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ABSTRACT

Dopaminergic neuronal cell death, associated with intracellular a-synuclein (a-syn)-rich protein
aggregates (termed ‘Lewy bodies’), is a well-established characteristic of Parkinson’s disease.
Much evidence, accumulated from multiple experimental models has suggested that a-syn plays a
role in PD pathogenesis, not only as a trigger of pathology but also as a mediator of disease
progression through pathological spreading. Here we have used a machine learning-based approach
to identify unique signatures of neurodegeneration in monkeys induced by distinct a-syn pathogenic
structures derived from PD patients. Unexpectedly, our results show that, in non-human primates,
a small amount of singular a-syn aggregates is as toxic as larger amyloid fibrils present in the LBs,
thus reinforcing the need for preclinical research in this species. Furthermore, our results provide
evidence supporting the true multifactorial nature of PD as multiple causes can induce similar

outcome regarding dopaminergic neurodegeneration.
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INTRODUCTION

The seminal work of Braak and colleagues suggesting that Lewy body (LB) pathology follows a
predictable pattern of progression within the brain in Parkinson’s disease (PD) (/) as well as the
‘host-to-graft’ observation (2-4) led to the development of experimental models based on injection
with a-synuclein (a-syn — the primary protein component of LB) assemblies (5-7). These
experimental models suggest that a-syn, in pathological conformations such as the one found in
LBs, initiates a cascade of events leading to dopaminergic neuron degeneration as well as cell-to-
cell propagation of a.-syn pathology through a self-templating mechanism.

Several studies have suggested that pre-fibrillar oligomers may represent one of the major
neurotoxic entities in PD (8, 9). This notion has been derived primarily from studies using large
doses of recombinant a-syn applied to cell cultures or injected into adult mice, over-expressing
either mutant or wild-type a-syn (/0). In agreement with these findings, we have shown that
intracerebral injection of low doses of a-syn-containing LB extracts, purified from the substantia
nigra, pars compacta (SNpc) of postmortem PD brains, promotes o-syn pathology and
dopaminergic neurodegeneration in wild-type mice and non-human primates (/7). Importantly, this
neuropathological effect was directly linked to the presence of a-syn in LB extracts, since immuno-
depletion of a-syn from the LB fractions prevented the development of pathology following
injection into wild-type mice.

In this study, our aim was to thoroughly investigate this experimental model of synucleinopathy in
non-human primates. The initial study design was to administrate fractions derived from the same
PD patients containing either soluble and small a-syn aggregates (hereafter named noLB) or LB-
type aggregates (hereafter named LB). However, because of the unexpected finding that non-
human primates, unlike mice, are susceptible to soluble or finely granular a-syn, we sought to
elucidate the response characteristics induced by either LB or noLB fractions. To achieve a
thorough analysis of these a-syn-related characteristics, we took advantage of the strength of
machine-learning algorithms for discovering fine patterns among complex sets of data and
developed a new method compatible with the constraints of experimental biology. We here report
the identification of primate-specific responses to selected a-syn assemblies associated with
different pathogenic mechanisms. Overall, our results support the concept of the multifactorial

nature of synucleinopathies.
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RESULTS
Purification and characterization of a-synuclein extracts from PD patients

NoLB and LB fractions were obtained from the SNpc of five sporadic PD brains exhibiting
conspicuous LB pathology. The samples were processed through differential ultracentrifugation in
a sucrose gradient, and analyzed for the presence of a-syn aggregates by filter retardation assay
(Fig. 1A) (11). Further characterization of noLB and LB fractions was performed by co-localization
of a-syn and the amyloid dye Thioflavin S (Fig. 1B) as well as ultrastructural examination by
electron microscopy (Fig. 1C). These assays confirmed the presence of misfolded a-syn in both
fractions. We also performed biochemical characterization of the stability of assemblies after
proteinase K digestion (Fig. 1D) and detergent treatments (Fig. 1E) followed by a-syn dot-blot
assays. While total a-syn content was comparable between selected fractions (as measured by a-
syn ELISA), LB fractions showed higher resistance to proteinase K treatment (noLB
t12=15.23minutes vs LB t;»>60minutes) (Fig. 1D) as well as greater resistance to multiple
detergents, including 8M Urea (Fig. 1E). We then measured the content of a-syn aggregates using
human a-syn aggregation TR-FRET-based immunoassay, which revealed a significantly higher
amount of aggregated a-syn in LB fractions (Fig. 1F). To obtain insight into the content of
monomeric and aggregated oi-syn within noLB and LB fractions of PD patients, sarkosyl treatment
was applied to both fractions to induce physical separation, and then velocity sedimentation and
density floatation gradients were performed to quantify these two respective populations and
determine their relative abundance in each fraction (Fig. S1 A-H). Strikingly, while LB fractions
contained ~90% of aggregated a-syn, noLB fractions were composed of ~10% of this pathological
form of the protein (Fig. S1 I). Also, in order to confirm the quality of the LB extraction, we
performed a filter retardation assay which showed that LB fractions, but not noLB fractions, were
highly enriched in known components of LBs, such as phosphorylated S129 a-syn, ubiquitin, p62,
hyperphosphorylated tau and AP (Fig. S2 A).

Micro-Infrared Spectroscopy of LB and noLB fractions was performed to show conformational
changes in amyloid structures at the molecular level (Fig. S2 B-E) and this confirmed the presence
of B-sheet structures in both assemblies (Fig. S2 B-C). Although their velocity of sedimentation
and density floatation characteristics were similar, the aggregates present in the LB and noLB
fractions were different in nature based upon the evidence of Micro-Infrared Spectroscopy.
Principal component analysis (PCA) showed that, in the LB fractions, large aggregates
corresponding to the major pieces of LB were present (Fig. S2D, cluster on the right). PCA further
showed that, in the range of 1,590-1,700 cm™!, the LB group contained a fraction of amyloid
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aggregates with different amyloid structures from those in the noLB group as they clearly
segregated by PCA in two clusters (Fig. S2 D-E). Altogether, these results suggest that while LB
fractions primarily contained large aggregated a-syn fibrils, noLB fractions contained soluble o.-
syn and a smaller enrichment of a-syn aggregates featuring a specific amyloid structure not found
in the LB fractions.

Data from several studies suggest that both recombinant a-syn preformed fibrils (/2-74) and
patient-derived a-syn (//) can promote pathogenic templating of endogenous a-syn ultimately
leading to dopaminergic neurodegeneration in SNpc. Following quantification by ELISA, both
mixes of fraction were diluted to ~24 pg a-syn per microliter. Then, those fractions were tested for
their pathogenic effects on TH-positive dopaminergic neurons in primary mesencephalic cultures
(Fig. S3 A) as well as in vivo in wild-type mice. Four months after supranigral injection, LB-injected
mice displayed, as expected, significant dopaminergic degeneration, while noLB injections in mice
had no impact on dopaminergic neurons (Fig. 1G-H) as we have previously reported for other
SNpc-derived LB fractions (/7), thus validating the toxicity of the preparation prior to injection

into non-human primates.

Intrastriatal injection of LB and nolLB fractions from Parkinson’s disease patients induces
nigrostriatal neurodegeneration in baboon monkeys

To determine the mechanisms of a-syn aggregates toxicity in a species closer to humans, adult
baboon monkeys (n=4-7 per experimental group) received bilateral stereotaxic injections (100pul)
of either LB or noLB fractions into the putamen before euthanasia 24 months post-injection. This
time-frame was chosen based on our previous studies indicating that after 14 months post-injection,
ongoing pathogenic effects can already be measured, and was extended to potentially reach disease-
relevant lesions. Two years after administration, LB-injected monkeys displayed significant striatal
dopaminergic terminal loss both in the putamen and in the caudate nucleus, accompanied by a
significant decrease in tyrosine hydroxylase (TH) immunoreactivity in the substantia nigra pars
compacta (SNpc) (Fig. 2). Stereological counts showed that LB-injected animals exhibited TH-
positive and Nissl-positive cell loss in the SNpc (16% and 23%, respectively). No overt
parkinsonism was observed, however, since the extent of the lesion remained below the threshold
for symptom appearance; i.e. 45% of cell loss (/5), compared to an age-matched control group.
At odds with mice either generated for the purpose of this study (Fig. 1G-H), previously published
(11), or produced in the context of other in-house studies (data not shown), noL.B-injected monkeys

showed degeneration of the nigrostriatal pathway including dopaminergic cell loss (i.e. 16% of TH-
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positive neurons and 28% of Nissl-positive neurons quantified by stereology), similar to that
observed in LB-injected monkeys (Fig. 2). Facing such an unexpected finding, we aimed to identify
specific characteristics of the pathological mechanisms involved in a-syn toxicity induced by each
fraction independently, using a large-scale approach in combination with machine learning for

pattern identification.

Machine-learning algorithm predicts nigrostriatal degeneration

We performed an exploratory approach and aimed to distinguish relevant variables allowing
accurate prediction of neurodegeneration (i.e., to operate a feature selection). Overall, we
investigated a large number of variables tapping on behavioral, histological, biochemical,
transcriptional and biophysical approaches (Fig. 3A) applied to several brain areas (n=40 — Fig.
3B), totalizing 180 variables measured for each individual (Fig. S4A for variable abbreviation
nomenclature; Table S1 for exhaustive list of variables; Table S2 features all raw data). We first
extracted from this dataset, every variable that actually quantified neurodegeneration (i.e.
dopaminergic markers such as TH or dopamine transporter by immunohistochemistry), ending up
with 163 variables per animal.

