 
brain and lung more commonly exhibiting monoclonal seeding (Fig. S12b); these two sites 
were more commonly biopsied after treatment. We verified the JSI-based classification of 
monoclonal versus polyclonal seeding by phylogenetic analysis of patients with multi-
region sequencing (MRS) data of the primary tumor and metastasis (n=13 patients; Figs. 
3 and S13). Monoclonal seeding was associated with a monophyletic tree structure 
(metastatic samples make up a single phylogenetic clade), whereas polyclonal seeding 
was associated with a polyphyletic structure (metastatic samples make up multiple 
phylogenetic clades) (Figs. 3 and S13). 
 
Chronology of metastatic seeding 
Previously, we described a computational framework (SCIMET) to estimate the timing of 
metastatic seeding relative to primary tumor size based on multi-region sequencing (MRS) 
of P/M pairs 16. Application of this approach to colorectal cancer yielded quantitative 
evidence for early systemic spread, well before the primary tumor was clinically detectable. 
Since MRS data was not available for the vast majority of patients in this cohort, we 
developed a new computational method that leverages exome sequencing data from a 
single biopsy to time metastatic seeding (Figs. 4a and S14, Supplementary Note). The 
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time (in years) from metastatic seeding to diagnosis of the primary tumor (ts) can be 
approximated by: 

𝑡( ≈ (1 − 34
35
𝛼) 	× 𝑇	            Eq.(1) 

where Lm and Lp correspond to the number of M-private clonal SSNVs and P-private clonal 
SSNVs, respectively; T is the primary tumor expansion age (time from emergence of 
carcinoma founder cell to diagnosis);  𝛼 = 𝑡-/𝑇 where 𝑡- is the time from emergence of 
carcinoma founder cell to the most recent common ancestor in the primary tumor sample 
(pMRCA, Figs. 4a and S14, Supplementary Note). The time fraction 𝛼 is expected to be 
small because bulk sequencing only detects relatively high frequency mutations that occur 
early during tumor growth or are strongly selected for 40-42. We applied our established 
agent-based model of spatial tumor growth 30 to simulate a large set of virtual tumors 
(n=1000, each ~109 cells) with varying growth rates (Methods). In silico sequencing of a 
single biopsy (each ~106 cells, mean depth=100X) from the virtual tumors (n=1000) yields 
an estimate of 𝛼;=0.13±0.0028 (Fig. S14),confirming the observation that bulk sequencing 
typically only detects high-frequency mutations that occur early during tumor growth. Here 
we assume a model of stringent selection (selection coefficient, s=0.1) during growth of 
the primary tumor since most primary tumors in this cohort (57/65 or 88% evaluable tumors) 
exhibited variant allelic frequencies (VAF) that were not consistent with neutral evolution 
43 (Fig. S15; Methods).  
 
We utilized a Gompertzian model of tumor growth 44, to estimate the tumor expansion age 
(T) for each of the three cancer types (Supplementary Note) where tumor size and 
doubling time (DT) at diagnosis were obtained from literature review (Table S6). This 
yields estimates of average tumor expansion age of  𝑇<=5.2 (IQR, 4.3-7.7), 4.3 (IQR, 
2.7-4.4) and 4.6 (IQR, 3.2-6.6) years for colorectal, lung and breast cancer, respectively 
(Fig. 4b and Table S7). Chronological estimates of seeding time relative to diagnosis of 
the primary tumor (𝑡(= ) can be computed by Eq.(1) as follows: 4.1 years (IQR, 3.2-4.6), 3.6 
years (IQR, 2.8-3.7) and 2.7 years (IQR, 1.1-3.5) for colorectal, lung and breast cancers, 
respectively (Fig. 4c and Table S7). The estimated timing of metastasis here (𝑡(= ) agreed 
with our previous estimates (using the colorectal cancer cohort) of primary tumor size at 
time of metastatic seeding 16 (R= -0.58, P=0.009, Fig. S16; note the negative correlation 
since this study estimates backward time and the previous study estimates forward time). 
Of note, while 𝑡(= < 0  may indicate metastatic seeding after diagnosis/resection of the 
primary tumor, large Lm values can lead to 𝑡(= < 0 (see Eq.(1)) even when the metastasis 
was seeded before diagnosis of the primary tumor. To mitigate this uncertainty, samples 
with estimated seeding times later than the actual time of diagnosis of metastasis were 
excluded (n=12 for breast, 1 for colorectal and 1 for lung cancer, respectively) 
(Supplementary Note).  We find that 𝑡(= < 0 was more common in breast cancer and more 
generally breast cancers disseminated closer to the time of detection (later) compared to 
colorectal and lung cancers (Fig. 4c). This may be because screening mammography 
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detects relatively small primary breast tumors (<2 cm) 45. However, even after 
normalization to primary tumor age (namely ts/T), which depends on tumor size and the 
underlying growth parameters (Supplementary Note), breast cancer was found to 
disseminate later than colorectal and lung cancers (Fig. S17). Most breast cancer 
metastases (83%) in this cohort were biopsied after adjuvant therapy (Fig. S1), whereas 
this fraction is fewer in colorectal (13%) and lung (20%) cancer metastases and breast 
cancers harbored more private driver mutations than colorectal and lung cancers (Figs. 
1a-c). Thus, the genomic complexity of metastatic relapses in breast cancer relative to 
unpaired early-stage primary tumors 12 at least in part reflects the selective effect of 
treatment on the genome rather than the drivers of metastatic spread. Of note, HER2-
positive breast cancers tended to disseminate earlier than HER2-negative breast cancers 
(Fig. S18) consistent with this subgroup having the highest risk of distant  metastasis 
before the routine use of the HER2-targeted therapy, trastuzumab, which has 
revolutionized the treatment of this disease 46.  
 
