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Abstract

Single cell chromatin accessibility sequencing (scCAS) has become a powerful technology for
understanding epigenetic heterogeneity of complex tissues. The development of several
experimental protocols has led to a rapid accumulation of scCAS data. In contrast, there is a lack
of open-source software tools for comprehensive processing, analysis and visualization of scCAS
data generated using all existing experimental protocols. Here we present scATAC-pro for
quality assessment, analysis and visualization of scCAS data. scATAC-pro provides flexible
choice of methods for different data processing and analytical tasks, with carefully curated
default parameters. A range of quality control metrics are computed for several key steps of the
experimental protocol. sScATAC-pro generates summary reports for both quality assessment and
downstream analysis. It also provides additional utility functions for generating input files for
various types of downstream analyses and data visualization. With the rapid accumulation of
scCAS data, scATAC-pro will facilitate studies of epigenomic heterogeneity in healthy and
diseased tissues.

Background

Chromatin accessibility is a strong indicator of the activities of functional DNA sequences.
Recently, multiple experimental protocols have been developed to profile genome-wide
chromatin accessibility in single cells, including the Assay of Transposase Accessible Chromatin
with high throughput sequencing (scATAC-seq) [1], Single-cell Combinatorial Indexing ATAC-
Seq (sci-ATAC-seq) [2], single-cell transposome hypersensitivity site sequencing (scTHS-seq)
[3], and droplet-based single-cell combinatorial indexing ATAC-Seq (dsciATAC-seq) [4]. In
this paper, we collectively define data generated with different experiment protocols as single
cell chromatin accessibility sequencing data, or scCAS data. Application of these assays have
helped to understand the epigenetic heterogeneity across cell populations in complex tissues
during normal development and pathogenesis, including adult mouse tissues [5], forebrain
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development [6], hematopoietic differentiation and leukemia evolution [7,8], T cell development
and exhaustion [9].

In contrast to the rapid growth of scCAS data, bioinformatic tools for scCAS data analysis are
critically lacking. The majority of existing analytical tools lack comprehensiveness in their
ability to process scCAS data. Both chromVar [10] and single-cell regulome analysis toolbox,
SCRAT [11] work with preprocessed data and only report loss or gain of chromatin accessibility
on a set of predefined genomic regions, which ignores a large amount of information in the
data. Detection of cell-type specific difference in chromatin accessibility, Detin [12], single cell
accessibility based clustering, scABC [13] and cisTopic [14], focus on identifying cell
populations and/or differential accessible regions given the processed data like bam files or in
peak-by-cell count matrix.

Single-cell ATAC-seq analysis tool Scasat [15] and scitools [16] are the only published software
for comprehensive analysis of scCAS data. However, Scasat is developed in the Jupyter
notebook environment. Although it is interactive, the programming codes are hard to standardize
and reuse and users need to customize the analysis step by step. Furthermore, Scasat binarizes
raw peak-by-cell count matrix, which ignores the differences among accessible regions and thus
may lead to loss of valuable information for downstream analysis. In addition, Scasat does not
provide summary reports for either data quality assessment or downstream analysis. scitools only
works for sciATAC-seq and is not well documented. Another tool SnapATAC [17] also binarizes
the raw count data and cluster cells based on bin-by-cell count matrix. Cellranger-atac by 10x
Genomics (https://www.10xgenomics.com) is another comprehensive tool but only works with
data generated using the 10x platform, and the software code is not open source. Additionally,
some key analytical modules of Cellranger-atac are not flexible and do not use state-of-the-art
algorithms. For example, the peak calling task does not use state-of-the-art algorithms, such as
Model-based analysis for ChIP-Seq 2, MACS2, [18], resulting in many problematic peaks.

Here, we present a comprehensive and open-source software package for quality assessment
and analysis of single-cell chromatin accessibility data, scATAC-pro. It provides flexible
options for most of the analytical modules with carefully curated default settings. Summary
reports for both quality assessment and downstream analysis are automatically generated.
Interface to an interactive single-cell data visualization tool VisCello [19] is also provided.

Results

scATAC-pro provides flexible choices of methods for many analytical tasks

The overall workflow of scATAC-pro is depicted in Figure 1. We provide at least two alternative
methods for all data processing and analytical modules. There are several reasons to have
alternative methods for scCAS data processing and analysis. First, for certain tasks, many tools
exist that perform equally well but have different levels of trade-off between mapping accuracy
and mapping speed [20]. For example, for read mapping, several popular aligners exist,
including BWA [21], Bowtie [22] and Bowtie2 [23]. Users can choose among those aligners
based on different goals. For cell calling, cells can be called by filtering low-quality barcodes


https://doi.org/10.1101/824326
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/824326; this version posted October 31, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

[1,2,5,8] or by using model-based approaches (e.g. cellranger-atac). Each class of methods has
its pros and cons that can be tailored towards the goals of the analysis.