Then, to operate feature selection, we designed a distributed algorithm using multiple layer
perceptron (MLP) (Bourdenx and Nioche, 2018), a classic machine-learning algorithm based on
artificial neural network that is able to approximate virtually any functions (Hornik et al., 1989).
This algorithm was given, as input, the data obtained for each animal for the 163 aforementioned
variables and its output is a rank of these variables regarding their ability to predict three indicators
of dopaminergic tract integrity; that were levels of tyrosine hydroxylase staining in (i) the SNpc,
(i1) the putamen and (iii) the caudate nucleus.

The main difficulty was to overcome the large number of input variables (163) compared to the
sample size (n=4-7 per group), which can induce a selection and reporting bias (Kuncheva and
Rodriguez, 2018). In order to tackle this “p > n” problem, instead of using a single network that
could be prone to overfitting, we put in competition several networks.

Each MLP was composed of a single hidden layer of 3 neurons (Fig. 3C). It has as input a subset
of 3 variables (out of the 163) and as output the 3 indicators of dopaminergic tract integrity. In total,
we used 708,561 sets of 3 inputs variables. Every instance of MLP was trained with 80% of our
sample (always a combination of control and injected animals) and tested on the remaining 20%.
The performance of each set of 3 input variables was evaluated according to the difference between

the predicted values of TH staining and the actual ones.
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We focused on the top 1% of the best networks and counted the occurrence of each of the 163
variables in the subset of 3 variables used by these best networks (Fig. 3C). We ranked each variable
according to the number of occurrences (Fig. 3C) for LB- (Fig. 3D) and noLB-injected animals
(Fig. 3E) independently.

In order to avoid possible overfitting, we used several methods in combination. First, we performed
cross-validation by splitting the dataset into two parts: a training and a testing set of data. 80% of
the data were randomly selected to train the networks (and independently for each network), while
the 20% remaining were used to evaluate the networks. Then, in order to evaluate the robustness of
the quality of prediction for a given set, we repeated this cross-validation step 50 times for every
set of 3 input variables (each network was trained and tested using a different partition of the dataset
- total number of network: 35,428,050). Lastly, we generated random data and used them as input
for the MLP. As expected, performances were significantly lower compared to our actual dataset
(Fig. S4B, C).

Overall, this unique approach allowed us to rank input variables according to their explanatory
power and therefore to extract the strongest predictors of neurodegeneration for each experimental
group. Interestingly, despite similar levels of nigrostriatal degeneration between LB- and noLB-
injected animals (Fig. 2B), the algorithm allowed us to identify differential variable sorting patterns

(Fig. 3D-E).

MLP-derived signatures can identify unique characteristics between experiment group

Next, we compared the LB and noLB characteristics using the rank-rank hypergeometric overlap
(RRHO) test (Fig. 4A). Interestingly, low similarity was observed for the highly ranked variables
suggesting specific differences in the biological response to the injection of LB or noLLB (Fig. 4B).
Focusing on the 20 first variables that showed low similarity between groups, we found that LB-
exposed monkeys were characterized by both quantitative and qualitative changes in a-syn levels
(i.e. phosphorylation at Ser129 and aggregation) especially in cortical areas corroborated by distinct
methodologies as well as by a dysfunctional equilibrium in neurochemistry of basal ganglia output
structures classically associated with parkinsonism (16, /7) (Fig. 4C — Fig. S5). Conversely, noLB-
exposed monkeys exhibited more diverse nigrostriatal-centric characteristics with variables related
to a-syn aggregation, proteostasis and Zn homeostasis (Fig. 4D - Fig. S6). Together, we identified
specific properties for both groups with limited overlap (35% - 7/20 variables) for an identical level

of degeneration.

Retrospective literature search validates MLP derived signatures


https://doi.org/10.1101/825216
http://creativecommons.org/licenses/by-nc/4.0/

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

86

bioRxiv preprint doi: https://doi.org/10.1101/8252186; this version posted October 31, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

aCC-BY-NC 4.0 International license.

We next used a retrospective analysis to validates the relevance of the MLP-derived signature in
PD. Although, some variables have never been investigated in the context of PD, others have been
studied and reports exists in the literature. For instance, the amount of phosphorylated Ser129 a-
synuclein in the entorhinal (4. psyn.ctx.er.ant) and parahippocampal (h.psyn.ctx.phipp) cortex - 1%
and 2™ best predictors for the LB group — have been already associated with PD pathology. Studies
of post-mortem brains from PD patients revealed the presence of LB in these regions which was
correlated with disease progression(/8) and predicted cognitive deficit in PD patients (/9).
Interestingly, the anterior entorhinal cortex has also been shown to be affected by severe a-syn
pathology, related to olfactory dysfunction in prodromal phases of PD pathology (20). In addition,
increased of levels of phosphorylated Serl29 a-syn in sensorimotor (h.syn.ctx.sma.ant) and
cingulate cortices (h.syn.ctx.cg.ant), shared by both LB and noLB signatures, have already been
reported by our group in an independent cohort of non-human primates (/7).

Both LB and noLB signatures, and especially noLB, showed that variables related to o-syn
aggregation status were among the best predictors (LB: 1 in top10 best predictors; noLB 3 in top10
best predictors). This was highly expected from the literature as a-syn aggregation has been
associated with PD pathology (21).

Variables related to the proteostasis network (levels of the lysosomal receptor LAMP2 —
wh.lamp2.sn - 6" or amount of ubiquinated proteins — wh.ub.sn — 9") were more specifically
associated with the noLB signature. This is of high interest as proteostasis defect is more and more
considered as a key step in pathogenicity (22-24).

Levels of the microglia marker, Ibal, was ranked as the third best predictor of neurodegeneration
in the LB signature. Microglial inflammatory response was shown to be implicated in
neurodegeneration in many animal models, including a-syn overexpressing and toxin-based animal
model of PD (25).

Lastly, postmortem analysis of Zn** concentration in the brains of PD patients has shown elevated
levels in the striatum and SNpc (26). Conversely, a recent meta-analysis showed a decrease of
circulating Zn?" levels in PD patients (27). In experimental models of PD, Zn?" accumulation has
been associated with dopaminergic degeneration in rodent exposed to mitochondrial toxins (28,

29).

Experimental confirmation of MLPs’ prediction
We aimed to confirm the relevance of the top first MLP selected variables. Since the LB signature
was associated with changes in a-syn phosphorylation in cortical areas, we analyzed side-by-side

the levels of a-syn and phosphorylated Ser129 a-syn in 18 brain regions (Fig. 5SA). Interestingly,
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in agreement with the LB signature obtained from the MLP, LB-injected monkeys displayed a
stronger accumulation of phosphorylated Ser129 a-syn compared to noLB-injected animals (Fig.
5A-B). Also, the 2 most enriched variables of the LB signature (i.e. phosphorylated a-syn levels in
parahippocampal and entorhinal cortices (Fig. 4C)) showed significant negative correlations with
degrees of degeneration (Fig. 5C-D), thus confirming their ability to predict neurodegeneration.
Then, we decided to confirm the relevance of one of the strongest predictors, the levels of Zn?* in
the SNpc in independent experiments. First, we observed a significant increase of Zn>" in noLB-
injected mice compared to sham-injected or LB-injected mice (Fig. S7A). Second, we analyzed the
levels of Zn** in LB-injected macaque monkeys from a previous study of our laboratory (/7).
Interestingly, despite the fact that these experiments were done in a different non-human primate
sub specie, injection of LB in the putamen (similar to the present study) or above the SNpc (different
from the present study) induced elevation of Zn?" levels in the SNpc, as measured by SR-XRF (Fig.
S7B). Of note, the dimension of the effect was similar across studies (Fig. S7E). Then, to
understand whether that modulation Zn** levels was specific to our experimental paradigm, we
measured Zn** levels in the context of adeno-associated virus-mediated overexpression of mutant
human o-syn in both rats and marmoset monkeys (30) using the same methodology (Fig. S7C, D).
Here, overexpression of a-syn did not triggered accumulation of Zn?* in the SNpc (despite inducing
dopaminergic neurodegeneration — (30) suggesting that this phenomenon is specific to seeding
experiment paradigms.

Lastly, we analyzed a publicly available cortical proteomic database of healthy individual and PD
patients. Of interest, we observed that several Zn?" transporters were elevated in the brains of PD
patients thus suggesting a zinc dyshomeostasis in patients (Fig. S7F). Indeed, plasma membrane
transporters such as the zinc transporter 1 (ZnT1), the Zrt-/Irt-like protein 6 (ZIP6) and ZIP10
showed increased levels (Fig. S7G-I) while the synaptic vesicle membrane transporter ZnT3

remained constant (Fig. S7J).