As expected, metachronous metastases were often seeded later than synchronous 
metastases (median ts=3.8 vs 3.0, P=5.6e-05, two-sided Wilcoxon Rank-Sum Test; Fig. 
4d). In fact, ts was highly correlated with the clinical time span from diagnosis of primary 
tumor to metastasis (Fig. 4e), indicating that metastases that manifest late clinically were 
seeded later.  Since primary tumor size at diagnosis is an important predictor of a patient’s 
prognosis (time to metastatic relapse) (Fig. S19a), we suspect that metastases in patients 
with larger primary tumor size at initial diagnosis were seeded earlier (namely larger ts). 
Indeed, ts is positively associated with the primary tumor size at diagnosis (R=0.32, 
P=0.00024; Fig. S19b). These results corroborate our estimates of metastatic timing. 
According to Eq.(1), a larger number of M-private clonal mutations (larger Lm) indicates 
later dissemination. Supporting this theory, metachronous metastases showed 
significantly larger Lm than synchronous metastases (metachronous: median Lm=24, 
IQR=16-40; synchronous: median Lm=11, IQR=6-32; P=6.5e-4, two-sided Wilcoxon 
Rank-Sum Test; Fig. S20a). This pattern held for SCNAs where metachronous 
metastases showed significantly more SCNAs relative to the primary tumor as compared 
to synchronous metastases (Fig. S20b). Since metachronous metastases were generally 
seeded later than synchronous metastases (Fig. 4d), this is consistent with the higher 
degree of genomic divergence with primary tumor in late seeded metastases 18. 
Collectively, these data indicate that systemic spread can occur several years prior to 
diagnosis of the primary tumor but with variability across cancer histologies and subtypes.  

Discussion 
We performed a systematic analysis of exome sequencing data in paired primary tumors 
and metastases across three common cancers: colorectal, lung and breast and find that 
polyclonal seeding is common in lymph node metastases (19/35, 54%; most untreated) 
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and untreated distant metastases (20/70, 29%), but rare (9/94, 10%) in metastases 
sampled after adjuvant therapy (Fig. 2g). Consistent with these results, treated 
metastases were strongly enriched for functional driver mutations as compared to 
untreated metastases (Fig. 1e). This finding indicates that driver gene heterogeneity is 
minimal between untreated metastases and primary tumors (Fig. 1e). Comparisons of 
paired primary tumors and distant metastases indicates that systemic spread can occur 
rapidly following malignant transformation, often several years prior to diagnosis of the 
primary tumor across three major types (Fig. 4c). These results are consistent with other 
reports of early seeding based on animal models and disseminated tumor cells 9,47,48.  

 
Our analyses on driver gene heterogeneity, clonality and the timing of metastases provide 
important insights into the clonal dynamics of metastatic progression. First, in the absence 
of treatment, metastases often arise from the major clone in the primary tumor and lack 
metastasis-specific driver mutations (Fig. 1f). Consistent with these observations, a recent 
pan-cancer study demonstrated that driver gene heterogeneity is also minimal amongst 
multiple untreated metastases 49. Moreover, the prevalence of polyclonal seeding in 
untreated lymph node and distant metastases indicates multiple cell subpopulations in 
primary tumor have acquired the metastatic competence. Half of all metastases (51%) 
studied here were biopsied after treatment, and these commonly exhibited monoclonal 
seeding accompanied by private driver mutations. As such, polyclonal seeding may be 
relatively common, but the ultimate pattern of clonality in the metastatic lesion is influenced 
by treatment. 
 