Second, in the cases where a general-purpose and top-performing method exists, such as MACS2
[18] for peak calling, there are other methods that are more suitable for specific tasks. For
example, the genome wide event finding and motif discovery algorithm, GEM [24], was shown
to have better performance in identifying peaks overlapping with transcription factor binding
sites (TFBS) [25]. In this case, the users might prefer GEM over MACS?.

Third, often times there is a need for methods that can address dataset-specific characteristics.
For example, it is more appropriate to binarize the peak-by-cell count matrix if the sequencing
depth is shallow. Ideally, binarization of the count matrix should be avoided because non-
binarized counts provides differential accessibility information. Therefore, we provide methods
that work on binarized and non-binarized peak-by-cell count matrices (See details in Methods).
Another example is clustering, a critical task for understanding heterogeneity in a cell
population. To help selecting better clustering methods, we conducted a benchmarking study
using simulated data. The compared methods include scABC, chromVAR, cisTopic, Latent
Semantic Indexing or LS [2], SCRAT, and Louvain algorithm implemented in Seurat v3 [26].
Based on the benchmarking result (Supplementary Figure 2), we choose cisTopic and Seurat as
the methods for the clustering module. Note that cisTopic binarizes the peak-by-cell count matrix
while Seurat does not.

scATAC-pro provides carefully evaluated default settings for all modules

Method and parameter choice makes a big difference in the result of several analytical modules.
We therefore provide a set of carefully evaluated default settings for each analysis module. We
discuss the setting for these modules as follows (see Methods for details).

Read mapping

Because of its balance between mapping speed and accuracy [27], especially for paired-end
sequencing data, we choose BWA (specifically bwa-mem) as the default read aligner.

Peak calling

Peak calling is usually done on aggregated data across all barcodes. Such an approach fails to
identify peaks that only appear in rare cell populations. We implemented a two-step strategy,
similar to the idea used by [5]. We first segment the genome into 5 kb bins and generate a bin-
by-barcode count matrix, removing barcodes with fewer than 1,000 unique fragments. We then
cluster the barcodes using the graph-based Louvain algorithm using principal components as the
input. Finally, we use MACS?2 to call peaks on the aggregated data for each cell cluster. The final
set of peaks are generated by merging peaks less than 200 bp apart identified from different cell
clusters.

Cell calling
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As default, we use the filtering strategy to distinguish cell barcodes from non-cell barcodes,
because the method is intuitive, easy to interpret and widely used among published studies [5].
We define a barcode as a cell if its total number of unique fragments is greater than 5,000 and the
fraction of such fragments in peaks is greater than 50%. Users can use different thresholds for
the fraction of fragments in enhancers, promoters or mitochondrial genome to filter barcodes as
well.

Normalization

We provide two normalization methods. The Term Frequency-Inverse Document Frequency
(TF-IDF) method [2,5] treats count data as binary and normalizes data by sequencing depth per
cell and total number of unique fragments per peak. In the second method, count data is first log-
transformed, followed by a linear regression to remove the confounding factor due to varying
sequencing depth per cell for every peak. This method enables users to work with non-binarized
count data. The TF-IDF method is set as the default normalization method in scATAC-pro.

Dimension reduction and data visualization

We use principal component analysis (PCA) as the default dimension reduction method because
it is the most widely used method for scCAS data and easy to interpret. Note that if the PCA is
conducted on the TF-IDF normalized data, such dimension reduction is also referred as Latent
Semantic Indexing or LSI [2]. We use the PCA implementation in Seurat v3 with some
modifications. In Seurat v3, the raw count matrix is log-transformed followed by a regression to
remove confounding factors (the total number of unique fragments per cell). PCA is then
performed on the transformed features. Because there are usually hundreds of thousand peaks in
a scCAS data set, this process takes about a couple of hours to finish for a typical scATAC-seq
data set. In our implementation, we first perform PCA on the normalized peak-by-cell count
matrix, followed by a regression analysis on each principal component. This procedure
substantially reduces the computation time and produces very similar clustering result as the
original Seurat implementation (Supplementary Figure 1). Uniform Manifold Approximation
and Projection (UMAP) [28] is used as the default visualization method.

Clustering

We provide the graph-based Louvain algorithm implemented in Seurat v3 as the default
clustering method. Shared neighbor network (SNN) graph is constructed based on the first 30
principle components. Louvain algorithm is then performed on the SNN graph with default
setting. We found that Louvain algorithm has a better balance between accuracy and running
speed among several popular clustering methods (Supplementary Figure 2).

scATAC-pro provides summary reports and interface to visualization tool

scATAC-pro generates global and cell-level quality assessment metrics for both aggregated and
single cell data. Two types of metrics are generated. The first type of metrics evaluates data
quality internally, including read mapping rate, duplicate rate, high-confidence mapped
fragments (MAPQ greater than 30), and library complexity. The second type of metrics evaluates
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data quality using external annotations of genomic features, including fraction of fragments in
mitochondrial genome, fraction of fragments overlapping with peaks and other annotated
genomic regions, such as enhancers and promoters. The quality assessment summary reports are
generated in html format. These statistics can be used to filter low quality barcodes.