Association metric shows independence of strong predictors

As we used combinations of 3 variables and because of the structure of MLPs, one could expect
that some combinations would complement each other to allow finer prediction of
neurodegeneration levels. To address this question, we used a classic measurement of association
in the field of data-mining: lift (37) and plotted the results as network plots showing association
(edge size) and enrichment in the best learners (node size). Lift calculation was corrected for error

prediction to avoid detrimental association between variables. The first observation was that the


https://doi.org/10.1101/825216
http://creativecommons.org/licenses/by-nc/4.0/

20
21
22
23
24
25
26
27
28
29
30
31
32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

bioRxiv preprint doi: https://doi.org/10.1101/8252186; this version posted October 31, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

aCC-BY-NC 4.0 International license.

most enriched variables (top 3 to 5) appeared to be self-sufficient to predict the neurodegeneration
levels with minimal error (Fig. 6). Some variables, with modest enrichment, showed strong positive
associations that were specific to each experimental group. Associated variables in LB-injected
monkeys were: (i) a-syn-related parameters along the SNpc-striatum-cortex axis, an impairment of
locomotion and the ethologically-defined orientation of the animals towards their environment (Fig.
6 top left inset); (ii) oligomeric a-syn species measured in the midbrain and striatum equally
associated, but to lesser extent, with a-syn levels in cortex and plasma (Fig. 6 top right inset).

In noLB-injected animals, the analysis shed light upon the relative abundance of two members of
the macroautophagy pathway (Fig. 6B top left) as well as the balance between monomeric and high-
molecular weight species of a-syn in the putamen (Fig. 6B bottom right). Such disruption of the
nigrostriatal pathway has repercussions upon the basal ganglia physiology as GABA levels in their
output structure, the internal globus pallidus, was associated with a decreased social behavior (Fig.

6B bottom left inset).

DISCUSSION

In the present study, we report that, in non-human primates, injection of distinct a-syn assemblies
derived from PD patients lead to dopaminergic degeneration through discrete mechanisms.
Applying a machine-learning method, we gained insight into unique signatures of degeneration
induced by injection of two distinct a-syn pathogenic assemblies (i.e. those contained in the LB
and noLB fractions derived from idiopathic PD patients’ brains). To do so, we built a large dataset
with 180 variables obtained from behavioral, histological, biochemical, transcriptional and
biophysical approaches applied to several brain areas for each individual. By using a distributed
MLP algorithm that we developed for the purpose of this study, we identified characteristics that
give insight into the strongest predictors of neurodegeneration for each experimental group. We
have, therefore, described for the first time that distinct a-syn assemblies leading to similar
degeneration in monkeys are associated with different mechanisms, hence experimentally
confirming the true multifactorial nature of synucleinopathies.

Our results illustrate that both small oligomeric as well as larger a-syn assemblies induce
dopaminergic degeneration in non-human primates. This finding was unexpected, since previous
mouse studies from our laboratory showed that noLB injection did not have any observable
consequence regarding dopaminergic degeneration, a-syn accumulation or phosphorylation (/7).

In agreement, other groups also showed the absence of toxicity of soluble recombinant c-syn (/2).
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One possible explanation is that primate dopaminergic neurons could be highly susceptible to a-
syn toxicity. This could be in part due to their unique cellular architecture (32), a feature already
known to contribute to the selective vulnerability of these neurons in PD (33). In fact, the large and
complex axonal arbor of dopamine neurons make them particularly vulnerable to factors that
contribute to cell death and , in primates, this axonal arbor is ten-fold the size of that in rodents
(32). In addition, primate dopamine neurons display unique molecular characteristics (e.g. the
presence of neuromelanin, the intracellular levels of which have been shown to be important in the
threshold for the initiation of PD) (34). These unique features of primate dopaminergic neurons
might be important in explaining the toxic mechanisms of the relatively low content of a-syn
aggregates in the noLB fractions. Additional studies are now needed to fully address the question
of host-seed interactions, but our results highlight the relevance and the need of the non-human
primate model for the study of synucleinopathies.

We also confirmed that the toxicity mechanisms associated with patient-derived a-syn aggregates
are shared features among patients and, therefore, common to the disease. Indeed, LB and noLB
fractions used in this study were isolated from a pool of 5 patients who were different from the pool
of 3 patients used in our previous study in mice (/7). In the mice experiment (Fig. S3B) performed
in this study, we observed the same level of dopaminergic degeneration (~40% at 4 months after
injection).

The surprising observation, in non-human primates, that the noLB fraction is toxic to the same
extent as the LB fraction suggests the existence of previously unrecognized forms of a-syn toxicity.
Several studies have suggested that pre-fibrillar oligomeric species are the toxic a-syn species (8,
9). Our biochemical studies showed that noLLB and LB fractions had different amyloid properties
(Fig. 1), contents (Fig. S1, S2A) and structures (Fig. S2B-E). Indeed, LB fractions contained a
majority of large aggregated a-syn fibrils as well as some smaller aggregates while noLB fractions
contained a smaller proportion (10 folds) of smaller aggregates and soluble a-syn. More
importantly, the smaller aggregates were different in nature between LB and noLB fractions, as
shown by micro-infrared spectroscopy (Fig. S2B-E). One could hypothesize that the observed effect
is due to a species common between LB and noLB. However, because of the extent of degeneration,
which was similar between the two experimental groups, and the a-syn content dissimilarity, both
in amount and nature, this appears very unlikely. We believe that our results support the notion of
the existence of a range of a-syn pathogenic structures with distinct toxic properties within the PD
brain. Further work is necessary to provide a complete structural characterization of those species.

As yet, very few studies report the high-resolution structures of a-syn aggregates, which are on the
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one hand, only derived from studies using recombinant a-syn and, on the other hand, limited to
near atomic resolution (35-37). Encouragingly, much effort is currently being devoted to this field
of research and two recent studies reported the atomic structure of a-syn fibrils determined by cryo-
electron microscopy (38, 39), while still being limited to recombinant-generated a-syn, and not
isolated from human brain tissue.

In order to perform a characterization of the effects of the two fractions, we developed a machine
learning method to identify their biological characteristics. It is now well accepted that machine
learning algorithms can be trained to detect patterns as well as, or even better than, humans (40-
42). Instead of the classification algorithms (the algorithm learns to identify in which category a
sample belongs) that were mostly used in recent applications of machine learning in biology (43),
we chose in this study to predict continuous and biologically-relevant variables using MLPs. Our
choice was motivated by the limited sample size that is often a constraint of experimental biology.
Although it might have been possible to use other feature selection methods, the use of MLPs with
a distributed architecture allowed us to avoid overfitting issues and to develop a method particularly
well-suited for low sample size datasets (44). As both LB and noLB-injected monkeys displayed
similar levels of degeneration, they were indistinguishable using that endpoint. Instead of using a
clustering analysis or a classification method, hence making the a priori assumption that these
groups where different, we preferred to submit the two experimental groups to the MLP
independently.

The combination of this constrained, distributed architecture and the holistic approach allowed us
to rank input variables according to the number of times they appeared in the group of best
predictors (defined as top 1% of best networks). A major issue in the use of machine learning in
experimental biology in the ‘black-box’ is the fact that it is usually impossible to ‘understand’ how
an algorithm predicted an output (45). By using a reverse engineering method, we aimed to tackle
that issue. Because we explored all possible combinations of our variables, we could rank the input
variables assuming that the more they appeared in the top 1%, the more they contained information
allowing precise prediction of the neurodegeneration levels. Interestingly, our two experimental
groups showed that some of the best predictors were similar (about 30%) but the majority were
different. One could hypothesize that the similar variables between the two signatures probably
embedded information that are consequences of neurodegeneration while the different ones
probably contain information regarding the process of disease initiation and/or progression. Further

experimental studies are now needed to confirm the relevance of these variables.
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Also, as these two kinds of a-syn assemblies were associated with different signatures identified
by our MLP approach, we propose that our results illustrate the multifactorial nature of the disease
as different mechanisms (i.e. signatures) initiated by different triggers (i.e. a-syn assemblies) led
to similar consequences (i.e. degeneration levels).

Using this methodology, we confirmed the interest of highly-expected variables but more
importantly also unexpected variables that appear to be excellent predictors of a-syn-associated
dopaminergic degeneration. The first hit for LB-injected animals was phosphorylated o-syn in the
entorhinal cortex (as we have previously shown) followed by phosphorylated o-syn in the para-
hippocampal cortex (unexpected), striatal microglial activation and GABA dysregulation in the
internal part of the globus pallidus (expected) (Fig. S5). Conversely, Zn homeostasis was a strong
predictive variable (unexpected) followed by a-syn aggregation-related terms (expected) in noLB-
injected animals (Fig. S6).

In order to confirm the prediction made by the MLP approach, we first performed a retrospective
literature analysis. This analysis showed that a significant part of the best predictors has been shown
in the literature to be correlated with disease progression. Then, we attempted to confirm the interest
of one of the top hits, the accumulation of Zn?* in the SNpc, in independent experimental cohorts.
Interestingly, we here describe that both in mice injected with noLB or in macaque monkeys (a
different non-human primate sub species that the baboons used in that study) injected either in the
striatum or in the SNpc, Zn levels were increased in the SNpc. However, in mice, Zn
dyshomeostasis was not associated with neurodegeneration in the noLB group (at odds with what
was observed in monkeys) suggesting a species difference in the relationship between zinc levels
and dopaminergic tract integrity. Surprisingly, that result was not observed in rats and marmoset
monkeys overexpressing human mutant o-syn. This observation might suggest that Zn
dyshomeostasis is a feature of disease not triggered in the context of human mutant a-syn
overexpression that is associated with fast progressing pathology (Bourdenx et al. 2015). Then, in
order to expand our results to human pathology, we analyzed a publicly available proteomic dataset
of human samples. According to that analysis, PD patients displayed increased levels of plasma
membrane Zn transporters, hence suggesting a Zn dyshomeostasis in patients. In the context of PD,
Zn dyshomeostasis has been associated with autophagy/lysosomal dysfunction in the context of
PARKY9 mutations (Ramirez et al. 2006, Dehay et al. 2012). Further studies are now needed to fully
unravel this connection.