Second, our quantitative framework demonstrates that systemic spread typically begins 2-
4 years prior to the diagnosis of primary tumor (Fig. 4c). These data suggest that in some 
patients, metastatic seeding can happen very early especially for synchronously 
diagnosed metastases (Figs. 4e, 5a). Metachronous distant metastases following 
treatment occurred relatively later than synchronous distant metastases and harbored 
more genomic variations and driver mutations (Figs. 1e and S20). These data suggest 
that treatment remodels the clonal evolution of metastasis by selecting disseminated cells 
with drug resistant mutations (Fig. 5a-b). As such metastasis-specific mutations are 
unlikely to be the drivers of metastasis, but instead are associated with drug resistance 
(Fig. 5b). This interpretation is of clinical relevance and helps to clarify the observation 
that metastatic relapses are more genomically complex than unpaired early-stage primary 
breast tumors 12.  
 
We also observe that many breast cancer relapses are diagnosed well after (>5 years) 
initial diagnosis, although they were seeded several years prior to primary tumor diagnosis 
(Fig. 4e). This may reflect periods of quiescence or dormancy of disseminated tumor cells 
(DTCs) 50,51 (Fig. 5a). Indeed, ongoing research is focused on the development of 
dormancy-targeted therapies to prevent metastatic relapse 52,53. Here we analyzed 
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clinically detectable metastases and it is impossible to know how many DTCs and 
micrometastases were eliminated as a result of adjuvant treatment (Fig. 5b) or immune 
surveillance. Indeed, an important area of ongoing research is to elucidate how the 
immune system can be harnessed and whether immunotherapy could be administrated in 
the adjuvant setting to prevent metastatic progression. 
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Methods 
Whole-exome sequencing (WES) of paired primary tumors and metastases 
We performed a comprehensive review on the published studies through surveying the 
PubMed database (https://www.ncbi.nlm.nih.gov/pubmed/), in which whole-exome 
sequencing (WES) was performed for matched normal tissues, primary tumors (P) and 
metastases (M) in the same patients. We focused on colorectal, lung and breast cancers 
given the availability of large patient data in these three cancer types. In total, the raw 
sequencing reads data for 586 tumor samples from 181 patients in 13 published studies 
were accessed and retrieved (Table S1). We also generated multi-region sequencing 
(MRS) data for two colorectal cancer patients (mCRCTB1 and mCRCTB7) with liver 
metastases for whom multi-region sequencing (MRS) data (n=5-7 sites for each of P and 
M; 24 tumor samples in total). Here tumor tissues with cellularity >60% were selected for 
DNA isolation using the QIAamp DNA FFPE Tissue Kit (Qiagen) and libraries were 
generated using the Agilent SureSelect Human All Exon kit for sequencing on the Illumina 
Hiseq 2500. In total, the WES data in 610 tumor samples from 183 metastatic cancer 
patients including 54 colorectal cancers (215 tumor samples), 35 lung cancer (87 tumor 
samples) and 94 breast cancers (308 tumor samples) were analyzed in this study. Clinical 
information was retrieved from the original studies, including patient age at initial diagnosis, 
time span from initial diagnosis of primary tumor to diagnosis of metastasis, treated 
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information, cancer subtypes, etc. (Table S2). We define synchronous metastases if the 
time span between diagnosis of primary tumor and metastasis is within 3 months and 
metachronous metastases if the time span is ≥3 months. 
 
An established bioinformatics pipeline was used to detect somatic single nucleotide 
variations (SSNVs), small insertions/deletions (indels) and somatic copy number 
alterations (SCNAs), estimate tumor purity/ploidy and estimate the cancer cell fraction 
(CCF) for each SSNVs/indels in corresponding samples 16,30. In particular, paired 
sequencing reads were aligned to human reference genome (NCBI build hg19) with BWA 
(v.0.7.10) 54. Duplicate reads were marked with Picard Tools (v.1.111). Aligned reads were 
further processed with GATK 3.4.0 for local re-alignment around insertions and deletions 
and base quality recalibration. 
 
SSNVs and indel calling 
SSNVs were called by MuTect (v.1.1.7) 55 for each tumor/normal pair. SSNVs failing 
MuTect’s internal filters, having fewer than 10 total reads or 3 variant reads in the tumor 
sample, fewer than 10 total reads in the normal sample, or mapping to paralogous genomic 
regions were removed. Additional Varscan (v.2.3.9) 56 filters were applied to remove 
SSNVs with low average variant base qualities, low average mapping qualities among 
variant supporting reads, strand bias among variant supporting reads and high average 
mismatch base quality sums among variant supporting reads, either within each tumor 
sample or across all tumor samples from the same patient. The maximal observed variant 
allele frequencies (VAF) across all samples from each patient were calculated based on 
raw output files from MuTect. SSNVs with maximal observed VAFs lower than 0.05 were 
removed. For FFPE specimens, additional filters were applied to exclude possible 
artifactual SSNVs. Specifically, artifacts among C>T/G>A SSNVs with bias in read pair 
orientation were filtered in each individual FFPE sample, similar to the approach of 
Costello et al 57. We also sought to exploit the multi-sample information in the same 
patients to retrieve read counts for SSNVs. To obtain the depth and VAF information 
across all samples from the same patient, for each SSNV and in each tumor sample that 
an SSNV was not originally called in, the total reads and variant supporting reads were 
counted using the mpileup command in SAMtools (v.1.2) 58. Only reads with mapping 
quality ≥ 40 and base quality at the SSNV locus ≥ 20 were counted and used to calculate 
the VAF for that SSNV. Small insertions/deletions (indels) were called with Strelka 
(v.1.0.14) 59. SSNVs and indels were annotated with ANNOVAR (v.20150617) 60 and those 
in protein coding regions were retained for downstream analyses.  
 
