

1 **Ecological divergence and hybridization of Neotropical *Leishmania* parasites**

2

3 Frederik Van den Broeck¹, Nicholas J. Savill², Hideo Imamura¹, Mandy Sanders³, Ilse Maes¹, Sinclair
4 Cooper², David Mateus⁴, Marlene Jara^{1,5}, Vanessa Adaui⁵, Jorge Arevalo⁵, Alejandro Llanos-
5 Cuentas⁵, Lineth Garcia⁶, Elisa Cupolillo⁷, Michael Miles⁴, Matthew Berriman³, Achim Schnaufer²,
6 James A. Cotton³, Jean-Claude Dujardin¹

7

8 ¹Institute of Tropical Medicine, Antwerp, Belgium

9 ²Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, United
10 Kingdom

11 ³Wellcome Sanger Institute, Hinxton, United Kingdom

12 ⁴London School of Hygiene and Tropical Medicine, London, United Kingdom

13 ⁵Instituto de Medicina Tropical Alexander von Humboldt, Lima, Peru

14 ⁶Universidad Mayor de San Simon, Cochabamba, Bolivia

15 ⁷Instituto Oswaldo Cruz, Rio de Janeiro, Brazil.

16

17 **Keywords:** Speciation genomics, ecological fitting, biparental inheritance, mitochondrial minicircles,
18 interspecific hybridization, mito-nuclear discordance

19

20 **ABSTRACT**

21 The tropical Andes is an important natural laboratory to understand speciation and diversification in
22 many taxa. Here, we examined the evolutionary history of parasites of the *Leishmania braziliensis*
23 species complex based on whole genome sequencing of 67 isolates from 47 localities in Peru. We firstly
24 show the origin of near-clonal Andean *Leishmania* lineages that diverged from admixed Amazonian
25 ancestors, accompanied by a significant reduction in genome diversity and large structural variations
26 implicated in host-parasite interactions. Beside a clear dichotomy between Andean and Amazonian
27 species, patterns of population structure were strongly associated with biogeographical origin.
28 Molecular clock analyses and ecological niche modeling suggested that the history of diversification of
29 the Andean lineages is limited to the Late Pleistocene and intimately associated with habitat
30 contractions driven by climate change. These results support a wider model on trypanosomatid
31 evolution where major parasite lineages emerge through ecological fitting. Second, genome-scale
32 analyses provided evidence of meiotic recombination between Andean and Amazonian *Leishmania*
33 species, resulting in full-genome hybrids. The mitochondrial genome of these hybrids consisted of
34 homogeneous uniparental maxicircles, but minicircles originated from both parental species, leaving a
35 mosaic ancestry of minicircle-encoded guide RNA genes. We further show that mitochondrial
36 minicircles - but not maxicircles - show a similar evolutionary pattern as the nuclear genome, suggesting
37 that biparental inheritance of minicircles is universal and may be important to alleviate maxicircle-
38 nuclear incompatibilities. By comparing full nuclear and mitochondrial genome ancestries, our data
39 expands our appreciation on the genetic consequences of diversification and hybridization in parasitic
40 protozoa.

41

42 INTRODUCTION

43 Exploring natural genetic variation has been instrumental in understanding how and under which
44 circumstances new species originate. South America encompasses a large fraction of the global
45 biodiversity, representing one of the most species diverse hotspots on Earth. This is partly because
46 diversification of Neotropical taxa has been influenced by a rich geological and climatic history,
47 including large-scale reconfigurations of the landscape through the Neogene uplift of the Andes¹ and
48 habitat instability through Pleistocene climatic cycling². In particular the Andes – due to a complex
49 interplay of history, geography and ecology – represents an epicenter for species diversification in birds,
50 reptiles, insects and plants^{3–8}. However, little is known about the role of the Andes shaping the evolution
51 of parasitic micro-organisms.

52 Here, we used whole-genome sequencing to study the evolutionary history of parasites of the
53 *Leishmania braziliensis* species complex in Peru, one of the biologically richest and most diverse
54 regions on Earth. The lowland species *L. braziliensis* is a zoonotic parasite circulating in a diverse range
55 of wild mammals⁹ in Neotropical rainforests. It is one of the major causes of cutaneous leishmaniasis
56 in Latin America, and also causes a relatively high frequency of severe mucocutaneous disease (known
57 locally as *espundia*) where the parasite spreads to mucosal tissue. Human infections appear to be a
58 spillover from this sylvatic life cycle, and are probably not important in transmission. In contrast, the
59 montane species *L. peruviana* is largely endemic to the Pacific slopes of the Peruvian Andes. It is
60 transmitted exclusively in peri-domestic xerophytic environments and causes a disease of altitude
61 (1300–2800 m), known locally as *uta*, a benign form of cutaneous leishmaniasis. Both *Leishmania*
62 species were initially shown to be different at only one of 16 enzymatic loci¹⁰, but subsequent molecular
63 analyses showed that they correspond to two distinct monophyletic clades of the *Viannia* subgenus^{11–}
64 ¹³. Molecular karyotyping further revealed that *L. braziliensis* was karyotypically homogeneous in
65 contrast to *L. peruviana* that was genetically subdivided into different biogeographical regions across
66 and along the Peruvian Andes^{14,15}. These species differences persist despite the report of a number of
67 parasites presenting hybrid marker profiles^{16,17}.

68 Our understanding of the genetics of diversification and hybridization in *Leishmania* is increasingly
69 informed by the genomic revolution. Whole genome sequencing data of hundreds of isolates revealed
70 the global¹⁸ and local^{19,20} genome diversity of the Old-World *L. donovani* species complex, although
71 genome studies on New-World *Leishmania* species remain scarce and limited to a few isolates²¹⁻²³.
72 Genome-scale analyses also provided strong evidence for genome-wide patterns of recombination in
73 presumed clonal *Leishmania* species²⁴⁻²⁶, including evidence of classical crossing over at meiosis²⁴.
74 While these studies revolutionized our understanding of the fundamental biology of parasitic protozoa,
75 information on the structure, diversity and evolution of their mitochondrial genome remains
76 fragmentary. This is mainly because of the extraordinary complexity of the mitochondrial DNA of
77 trypanosomatids, consisting of a giant network of thousands of heterogeneous minicircles (0.5-2.5 kb
78 in size, depending on the species) interlaced with 20-50 homogeneous maxicircles (20-30 kb)²⁷. The
79 minicircles encode guide RNA (gRNA) genes that are responsible for directing an elaborate U-indel
80 RNA editing process that generates translatable maxicircle-encoded transcripts²⁷. This process of RNA
81 editing in the kinetoplast is a unique biological characteristic shared by all *Trypanosomatidae*, including
82 other species of medical and veterinary importance such as *Trypanosoma brucei*, *T. vivax* and *T.*
83 *congolense*. Correct RNA editing is essential for parasite viability²⁸ and depends on a functionally
84 complete set of minicircles²⁹. However, little is known about the natural variation of minicircle
85 complexity.

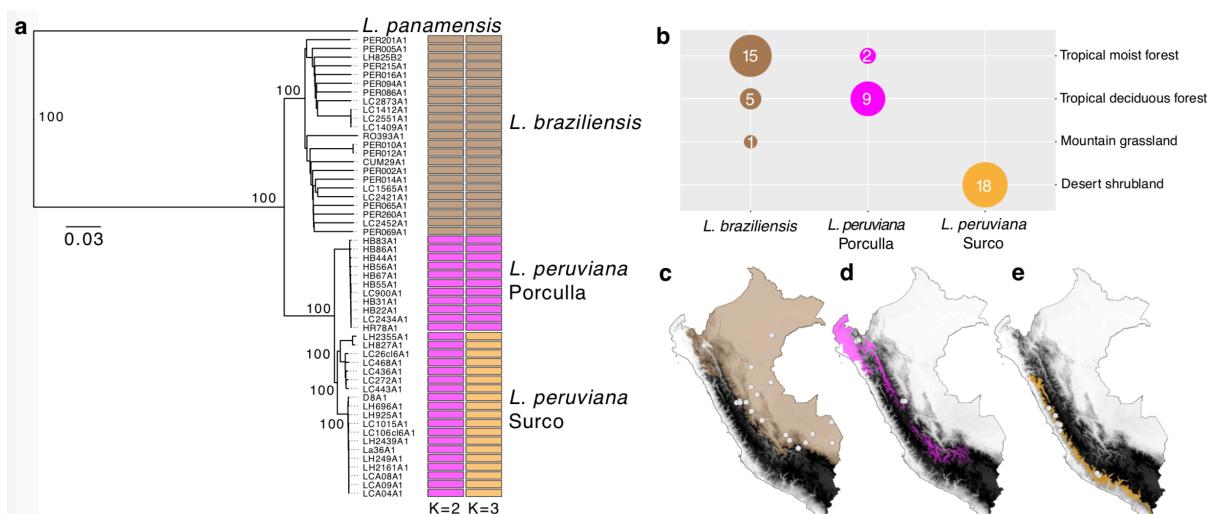
86 Here, we present the first study that examines the diversification and hybridization of parasitic protozoa
87 based on a joint analysis of complete nuclear and mitochondrial genomes. After mapping sequences
88 against a PacBio assembly including 35 chromosomes and a complete maxicircle, unaligned reads were
89 used to assemble, circularize and annotate full sets of mitochondrial minicircles. We show that patterns
90 of population genomic structure were strongly associated with biogeographical origin, and suggest that
91 speciation was driven by ecological re-arrangements during late Pleistocene climatic cycling. In
92 addition, we demonstrate that interspecific meiotic recombination resulted in uniparental inheritance of
93 maxicircles but biparental inheritance of minicircles, leaving a mosaic ancestry of minicircle-encoded

94 guide RNA genes. We discuss the potential role of biparental inheritance of minicircles in preserving
95 minicircle complexity and mito-nuclear compatibility in trypanosomatid parasites.

96

97 **RESULTS**

98 **Natural variation of the *L. braziliensis* species complex**


99 The genomes of 31 *L. peruviana*, 23 *L. braziliensis* and 13 hybrid *L. braziliensis* x *L. peruviana* isolates
100 (Supp. Fig. 1; Supp. Table 1) were sequenced at a median 70x depth (mean = 73x; min = 40x; max =
101 123x). For comparative purposes we also included sequencing data of one isolate from the closely
102 related *L. panamensis* species (Supp. Table 1). All sequence data were aligned against a novel long-
103 read assembly of *L. braziliensis* M2904, and for every isolate we determined the accessible genome
104 that is characterized by sufficient mapping quality, base quality and read depth. This revealed that 90.9-
105 92.2% of the chromosomal genome (i.e. 29.8-30.2 Mb) was accessible for isolates belonging to the *L.*
106 *braziliensis* species complex, and 88.1% of the genome (i.e. 28.9 Mb) was accessible for *L. panamensis*.