Altogether, our findings show that primate dopaminergic neurons are sensitive to both small, mostly

soluble, a-syn extracts as well as larger, aggregated, a-syn extracts derived from PD patients. These
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findings involve two immediate outcomes. First, since this toxicity has not been reported so far it
suggest species differences that would need to be thoroughly investigated (46, 47) and calls for a
systematic appraisal of proteinopathies in primates in particular for validating therapeutic strategies
before clinical testing (48). Second, the present study highlights the complex structure-toxicity
relationship of a-syn assemblies and corroborates the multifactorial origin of synucleinopathies as
distinct assemblies can induce similar degeneration (that would probably lead to similar clinical
manifestation in patients) through different mechanisms, nigrostriatal or extranigral brain
pathways, calling for molecular diagnosis to identify patient sub-populations before launching
large-scale, heterogeneous in nature, clinical trials. Finally, we developed a machine-learning
approach allowing and quantitative assessment of the explanatory power of a given set of variables

compatible with the constrained sample size of experimental biology.
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MATERIALS AND METHODS

Access to data and machine-learning code for replicability and further use by the community
The entire raw data set is made available to the readers (Table S2). Authors chose not to provide
representative examples of each procedure for the sake of space and because the entire data set is
fully disclosed. Further information and requests for examples should be directed to and will be
fulfilled by the Corresponding Contacts. Hyperlink to the machine-learning code
(10.5281/zenodo.1240558) is provided (https://zenodo.org/record/1240558#.XC8pqy17Su4).

Ethics statement

Experiments were performed in accordance with the European Union directive of September 22,
2010 (2010/63/EU) on the protection of animals used for scientific purposes. The Animal
Experimentation Ethical Committee (CEEA) of the Vall d’Hebron Institute of Research (VHIR)
approved experiments under the license number CEEA 81/13 (rats). The Institutional Animal Care
and Ethical Committee of Bordeaux University (CE50, France) approved experiments under the
license number 5012099-A (mice). The Institutional Animal Care and Ethical Committee of Murcia
University (Spain) approved experiments under the license number REGA ES300305440012
(monkeys).

Animals and Stereotactic Injections

Mice. Wild-type C57BL/6 mice (4 months old) received 2ul of either LB fractions or noLB
fractions by stereotactic delivery to the region immediately above the right substantia nigra
(coordinates from Bregma: AP=-2.9, L= -1,3, DV=-4.5) at a flow rate of 0.4ul/min and the pipette
was left in place for 5 min after injection to avoid leakage. Mice were killed four months after
injection. Ten to fifteen mice were used in each group.

Monkeys. Animals, whuch were from the research animal facility of the University of Murcia
(Murcia, Spain) and housed in 2 multi-male multi-female exterior pens, were studied in a breeding
farm over 2 years (Murcia, Spain). Animals were fed fruits, vegetables and monkey pellets twice a
day before 9 am and after Spm. Water was available ad libitum. 17 healthy adult olive baboons
(Papio papio) were used in this study. Group sizes were chosen assuming a one-tailed alpha of 0.05,
with sample size of at least three per group, which provided >80% power to detect a difference
between the treatment groups and the control group, using a Fisher’s exact test. Animals were
randomized into treatment or control groups. Six baboons were used for LB injections, four were

used for noLLB injections and seven were untreated control animals. Intrastriatal injections of either
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LB fractions or noLB fractions were performed at 2 rostrocaudal levels of the motor striatum
(anterior commissure [AC], -Imm and -5mm) under stereotactic guidance as previously described
(49-52) . The total injected volume per hemisphere was 100ul (2 injection sites with 50ul each at
3ul/min at each location site). After each injection, the syringe was left in place for 10 min to
prevent leakage along the needle track. A number of parameters were monitored during the course
of the two-year study, including survival and clinical observations. At the end of the experiment
(24 months post-injection), all monkeys were euthanised with pentobarbital overdose (150mg/kg
1.v.), followed by perfusion with room-temperature 0.9% saline solution (containing 1% heparin)
in accordance with accepted European Veterinary Medical Association guidelines. Brains were
removed quickly after death. Each brain was then dissected along the midline and each hemisphere
was divided into three parts. The left hemisphere was immediately frozen by immersion in
isopentane at -50°C for at least 5 min and stored at -80°C. The right hemisphere was fixed for one
week in 10 vol/tissue of 4% paraformaldehyde at 4°C, cryoprotected in two successive gradients of
20 then 30% sucrose in phosphate buffered saline (PBS) before being frozen by immersion in
isopentane (-50°C) for at least 5 min and stored at -80°C until sectioning. CSF and blood samples
(plasma, serum, whole blood) in the 17 animals were carefully collected before euthanasia. No

samples were excluded from analysis in these studies.

Purification of Lewy bodies from human PD Brains

The samples were obtained from brains collected in a Brain Donation Program of the Brain Bank
“GIE NeuroCEB” run by a consortium of Patients Associations: ARSEP (association for research
on multiple sclerosis), CSC (cerebellar ataxias), France Alzheimer and France Parkinson. The
consents were signed by the patients themselves or their next of kin in their name, in accordance
with the French Bioethical Laws. The Brain Bank GIE NeuroCEB (Bioresource Research Impact
Factor number BB-0033-00011) has been declared at the Ministry of Higher Education and
Research and has received approval to distribute samples (agreement AC-2013-1887). Human
SNpc was dissected from fresh frozen postmortem midbrain samples from 5 patients with sporadic
PD exhibiting conspicuous nigral LB pathology on neuropathological examination (mean age at
death: 75 + 2.75 years; frozen post-mortem interval: 31.8 = 7.45h; GIE Neuro-CEB BB-0033-
00011). Tissue was homogenized in 9 vol (w/v) ice-cold MSE buffer (10 mM MOPS/KOH, pH 7.4,
IMsucrose, ImM EGTA, and ImMEDTA) with protease inhibitor cocktail (Complete Mini;
Boehringer Mannheim) with 12 strokes of a motor-driven glass/teflon dounce homogenizer. For
LB purification, a sucrose step gradient was prepared by overlaying 2.2 M with 1.4 M and finally

with 1.2 M sucrose in volume ratios of 3.5:8:8 (v/v). The homogenate was layered on the gradient
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and centrifuged at 160,000 x g for 3 h using a SW32.1 rotor (Beckman). Twenty-six fractions of
1500 pul were collected from each gradient from top (fraction 1) to bottom (fraction 26) and analyzed
for the presence of a-synuclein aggregates by filter retardation assay, as previously described (/7).
Further characterization of LB fractions was performed by immunofluorescence, a-synuclein
ELISA quantification and electron microscopy as previously described (/7). For stereotactic
injections, LB-containing fractions from PD patients were mixed together in the same proportion
(PD#1, fractions 19 and 20; PD#2, fractions 19 and 20; PD#3, fraction 22; PD#4, fractions 17,18
and 19; PD#5, fractions 20, 21 and 23). NoLB-containing fractions (i.e. fraction 3, at the beginning
of the 1,2M interface) derived from the same PD patients (which contain soluble or finely granular
a-synuclein) but lacks large LB-linked a-synuclein aggregates were obtained from the same sucrose
gradient purification. Using enzyme-linked immunosorbent assay (ELISA) kit against human a-
synuclein (Invitrogen, #KHBO0061 - following manufacturer’s recommendations), o-syn
concentration was measured and both LB and noLB fractions were adjusted to ~24 pg a-synuclein
per microliter. In all cases, samples were bath-sonicated for 5 min prior to in vitro and in vivo

injections.

Characterization of noLB and LB fractions

Electron microscopy. Briefly, carbon-coated nickel grids were covered for 1 min with
corresponding fractions of interest, then washed 3 times with distilled water. They were then
washed again in distilled water and stained for 5 min with 2% uranyl acetate, before being air-dried.
Digital images were obtained with a computer linked directly to a CCD camera (Gatan) on a Hitachi
H-7650 electron microscope. In all cases, samples were bath-sonicated for 5 min prior to the in
vitro applications.

Immunofluorescence analysis of noLB and LB fractions. Indicated fractions from the sucrose
gradient were spread over slides coated with poly-D lysine and fixed with 4% paraformaldehyde
(PFA) in PBS for 30 min. Fixed slides were stained with 0.05% thioflavin S for 8 min and then
washed three times with 80% EtOH for 5 min, followed by two washes in PBS for 5 min. Finally,
all samples were washed 3 times with PBS and blocked with 2% casein and 2% normal goat serum
for 30 min. For immunofluorescence analyses, samples were incubated with human a-synuclein
specific antibody (clone syn211, Thermo Scientific, 1:1000) for 30 min, washed three times with
PBS, incubated with a goat anti-mouse TRITC (Jackson, 1:500), before being cover-slipped for
microscopic visualization using fluorescence mounting medium.