Copy number analysis 
Copy number analysis was performed using TitanCNA (v.1.5.7) 61. Briefly, TitanCNA uses 
depth ratio and B-allele frequency information to estimate allele-specific absolute copy 
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numbers with a hidden Markov model, and estimates tumor purity and clonal frequencies. 
Only autosomes were used in copy number analysis. First, for each patient, germline 
heterozygous SNP at dbSNP 138 loci were identified using SAMtools and SnpEff (v.3.6) 
in the normal sample. HMMcopy (v.0.99.0) 62 was used to generate read counts for 1000bp 
bins across the genome for all tumor samples. TitanCNA was used to calculate allelic 
ratios at the germline heterozygous SNP loci in the tumor sample and depth ratios between 
the tumor sample and the normal sample in bins containing those SNP loci. Only SNP loci 
within WES covered regions were then used to estimate allele-specific absolute copy 
number profiles. TitanCNA was run with different numbers of subclones (n=1-3). One run 
was chosen for each tumor sample based on visual inspection of fitted results, with 
preference given to the results with a single subclone unless results with multiple 
subclones had visibly better fit to the data. Results from tumor samples from the same 
patient were inspected together to ensure consistency. Overall ploidy and purity for each 
tumor sample was calculated from the TitanCNA results. 
 
Differentially altered SCNAs in the metastasis relative to paired primary tumor (P-to-M) 
were identified if following three criteria were satisfied simultaneously: 1) absolute copy 
number in the metastasis was larger than 2.8 or less than 1.2; 2) copy number relative to 
median ploidy in the metastasis was larger than 0.8 or less than -0.8; 3) changes relative 
to the primary tumor in both absolute copy number and relative copy number were larger 
than 0.8 or less than -0.8.  
 
Cancer cell fraction (CCF) estimates and identification of clonal and subclonal 
mutations 
The CCFs and their variation (95% confidence interval or 95% CI) for each SSNVs/indels 
in the corresponding samples were estimated with CHAT (v 1.0) 63. CHAT includes a 
function to estimate the CCF of each SSNVs by adjusting its variant allele frequency (VAF) 
based on local allele-specific copy numbers at the SSNV locus. SSNV frequencies and 
copy number profiles estimated from previous steps were used to calculate the CCFs for 
all SSNVs in autosomes. The CCFs were also adjusted for tumor purity using the 
estimates by TitanCNA. In brief, for an SSNV residing in a genomic segment with a total 
copy number of 𝐶𝑁B, minor allele copy number of 𝐶𝑁C and cellular prevalence 𝑃𝐶𝑁𝐴	of the 
CNA in the tumor content, the estimated 𝐶𝐶𝐹 of the SSNV is: 

𝐶𝐶𝐹 =

⎩
⎪
⎨

⎪
⎧𝐶𝑁K ×

LMN
-O
− 𝑃PQM × (𝐶𝑁B − 𝐶𝑁C − 1)			𝐸𝑎𝑟𝑙𝑦	𝑀𝑎𝑗𝑜𝑟	

𝐶𝑁K ×
LMN
-O
− 𝑃PQM × (𝐶𝑁C − 1)															𝐸𝑎𝑟𝑙𝑦	𝑀𝑖𝑛𝑜𝑟

𝐶𝑁K ×
LMN
-O
																																										𝐿𝑎𝑡𝑒/𝐼𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡

            Eq. (2) 

 
where 𝐶𝑁K = 𝐶𝑁B × 𝑃PQM + 2 × (1 − 𝑃PQM) and the effective purity 𝑝` = PQa×-

PQa×-bc×(de-)
 (𝑝 is 

estimated tumor purity) and VAF is the observed variant allele frequency. The temporal 
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ordering and background composition of SSNVs and SCNAs was inferred by comparing 
the conditional probabilities of the observed number of mutant reads out of total reads, 
under each scenario and CNA configuration (𝐶𝑁B , 𝐶𝑁C , 𝑃𝐶𝑁𝐴) as follows: Early Major or 
Minor: SSNV in the major or minor allele occurred before the CNA; Late: SSNV occurred 
after the CNA; Independent: the SSNV and CNA occurred in independent lineages 63. 
 