107 Phylogenetic analyses based on 637,821 single nucleotide polymorphisms (SNPs) revealed a clear
108 distinction between the three *Leishmania Viannia* species and confirmed that *L. peruviana* and *L.*
109 *braziliensis* correspond to two closely related but distinct monophyletic clades (Fig. 1a). When
110 estimating the proportion of fixed nucleotide differences between species across their combined
111 accessible genome of 28.3 Mb, we found that *L. panamensis* showed fixed differences at 1.06% sites
112 from *L. braziliensis* and 1.21% sites from *L. peruviana*. In contrast, *L. braziliensis* and *L. peruviana*
113 differed at a tenfold lower number of fixed nucleotide differences (0.04%), highlighting their close
114 relatedness.

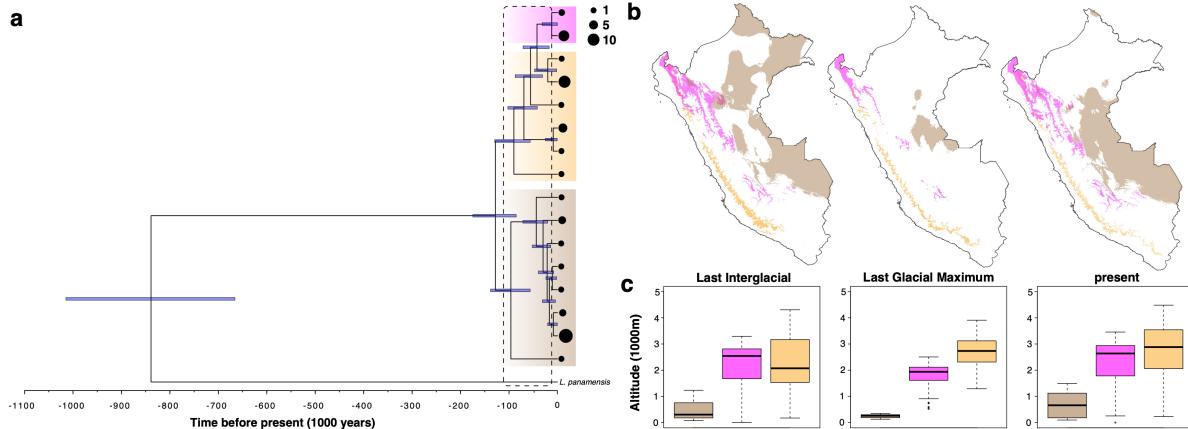
115 Genotyping across the accessible genome (88.3% - 28.9 Mb) of the 67 *L. braziliensis* species complex
116 isolates disclosed a total of 389,259 SNPs and 114,082 small insertions/deletions (INDELS). SNPs and
117 variable sites (i.e. excluding SNPs fixed in a given species) were evenly distributed across the 35 major
118 chromosomes, but *L. peruviana* showed a 2.6 fold lower density in SNPs (4.1/kb vs. 10.6/kb) and a 9.5
119 fold lower density in variable sites (1/kb vs. 9.5/kb) compared to *L. braziliensis* (Supp. Fig. 2). While

120 the allele frequency spectrum of *L. braziliensis* was dominated by rare variants, the large majority of
121 SNP loci were entirely fixed (67%) and homozygous (89%) in *L. peruviana* (Supp. Fig. 3), suggesting
122 a strong population bottleneck at the origin of this species. Several of these fixed SNP mutations were
123 virtually absent in *L. braziliensis* and deleterious to genes coding for an ion transporter protein, kinesin-
124 C³⁰ and the subunit 2 of the class I transcription factor A complex^{31,32} (Supp. Table 2).

125 *L. peruviana* and *L. braziliensis* showed a relatively extensive variation in chromosome copy numbers,
126 except chromosome 31 that was tetrasomic for most isolates, and chromosomes 19, 26, 27, 32 and 34
127 that were disomic for all isolates (Supp. Fig. 4). A high degree of aneuploidy is especially observed
128 among *in vitro* cultivated promastigotes³³, which may explain the lack of species-specific somy profiles
129 observed here (Supp. Fig. 4, grayscale boxes). A total of 164 gene copy number variations were
130 identified in *L. peruviana* (51 deletions and 113 amplifications). Six deletions and five amplifications
131 were shared among all *L. peruviana* isolates, eight of which encompassed genes encoding cell-surface
132 glycoproteins such as the gp63 leishmanolysin gene family and the δ -amastin surface glycoproteins
133 (Table 1; Supp. Fig. 5). Other major differences encompass putative proteins encoding kinesin,
134 autophagy protein ATG8 ubiquitin and a glycerol uptake protein (Table 1; Supp. Fig. 5).

135
136 **Figure 1.** (a) Neighbor-Joining phylogenetic tree depicting the genetic ancestry of the *L. braziliensis* species
137 complex (*L. braziliensis* and *L. peruviana*) in Peru including *L. panamensis* as an outgroup. Colored barplots
138 show parasite groups as estimated with ADMIXTURE assuming $K=2$ and $K=3$ populations. (b) Sample sizes
139 of the three major parasite lineages grouped according their originating biome. (c,d,e) Geographic maps of Peru
140 showing the Andean topography in grayscale, the sampling locations of the three major parasite lineages and their
141 corresponding biomes: (c) tropical moist forest, (d) tropical deciduous forest and (e) desert shrubland.
142

143 **Comparative population genomics of lowland and montane *Leishmania* parasites**


144 Analyses of population structure using unsupervised clustering with ADMIXTURE (Fig. 1a) revealed
145 three major groups of parasites, each corresponding to a particular biome. The first group comprised
146 the lowland *L. braziliensis* parasites that were largely found within tropical moist forests at a median
147 altitude of 631 m (Fig. 1b,c). The second and third group comprised the montane *L. peruviana* parasites
148 found within two different biomes. The Porculla lineage was found at an average altitude of 1,985 m
149 within tropical deciduous forests that span the Huancabamba depression and the North-Eastern slopes
150 of the Peruvian Andes (Fig. 1b,d). The Surco lineage was exclusively found within desert shrubland
151 along the Pacific slopes of the Peruvian Andes, at an average altitude of 2,769 m (Fig. 1b,e). The Surco
152 lineage was further subdivided into three differentiated sublineages, here-after referred to as Surco
153 North (SUN), Surco Central (SUC) and Surco Central/South (SUCS) (Supp. Fig. 6). In contrast,
154 clustering analyses failed to identify subpopulations in *L. braziliensis* (results not shown) and the *L.*
155 *braziliensis* network featured long branches that separate most isolates with little clade structure, a
156 pattern symptomatic of high gene flow (Supp. Fig. 7).

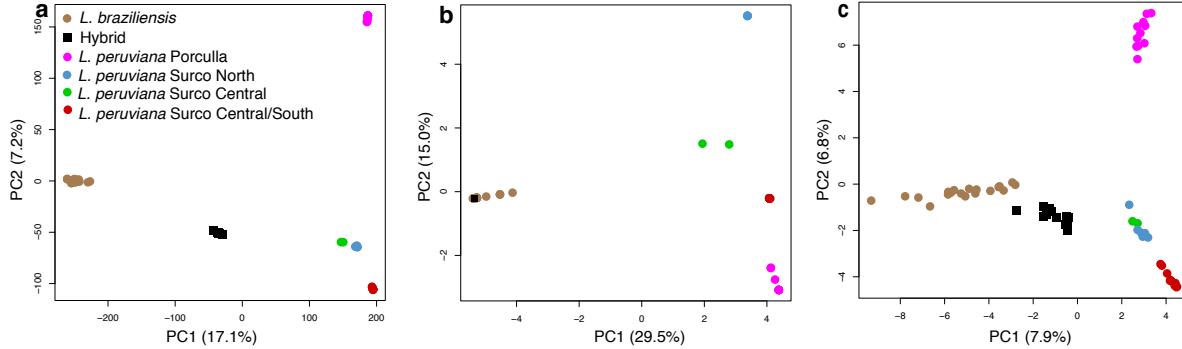
157 To make predictions about relative recombination rates, Hardy-Weinberg equilibrium (HWE) was
158 tested by estimating F_{IS} per SNP locus in *L. peruviana* and *L. braziliensis* taking into account Wahlund
159 effects (see methods). The F_{IS} distribution was skewed towards negative F_{IS} for *L. peruviana* (mean F_{IS}
160 = -0.54) with almost half of the SNP loci showing $F_{IS} = -1$, suggesting heterozygote genotypes, as would
161 be predicted for a population experiencing predominantly clonal propagation (Supp. Fig. 8a-b; Supp.
162 Table 3). In contrast, *L. braziliensis* displayed a unimodal distribution centered around zero (mean = -
163 0.11), suggesting that the population is close to HWE and that *L. braziliensis* may experience relatively
164 high recombination rates (Supp. Fig. 8c; Supp. Table 3). Despite strong genetic differentiation and
165 reduced recombination rates in *L. peruviana*, there were signals of historical hybridization events, in
166 particular among the Surco populations (Supp. Fig. 9). The occurrence of hybridization among the
167 Surco populations was also highlighted by isolate LH741 that showed a mixed ancestry between the
168 SUN and SUCS populations (Supp. Fig. 6a, 7b).

169 **Late Pleistocene origin of montane *Leishmania* parasites**

170 The time-resolved phylogeny calibrated based on an assumed substitution rate for maxicircles³⁴
171 suggested that the common ancestor of *L. peruviana* and *L. braziliensis* lived ~128 kya (CI: 85 kya –
172 175 kya) (Fig. 2a) during the Last Interglacial (130 kya - 115 kya). Subsequent diversification of *L.*
173 *peruviana* occurred at several occasions during the Last Glacial Period which lasted from 115 kya to
174 11.7 kya (Fig. 2a). These results suggest that the (sub-)diversification of *L. peruviana* may have been
175 promoted by extensive climatic cycling and vegetational shifts.

176 Environmental niche modeling (ENM) using present and past bioclimatic variables predicted the
177 putative range of each *Leishmania* population (*L. braziliensis*, *L. peruviana* Porculla and *L. peruviana*
178 Surco) during the Last Glacial Maximum (LGM: 21 kya) and the last inter-glacial (LIG: 130 kya). The
179 bioclimatic variables that contributed most to the model results were temperature and precipitation
180 seasonality. For the present, the predicted areas included the species known distributions in Peru and
181 largely matched the biogeographic regions (tropical moist forest, tropical deciduous forest and desert
182 shrubland) for each *Leishmania* population (Fig. 2b; Supp. Fig. 10). During the LGM, there was a strong
183 contraction, fragmentation and isolation of suitable habitat for all *Leishmania* populations (Fig. 2b;
184 Supp. Fig. 10), resulting in a more pronounced difference in altitude range between *L. braziliensis* and
185 the montane *L. peruviana* lineages (Fig. 2c). During the LIG, the potential range of *L. peruviana* was
186 rather similar, but the range of *L. braziliensis* was slightly shifted to the north of Peru, resulting in a
187 more pronounced spatial overlap with the range of the *L. peruviana* Porculla population (Fig. 2b; Supp.
188 Fig. 10). The average altitude of the habitat patches was considerably different between *L. braziliensis*
189 and the two *L. peruviana* populations.