Dot-blotting analysis. To evaluate PK-resistant a-synuclein contained in noLB and LB fractions

derived from PD brains, each fraction was subjected to digestion with 1 pg/ml proteinase K for 0,
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15, 30, 45, and 60 min. The reaction was stopped by boiling for 5 min before dot-blotting with
syn211 antibody. To analyze their stability, noLB and LB fractions were treated with increasing
concentrations of urea (7 and 8M) or sodium dodecyl sulfate (SDS) (0.5, 1 and 2%) for 6 h at room
temperature. a-Synuclein was visualized as described above.

Filter retardation assay of noLB and LB fractions were probed with antibodies against,
phosphorylated a-synuclein (Abcam EP1536Y, 1:1000), ubiquitin (Sigma-Aldrich U5379, 1:1000),
p62 (Progen GR62-C, 1:1000), hyperphosphorylated tau (ATS8, MN1020, ThermoFischer) or A3
(DAKO clone 6F/3D, 1:1000).

Human o -Synuclein aggregation TR-FRET immunoassay. Time-resolved Forster’s resonance
energy transfer (TR-FRET)-based immunoassays were validated for total and oligomeric a-
synuclein (53). Ten microliters of noLB and LB samples were analyzed for total a-synuclein
quantification with the TR-FRET immunoassays kit against human a-synuclein aggregation kit
(Cisbio, #6FASYPEG) according to the manufacturer’s instructions.

Velocity sedimentation and density floatation a-synuclein profiles in noLB and LB fractions. Frozen
noLB and LB fractions aliquots (100 uL) were thawed and solubilized in solubilization buffer (SB)
to reach 10 mM Tris pH 7.5, 150 mM NacCl, 0.5 mM EDTA, 1 mM DTT, Complete EDTA-free
protease inhibitors (Roche), PhosSTOP phosphatase inhibitors (Roche), 1 U/uL Benzonase
(Novagen), 2 mM MgCl and 2% (w/v) N-lauroyl-sarcosine (sarkosyl, Sigma) final concentrations,
by incubating at 37°C under constant shaking at 600 rpm (Thermomixer, Eppendorf) for 45 minutes.
For velocity sedimentations, a volume of 400 uL of solubilized noLB / LB fraction was loaded on
top of a 11 mL continuous 5-20% iodixanol gradient (Optiprep, Sigma) in SB buffer containing
0.5% w/v final sarkosyl concentration, linearized directly in ultracentrifuge 11 mL tubes (Seton)
with a Gradient Master (Biocomp). For density floatation gradients, a volume of 400 uL of
solubilized noLB / LB fraction was mixed to reach 40% iodixanol in SB buffer with 0.5% w/v final
sarkosyl concentration and loaded within an 11 mL 10-60% discontinuous iodixanol gradient in SB
buffer with 0.5% w/v final sarkosyl concentration. The gradients were centrifuged at 180,000 g for
3 hours (velocity) or for 17 hours (density) in a swinging-bucket SW-40 Ti rotor using an Optima
L-90K ultracentrifuge (Beckman Coulter). Gradients were then segregated into 16 equal fractions
from the top using a piston fractionator (Biocomp) and a fraction collector (Gilson). Fractions were
aliquoted for further analysis of their content by dot-blot. Gradient linearity was verified by
refractometry.

For dot blotting, aliquots of the collected native fractions were spotted onto Hybond PVDF 0.2 um
membranes (GE Healthcare) using a dot blot vacuum device (Whatman). For total (MJFR1) and

phosphorylated pS129 (EP1536Y) a-synuclein immunolabelling, a step of fixation in PBS - 0.1%
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glutaraldehyde was performed at this point, followed by 3 washes in PBS. Membranes were then
blocked with 5 % (w/v) skimmed milk powder in PBS - 0.1% (v/v) Tween and probed with anti-
human a-synuclein (MJFR1, rabbit 1:10000, Abcam), anti-phospho pS129 a-synuclein (EP1536Y,
rabbit 1:5000, Abcam) or anti a-synuclein aggregate specific FILA-1 (MJFR14-6-4-2, rabbit
1:10000, Abcam) primary antibodies in PBS-T - 4% (w/v) BSA, and secondary goat anti rabbit [gG
HRP-conjugated antibodies (1:10000, Jackson Laboratories) in PBS-T 1% (w/v) milk.
Immunoreactivity was visualized by chemiluminescence (GE Healthcare). The amount of the
respective protein in each fraction was determined by the Image Studio Lite software, after
acquisition of chemiluminescent signals with a Chemidoc imager (Biorad). Profiles obtained by
immunoblot were normalized and plotted with SEM using the Prism software.

FTIR microspectroscopy. 1-2 pL of each suspension was deposited on a CaF, window and dried at
room pressure and temperature. The protein aggregates were then measured in transmission at
50x50 pm? spatial resolution with an infrared microscope (54). Depending on its size it was
possible to collect one to twenty spectra inside each aggregate. The infrared microscope was a
Thermo Scientific Continuum equipped with a MCT detector and a 32x 0.65 NA Reflachromat
objective and matching condenser, coupled to a Thermo Scientific Nicolet 8700 spectrometer with
a globar source and KBr beamsplitter. The microscope was operated in dual path single aperture
mode. Spectra were recorded between 650-4000 cm™! at 2 cm™ resolution, with Happ-Genzel
apodization and Mertz phase correction. Spectra were processed in Omnic 9.2 for automatic

atmospheric correction to remove water vapor contribution.

Rat Ventral Midbrain Primary Cultures

Postnatally derived ventral midbrain cultures were prepared essentially as previously described
(55). Briefly, cultures were prepared in two steps. In the first step, rat astrocyte monolayers were
generated as follows. The entire cerebral cortex from a single rat pup (postnatal days 1-2) was
removed, diced, and then mechanically dissociated by gentle trituration. The isolated cells were
plated at 80,000 cells per well under which a laminin-coated coverslip was affixed. The cells were
housed at 37°C in an incubator in 5% CO; and were fed on glial media (89% MEM, 9.9% calf
serum, 0.33% glucose, 0.5 mM glutamine, and 5 pg/mL insulin). Once confluence had been attained
(about 1 week in vitro), fluorodeoxyuridine (6.7 mg/mL) and uridine (16.5 mg/mL) were added to
prevent additional proliferation. In the second stage, which occurred 1 week later, rat pups aged
between 1 and 2 days were anesthetized and 1-mm?® blocks containing ventral midbrain neurons
were dissected from 1-mm-thick sagittal sections taken along the midline of the brain. Tissues were

collected immediately into cold phosphate buffer and were treated enzymatically using papain (20
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U/mL) with kynurenate (500 uM) at 37°C under continuous oxygenation with gentle agitation for
2 h. A dissociated cell suspension was achieved by gentle trituration and was then plated onto the
preestablished glia wells at a density of 0.5—1.7 million neurons per well. Cultures were maintained
in specially designed neuronal media (47% MEM, 40% DMEM, 10% Hams F-12 nutrient medium,
1% calf serum, 0.25% albumin, 2 mg/mL glucose, 0.4 mM glutamine, 10 pg/mL catalase, 50 uM
kynurenic acid, 10 puM CNQX, 25 pg/mL insulin, 100 pg/mL transferrin, 5 pg/mL superoxide
dismutase, 2.4 pg/mL putrescine, 5.2 ng/mL Na>SeOs, 0.02 pg/mL triiodothyronine, 62.5 ng/mL
progesterone, and 40 ng/mL cortisol) containing 27 pM fluorodeoxyuridine and 68 uM uridine to
control glial outgrowth and in 10 ng/mL glial cell derived neurotrophic factor (GDNF). They were
incubated for a further 7-8 days until the start of experiments. All tyrosine hydroxylase (TH)
neurons were counted on each plate following the addition of noLLB and LB fractions after 1, 2, 5

and 7 days of treatment.

Non-Human Primate Behavioral Assessment

Following a 4-hour minimum habituation phase performed one day before the beginning of the
observations, baboon behavior was observed outside the feeding and cleaning times, in a random
order at two-time points (morning and afternoon), over 4 to 9 days (8 sessions per group). On the
Ist observational time point (i.e. 1-month post-surgery), the habituation phase was performed over
3 days allowing the observer to recognize the animals individually. We used a scan-sampling
method, appropriate for time budgeting (56), in which behavioral parameters were assessed every
5 minutes during 2-hour sessions, resulting in 192 scans per individual. Extra observational sessions
were performed to avoid missing data. A unique trained observer (SC; intra-observer reliability:
Spearman rank order correlation R=0.987) collected the data live on the 2-time points of the study:
at 1- and 24-months post-surgery. The observer was standing 1 m away from the outdoor cages.
We focused on behavioral profiles rather than single items and used two repertoires: one reports
the interaction with the environment and one describes the position within the environment,
according to published protocols (57-59). We investigated the percentages of occurrence of each
item with regard to the total number of scans in order to obtain mean behavioral and postural time

budgets, body orientation and location profiles.