To distinguish clonal and subclonal SSNVs/indels in each sample, we employ the following 
criterion: clonal – 95% CI overlaps with 1; subclonal – the upper bound of 95% CI is smaller 
than 1, as previously used 64. The CCFs of SSNV/indels for each P/M sample pair were 
visualized using the scatter plot and manually checked in order to identify problematic 
samples. In particular, for each P/M pair, a cluster of SSNV/indels centered around CCF=1 
is expected which represent truncal (P-M shared clonal) mutations that occurred prior to 
malignant transformation of the founding cell in the primary tumor. The patients (n=5) with 
none of or very few (<10) trunk SSNVs/indels were excluded as which implies independent 
(non-clonal) origin for the primary tumor and metastasis. Furthermore, patients (n=42) with 
a diffusely distributed cluster for truncal SSNVs/indels were also excluded since this is 
likely caused by low tumor purity or low sequencing quality. After these filtering steps, 458 
tumor samples from 136 metastatic cancer patients including 39 colorectal cancers (181 
tumor samples), 30 lung cancer (75 tumor samples) and 67 breast cancers (202 tumor 
samples) were retained for downstream analysis in this study.  
 
Jaccard similarity index 
The number of M-private clonal, P-private clonal and P-M shared subclonal SSNVs for 
each P/M pair was denoted as Lm, Lp and Ws respectively. For two sets, the Jaccard 
similarity index (JSI) is defined for the intersection divided by the union of these two sets. 
Thus, the JSI for a P/M pair can be defined as: 

𝐽𝑆𝐼 = fg
35b34bfg

                   Eq. (3) 

 
For multi-region sequencing data, Lm, Lp and Ws was counted by pairwise comparison of 
each sample pair from the P and M. The mean Lm, Lp and Ws was used to compute the 
JSI by Eq.(3). 
 
Functional assessment of non-silent somatic mutations 
To identify functional driver gene mutations, three commonly used computational methods, 
PolyPhen-2 34 (http://genetics.bwh.harvard.edu/pph2/), FATHMM-XF 35 
(http://fathmm.biocompute.org.uk/fathmm-xf/)  and CHASMplus 36 
(https://karchinlab.github.io/CHASMplus/), were utilized to perform the function 
(“driverness”) assessment on the nonsynonymous SSNVs amongst putative cancer genes 
derived from TCGA pan-cancer 65 and COSMIC (Release v87, Nov. 13, 2018). 
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Stopgain/splicing point mutations and indels on putative cancer genes are classified as 
functional drivers automatically.  
 
Putative cancer genes were curated by merging all TCGA pan-cancer drivers (n=299) 65 
and additional cancer type-specific drivers annotated by COSMIC Cancer Gene Census 
(https://cancer.sanger.ac.uk/cosmic; n=47, 40 and 9 for colorectal, lung and breast 
cancers, respectively). For PolyPhen-2, a SSNV is considered as “functional” when the 
functional report (“pph2_class”) is “deleterious”. For FATHMM-XF, a SSNV is considered 
as “functional” when the functional report (“Warning”) is “ pathogenic”. For CHASMplus, a 
SSNV is considered as “functional” when the FDR < 0.05. In this study, the SSNVs, 
predicted to be functional by any of these three methods, were considered as functional 
mutations. Metascape 66 (http://metascape.org) was used to perform gene ontology (GO) 
analysis of functional driver genes. 
 
Driver enrichment analysis 
Clonal non-silent SSNVs/indels in a metastatic lesion can be considered truncal clonal (or 
P-M shared clonal) or M-private clonal where the number is denoted Ls_total and Lm_total, 
respectively. Meanwhile, the functional driver SSNVs/indels in a metastasis are denoted 
Ls_driver and Lm_driver, respectively. The ratios, Ls_total/Lm_total and Ls_driver/Lm_driver, 
can be evaluated for functional enrichment of drivers on the truncal or M-private branch of 
the corresponding phylogenetic tree.  Since Ls_driver and Lm_driver are small values 
(Lm_driver ~ 0 for many metastases), they lead to high variation in the Ls_driver/Lm_driver 
ratio. A down-sampling (bootstrapping) step (50% of the patients each time) was 
performed in which sampled patient data were merged to derive the Ls_total/Lm_total and 
Ls_driver/Lm_driver ratios. 100 repeated down-samplings were performed for each of the 
three cancer types to derive statistical measures. 
 