Figure 2. (a) Time-calibrated phylogenetic tree for the *L. braziliensis* species complex based on maxicircle gene alignments. Blue node bars represent the 95% highest posterior density of the divergence time estimates. Thick transparent boxes mark the maxicircle haplotypes of *L. braziliensis* (brown), *L. peruviana* Porculla (magenta) and *L. peruviana* Surco (orange). The size of the black circles at the tips of the branches reflect the number of haplotype sequences (legend on the topright). (b) Geographic maps of Peru showing the modeled distribution and (c) average altitude of the predicted habitat patches, for each of the three major *Leishmania* lineages during the Last Interglacial, Last Glacial Maximum and present (see Fig. 2a for color codes).


190
191
192
193
194
195
196
197
198

199 Meiotic-like recombination between lowland and montane *Leishmania* parasites

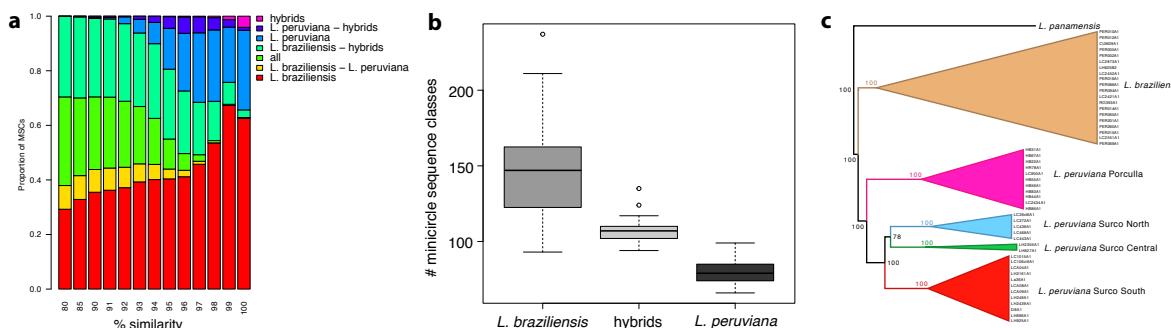
200 We also included 13 hybrid *L. peruviana* x *L. braziliensis* isolates from the Huánuco region where both
201 *Leishmania* species and their hybrids occur sympatrically^{16,17}. Earlier molecular work suggested the
202 presence of four zymodemes and seven microsatellite genotypes within the hybrid population¹⁷, and
203 here we sequenced isolates from each zymodeme. Of a total 149,735 SNPs that were identified in the
204 hybrid population, 61,804 sites (41.3%) were fixed homozygous and 73,375 sites (49%) were fixed
205 heterozygous, leaving 14,556 segregating sites (9.7%). Heterozygous sites were evenly distributed
206 across the genome and rarely interrupted by homozygous stretches (Supp. Fig. 11). The frequency
207 distribution of allelic read depths at heterozygous sites was centered around 0.5 for all hybrids (data not
208 shown), as would be predicted for diploid *Leishmania* parasites³⁵. Hybrids were near-identical, differing
209 by a median 1,245 heterozygous sites and one homozygous site (Supp. Table 4). Exceptions were
210 isolates PER011 and LC2520 that showed 167 homozygous SNP differences (Supp. Table 4), but close
211 inspection revealed that 165 SNPs were located within a 63kb window on chromosome 32 that was
212 homozygous for either parental alleles in the two isolates (Supp. Fig. 11), suggesting that these
213 differences are due to gene conversion events.

214 Principal Component Analyses (PCA) based on genome-wide SNPs showed that hybrids occupied a
215 tight central position between *L. braziliensis* and the *L. peruviana* SUCS population (Fig. 3a),
216 suggesting that all hybrids are first-generation offspring. Estimates of raw nucleotide differences
217 revealed a similar genetic distance between the hybrids and the *L. braziliensis* isolates LC2551, LC1409
218 and LC1412 on the one hand, and the *L. peruviana* SUCS population on the other hand (results not
219 shown). In addition, close examination of 89 SNPs identified within the coding region of the
220 mitochondrial maxicircle revealed that all hybrids were identical to *L. braziliensis* isolates LC2551,
221 LC1409 and LC1412 (Fig. 3b). Altogether, these results clearly indicate the following two parent
222 groups of isolates: i) *L. braziliensis* isolates LC2551, LC1409 and LC1412 from the Huánuco region
223 and ii) *L. peruviana* SUCS population from the Lima and Ayacucho regions.

224 To investigate the ancestry of the hybrids in more detail, we focused on the 113,266 SNPs that were
225 shared between the 13 hybrids and representative isolates of each parent group (LH925 for *L. peruviana*
226 SUCS and LC1412 for *L. braziliensis*). SNPs were counted when homozygous for the reference allele
227 (R/R), homozygous for the alternate allele (A/A) or heterozygous (A/R). Of the 54,734 SNPs that were
228 homozygous (A/A) in one parent and absent (R/R) in the other, an average 54,038 SNPs (99.5%) were
229 heterozygous (A/R) in the 13 hybrids. Of the 14,025 SNPs that were homozygous in one parent (A/A)
230 and heterozygous in the other parent (A/R), an average 7,399 SNPs (53%) were heterozygous (A/R)
231 and 6,596 SNPs (47%) homozygous (A/A) in the hybrid offspring. Of the 41,424 SNPs that were
232 heterozygous (A/R) in one parent and absent (R/R) in the other, an average 21,053 SNPs (50.8%) were
233 heterozygous (A/R) and 20,295 SNPs (48.9%) were absent (R/R) in the hybrid offspring. These results
234 confirm that hybrid parasites inherited parental alleles in a 1:1 ratio, as would be predicted for first-
235 generation offspring of a Mendelian cross.

Figure 3. Principal Component Analyses of the *L. braziliensis* species complex in Peru based on 389,259 genome-wide SNPs (a), 89 SNPs of the maxicircle coding region (b) and sequence similarity of 950 minicircle sequence classes (c). Hybrid isolates were projected onto the PCA space of *L. braziliensis* and *L. peruviana*, where the first axis separates *L. braziliensis* and *L. peruviana*, and the second axis distinguishes the main *L. peruviana* populations.

Biparental inheritance of *Leishmania* mitochondrial minicircle populations


Minicircles were assembled and circularized for each of the 67 isolates using the python package KOMICS (see Methods and Supp. Fig. 12). A total of 9,003 minicircle contigs were assembled for 64 isolates, of which 6,949 (77%) circularized. The assembly process failed for 3 isolates (LC1565, LC1409, LC1412) for which there were insufficient mitochondrial reads. The number of assembled minicircle contigs per isolate did not depend on sequencing depth, as there was no association between median genome-wide read depth and the number of minicircles in *L. braziliensis* ($r = 0.20, p = 0.41$), *L. peruviana* ($r = 0.07, p = 0.7$) and the hybrids ($r = 0.03, p = 0.92$). To validate the quality of the assembly, reads were aligned to the minicircle contigs and several mapping statistics were summarized. First, on average 95% of all mapped reads were properly paired and 93% aligned with a mapping quality larger than 20 (Supp. Table 5). Second, a total of 100 homozygous SNPs were identified within 56 contigs, which is only 0.62% of all contigs, suggesting a robust assembly for the large majority of the minicircle contigs. Third, the length of the majority of the circularized minicircles (6,906 contigs, 99.3%) showed a bimodal distribution around ~740 bp and ~750 bp (Supp. Fig. 13), which is comparable to the minicircle length (~850bp) found in *L. tarentolae*³⁶. The remaining 43 contigs (<0.7%) showed twice this length (~1490 bp; data not shown), suggesting that these may be artificial minicircle dimers. Finally, the number of reads containing the Conserved Sequence Block 3 (CSB-3) 12-mer (also called universal minicircle sequence³⁷) was calculated as a proxy for the total number of minicircles initially present within the DNA sample. Note that the CSB-3 12-mer is present within both

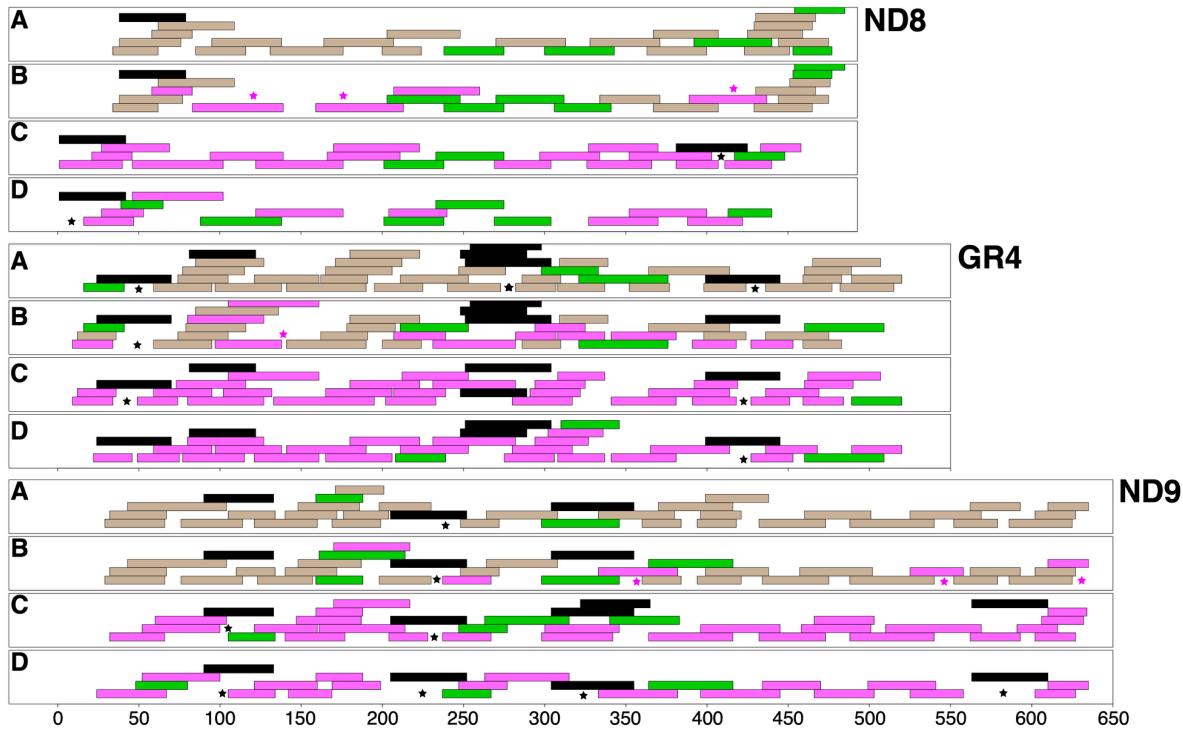
262 the minicircles³⁷ and maxicircles³⁸, but here we only used reads that did not align to the maxicircle. On
263 average 95% of all CSB3-containing reads aligned against a given minicircle contig, 90% aligned with
264 a perfect match and 89% aligned in proper pairs (Supp. Table 5), suggesting that KOMICS was able to
265 retrieve the large majority of the minicircles.