Histopathological analysis
Extent of lesion. To assess the integrity of the nigrostriatal pathway, tyrosine hydroxylase (TH)
immunohistochemistry was performed on SNpc and striatal sections. Briefly, 50um free-floating

sections from one representative level of the striatum (anterior, medial and posterior) and serial
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sections (1/12) corresponding to the whole SNpc were incubated with a mouse monoclonal
antibody raised against human TH (Millipore, MAB318, 1:5000) for one night at RT and revealed
by an anti-mouse peroxidase EnVisionTM system (DAKO, K400311) followed by DAB
visualization. Free-floating SNpc sections were mounted on gelatinized slides, counterstained with
0.1% cresyl violet solution, dehydrated and coverslipped, while striatal sections were mounted on
gelatinized slides and coverslipped. The extent of the lesion in the striatum was quantified by optical
density (OD). Sections were scanned in an Epson expression 10000XL high resolution scanner and
images were used in Imagel open source software to compare the grey level in each region of
interest: 1.e. caudate nucleus and putamen. TH-positive SNpc cells were counted by stereology blind
with regard to the experimental condition using a Leica DM6000B motorized microscope coupled
with the Mercator software (ExploraNova, France). The substantia nigra was delineated for each
slide and probes for stereological counting were applied to the map obtained (size of probes was
100x80um spaced by 600x400pum). Each TH-positive cell with its nucleus included in the probe
was counted. The optical fractionator method was finally used to estimate the total number of TH-
positive cells in the SNpc of each monkey hemisphere. In addition, we measured Nissl cell count,
the volume of SN, and the surface of TH-occupied in SN to fully characterize the pattern of
dopaminergic cell loss in the SN.

o-synuclein pathology. Synucleinopathy was assessed with a mouse monoclonal antibody raised
against human a-synuclein (syn211) and phosphorylated a-synuclein (clonel1AS5, Elan, 1:5000)
immunostaining as we previously reported (//, 30). Briefly, selected sections at two rostro-caudal
levels were incubated in a same well to allow direct comparison of immunostaining intensity.
Sections were incubated overnight at room temperature with the aforementioned antibodies. The
following day, revelation was performed with anti-specie peroxidase EnVision system (DAKO)
followed by 3,3’ -diaminobenzidine (DAB) incubation. Sections were then mounted on gelatinized
slides, dehydrated, counterstained if necessary and coverslipped until further analysis. Grey level
quantification or immunostaining-positive surface quantification in forty brain regions (Fig. 2B)
were performed as previously described (30).

Inflammation. Inflammatory process in the striatum, in the entorhinal cortex and in the white matter
of noLB and LB-injected monkeys was measured through GFAP/S-100 (DAKO, Z0334/Abnova,
PAP11341) and Ibal (Abcam, ab5076) immunohistochemistry. Striatal sections of all animals were
incubated together over night with a mix of rabbit antibodies raised against GFAP and S-100 for
the astroglial staining (respective dilutions 1:2000 and 1:1000) and with a goat anti-Ibal antibody
for the microglial staining (dilution 1:1000). These signals were reveled with anti-specie peroxidase

EnVision system (DAKO) followed by DAB incubation. Sections were mounted on slides, counter-
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stained in 0.1% cresyl violet solution, dehydrated and cover-slipped. Sections stained by GFAP-S-
100 were numerized at x20 magnification with a NanoZoomer (Hamamatsu, France) and the
quantification of GFAP-positive astrocytic reaction was estimated by a immunostaining-positive
surface quantification at regional levels with the Mercator software (ExploraNova, France).
Sections stained by Ibal were used for the microglial morphology analysis through fractal
dimension quantification based on microscopic acquisitions, as previously described(60). All

analyses were performed blinded to the researcher.

mRNA extraction and qRT-PCR

Substantia nigra samples were homogenized in Tri-reagent (Euromedex, France) and RNA was
isolated using a standard chloroform/isopropanol protocol(6/). RNA was processed and analyzed
following an adaptation of published methods(62). cDNA was synthesized from 2 pg of total RNA
using RevertAid Premium Reverse Transcriptase (Fermentas) and primed with oligo-dT primers
(Fermentas) and random primers (Fermentas). QPCR was perfomed using a LightCycler® 480
Real-Time PCR System (Roche, Meylan, France). QPCR reactions were done in duplicate for each
sample, using transcript-specific primers, cDNA (4 ng) and LightCycler 480 SYBR Green | Master
(Roche) in a final volume of 10 pul. The PCR data were exported and analyzed in an informatics
tool (Gene Expression Analysis Software Environment) developed at the NeuroCentre Magendie.
For the determination of the reference gene, the Genorm method was used(63). Relative expression
analysis was corrected for PCR efficiency and normalized against two reference genes. The
proteasome subunit, beta type, 6 (Psmb6) and eukaryotic translation initiation factor 4a2 (EIF4A2)
genes were used as reference genes. The relative level of expression was calculated using the
comparative (224¢T) method(63).

Primers sequences: Psmb6 (NM_002798) forward: CAAGAAGGAGGGCAGGTGTACT; Psmb6
(NM _002798) reverse: CCTCCAATGGCAAAGGACTG; EIF4a2 (NM_001967) forward:
TGACATGGACCAGAAGGAGAGA; EIF4a2 (NM _001967) reverse:
TGATCAGAACACGACTTGACCCT; SNCA (CR457058) forward: GGGCAAGAATGAA
GAAGGAGC; SNCA (CR457058) reverse: GCCTCATTGTCAGGATCCACA.

Biochemical analysis

Total protein extraction and quantification. Immunoblot analyses were performed on substantia
nigra, putamen and caudate nucleus. Five tissue patches were extracted on ice using 100ul of RIPA
buffer (50 mM Tris-HCI pH 7.4, 150 mM NaCl, 1.0% Triton X-100, 0.5% Na-deoxycholate, 0.1%
sodium dodecyl sulfate) with a protease inhibitor cocktail tablet (Complete Mini, Roche
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Diagnostics). The lysate was placed on ice for 20 min and then centrifuged at 14,000rpm for 15
min at 4°C. The supernatant was collected and the Bicinchoninic Acid (BCA) Assay was used to
determine the total amount of protein in the lysates, and then stored at -80°C.

Based on total protein concentrations calculated from the BCA assays, aliquots of tissue lysates
corresponding to known amounts of total protein per lane were prepared for each animal in Laemmli
buffer (Tris-HCI 25mM pH=6.8, Glycerol 7.5%, SDS 1%, DTT 250mM and Bromophenol Blue
0.05%) for immunoblotting experiment.

Biochemical fractionation. This technique was performed as described(64). Tissue patches (n=10)
were homogenized in 200ul of high-salt (HS) buffer (50 mmol/L of Tris, 750 mmol/L of NaCl, 5
mmol/L of EDTA, and a cocktail of protease inhibitors and phosphatase inhibitors). Samples were
sedimented at 100,000 % g for 20 minutes, and supernatants were removed for analysis. Pellets were
rehomogenized in successive buffers, after which each was sedimented, and supernatant was
removed: HS containing 1% Triton X-100 (HS/Triton) (Variable names terminated as ultra.s1),
RIPA (50 mmol/L of Tris, 150 mmol/L of NaCl, 5 mmol/L of EDTA, 1% NP40, 0.5% Na
deoxycholate, and 0.1% SDS) (Variable names terminated as ultra.s12, and SDS/urea (8 mol/L of
urea, 2% SDS, 10 mmol/L of Tris; pH 7.5) (Variable names terminated as ultra.p2). Sodium dodecyl
sulfate sample buffer was added, and samples were heated to 100°C for 5 minutes prior to
immunoblot analysis.

Western blot analysis. Western blots were run in all conditions from 20ug of protein separated by
SDS-PAGE and transferred to nitrocellulose. Incubation of the primary antibodies was performed
overnight at 4°C with rabbit anti-LC3 (1:1000, Novus Biologicals), rabbit anti- LAMP-2 (1:1000,
Santa Cruz Biotechnology), mouse anti-TH (1:1000, Millipore), goat p62 (1:1000, Progen), mouse
anti human-a-synuclein (1:1000, Thermo Scientific). For detection of ubiquitinated proteins,
proteins were transferred on polyvinylidene fluoride membranes (Millipore) and subjected to
Western blot analysis using a rabbit anti-Ubiquitin (1:1000, Sigma U5379). Anti-actin (1:5000,
Sigma) was used to control equal loading. Appropriate secondary antibodies coupled to peroxidase
were revealed using a Super Signal West Pico Chemiluminescent kit (Immobilon Western,
Chemiluminescent HRP substrate, Millipore). Chemiluminescence images were acquired using the
ChemiDoc+XRS system measurement (BioRad). Signals per lane were quantified using ImageJ
and a ratio of signal on loading per animal was performed and used in statistical analyses.
Dot-blot analysis of a-synuclein. This technique was performed as we previously described(9, 71).
After heating at 100 °C for 5 min, 20 pg of protein extract was diluted in buffer (25 mM Tris-HCI,
200 mM Glycine, 1% SDS) and filtered through either a nitrocellulose membrane or an acetate

cellulose membrane (Bio-Rad, 0.2 um pore size). Membranes were then saturated in 5% dry-
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skimmed milk in PBS and probed with antibodies against a-synuclein (syn211, 1:1000), both a-
synuclein fibrils and a-synuclein oligomers (Syn-O1, 1:10000(65, 66)) (kindly provided by Prof.