Mutational signatures, dN/dS and test of neutrality 
MuSiCa 67 (http://bioinfo.ciberehd.org:3838/MuSiCa/) was used to extract mutation 
signatures based on non-negative matrix factorization 68 for P/M shared clonal (truncal) 
SSNVs, M-private clonal SSNVs and M-private subclonal SSNVs respectively, in each of 
the three cancer types. dndscv 38 (https://github.com/im3sanger/dndscv) was used to 
compute the ratio of nonsynonymous and synonymous SSNVs (dN/dS) for missense and 
nonsense mutations, respectively and for P/M shared clonal (trunk) SSNVs, M-private 
clonal SSNVs and M-private subclonal SSNVs, respectively, in each of the three cancer 
types. We evaluated whether a tumor follows neutral evolution or under strong selection 
during the growth by analyzing the variant frequency distribution (VAF) of subclonal 
SSNVs. Under neutral evolution 43, the number of subclonal SSNVs with VAF larger than 
𝑓 in a tumor cell population follows a power-law distribution: 𝑚(𝑓)~1/𝑓. The adjusted 
VAFs (equivilant to CCFs/2) for subclonal SSNVs (in the range of 0.1−0.3) were used here 
and only tumors harboring at least 20 subclonal SSNVs in this range were analyzed (n=65 
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primary tumors and 79 metastases). By fitting this model and using a threshold of R2=0.98, 
the mode of evolution (neutral or selection) can be inferred (Fig. S15).  
 
Phylogenetic tree reconstruction 
We ran PHYLIP 69 via an online version 
(http://www.trex.uqam.ca/index.php?action=phylip&apP=dnapars) and applied the Maximum 
Parsimony method to reconstruct the phylogeny of multiple specimens from individual 
patients based on the presence or absence of SSNVs/indels. The SSNVs/indels residing 
a region with different loss-of-heterozygosity (LOH) status between paired primary tumor 
and metastasis were filtered, since which may lead to erroneous presence or absence of 
SSNVs/indels in paired P and M. When multiple maximum parsimony trees were reported, 
we chose the top ranked solution. FigTree (http://tree.bio.ed.ac.uk/software/Figuretree/) was 
employed to visualize the reconstructed trees. 
 
Spatial agent-based modeling of metastatic progression 
We employed our previously established three-dimensional agent-based tumor evolution 
framework 30 to model tumor growth, mutation accumulation and metastatic dissemination 
after malignant transformation. Pre-malignant clonal expansions prior to transformation do 
not alter the genetic heterogeneity within a tumor thus were not modeled and we assume 
that dissemination occurs after malignant transformation of the founding carcinoma cell. 
In this model, spatial tumor growth is simulated via the expansion of deme subpopulations 
(composed of ~5k cells with diploid genome), mimicking the glandular structures often 
found in epithelial tumors and metastases and consistent with the number of cells found 
in individual colorectal cancer glands (~2,000-10,000 cells). The deme subpopulations 
expand within a defined 3D cubic lattice (Moore neighborhood, 26 neighbors), via 
peripheral growth while cells within each deme are well-mixed without spatial constraints 
and grow via a random birth-and-death process (division probability b and death probability 
d=1-b at each generation). Once a deme exceeds the maximum size (10,000 cells), it 
splits into two offspring demes via random sampling of cells from a binomial distribution 
(Nc, 0.5), where Nc is the current deme size.  
 
To model monoclonal seeding, a single cell at the tumor periphery was randomly sampled 
as the metastasis founder cell. To model polyclonal seeding, a cluster of cells (n=10) were 
randomly sampled from the whole tumor in order to maximize the clonal diversity within 
the metastasis founder cells. This is because if the clonal diversity in the metastasis 
founder cells is low, it essentially models the scenario of monoclonal seeding by a cluster 
of genetically similar cells. The metastasis grows at same spatial model with primary tumor 
started from the metastasis founder cell or cell cluster (n=10).  During each cell division in 
the growth of primary tumor and metastasis, the number of neutral passenger mutations 
acquired in the coding portion of the genome follows a Poisson distribution with mean u. 
Thus, the probability that k mutations occurred in each cell division is as follows: 
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𝑃(𝑥 = 𝑘) = mnopq

r!
             Eq. (4) 

where an infinite sites model and constant mutation rate are assumed during tumor 
progression. Advantageous mutations also arise stochastically via a Poisson process with 
mean us during each cell division. We assume us=10-5 per cell division in the genome and 
each increases the cell division probability 70. The cell birth and death probabilities for a 
selectively beneficial clone are bs=b×(1+s) and ds=1-ds=1-b×(1+s), respectively, thus the 
selective advantage for an advantageous mutation is defined as s=bs/b-1.  
 
During simulation of primary and metastatic growth, each mutation is assigned a unique 
index that is recorded with respect to its genealogy and host cells, enabling analysis of the 
mutational frequency in a bulk sample of tumor cells during different stages of growth. We 
simulate growth until the primary and metastasis reach a size of ~109 cells (or ~10 cm3) 
and then sample a bulk subpopulation (consisting of ~106 cells) at the peripheral region of 
the primary tumor and metastasis, respectively. The VAF of all SSNVs in the sampled bulk 
subpopulation is considered the true VAF (denoted by fT), whereas the observed allele 
frequency is obtained via a statistical model that mimics the random sampling of alleles 
during sequencing. Specifically, we employ a Binomial distribution (n, fT) to generate the 
observed VAF at each site given its true frequency fT and number of covered reads n. The 
number of covered reads at each site is assumed to follow a negative-binomial distribution 
(Negative Binomial(size, depth)) where depth is the mean sequencing depth and size 
corresponds to the variation parameter. We assume depth=100 and size=2 for the 
sequencing data in each tumor region and tissue purity=0.6 in order to model normal cell 
contamination in clinical samples. A mutation is called when the number of variant reads 
is ≥3, thereby applying the same criteria as for the patient tumors. 
 