266 Minicircle complexity and ancestry was studied using a clustering approach to find sets of minicircle
267 sequences that show a minimum percent identity with each-other (here-after referred to as minicircle
268 sequence classes or MSCs). These clustering analyses were only done on the circularized minicircle
269 contigs of the expected length, as these would produce the most robust alignments. The number of
270 MSCs decreased sharply from 4,290 MSCs at 100% identity to only 582 MSCs at 95% identity and 311
271 MSCs at 80% identity (Supp. Fig. 14a). As percent identity decreased, the alignments were more prone
272 to gaps larger than or equal to 2 nucleotides (Supp. Fig. 14b). Specifically, there was a sharp increase
273 in the number of alignments with 3-nt gaps from 97% to 96% identity (Supp. Fig. 14b), suggesting that
274 clustering results may be less robust below the 97% identity threshold. In addition, discriminatory
275 power decreased strongly below the 97% identity threshold as we observed a decrease in the proportion
276 of MSCs unique to *L. peruviana* and an increase in the proportion of MSCs shared between *L.*
277 *braziliensis*, *L. peruviana* and the hybrids (Fig. 4a). Focusing on the results at 97% identity, a
278 significantly lower number of MSCs were found per isolate in *L. peruviana* (mean = 81 MSCs/isolate)
279 compared to *L. braziliensis* (mean = 147 MSCs/isolate; $p < 0.0001$), with hybrids showing an
280 intermediate value (mean = 111 MSCs/isolate) (Fig. 4b).

281 To study the ancestry of *Leishmania* based on minicircle complexity, we reconstructed a Euclidean
282 distance matrix based on MSCs observed in each *Leishmania* isolate at the 97% identity threshold. A
283 Neighbor-Joining phylogenetic tree including *L. panamensis* revealed a remarkably similar topology as
284 seen using genome-wide SNPs (Fig. 1a), with a clear distinction between the *L. peruviana* Porculla
285 lineage and the *L. peruviana* Surco lineages (Fig. 4c). A PCA based on minicircle absence/presence in
286 each isolate showed an identical pattern as seen with genome-wide SNPs, with the first axis separating
287 *L. braziliensis* from *L. peruviana* and the second axis dividing the main *L. peruviana* populations (Fig.
288 3c). Interestingly, hybrids did not cluster with either parental species as would be predicted for a

289 uniparentally inherited kinetoplast, but rather occupied an intermediate position between *L. braziliensis*
290 and the *L. peruviana* SUCS population (Fig. 3c). In addition, at 97% identity, virtually all MSCs found
291 in the hybrids are also found within *L. peruviana* and/or *L. braziliensis* (Fig. 4a). When quantifying the
292 number of MSCs shared between each hybrid isolate and either parental species, we found that on
293 average 20.1% of the MSCs in hybrid progeny originated from *L. peruviana* and 69.5% from *L.*
294 *braziliensis* (Table 2). These results confirm that hybrid parasites contained MSCs unique to each
295 parental species.

296
297 **Figure 4. Minicircle complexity and ancestry in the *L. braziliensis* species complex. (a)** Barplots show the
298 proportion of minicircle sequence classes that are unique or shared between *L. braziliensis*, *L. peruviana* and their
299 hybrids, for each % identity threshold used during the clustering analyses. **(b)** Boxplot showing the number of
300 minicircle sequence classes within *L. peruviana*, *L. braziliensis* and their hybrids **(c)** Neighbor-Joining tree based
301 on a Euclidean distance matrix as estimated based minicircle sequence classes observed in each *Leishmania*
302 isolates.
303


304
305 **Mosaic of guide RNA repertoire in hybrid parasites**
306 Putative guide RNA genes (gRNA's) were identified by aligning minicircle and maxicircle sequences
307 to predicted edited mRNA sequences, allowing for G-U base-pairs³⁹ (see Methods). This was done for
308 four isolates representing *L. braziliensis*, *L. peruviana* Porculla, *L. peruviana* SUCS and a hybrid *L.*
309 *braziliensis* x *L. peruviana* parasite.

310 All annotated minicircles contained the expected three Conserved Sequence Blocks and 65%-81%
311 (depending on the isolate) had a single predicted gRNA of at least 40 bp complementarity to edited
312 mRNA sequence ~500 bp downstream of the CSB-3 sequence (Supp. Fig. 15, blue dots). Shorter
313 complementary sequences were found throughout the minicircle sequences (Supp. Fig. 15, orange and
314 green dots), suggesting that these were non-specific matches. No putative gRNA genes were identified

315 for 19%-35% of the minicircles (Supp. Table 6). A total of 19-21 gRNAs were identified within the
316 maxicircle of *L. peruviana* and *L. braziliensis* (Supp. Table 7), a number that far exceeded the seven
317 maxicircle-encoded gRNAs (Ma-gRNAs) reported for *L. tarentolae*³⁶ and *Crithidia fasciculata*⁴⁰. Five
318 of the Ma-gRNAs identified are shared among all four species, covering editing sites in the 5'-edited
319 maxicircle genes ND7, CYb, A6 and MURF2 (Supp. Table 7; orange bars). The remaining 14-16 Ma-
320 gRNAs identified in *L. braziliensis* and *L. peruviana* were novel and non-redundant candidates,
321 covering editing sites in the pan-edited maxicircle genes ND8, ND9, GR3 and GR4 (Supp. Table 7).

322 A total of 123 gRNAs were identified in *L. peruviana* Surco, 151 gRNAs in *L. peruviana* Porculla, 154
323 gRNAs in *L. braziliensis* and 157 gRNAs in hybrid *L. peruviana* x *L. braziliensis* (Supp. Table 6).
324 Paired t-tests showed that there was a significantly lower number of gRNAs between *L. peruviana*
325 Surco on the one hand and *L. peruviana* Porculla ($p = 0.038$), *L. braziliensis* ($p = 0.049$) and the hybrid
326 ($p = 0.018$) on the other hand. The lower number of predicted gRNAs in *L. peruviana* Surco resulted in
327 a lower proportion of editing sites covered by a gRNA (92.52%) when compared to *L. peruviana*
328 Porculla (97.13%), *L. braziliensis* (98.17%) and the *L. peruviana* x *L. braziliensis* hybrid (97.37%)
329 (Supp. Table 6).

330 The distribution and ancestry of the predicted gRNAs was examined across the four pan-edited genes
331 GR3, GR4, ND8 and ND9, revealing two major results (Fig. 5). First, many of the novel Ma-gRNAs
332 covered editing sites that were not covered by minicircle-encoded candidates (Fig. 5, stars), suggesting
333 that these Ma-gRNAs are essential to prevent a break of the 3'-5' editing cascade. This is most clearly
334 observed for the *L. peruviana* SUCS isolate where Ma-gRNAs covered four different locations in the
335 ND9 gene that were not covered by minicircle-encoded gRNAs (Fig. 5, stars). Second, *L. peruviana* x
336 *L. braziliensis* hybrids showed a mosaic ancestry of gRNAs originating from both parental species, with
337 *L. peruviana* - specific gRNAs aligning in locations where there were no *L. braziliensis* - specific
338 gRNAs (Fig. 5, arrows).

339
340 **Figure 5.** Coverage of editing sites for the pan-edited maxicircle genes ND8, GR4 and ND9. Stacked rectangles
341 are gRNA genes covering editing sites in a given maxicircle gene of *L. braziliensis* isolate LC1412 (A), hybrid
342 isolate HR434 (B), *L. peruviana* Porculla isolate HR78 (C) and *L. peruviana* SUCS isolate (D). Colors indicate
343 whether the gRNA originated from the maxicircle (black) or from a minicircle found in *L. braziliensis* (brown),
344 *L. peruviana* (magenta) or both (green). Black stars indicate editing sites that are covered solely by maxicircle-
345 encoded gRNA candidates. Magenta stars in hybrid isolate HR434 (B) indicate editing sites solely covered by *L.*
346 *peruviana* gRNA candidates.
347

348 **DISCUSSION**

349 We have presented population genomic analyses based on the complete nuclear and mitochondrial
350 genome of natural *Leishmania* isolates that provide a comprehensive view on genetic diversification
351 and subsequent hybridization in parasitic protozoa. Our data supports the major conclusions that 1)
352 ecology is a major driver of reproductive isolation in Neotropical *Leishmania* parasites and 2) meiotic
353 recombination creates mosaic ancestry of mitochondrial genes due to biparental inheritance of
354 minicircles.

355 Andean *L. peruviana* parasites demonstrated stable long-term genetic diversification, evolving as near-
356 clonal lineages that emerged from admixed Amazonian ancestors. The origin of the Andean lineages
357 was accompanied by a strong population bottleneck, as evidenced by a genome-wide fixation of SNP
358 polymorphisms. Several of these fixed SNP mutations were deleterious to genes involved in the
359 parasite's biosynthetic capability or cytokinesis, which may explain the slower growth rate *in vitro* of
360 *L. peruviana* compared to *L. braziliensis*^{41,42}. In addition, all *L. peruviana* isolates shared eight structural
361 variations encompassing genes involved in host-parasite interactions. Most notably was a 51.1 kb
362 deletion spanning the gp63 leishmanolysin gene family, important for amastigotes to subvert the
363 macrophage immune response⁴³. Reduced copy numbers may explain the lower virulence of *L.*
364 *peruviana* amastigotes *in vivo*⁴².

365 Beside a clear dichotomy in population genomic structure between the Andean and Amazonian
366 *Leishmania* species, parasite genomic diversity was principally partitioned by ecotype. The strict
367 ecological association of the major *Leishmania* lineages in Peru suggest that reproductive isolation
368 occurred through ecological fitting, a process whereby an organism colonizes and persists in a new or
369 modified environment⁴⁴. Such exaptation into novel environmental niches is often accompanied by host
370 switches and facilitated by climatological variation and ecological perturbation⁴⁵. Here we show that
371 the history of diversification of Andean lineages is limited to the Late Pleistocene and intimately
372 associated with vegetation changes. We propose that spatial overlap of Andean and Amazonian
373 ecotypes during the Last Interglacial may have facilitated the intrusion of Amazonian *Leishmania*
374 parasites into the Andean ecotypes containing different sandfly vector communities^{46,47}, with

375 subsequent habitat and altitudinal range contractions during last glacial episodes fueling the
376 diversification of the major Andean lineages. Together with observations in trypanosomes^{48,49}, our data
377 suggests a key role for ecological fitting in delineating major trypanosomatid parasite clades.