Omar El-Agnaf). Revelation was done as described in the previous Materials and Methods section.

Synchrotron radiation X-ray fluorescence (SR-XRF) microscopy elemental mapping of brain
tissue cryosections

The synchrotron experiments were carried out at Diamond Light Source, Harwell Science and
Innovation Campus (Didcot, UK) with a 3 GeV energy of the storage ring and 300 mA currents
with top-up injection mode. All SR-XRF microscopy investigations reported herein were carried
out on the microfocus spectroscopy beamline (I18)(67). The micro X-ray fluorescence (u-XRF)
elemental mapping were acquired at room temperature with an incident X-ray energy set to 12 keV
using an Si(111) monochromator and resulting in a X-ray photon flux of 2.10!'! ph/s . The substantia
nigra of each animal were collected from free-floating sections and mounted onto an X-ray
transparent metal-free 4 pm thickness Ultralene ® foil (SPEXCert Prep, Metuchen, NJ, U.S.A.)
secured to a customized Polyetheretherketone (PEEK) holder ensuring contamination-free samples
and reduced X-ray scattering contribution. The samples were affixed to a magnetic plate that
connects to the sample stage. The 4-element Si drift Vortex ME4 energy dispersive detector
(Hitachi Hi-Technologies Science America) with Xspress-3 processing electronics, was operated
in the 90° geometry, as such it minimizes the background signal. The sample-detector distance was
fixed (75 mm). The sample was held at 45° to the incident X-ray beam and rastered in front of the
beam whilst the X-ray fluorescence spectra were collected. An area of 500 um x 500 pm within the
substantia nigra pars compacta (SNpc) was mapped for each sample with a step-size that match the
beam size (5 um) and a dwell time of 1 s per pixel due to low concentration of the element. A thin
(100 um) pellet of the NIST standards reference materials SRM1577c (bovine liver material, NIST,
Gaithersburg, MD, USA) was measured to calibrate experimental parameters as well as a thin-film
XRF reference material (AXO Dresden GmbH). This was followed by elemental quantification
through the open-source software PyMCA(68) in which both the reference material and the sample
are modelled in terms of main composition, density and thickness. The fluorescence spectrum
obtained from each pixel was fitted, the elemental concentration (ng/g dry weight or ppm) maps

were generated and an average elemental concentration of the SNpc regions was obtained.

Measurement of a-synuclein in monkey biological fluids samples
Multi-Array 96-well plates (MesoScale Discovery, Gaithersburg, MD, USA) were coated with 30pl
3ul/ml MJFR1 (abcam, Cambridge, UK) as capture antibody and incubated overnight at 4°C
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without shaking. The next day plates were washed 3 times with 150ul PBS-T [PBS (AppliChem,
Darmstadt, Germany) supplemented with 0,05% Tween-20 (Roth, Karlsruhe, Germany)] per well.
Unspecific binding of proteins was prevented by incubation with 150ul 1% BSA (SeraCare Life
Sciences, Milford, MA, USA)/PBS-T/well for 1 hour and shaking at 700rpm. Calibrators (kindly
provided by Prof. Omar El-Agnaf) were prepared from single use aliquots of a-synuclein (1pg/ml
stored at -80°C until use) and ranged from 25000pg/ml to 6,1pg/ml in serial fourfold dilutions. 1%
BSA/PBS-T served as blank. For the different specimen the following dilutions were applied: 1 in
10000 for whole blood and 1 in 8 for serum, plasma and CSF. All dilutions were prepared in 1%
BSA/PBS-T. After washing the plates 25ul calibrator solutions and diluted samples were applied
to the wells and incubated as indicated above. Plates were washed again and 25ul Sulfo-TAG
labeled Synl antibody (BD Biosciences, Heidelberg, Germany) diluted to 1pg/ml in 1% PBS-T
were applied to the wells as detection antibody. Sulfo-TAG labeling was done according to the
manufacturer’s instruction using MSD Sulfo-TAG NHS-Ester (MSD). Incubation was for 1 hour
at 700rpm. Plates were washed, 150ul 2x Read Buffer (MSD) was applied and the plates were read
on a MSD Sectorlmager 2400. Data analysis was performed using WorkBench software (MSD).

Neurotransmitter analysis

Brain patches were dissected out on ice-cold plate, weighed and put into 1.5 ml Eppendorf tubes.
Samples were homogenized in methanol/water (50:50% v/v), then centrifuged at 14000 rpm for 15
min at 4°C(69). The supernatant was aliquoted and stored at -80°C until amino acid derivatization.
Glutamate and GABA content in the samples was measured by HPLC coupled with fluorometric
detection (FP-2020 Plus fluorimeter, Jasco, Tokyo, Japan) after precolumn derivatization with o-
phthaldialdehyde/mercaptoethanol (OPA) reagent(70). Thirty microliters of OPA reagent were
automatically added to 28 puL sample by a refrigerated autosampler kept at 4C° (Triathlon, Spark
Holland, Emmen, The Netherlands). Fifty microliters of the mixture were injected onto a 5-C18
Hypersil ODS column (3 X 100 mm; Thermo-Fisher, USA) perfused at 0.48 mL/min (Jasco PU-
2089 Plus Quaternary Pump; Jasco, Tokyo, Japan) with a mobile phase containing 0.1 M sodium
acetate, 10% methanol, 2.2% tetrahydrofuran (pH 6.5). Chromatograms were acquired and analysed
using a ChromNav software (Jasco, Tokyo, Japan). Under these conditions, the limits of detection
for glutamate and GABA were ~1 nM and ~0.5 nM, and their retention times ~3.5 min and ~18.0

min, respectively.

Multiple-Layer Perceptrons
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Each Multiple-layer Perceptron (MLP) had the same architecture rule: 3 neurons as input, 3 neurons
in the hidden layer and 3 neurons as output. Activation function of neurons was the hyperbolic
tangent. Each network was trained over 1,000 presentations of a subset of the dataset. We used as
error measure the mean square of differences between the expected output and the actual output.
Our implementation comprises two parameters: a learning rate set at 0.05 (regulating the learning
speed), and a momentum set at 0.05 (introducing purposefully a conservatism bias). Prior to
learning, inputs were first scaled and centered (z scoring) in order to avoid dimensionality issues
and then normalized between -0.5 and 0.5. For every combination of 3 variables used as inputs, 50
instances of MLP were trained with different subsets of the dataset. 80% of available data has
been used for learning and the remaining 20% for testing the performance of the network (elements
of each subset were randomly (and uniformly) drawn for each network). The performance from a
given set of input variables was the mean of the error of the 50 instances of MLP that had data for
these variables as inputs. Code was written using Python and the Python scientific stack(7/-73)
(Jones, 2001; Walt, 2011; Hunter, 2007). The codeis fully available here (DOI:
10.5281/zenodo.1240558). Computation has been done using the Avakas cluster of the Mesocentre
de Calcul Intensif Aquitain (MCIA). Rank-rank hypergeometric overlap (RRHO) test was
performed as previously described(74) using RRHO package (1.14.0) in R(75) on variable list after
ranking between experimental groups. Plotting was made using matplotlib in Python environment.
The association metric was based on lift calculation. Let a and b be the two variables and nx the
number of combinations including variable x and n the total number of combinations considered in

the analysis. Lift calculation was then:

, Map M)
Llftab = —/—
n,' n

The lift calculation was then corrected for performance to avoid selection of detrimental association

by being divided by the mean prediction error of the duo.

Quantification and statistical analysis

Regarding the data analysis for FTIR microspectroscopy, spectra were analyzed by Principal
Component Analysis (PCA). PCA is a multivariate statistical analysis technique that captures
independent sources of variance in the data and represents them in Principal Components
(eigenvectors) that carry the underlying spectral information and in a Score plot that shows the
relation between spectra and can be used to cluster the data based on the spectral information. PCA
were performed in The UnscramblerX 10.3 (Camo Software) using the SVD algorithm with

leverage correction. Two series of preprocessing were applied prior to PCA and compared. Spectra
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were either baseline corrected in the amide I region between 1590 and 1700 ¢cm™' and vector
normalized, or their second derivatives were computed and vector normalized.
Statistical analyses were performed with GraphPad Prism 6.0 (GraphPad Software, Inc., San Diego,
CA). For all experiments, comparisons among means were performed by using One-way analysis
of variance (ANOVA) followed, if appropriate, by a pairwise comparison between means by Tukey

post-hoc analysis. All values are expressed as the meantstandard error of the mean. Size effect was