We employed a mutation rate u=0.6 per cell division in the exonic region (corresponding 
to 10-8 per site per cell division in the 60Mb diploid coding regions). In order to model 
varying scenarios of tumor growth dynamics, selection and timing of metastatic 
dissemination, for each primary tumor/metastasis (P/M) pair, the birth probability b of 
founding cells, selection coefficient s and primary tumor size at dissemination Nd was 
sampled from a uniform distribution, b~U(0.55, 0.65), log10(s)~U(-3,-1) and 
log10(Nd)~U(4,8), respectively. 500 virtual P/M pairs were simulated under each of the 
monoclonal seeding and polyclonal seeding scenarios. The number of M-private clonal 
SSNVs (Lm), P-private clonal SSNVs (Lp) and P/M shared subclonal SSNVs (Ws) for each 
P/M pair were counted from the simulation data and the simulated JSI was computed by 
Eq.(3). 
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Data availability 
The exome sequencing data for in-house collected colorectal cancer patients have been 
deposited at the European Genotype Phenotype Archive (EGA) under accession number 
EGAS0000100XXXX. The accession numbers for public datasets were listed in Table S1. 
 
Code availability 
Code used for genomic data analysis are available from: https://github.com/cancersysbio 
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  Figure 1. Landscape of driver mutations in paired primary tumors (P) and metastases (M). (a) Oncoprint of 