378 In the Eastern Andean valley of the Huánuco region, signs of meiotic recombination between the two
379 *Leishmania* species are markedly clear. All *L. peruviana* x *L. braziliensis* hybrids contained both
380 parental alleles, providing evidence that hybrids inherited a full set of chromosomes from each parent
381 and are thus full genome hybrids. The observation of near-identical hybrid genomes sampled over a
382 period of 11 years suggest that hybrids arose from a rare mating event between *L. peruviana* and *L.*
383 *braziliensis*, although we cannot exclude the possibility of multiple mating events including closely
384 related parental parasites. The high number of heterozygous sites across the genome and the central
385 position of the hybrids between either parental species in the PCA space provide clear evidence that
386 they are natural first-generation hybrids that propagated mitotically since the initial cross. The absence
387 of genomic signatures of backcrossing^{24,50} or inbreeding²⁶ suggest that these *L. peruviana* x *L.*
388 *braziliensis* hybrids are sterile, as shown experimentally for inter-species *Leishmania* hybrids²⁴. Hybrid
389 sterility among closely related species is the most common form of postzygotic reproductive isolation^{51–}
390 ⁵³, and may be one of the factors that contributed to the speciation of *L. peruviana*.

391 The mitochondrial minicircles were inherited from both parental species, a phenomenon that has only
392 been described sporadically in Trypanosomatids^{54–56}. In contrast, the mitochondrial maxicircles
393 demonstrated clear and consistent uniparental inheritance from the *L. braziliensis* parent. While these
394 observations would suggest differential inheritance of maxi- and minicircles, the most likely
395 explanation is that the kinetoplast DNA networks fused during genetic exchange into a single hybrid
396 network that homogenized during subsequent mitotic divisions. Parallel observations in trypanosomes
397 support this hypothesis. In *T. brucei*, experimental hybrid progeny contained minicircle^{54,55} and
398 maxicircle^{57,58} types of the two parents, whereby maxicircles rapidly homogenized to either parental
399 types during subsequent mitotic divisions⁵⁸. Assuming a stochastic segregation model, it was estimated
400 that fixation in experimental *T. brucei* clones would complete in 139 generations (~35 days) for 50
401 maxicircles and 27,726 generations (~19 years) for 10,000 minicircles⁵⁸. In *Saccharomyces cerevisiae*,

402 the mitochondrial genome homogenizes in only 20 generations⁵⁹. Rapid stochastic loss of maxicircles
403 following mating could explain why there is currently no evidence for maxicircle heteroplasmy in
404 natural or experimental *Leishmania* hybrids. Nevertheless, the presence of minicircles from both
405 parental species increased the complexity of mitochondrial genomes in hybrid parasites. We show that
406 predicted guide RNA genes originating from both *L. peruviana* and *L. braziliensis* aligned to the *L.*
407 *braziliensis* maxicircle, resulting in mosaic maxicircle genes. Hence, biparental inheritance of
408 minicircles may present parasites the opportunity to incorporate novel combinations of guide RNA
409 genes, some of which might provide more efficient editing than others, potentially increasing parasite
410 fitness.

411 Our observations significantly expand our appreciation on the genetic consequences of hybridization in
412 parasitic protozoa, and insinuate that recombination may be crucial to their long-term survival in the
413 wild³⁶. Mathematical models in *L. tarentolae* showed that non-essential minicircle classes were lost
414 within a few hundred generations in the absence of recombination⁶⁰. This loss may be especially
415 efficient in *Leishmania* species that contain a single gRNA per minicircle class. Here, the number of
416 minicircle classes was significantly lower within the near-clonal and bottlenecked Andean parasites
417 when compared to the admixed Amazonian *Leishmania* populations, suggesting that minicircle
418 complexity is shaped by parasite population biology. Within this context, an interesting observation is
419 the concordant population structure as observed with genome-wide SNPs and mitochondrial
420 minicircles, while the mitochondrial maxicircle revealed different ancestries. This observation clearly
421 suggests that minicircles follow a similar evolutionary path as the nuclear genome, which may indicate
422 that compatibility between nuclear genes and minicircle-encoded guide RNA genes is essential to
423 maintain efficient respiration. Hence, beside replenishing the minicircle repertoire, biparental
424 inheritance of minicircles may allow for selection in recovering optimal mito-nuclear interactions.

425

426 **METHODS**

427

428 **Parasite collection and DNA sequencing**

429 We included a total of 31 *L. peruviana* isolates from Peru, originating from the regions of Piura (N=9),
430 Huánuco (N=2), Ancash (N=6), Lima (N=6) and Ayacucho (N=6) that largely reflect the distribution
431 of Andean CL (Supp. Fig. 1; Supp. Table 1), with one Peruvian isolate of unknown origin. For
432 comparative purposes, we also included 23 *L. braziliensis* isolates from Peru (N=21), Bolivia (N=1)
433 and Brazil (N=1). In Peru, *L. braziliensis* isolates originated from the regions of Huánuco (N=8),
434 Cajamarca (N=1), Cusco (N=3), Madre de Dios (N=3), Loreto (N=2), Junín (N=1), Pasco (N=1) and
435 Ucayali (N=2) (Supp. Fig. 1; Supp. Table 1). We also included 13 isolates previously characterized as
436 hybrid *L. braziliensis* x *L. peruviana* (Dujardin et al. 1995; Nolder et al. 2007) from the Huánuco region
437 where both *Leishmania* species occur sympatrically. For comparative purposes, we also included *L.*
438 *panamensis* isolate REST417. Parasites were grown in liquid culture medium for 3-4 days at the
439 Antwerp Institute of Tropical Medicine or the London School of Hygiene and Tropical Medicine, and
440 their DNA was extracted using either the QIAGEN QIAamp DNA Mini Kit or a phenol-chloroform
441 extraction. Paired-end sequencing (2x100bp or 2x150bp) was performed on Illumina HiSeq at the
442 Wellcome Sanger Institute.

443

444 **Mapping and variant calling**

445 Paired sequence data were aligned against a novel long-read assembly of the M2904 reference genome
446 containing the 35 major chromosomes that cover 32.73Mb and a complete circularized maxicircle
447 sequence of 27.69kb. Mapping was done using SMALT v0.7.4
448 (<https://www.sanger.ac.uk/science/tools/smalt-0>), whereby the hash index was built with words of 13
449 base pair length (k=13) that are sampled every other position in the genome (s=2). Duplicate reads were
450 tagged using MarkDuplicates as implemented in Picard tools v1.92
451 (<https://broadinstitute.github.io/picard/>).

452 SNP and small INDEL calling was done in GATK v4.0.2⁶¹. More specifically, we used GATKs
453 HaplotypeCaller to produce genotype VCF files for every isolate, CombineGVCFs to merge the

454 genotype VCF files of all isolates, GenotypeGVCFs to perform joint genotyping and finally
455 SelectVariants to separate SNPs and INDELs. Low-quality SNPs were excluded using VariantFiltration
456 when QUAL < 500, DP < 5, QD < 2.0, FS > 60.0, MQ < 40.0, MQRankSum < -12.5 or
457 ReadPosRankSum < -8.0, or when SNPs occurred within SNP clusters (clusterSize = 3 and
458 clusterWindowSize = 10). Low-quality INDELs were excluded when QD < 2.0, FS > 200.0 or
459 ReadPosRankSum < -20.0. Our SNP and INDEL datasets were further refined by running GATK
460 CallableLoci on each sample BAM file to determine genomic intervals that are callable in each sample
461 with the following parameters: --minDepth 5 --minBaseQuality 25 --minMappingQuality 25. BEDOPS⁶²
462 –intersect was used to identify the callable genomic regions common to all isolates, and only variants
463 within the callable genome were retained for downstream analyses. The final set of SNPs and INDELs
464 were annotated using the *L. braziliensis* M2904 annotation file with SNPEFF v4.3⁶³.

465

466 **Population genomic and phylogenomic analyses**

467 Population genomic structure was examined using phylogenetic network analyses in SPLITSTREE
468 v4⁶⁴, Principle Component Analyses in ADEGENET⁶⁵ as implemented in R v3.5.1⁶⁶, and genotype-
469 based clustering analyses in ADMIXTURE v1.3.0⁶⁷. Weir and Cockerham's F_{ST} were estimated in non-
470 overlapping 50kb windows using VCFtools v0.1.12⁶⁸. Neighbor-Joining trees were build with the R
471 package APE⁶⁹ based on raw nucleotide distances (for genome-wide SNPs) or Euclidean distances (for
472 minicircles; see below).

473 To test for Hardy-Weinberg Equilibrium (HWE), F_{IS} was calculated in R using the formula 1-(H_o/H_s)
474 where H_o is the observed proportion of heterozygous genotypes and H_s the expected proportion of
475 heterozygous genotypes assuming HWE (i.e. $2pq$ with p and q the frequency of the reference and
476 alternate alleles, respectively). To control as much as possible for any spatio-temporal Wahlund effects,
477 analyses of HWE were focused on four *L. peruviana* isolates sampled in 1989-1990 in the Piura region,
478 five *L. peruviana* isolates sampled in 1990 in the Ayacucho region, and six *L. braziliensis* isolates
479 sampled between 1991-1995 in the Huánuco region.

480 Mitochondrial phylogenetic analyses were specifically focused on five maxicircle genes that are never
481 edited (COI, ND1, ND2, ND4 and ND5) in order to guarantee robust alignments devoid of INDELs,

482 and with clear start and end positions. GATK's FastaAlternateReferenceMaker was used to incorporate
483 strain-specific SNPs into the mitochondrial gene sequences of each isolate. Note that we could not find
484 any heterozygous SNP, suggesting absence of heteroplasmy, and indicating that all *L. peruviana*
485 isolates contained a single maxicircle sequence type. Gene alignments were concatenated and identical
486 sequences (i.e. haplotypes) were removed using the R package APE, resulting in a final dataset of 17
487 unique haplotypes of length 7,005bp. A dated phylogeny was obtained in BEAST v1.8.2⁷⁰ with a strict
488 molecular clock, a HKY substitution model and a Yule tree prior. For molecular clock analyses, we
489 could not resort to tip dating as mitochondrial mutation rates are too slow to generate sufficient
490 mutations in our sampling time range. We therefore assumed a strict molecular clock of 0.8% per Myr³⁴.