assessed with Cohen’s d analysis. In all analyses, statistical significance was set at p <0.05.
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freshly frozen postmortem nigral brain tissue of 5 sporadic PD patients. (A, right) Filter retardation
assay probed with a human a-synuclein antibody to assess the presence of a-synuclein aggregates
in the different fractions obtained by sucrose gradient fractionation from freshly frozen postmortem
nigral brain tissue from sporadic PD patients (PD #1). Green rectangle indicates noLB-containing
fraction and blue rectangle highlights LB-containing fraction selected to prepare the mixture used
for injections. (B) Confocal examination of purified noLB and LB fractions with a-syn
immunofluorescence (red) and thioflavin S staining (green). Both LB and noLLB present thioflavin
S-positive aggregates but much smaller in noLLB fractions. Scale bar = 10um. (C) Ultrastructural
examination of noLB and LB fractions by electron microscopy showing massive fibrils in LB
fractions while noLB fractions contain, besides soluble o-syn, some punctiform small size
aggregates. (D) NoLB and LB fractions derived from PD brains (left panel) were treated with 1
pg/ml proteinase K for 0, 15, 30, 45 and 60 min and analyzed by immunoblotting with syn211
antibody. The EC50 value was determined as the concentration at which this ratio is decreased by
50%. The corresponding EC50 value for LB (>60 min) was approximately fourfold greater than
with noLB (15.23 min) (E) NoLB and LB fractions were treated for 6h with
increasing concentrations of either urea or SDS or buffer as control. Syn211 was used to detect the
forms of a-synuclein. The LB fractions appear to be more resistant to breakdown compared with
noLB fractions in both urea (F(1,8=6.063, p=0.0392) and SDS treatments (F(1,12=17.41, p=0.0013).
The dotted line show levels of control fractions. Comparison were made using Two-Way ANOVA.
(F) TR-FRET immunoassay analysis of noLB and LB fractions. Fluorescence measurements were
taken 20h after antibody. Analysis by unpaired Student’s t-test (t(7)=2,623, p=0,0343). *: P<0.05.
Mean + SEM, n=4-5. (G) Representative pictures of tyrosine hydroxylase (TH)-positive substantia
nigra pars compacta (SNpc) neurons (brown; Nissl staining in purple) in non-injected, noLB or LB-
injected mice at 4 months after injections. Scale bars=500um. (H) Quantification of TH-positive
Substantia Nigra pars compacta (SNpc) neurons by stereology in control, LB- and noLB-injected
mice. Control mice, n=10, LB-injected mice at 4 months, n=10, No-LB-injected mice at 4 months,
n=10. One-way ANOVA followed by Tukey test for multiple comparisons. *: p<0.05 compared

with control and noLB-injected side at 4 months.
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Fig. 2. Intrastriatal injection of Lewy bodies (LB) and noLB fractions from Parkinson’s
disease patients induces nigrostriatal neurodegeneration in baboon monkeys. (A) Tyrosine
hydroxylase (TH) staining at striatum and Substantia Nigra pars compacta (SNpc) levels. A green
fire blue LUT (lookup table) was used to enhance contrast and highlight the difference between
non-injected, LB-injected and noLB-injected baboon monkeys at striatum level. Scale bars = Smm
(striatum) and 10pum (SNpc). (B) Scatter plot of TH immunostaining in SNpc. F(2,14=9.439,
p=0.0025. Control vs LB-injected: p=0.0029. Control vs noLB- injected: p=0.0248. (C, D) Scatter
plots of mean grey values of striatal TH immunoreactivity in the putamen (F2,14=7.313, p=0.0067;
Control vs LB-injected: p=0.0059) (C) and in the caudate (F(2,14=16.25, p=0.0002; Control vs LB-
injected: p=0.0008; Control vs noLB- injected: p=0.0008) (D) in non- injected, LB-injected and
noLB-injected baboon monkeys. The horizontal line indicates the average value per group + SEM
(n=7 from control animals; n=6 for LB-injected animals; n=4 for noLB-injected animals).
Comparison were made using One-Way ANOVA and Tukey’s correction for multiple comparison.

*p< 0.05 compared with control animals.
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Fig. 3. Multiple-layer perceptron (MLP)-based identification of specific signature. (A) Several
endpoints (n=180) were measured using multiple methods (colors). Endpoints can be grouped as
clusters: /. Dopaminergic degeneration, 2. Behavior, 3. a-syn-related pathology. 4. Non-a-syn
related pathology. 5. Putative biomarkers. (B) Multiple brain regions (n=40) were investigated from
coronal sections at 2 levels: anterior commissure (ac.) -3mm (striatum, entorhinal cortex) and -7mm
(SNpec, hippocampus). (C) Detailed methodology. /. Representative scheme of one MLP predicting
3 neurodegeneration-related variables (ND1, ND2, NDs3) with 3 experimental variables as input
(vary, vars, varz). Out of the 180 variables measured in total, 163 were used as inputs for the MLP.
2. One MLP was trained for every unique combination of 3 variables. 3. Combinations were ranked
based on their prediction error and top1% were selected for further analysis. 4. Combinations were

deconvoluted to extract single variables and count occurrence of individual variables. 5. Variables
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were sorted based on the number of occurrences in the top1% of the best combination. (D) Raw
ranking obtained for LB-injected animals. Color code highlights measurement methods as in A. (E)

Raw ranking obtained for noLB-injected animals. Color code highlights measurement methods as

n A.
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Fig. 4. Direct comparison of MLP-derived signatures shows specific pattern between
experiment groups. (A) Rank-rank hypergeometric overlap (RRHO) test between variable sorting
of LB and noLB-injected animals. Highly enriched variables are in the lower left corner. Diagonal
(highlighted by a red dashed line) was extracted to do a bin-to-bin comparison between LB and
nolLB signatures. (B) Signatures were aligned with RRHO and show low similarity in highly
enriched variables (light orange background) and higher similarity for lower rank variables (pale
blue background). (C, D) First 20 enriched variables for both LB-injected animals (C) and noL.B-
injected animals (D). Color code is similar to Fig. 2A. Detailed of variable names can be found in

Table S1. Bars are mean +/- 99% confidence interval estimated by bootstrap.
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Fig. 5. Levels of a-synuclein and phosphorylated a-synuclein in different brain regions. (A)
Heat map representing the surface of a-synuclein (a-syn) and S129 phosphorylated a-syn
immunostaining intensity in the brain of non-inoculated, LB-inoculated and noLB-inoculated
baboon monkeys. The heat maps show all brain regions measured and are organized according in
3 main groups: cortical, basal ganglia and sub-cortical areas. From top to bottom: cingulate cortex
(ctx.cg), sensorimotor cortex (ctx.sm), retro-insular cortex (ctx.retins), parahippocampal cortex
(ctx.phipp), entorhinal cortex (ctx.ent), hippocampus (hipp), caudate nucleus (cd), putamen (put),
substantia nigra (sn), ventral tegmental area (vta), red nucleus (rn), subthalamic nucleus (stn),
lateral dorsal nucleus (/dn), lateral geniculate nucleus (cgen), claustrum (cl/tm), fornix (frx), white
matter (wm), corpus callosum (corcal). The color bars represent the log2 value of the ratio of each

brain regions. (B) Representative pictures of a.-syn (a-syn) and phosphorylated a-syn (pSyn S129)
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staining in the entorhinal and parahippocampal cortices. (C, D) Correlation between levels of
phosphorylated a-syn in the parahippocampal cortex (C) and the entorhinal cortex (D) with levels
of TH staining in the substantia nigra. Dotted line indicates the linear regression. Gray area indicates

the 95% confidence interval around of the linear regression.
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Fig. 6. Association metric shows independence of strong predictors and beneficial association
of weaker predictors. Both network plots were build using number of counts in the top1% as node

size and color, and lift (association measure) as edges. To allow better visualization, only 10% of
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the strongest edges are shown. (A) Network plot for LB-injected animals showing independence
of strong predictors: S129 phosphorylated a-syn (psyn) in the entorhinal (A.psyn.ctx.er) and the
para-hippocampal cortex (4.psyn.ctx.phipp), microglia-activation in the putamen (h.ibal.put), o-
syn in the cingulate cortex (h.syn.ctx.cg) and the supplementary motor area (h.syn.ctx.sma) and
GABA levels in the internal part of the globus pallidus (hlpc.gaba.gpi). Upper right box highlights
association between actimetry measure (actim) and a scan-sampling measure of body direction
toward a closed environment (ss.enf) with a-syn levels in the caudate nucleus (4.syn.cd), the red
nucleus (4.syn.rn) and psyn in the sensorimotor cortex (A.psyn.ctx.sm). Lower right box highlights
association between pathological a-syn in the putamen (wb.syn.put and db.syn.put) and the SNpc
(db.syn.sn) as well as psyn in the ventral tegmental area (h.psyn.vta) and peripheral levels of o.-syn
in the plasma (bm.plasma). (B) Network plot for noLB-injected animals showing independence of
strong predictors: levels of Zn in the SNpc (s.zn.sn), pathological a-syn in the putamen (db.syn.put),
a-syn in the supplementary motor area (h.syn.ctx.sma) and aggregated a-syn in the SNpc
(wb.synHMW .sn). Upper left box highlights association between autophagosomes (wb.lc3.put) and
lysosomes (wb.lamp2.put) levels in the putamen and a-syn in the SNpc (wb.syn.sn). Lower left box
highlights association between GABA levels in the internal part of the globus pallidus
(hipc.gaba.gpi), o-syn in the caudate nucleus (wb.syn.cd) and microglia activation in the entorhinal
cortex (h.ibal.ctx.er). Lower right box highlights association between soluble (wb.syn.putc) and

aggregated (wb.synHMW .putc) levels of a-syn in the putamen.

Supplementary Materials:

Table S1. List of variables used in multiple-layer perceptron analyses.

Table S2. Raw data that served for the multiple-layer perceptron analyses for all behavioral,
histological, biochemical, transcriptional and biophysical approaches (applied to several brain

areas, totalizing the quantification of 180 variables for each individual).
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