functional driver mutations in the three cancer types grouped by P/M shared, P-private or M-private mutations 
including both clonal or subclonal drivers. Genes mutated in at least three patients are shown. Boxes with white 
circles indicate genes with multiple mutations in a given patient usually in tumor suppressor genes (TP53, APC, 
CSMD3, etc.). (b) Ternary plot of mutation counts in driver genes, comparing P-private (left, green), M-private 
(right, red), and shared (top, blue). The color of each circle indicates the relative frequency of driver mutations 
among these groups, while the size of the circle represents their overall count in the corresponding cancer type. 
(c) The proportion of shared, P-private or M-private drivers (clonal: shared clonal, P-private clonal or M-private 
clonal; subclonal: shared subclonal, P subclonal/M clonal, P-private subclonal or M-private subclonal) in each of 
the three cancer types. (d) The ratio of shared clonal to M-private clonal mutations for all non-silent and driver 
mutations, respectively. A down-sampling procedure was performed to derive the ratio (Methods) where n=100 
down-samplings (50% patients each) were repeated for each of the three cancer types. P-value, Wilcoxon Rank-
Sum Test (two-sided). Bar, median; box, 25th to 75th percentile (interquartile range, IQR); vertical line, data within 
1.5 times the IQR. (e) The proportion of metastases harboring at least one private clonal driver mutation grouped 
by all metastases, untreated and treated metastases. P-value, Fisher’s exact test (two-sided). (f) Schematic 
representation of the major clone model where metastasis originates from the major driver clone in the primary 
tumor leading to driver gene homogeneity between paired P and M biopsies. (g) Schematic representation of the 
minor clone model in which metastases originate from a minor clone in the primary tumor. Due to the inability to 
detect the minor driver clone in bulk sequencing data, the minor clone model leads to driver heterogeneity between 
P and M biopsies. 
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Figure 2. The clonality of lymph node and distant metastases. (a) Schematic illustration of monoclonal 
versus polyclonal seeding for a single metastasis. (b) Distinct patterns of monoclonal versus polyclonal seeding 
based on the cancer cell fraction (CCF) of SSNVs between P/M pairs. An example patient is shown for each 
scenario: monoclonal seeding (colon cancer patient V402 with brain metastasis (BM)); polyclonal seeding (lung 
cancer patient TH6 with lymph node metastasis (LNM)). Green and red circles indicate the P-private clonal 
SSNVs (the number denoted by Lp) and M-private clonal SSNVs (the number denoted by Lm), respectively. Blue 
circle indicates the P/M shared subclonal SSNVs (the number denoted by Ws). (c) Classification of monoclonal 
versus polyclonal seeding based on the Jaccard similary index (JSI).  Top, JSI values in 1000 virtual P/M tumor 
pairs simulated from a spatial tumor growth model in which 500 were from monoclonal seeding (number of 
metastasis founder cell=1) and 500 were from polyclonal seeding (number of metastasis founder cells=10). 
Middle, classification accuracy by varying the cutoff of JSI from 0 to 1 based on the simulation data.  Bottom, 
the JSI values in patient data (n=199 P/M pairs) where the cutoff JSI=0.3 was used to identify monoclonal 
seeding (n=151) or polyclonal seeding (n=48). (d) Lm, Lp, Ws values in the patient data. Top, monoclonal 
metastases; bottom, polyclonal metastases. Bar, median; box, 25th to 75th percentile (interquartile range, IQR); 
vertical line, data within 1.5 times the IQR. (e) The number of P-to-M altered SCNAs for monoclonal and 
polyclonal metastases, respectively. (f) Positive correlation between Lm and the number of P-to-M altered 
SCNAs. n=199 P/M pairs and Pearson’s correlation (R) and P-value were reported. (g) Polyclonal seeding is 
common in lymph node metastases (LNM) and untreated distant metastases relative to treated distant 
metastases. (h) Schematic illustration of the scenario where treatment promotes monoclonality as a result of 
selection for a resistant subclone, despite initial seeded by polyclonal disseminated cells. 
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Figure 3.  Tumor sample phylogenies based on multi-region sequencing data. The maximum parsimony 
method was used to reconstruct multi-sample trees for each patient based on the presence or absence 
SSNVs/indels amongst the samples while accounting for the loss-of-heterozygosity in the mutant sites. For each 
P/M sample pair, the Jaccard similarity index (JSI) was computed according to Eq. (3) based on the numbers of 
M-private clonal, P-private clonal and P-M shared subclonal SSNVs. High JSI values (>0.3) indicates polyclonal 
seeding while low JSI values (≤0.3) indicates monoclonal seeding. Monoclonal seeding gives rise to monophyletic 
tree structures (pink shading indicates metastatic samples within a single phylogenetic clade), whereas polyclonal 
seeding gives rise to a polyphyletic structure (blue shading indicates metastatic samples within multiple 
phylogenetic clades) in the metastasis samples. P, primary tumor; OvM, ovarian metastasis; LNM, lymph node 
metastasis; SkM, skin metastasis; LiM, liver metastasis. Additional patient data are shown in Fig. S13. 
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Figure 4. Chronology of metastatic seeding. (a) Schematic for the timing of metastatic seeding prior to 
diagnosis of the primary tumor in number of years, ts. T denotes the total time of primary tumor expansion from 
emergence of the malignant founder cell to diagnosis while tp denotes the time from emergence of the malignant 
founder cell to the most recent common ancestor (MRCA) of cells in primary bulk sample (denoted pMRCA).  ts 
can be estimated by Eq.(1). Dx, diagnosis (b) Estimation of the average T with a Gompertzian growth model is 
5.2 (interquartile range or IQR, 4.3-7.7), 4.3 (IQR, 2.7-4.4) and 4.6 (IQR, 3.2-6.6) years for colorectal, lung and 
breast cancer, respectively. (c) Estimation of the time of metastatic seeding (ts) for individual distant metastases 
(monoclonal) in each cancer types. The median ts and IQR are shown. Negative ts indicates that the metastasis 
was seeded after the diagnosis of primary tumor. (d) The distribution of ts in synchronous metastases (n=40) and 
metachronous metastases (n=81). P-value, Wilcoxon Rank-Sum Test (two-sided). Bar, median; box, 25th to 75th 
percentile (IQR); vertical line, data within 1.5 times the IQR. (e) Correlation between ts and the time span from 
diagnosis of primary tumor to metastasis. Pearson’s correlation (R) and P-value are reported. 
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Figure 5. Schematic model of metastatic spread and the impact of therapy. (a) Schematic illustration of early 
versus late metastatic seeding leading to synchronous and metachronous metastases. Metastatic seeding starts 
quickly following the emergence of founding carcinoma cell. Synchronous metastasis, which exhibits low genomic 
divergence with primary tumor, is seeded early by the major clone in primary tumor. Metachronous metastasis, 
exhibit higher genomic divergence relative to the primary tumor and often emerge after adjuvant therapy. 
Metachronous metastasis can be seeded either early or late depending on selective pressure by treatment and/or 
latency period of dormant disseminated cells 50,51. Metachronous metastases with specific driver mutations that 
confer resistance can be selected leading to high genomic divergence between the primary tumor and treated 
metastasis. Dx, diagnosis; Tx, treatment. (b) Treatment (here adjuvant therapy) remodels the clonal architecture 
of metastasis. Dissemination and metastatic seeding (monoclonal or polyclonal) initially gives rise to undetectable 
micro-metastases. While treatment may eliminate drug-sensitive lesions, those that are resistant grow out. 
Metastatic relapse following adjuvant treatment may be delayed by treatment, but this may result in a more 
aggressive, resistant lesion. DTCs, disseminated tumor cells. 
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