491

492 **Ecological Niche Modeling**

493 Species distribution models of the three studied taxa were generated using the program MAXENT
494 v.3.3.3⁷¹, which estimates the potential distribution based on presence-only data. MAXENT is
495 particularly well suited for species with few data records⁷². Environmental layers consisted of 19
496 temperature and precipitation variables downloaded from the WorldClim data set
497 (<http://www.worldclim.org>) and past climate reconstructions at a scale of 30 arc-seconds (ca. 1km²) for
498 current and Last interglacial (120-140kya) scenarios and 2.5 arc-minutes (c. 5km²) for Last Glacial
499 Maximum (21kya).

500 Current climatic data from each occurrence point were extracted using the program Quantum-GIS v2.18
501 (<http://www.qgis.org>). For *L. brasiliensis*, we only included samples from the tropical moist forest
502 below 700m. Highly correlated variables ($R > 0.7$) were removed to avoid overfitting the data. The 19
503 bioclimatic variables were reduced to six variables for *L. brasiliensis*, two variables for *L. peruviana*
504 Porculla and six variables for *L. peruviana* Surco. The models were run with the following parameters:
505 quadratic, product, threshold and hinge, 500 iterations, regularization multiplier equal 1 and 10
506 replicates subsampled. We used the average prediction from all the model replicates to construct the
507 ENM species distribution maps. Present-day ENMs were projected into bioclimatic variables predicted
508 for two different past scenarios, Last Interglacial (LIG; 120–140 kya) and LGM (21 kya) from MIROC
509 (Model of Interdisciplinary Research on Climate) and CCSM3 (Community Climate System Model)

510 models. A jackknife procedure was performed to measure the percentage of contribution and the
511 importance of the variables to the models.

512

513 **Chromosome and gene copy number variation**

514 Chromosome and local copy number variations were calculated based on haploid read depths. Per site
515 coverages were obtained with SAMTOOLS v1.0⁷³. Assuming diploidy, aneuploidy was estimated as
516 two times the haploid chromosomal read depths, which was obtained by normalizing the median
517 chromosomal read depths by the median genome-wide read depth. *L. peruviana*-specific local copy
518 number variations were detected by comparing haploid read depths in non-overlapping 10kb windows
519 or across protein-coding genes between *L. peruviana* and *L. braziliensis*. Haploid copy numbers were
520 obtained by normalizing the median read depths per 10kb window or per gene by the median
521 chromosomal read depth. The haploid copy numbers of genes were summed up per orthologous gene
522 group. In order to identify structural variations specific to *L. peruviana*, we subtracted the haploid copy
523 numbers per *L. peruviana* isolate by the average haploid copy number observed in *L. braziliensis*,
524 yielding a normal distribution centered around zero for each *L. peruviana* isolate. Local copy number
525 variations were then defined where the z-score was lower than -3 (deletions) or larger than 3
526 (amplifications). The haploid copy numbers of consecutive deletions/amplifications in 10kb windows
527 were summed up to obtain an estimate of the total haploid copy number within a given genomic region.

528

529 **Automated assembly and circularization of mitochondrial minicircles**

530 We implemented a novel bioinformatics pipeline in python to automate the assembly and circularization
531 of minicircle sequences from short-read whole genome sequence data. An overview of the pipeline
532 named KOMICS (Kinetoplast genOMICS) is given in Supp. Figure 12, and the program is available at
533 <https://github.com/FreBio/komics>.

534 KOMICS takes as input paired-end reads in BAM format, whereby reads were aligned to a nuclear
535 reference genome. Reads that did not align to the nuclear genome are extracted from the alignment file.
536 In order to minimize bias in the assembly process due to sequencing errors, reads are quality trimmed
537 using TRIMMOMATIC v0.32⁷⁴ with the following settings: bases with a quality below 30 are cut from

538 both ends of the read (LEADING:30 TRAILING:30), reads are cut once the average quality within a
539 10bp window drops below 30 (SLIDINGWINDOW:10:30), reads below 100bp in length are dropped
540 (MINLEN:100) and Illumina adapters were removed (ILLUMINACLIP:TruSeq3-PE.fa:2:30:15:1).
541 High quality reads are then used for *de novo* assembly using a multiple *k*-mer strategy in MEGAHIT⁷⁵,
542 currently the most efficient assembler optimized for large and complex metagenomics sequencing data.
543 As MEGAHIT deals with non-uniform sequencing depths⁷⁵, it is suitable for assembling minicircle
544 sequences that show a large variability in copy numbers.
545 The resulting contigs of the MEGAHIT assembly are filtered for the presence of the Conserved
546 Sequence Block 3 (CSB3), a 12-bp minicircle motif, also known as the universal minicircle sequence,
547 that is highly conserved across all Kinetoplastida species³⁷. By default, KOMICS uses the known CSB-
548 3 motif GGGGTTGGTGTA and its reverse complement to extract contigs of putative minicircle origin.
549 For circularization, komics uses BLAST⁷⁶ as a strategy to identify a sequence that is in common at the
550 start and the end of a given minicircle contig. MEGABLAST is run on the entire set of minicircle
551 contigs with the low complexity filter turned off and allowing a maximum e-value of 10⁻⁵. The BLAST
552 output is processed to retain only hits among the same minicircle contig (avoiding artificial dimers)
553 with 100% identity and a minimum 20bp overlap at the start and end of a given contig. Whenever an
554 overlap is found, the contig is classified as circular and the duplicated sequence at the start of the contig
555 is removed. Finally, the assembly is polished by putting the CSB3-mer at the start.
556 The quality of the minicircle assembly is verified by aligning the unmapped reads to all minicircles
557 using SMALT, whereby the circular minicircles were extended by 150bp, and estimating the following
558 mapping metrics. First, the quality of the total assembly for a given sample is verified by estimating the
559 number of reads that are (i) mapped, (ii) perfectly matched, (iii) properly paired (including reads that
560 align at both ends in opposite direction) or (iv) aligned with a minimum mapping quality of 20. The
561 same numbers are also estimated but only for those reads that contain the CSB3-mer, allowing to
562 estimate the proportion of successfully assembled minicircles for a given sample. Second, the quality
563 of each minicircle assembly is verified by estimating the same metrics as listed above for the total
564 assembly, and by estimating the mean, median, minimum and maximum read depth.
565

566 **Prediction of guide RNA genes on mitochondrial maxicircles and minicircles**

567 Genome and transcriptome sequencing data were generated for *L. braziliensis* LC1412, *L. peruviana*
568 HR78 and hybrid *L. braziliensis* x *L. peruviana* isolate HR434. Genomic reads were aligned to the *L.*
569 *braziliensis* reference genome using SMALT as described above, but this time with the maxicircle
570 masked. Unmapped reads were extracted and used for assembling the mitochondrial maxicircles and
571 minicircles. Putative maxicircle contigs were generated with SPADES v3.13⁷⁷ using a multiple kmer
572 strategy (21, 33, 55, 77, 99, 127), identified by BLAST and annotated with RATT⁷⁸ using the *L.*
573 *tarentolae* annotation file. This resulted in a 18,775bp maxicircle fragment for *L. peruviana*, 18,314bp
574 for *L. peruviana* LCA04 and 19,988bp for *L. braziliensis* LC1412, all covering the maxicircle coding
575 region. Minicircles were assembled with KOMICS.

576 In order to obtain species-specific differences in edited maxicircle mRNA sequences, A, C and G
577 residues in published sequences of *L. tarentolae*⁷⁹⁻⁸² and/or *L. mexicana amazonensis* LV78⁸³ were
578 corrected based on the assembled maxicircle sequences. Illumina reads from whole-cell RNA
579 sequencing were then aligned to these manually edited sequences using SMALT, and the alignments
580 were carefully inspected for indications of potential differences from the published editing patterns.

581 Canonical gRNAs were then predicted as follows. Coding and template strands of maxicircles and
582 template strands of minicircles were aligned (not permitting gaps) to edited mRNA to predict canonical
583 gRNAs. Each strand was split into 120-nt fragments with each fragment overlapping by 60 nt. Given
584 that gRNA genes are about 40 nt long, an overlap of 60 nt was deemed sufficient to capture all gRNAs.
585 Each fragment was then aligned to all edited mRNA sequences. All unique alignments which met the
586 following criteria were recorded:

587 • contained from 25 (for minicircles) and 40 (for maxicircles) to 60 non-contiguous matches
588 (Watson-Crick or G-U basepairs)

589 • contained no more than two contiguous mismatches

590 • had an anchor duplex of at least 6WC basepairs or 5WC+1GU+1WC bps or
591 4WC+1GU+2WC bps

592 • covered at least one U insertion or deletion event.

593 Plots of predicted gRNA positions on minicircles (Supp. Fig. 15) revealed that highly likely gRNAs
594 (i.e., those longer than 40nt with low frequency of mismatches) occurred at a well-defined position of
595 between 450 to 525 nt downstream from the start of CSB3. All gRNAs falling into this region were
596 assumed to be canonical gRNAs. This does mean that some minicircles encode more than one predicted
597 canonical gRNA. In such cases, without transcriptomic data, it is impossible to determine which
598 predicted gRNAs are transcribed.

599

600

601 REFERENCES

602

- 603 1. Hoorn, C. *et al.* Amazonia through time: Andean uplift, climate change, landscape evolution, and
604 biodiversity. *Science* (2010). doi:10.1126/science.1194585
- 605 2. Nevado, B., Contreras-Ortiz, N., Hughes, C. & Filatov, D. A. Pleistocene glacial cycles drive isolation,
606 gene flow and speciation in the high-elevation Andes. *New Phytol.* (2018). doi:10.1111/nph.15243
- 607 3. Beckman, E. J. & Witt, C. C. Phylogeny and biogeography of the New World siskins and goldfinches:
608 Rapid, recent diversification in the Central Andes. *Mol. Phylogenet. Evol.* (2015).
609 doi:10.1016/j.ympev.2015.03.005
- 610 4. Castroviejo-Fisher, S., Guayasamin, J. M., Gonzalez-Voyer, A. & Vilà, C. Neotropical diversification
611 seen through glassfrogs. *J. Biogeogr.* (2014). doi:10.1111/jbi.12208
- 612 5. De-Silva, D. L., Elias, M., Willmott, K., Mallet, J. & Day, J. J. Diversification of clearwing butterflies
613 with the rise of the Andes. *J. Biogeogr.* (2016). doi:10.1111/jbi.12611
- 614 6. Ebel, E. R. *et al.* Rapid diversification associated with ecological specialization in Neotropical Adelpha
615 butterflies. *Mol. Ecol.* (2015). doi:10.1111/mec.13168
- 616 7. Hughes, C. & Eastwood, R. Island radiation on a continental scale: Exceptional rates of plant
617 diversification after uplift of the Andes. *Proc. Natl. Acad. Sci. U. S. A.* (2006).
618 doi:10.1073/pnas.0601928103
- 619 8. Lagomarsino, L. P., Condamine, F. L., Antonelli, A., Mulch, A. & Davis, C. C. The abiotic and biotic
620 drivers of rapid diversification in Andean bellflowers (Campanulaceae). *New Phytol.* (2016).
621 doi:10.1111/nph.13920

622 9. Roque, A. L. R. & Jansen, A. M. Wild and synanthropic reservoirs of *Leishmania* species in the
623 Americas. *International Journal for Parasitology: Parasites and Wildlife* (2014).
624 doi:10.1016/j.ijppaw.2014.08.004

625 10. Arana, M., Evans, D. A., Zolessi, A., Cuentas, A. L. & Arevalo, J. Biochemical characterization of
626 *Leishmania* (Viannia) braziliensis and *Leishmania* (Viannia) peruviana by isoenzyme electrophoresis.
627 *Trans. R. Soc. Trop. Med. Hyg.* (1990). doi:10.1016/0035-9203(90)90025-A

628 11. Bañuls, A. L. *et al.* Is *Leishmania* (Viannia) peruviana a distinct species? A MLEE/RAPD evolutionary
629 genetics answer. *J. Eukaryot. Microbiol.* (2000). doi:10.1111/j.1550-7408.2000.tb00039.x

630 12. Garcia, A. L. *et al.* American tegumentary leishmaniasis: Antigen-gene polymorphism, taxonomy and
631 clinical pleomorphism. *Infect. Genet. Evol.* (2005). doi:10.1016/j.meegid.2004.07.003

632 13. Odiwuor, S. *et al.* Evolution of the *Leishmania* braziliensis species complex from amplified fragment
633 length polymorphisms, and clinical implications. *Infect Genet Evol* **12**, 1994–2002 (2012).

634 14. Dujardin, J. C. *et al.* From population to genome: Ecogenetics of *Leishmania* (Viannia) braziliensis and
635 L (V) peruviana. in *Annals of Tropical Medicine and Parasitology* (1995).

636 15. Dujardin, J. C. *et al.* Molecular epidemiology and diagnosis of *Leishmania*: what have we learnt from
637 genome structure, dynamics and function? *Trans. R. Soc. Trop. Med. Hyg.* (2002). doi:10.1016/s0035-
638 9203(02)90056-8

639 16. Dujardin, J. C. *et al.* Putative *Leishmania* hybrids in the eastern Andean valley of Huanuco, Peru. *Acta
640 Trop.* **59**, 293–307 (1995).

641 17. Nolder, D., Roncal, N., Davies, C. R., Llanos-Cuentas, A. & Miles, M. a. Multiple hybrid genotypes of
642 *Leishmania* (viannia) in a focus of mucocutaneous Leishmaniasis. *Am. J. Trop. Med. Hyg.* **76**, 573–8
643 (2007).

644 18. Franssen, S. U. *et al.* Global genome diversity of the *Leishmania* donovani complex. *bioRxiv* (2019).
645 doi:10.1101/710145

646 19. Downing, T. *et al.* Whole genome sequencing of multiple *Leishmania* donovani clinical isolates
647 provides insights into population structure and mechanisms of drug resistance. *Genome Res.* **21**, 2143–
648 56 (2011).

649 20. Imamura, H. *et al.* Evolutionary genomics of epidemic visceral leishmaniasis in the Indian subcontinent.
650 *Elife* **5**, (2016).

651 21. Valdivia, H. O. *et al.* Comparative genomic analysis of *Leishmania* (Viannia) peruviana and *Leishmania*

652 (Viannia) braziliensis. *BMC Genomics* (2015). doi:10.1186/s12864-015-1928-z

653 22. Valdivia, H. O. *et al.* Comparative genomics of canine-isolated Leishmania (Leishmania) amazonensis
654 from an endemic focus of visceral leishmaniasis in Governador Valadares, southeastern Brazil. *Sci. Rep.*
655 (2017). doi:10.1038/srep40804

656 23. S L Figueiredo de Sá, B., Rezende, A. M., Melo Neto, O. P. d., Brito, M. E. F. d. & Brandão Filho, S. P.
657 Identification of divergent Leishmania (Viannia) braziliensis ecotypes derived from a geographically
658 restricted area through whole genome analysis. *PLoS Negl. Trop. Dis.* (2019).
659 doi:10.1371/journal.pntd.0007382

660 24. Inbar, E. *et al.* Whole genome sequencing of experimental hybrids supports meiosis-like sexual
661 recombination in leishmania. *PLoS Genet.* **15**, 1–28 (2019).

662 25. Cotton, J. A. *et al.* Genomic analysis of natural intra-specific hybrids among Ethiopian isolates of
663 Leishmania donovani. *bioRxiv* (2019). doi:10.1101/516211

664 26. Rogers, M. B. *et al.* Genomic Confirmation of Hybridisation and Recent Inbreeding in a Vector-Isolated
665 Leishmania Population. *PLoS Genet.* **10**, (2014).

666 27. Lukes, J. *et al.* Kinetoplast DNA Network : Evolution of an Improbable Structure. *Eukaryot. Cell* **1**,
667 495–502 (2002).

668 28. Schnaufer, A. *et al.* An RNA ligase essential for RNA editing and survival of the bloodstream form of
669 Trypanosoma brucei. *Science* (80-.). (2001). doi:10.1126/science.1058655

670 29. Cooper, S. *et al.* Assembly and annotation of the mitochondrial minicircle genome of a differentiation-
671 competent strain of Trypanosoma brucei. *Nucleic Acids Res.* **In press**, (2019).

672 30. Hu, L., Hu, H. & Li, Z. A kinetoplastid-specific kinesin is required for cytokinesis and for maintenance
673 of cell morphology in Trypanosoma brucei. *Mol. Microbiol.* (2012). doi:10.1111/j.1365-
674 2958.2011.07951.x

675 31. Brandenburg, J. *et al.* Multifunctional class I transcription in Trypanosoma brucei depends on a novel
676 protein complex. *EMBO J.* (2007). doi:10.1038/sj.emboj.7601905

677 32. Nguyen, T. N., Nguyen, B. N., Lee, J. H., Panigrahi, A. K. & Günzl, A. Characterization of a novel
678 class I transcription factor A (CITFA) subunit that is indispensable for transcription by the
679 multifunctional RNA polymerase I of Trypanosoma brucei. *Eukaryot. Cell* (2012).
680 doi:10.1128/EC.00250-12

681 33. Domagalska, M. A. *et al.* Genomes of Leishmania parasites directly sequenced from patients with

682 visceral leishmaniasis in the Indian subcontinent. *bioRxiv* (2019). doi:10.1101/676163

683 34. Kaufer, A., Barratt, J., Stark, D. & Ellis, J. The complete coding region of the maxicircle as a superior
684 phylogenetic marker for exploring evolutionary relationships between members of the Leishmaniinae.
685 *Infect. Genet. Evol.* **70**, 90–100 (2019).

686 35. Rogers, M. B. *et al.* Chromosome and gene copy number variation allow major structural change
687 between species and strains of Leishmania. *Genome Res.* **21**, 2129–2142 (2011).

688 36. Simpson, L., Douglass, S. M., Lake, J. A., Pellegrini, M. & Li, F. Comparison of the mitochondrial
689 genomes and steady state transcriptomes of two strains of the trypanosomatid parasite, leishmania
690 tarentolae. *PLoS Negl. Trop. Dis.* (2015). doi:10.1371/journal.pntd.0003841

691 37. Ray, D. S. Conserved sequence blocks in kinetoplast minicircles from diverse species of trypanosomes.
692 *Mol. Cell. Biol.* **9**, 1365–1367 (1989).

693 38. Sloof, P. *et al.* The nucleotide sequence of the variable region in Trypanosoma brucei completes the
694 sequence analysis of the maxicircle component of mitochondrial kinetoplast DNA. *Mol. Biochem.*
695 *Parasitol.* (1992). doi:10.1016/0166-6851(92)90178-M

696 39. Blum, B., Bakalara, N. & Simpson, L. A model for RNA editing in kinetoplastid mitochondria: RNA
697 molecules transcribed from maxicircle DNA provide the edited information. *Cell* (1990).
698 doi:10.1016/0092-8674(90)90735-W

699 40. van der Spek, H. *et al.* Conserved genes encode guide RNAs in mitochondria of Crithidia fasciculata.
700 *EMBO J.* (1991). doi:10.1002/j.1460-2075.1991.tb08063.x

701 41. Torrico, M. C., De Doncker, S., Arevalo, J., Le Ray, D. & Dujardin, J. C. In vitro promastigote fitness
702 of putative Leishmania (Viannia) braziliensis/Leishmania (Viannia) peruviana hybrids. *Acta Trop.*
703 (1999). doi:10.1016/S0001-706X(98)00076-X

704 42. Cortes, S. *et al.* In vitro and in vivo behaviour of sympatric Leishmania (V.) braziliensis, L. (V.)
705 peruviana and their hybrids. *Parasitology* (2012). doi:10.1017/S0031182011001909

706 43. Contreras, I. *et al.* Leishmania-induced inactivation of the macrophage transcription Factor AP-1 Is
707 Mediated by the Parasite Metalloprotease GP63. *PLoS Pathog.* (2010).
708 doi:10.1371/journal.ppat.1001148

709 44. Hoberg, E. P. & Brooks, D. R. A macroevolutionary mosaic: Episodic host-switching, geographical
710 colonization and diversification in complex host-parasite systems. *Journal of Biogeography* (2008).
711 doi:10.1111/j.1365-2699.2008.01951.x

712 45. Hoberg, E. P. & Brooks, D. R. Evolution in action: Climate change, biodiversity dynamics and
713 emerging infectious disease. *Philos. Trans. R. Soc. B Biol. Sci.* (2015). doi:10.1098/rstb.2013.0553

714 46. Hashiguchi, Y. *et al.* Andean cutaneous leishmaniasis (Andean-CL, uta) in Peru and Ecuador: the vector
715 Lutzomyia sand flies and reservoir mammals. *Acta Tropica* (2018).
716 doi:10.1016/j.actatropica.2017.12.008

717 47. Caceres, A. G. *et al.* Epidemiology of Andean cutaneous leishmaniasis: Incrimination of Lutzomyia
718 ayacuchensis (Diptera: Psychodidae) as a vector of Leishmania in geographically isolated, upland
719 valleys of Peru. *Am. J. Trop. Med. Hyg.* (2004). doi:10.4269/ajtmh.2004.70.607

720 48. Messenger, L. A. *et al.* Ecological host fitting of *Trypanosoma cruzi* TcI in Bolivia: Mosaic population
721 structure, hybridization and a role for humans in Andean parasite dispersal. *Mol. Ecol.* **24**, 2406–2422
722 (2015).

723 49. Hamilton, P. B., Gibson, W. C. & Stevens, J. R. Patterns of co-evolution between trypanosomes and
724 their hosts deduced from ribosomal RNA and protein-coding gene phylogenies. *Mol. Phylogenet. Evol.*
725 (2007). doi:10.1016/j.ympev.2007.03.023

726 50. Tihon, E., Imamura, H., Dujardin, J.-C., Van Den Abbeele, J. & Van den Broeck, F. Discovery and
727 genomic analyses of hybridization between divergent lineages of *Trypanosoma congolense*, causative
728 agent of Animal African Trypanosomiasis. *Mol. Ecol.* **26**, (2017).

729 51. Greig, D. Reproductive isolation in *Saccharomyces*. *Heredity* (2009). doi:10.1038/hdy.2008.73

730 52. Maheshwari, S. & Barbash, D. A. The Genetics of Hybrid Incompatibilities. *Annu. Rev. Genet.* (2011).
731 doi:10.1146/annurev-genet-110410-132514

732 53. Ouyang, Y. & Zhang, Q. Understanding Reproductive Isolation Based on the Rice Model. *Annu. Rev.*
733 *Plant Biol.* (2013). doi:10.1146/annurev-arplant-050312-120205

734 54. Gibson, W. & Garside, L. Kinetoplast DNA minicircles are inherited from both parents in genetic
735 hybrids of *Trypanosoma brucei*. *Mol. Biochem. Parasitol.* **42**, 45–53 (1990).

736 55. Gibson, W., Crow, M. & Kearns, J. Kinetoplast DNA minicircles are inherited from both parents in
737 genetic crosses of *Trypanosoma brucei*. *Parasitol Res* **83**, (1997).

738 56. Rusman, F. *et al.* Elucidating diversity in the class composition of the minicircle hypervariable region of
739 *Trypanosoma cruzi*: New perspectives on typing and kDNA inheritance. *PLoS Negl. Trop. Dis.* (2019).
740 doi:10.1371/journal.pntd.0007536

741 57. Gibson, W., Peacock, L., Ferris, V., Williams, K. & Bailey, M. The use of yellow fluorescent hybrids to

742 indicate mating in *Trypanosoma brucei*. *Parasit. Vectors* **1**, 4 (2008).

743 58. Turner, C. M. R., Hide, G., Buchanan, N. & Tait, A. *Trypanosoma brucei* - inheritance of kinetoplast

744 DNA maxicircles in a genetic cross and their segregation during vegetative growth. *Exp Parasitol* **80**,

745 (1995).

746 59. Birk, C. W. Relaxed cellular controls and organelle heredity. *Science (80-.)*. (1983).

747 doi:10.1126/science.6353578

748 60. Savill, N. J. & Higgs, P. G. A theoretical study of random segregation of minicircles in

749 trypanosomatids. *Proc. R. Soc. B Biol. Sci.* (1999). doi:10.1098/rspb.1999.0680

750 61. McKenna, A. *et al.* The genome analysis toolkit: A MapReduce framework for analyzing next-

751 generation DNA sequencing data. *Genome Res.* **20**, 1297–1303 (2010).

752 62. Neph, S., Reynolds, A. P., Kuehn, M. S. & Stamatoyannopoulos, J. A. Operating on genomic ranges

753 using BEDOPS. in *Methods in Molecular Biology* (2016). doi:10.1007/978-1-4939-3578-9_14

754 63. Cingolani, P. *et al.* A program for annotating and predicting the effects of single nucleotide

755 polymorphisms, SnpEff: SNPs in the genome of *Drosophila melanogaster* strain w 1118; iso-2; iso-3.

756 *Fly (Austin)*. **6**, 80–92 (2012).

757 64. Huson, D. H. & Bryant, D. Application of phylogenetic networks in evolutionary studies. *Molecular*

758 *Biology and Evolution* **23**, 254–267 (2006).

759 65. Jombart, T. & Ahmed, I. adegenet 1.3-1: new tools for the analysis of genome-wide SNP data.

760 *Bioinformatics* **27**, 3070–3071 (2011).

761 66. R Development Core Team. R: A language and environment for statistical computing. *Vienna, Austria*

762 (2018). doi:R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL

763 <http://www.R-project.org>.

764 67. Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated

765 individuals. *Genome Res.* (2009). doi:10.1101/gr.094052.109

766 68. Danecek, P. *et al.* The variant call format and VCFtools. *Bioinformatics* **27**, 2156–2158 (2011).

767 69. Paradis, E., Claude, J. & Strimmer, K. APE: Analyses of phylogenetics and evolution in R language.

768 *Bioinformatics* **20**, 289–290 (2004).

769 70. Drummond, A. J., Suchard, M. A., Xie, D. & Rambaut, A. Bayesian phylogenetics with BEAUti and the

770 BEAST 1.7. *Mol. Biol. Evol.* (2012). doi:10.1093/molbev/mss075

771 71. Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic

772 distributions. *Ecol. Modell.* (2006). doi:10.1016/j.ecolmodel.2005.03.026

773 72. Wisz, M. S. *et al.* Effects of sample size on the performance of species distribution models. *Divers.*
774 *Distrib.* (2008). doi:10.1111/j.1472-4642.2008.00482.x

775 73. Li, H. *et al.* The Sequence Alignment/Map format and SAMtools. *Bioinformatics* **25**, 2078–2079
776 (2009).

777 74. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data.
778 *Bioinformatics* (2014). doi:10.1093/bioinformatics/btu170

779 75. Li, D., Liu, C. M., Luo, R., Sadakane, K. & Lam, T. W. MEGAHIT: An ultra-fast single-node solution
780 for large and complex metagenomics assembly via succinct de Bruijn graph. *Bioinformatics* (2015).
781 doi:10.1093/bioinformatics/btv033

782 76. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. *J.*
783 *Mol. Biol.* **215**, 403–410 (1990).

784 77. Bankevich, A. *et al.* SPAdes: A new genome assembly algorithm and its applications to single-cell
785 sequencing. *J. Comput. Biol.* (2012). doi:10.1089/cmb.2012.0021

786 78. Otto, T. D., Dillon, G. P., Degrave, W. S. & Berriman, M. RATT: Rapid Annotation Transfer Tool.
787 *Nucleic Acids Res.* (2011). doi:10.1093/nar/gkq1268

788 79. Shaw, J. M., Feagin, J. E., Stuart, K. & Simpson, L. Editing of kinetoplastid mitochondrial mRNAs by
789 uridine addition and deletion generates conserved amino acid sequences and AUG initiation codons.
790 *Cell* (1988). doi:10.1016/0092-8674(88)90160-2

791 80. Shaw, J. M., Campbell, D. & Simpson, L. Internal frameshifts within the mitochondrial genes for
792 cytochrome oxidase subunit II and maxicircle unidentified reading frame 3 of *Leishmania tarentolae* are
793 corrected by RNA editing: Evidence for translation of the edited cytochrome oxidase subunit II m. *Proc.*
794 *Natl. Acad. Sci. U. S. A.* (1989). doi:10.1073/pnas.86.16.6220

795 81. Sturm, N. R. & Simpson, L. Partially edited mRNAs for cytochrome b and subunit III of cytochrome
796 oxidase from *leishmania tarentolae* mitochondria: RNA editing intermediates. *Cell* (1990).
797 doi:10.1016/0092-8674(90)90197-M

798 82. Bhat, G. J., Koslowsky, D. J., Feagin, J. E., Smiley, B. L. & Stuart, K. An extensively edited
799 mitochondrial transcript in kinetoplastids encodes a protein homologous to ATPase subunit 6. *Cell*
800 (1990). doi:10.1016/0092-8674(90)90199-O

801 83. Maslov, D. A. Complete set of mitochondrial pan-edited mRNAs in *Leishmania mexicana amazonensis*

802 LV78. *Mol. Biochem. Parasitol.* (2010). doi:10.1016/j.molbiopara.2010.05.013

803

804

805 **Table 1.** Ancestral deletions and amplifications in montane *L. peruviana* species. The numbers in the two species
 806 columns reflect the mean predicted copy numbers with the minimum and maximum copy numbers given between
 807 brackets.

Type	Orthologous Cluster	Product	Chromosomes	<i>L. peruviana</i>	<i>L. braziliensis</i>
Amplification	ORTHOMCL29	delta amastin-like surface protein	20	22 (8-34)	1 (0-3)
Amplification	ORTHOMCL6809	delta amastin-like protein	bin	16 (12-21)	9 (8-12)
Amplification	ORTHOMCL75	Autophagy protein Atg8 ubiquitin like, putative	19	12 (8-16)	5 (3-7)
Amplification	ORTHOMCL66	kinesin, putative	20, bin	18 (15-24)	12 (10-16)
Amplification	-	Amastin	20	13 (10-18)	8 (6-11)
Deletion	ORTHOMCL1	GP63, leishmanolysin	10, bin	37 (23-50)	64 (53-79)
Deletion	ORTHOMCL12	glycerol uptake protein, putative	19	3 (3-4)	9 (5-12)
Deletion	ORTHOMCL40	Amastin surface glycoprotein, putative	20	0 (0-1)	5 (3-7)
Deletion	ORTHOMCL6811	delta amastin-like protein	8	0 (0-1)	4 (3-5)
Deletion	-	Amastin	20	1 (0-2)	4 (3-6)
Deletion	ORTHOMCL6547	delta amastin	8	0 (0-1)	3 (1-5)

808
 809
 810
 811
 812
 813

Table 2. Total number of minicircle sequence classes (MSCs) for the 13 *L. braziliensis* x *L. peruviana* hybrid isolates. Percentages indicate the proportion of MSCs that were unique to *L. braziliensis*, unique to *L. peruviana*, or found in both *L. peruviana* and *L. braziliensis*.

Isolate	Number of MSCs	<i>L. braziliensis</i>	<i>L. peruviana</i>	<i>L. braziliensis</i> & <i>L. peruviana</i>
LC2877	98	64.3%	26.5%	9.2%
HR410	111	73.0%	16.2%	10.8%
HR434	105	76.2%	14.3%	9.5%
LC2435	119	73.1%	16.0%	10.9%
LC2520	110	74.5%	15.5%	10.0%
LC1407	95	64.2%	24.2%	11.6%
LC1408	106	65.1%	26.4%	8.5%
LC1418	113	65.5%	24.8%	9.7%
LC1419	107	66.4%	22.4%	11.2%
LH1099	102	72.5%	16.7%	9.8%
PER011	142	76.8%	11.3%	11.9%
LC2851	111	68.5%	19.8%	11.7%
HR80	124	63.7%	26.6%	9.7%
Average	111	69.5%	20.1%	10.4%

814
 815