Besides quality assessment metrics, sSCATAC-pro also generates summary reports for
downstream analyses, including dimension reduction, clustering, differential accessibility
analysis, TF motif enrichment analysis and footprinting analysis, gene ontology analysis, linking
regulatory DNA sequences with gene promoters, and chromatin interactions prediction.

To enable interactive exploration of data in sScATAC-pro, we provide an interface to VisCello
[19], a visualization tool for single-cell omics data. To do this, we annotate the peaks with its
nearest gene, and mark genes with their TSSs located within the peak. Users can then visualize
chromatin accessibility signal of each peak or gene, and identify differential accessible peaks
across different cell clusters.

scATAC-pro provides utility functions to facilitate downstream analyses
Generation of input files for genome browser tracks for each cluster

It is a common task to visualize scCAS signal for each cell population on a genome browser. To
generate normalized signal track file, bam file of cells from each cluster is first split from the
bam file of all barcodes. Reads per cluster are then normalized as reads per kilobase per million
mapped reads. scATAC-pro outputs normalized chromatin accessibility for each cluster in
bigWig and bedGraph file formats, which can be directly uploaded to a genome browser for
visualization.

Transcription factor footprinting analysis

ATAC-seq and related technologies use the Tn5 enzyme to cleavage nucleosome-free DNA
while keeping the transcription factor binding sites intact due to protection by the bound TF. As
a result, a small region, referred to as the footprint, exhibits reduced Tn5 cleavage rate at the
ATAC-Seq peak locus. Unlike DNA motif analysis, TF footprinting analysis provides direct
evidence of TF binding to the chromatin [29]. With Hint-ATAC [30], scATAC-pro enables
footprinting analysis of either one cell cluster or differential TF binding between two cell
clusters.

Integration of multiple scCAS datasets

Starting with bam files of multiple datasets, sScATAC-pro first call peaks for each dataset. Peaks
that are less than 200 bp apart are merged. Using this merged set of peaks based on all datasets,
scATAC-pro generates raw peak-by-barcode count matrix, performs quality assessment, cell
calling and downstream analysis for each dataset. Because we generate the peak-by-cell count
using the same set of peaks for all samples, it is straightforward to integrate the datasets using
existing tools, such as Seurat v3 or Liger [31]. scATAC-pro uses Seurat v3 as the default for this
task.
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Peak annotation and Gene Ontology analysis

To facilitate Gene Ontology analysis of genes associated with differential accessibility peaks,
scATAC-pro first annotates each peak with its nearest gene. Gene Ontology analysis for those
genes of each cluster can then be performed using the runGO module. This analysis helps users
to further explore the identity of each cell cluster.

Predicting chromatin interactions by Cicero

Connecting regulatory DNA elements to target genes is a prerequisite to understanding
transcriptional regulation. Cicero [32] predicts the interactions between cis-regulatory elements
and the target genes using scCAS data. scATAC-pro generates the predicted interactions by
running the module runCicero. The resulting interactions can be viewed through the UCSC
genome browser.

Case study

We used scATAC-seq data from 10,000 peripheral blood mononuclear cells (PBMCs) from a
healthy donor (https://support.10xgenomics.com/single-cell-atac/datasets) to demonstrate the
utility of sScATAC-pro. Starting from the fastq files, scATAC-pro first demultiplexed sequencing
reads by adding the cell barcodes (R2.fastq.gz) information to the paired-end reads (R1.fastq.gz,
R3.fastq.gz). Adaptor sequences were then trimmed off, mapped to the GRCh38 reference
genome using scCATAC-pro default settings. Fragments with mapping quality score (MAPQ) less
than 30 were removed. A summary report for mapping statistics and library complexity is
provided for all reads (Figure 2A) and reads belonging to called cells (Figure 2B,C).

Using the default peak caller, scATAC-pro called 129,049 peaks after removing peaks
overlapping with ENCODE blacklisted genomic regions
(http://mitra.stanford.edu/kundaje/akundaje/release/blacklists/hg38-
human/hg38.blacklist.bed.gz). Cell barcodes were selected by filtering out barcodes with fewer
than 5,000 total unique fragments and the fraction of unique fragment in peak less than 50%
(Figure 3A). Quality assessment report for each barcode was generated using various metrics,
including distribution of insert size, transcriptional start site (TSS) enrichment profile,
distribution of the total number of unique fragments for cell and non-cell barcodes, fractions of
unique fragments overlapping with annotated genomic regions (Figure 3B-E). Overall statistics
of data aggregated from all called cells was also computed (Figure 3F).

Downstream analyses including clustering, TF motif enrichment analysis, TF footprinting
analysis, and GO analysis, cis-element interaction prediction were conducted using default
scATAC-pro methods and settings (Figure 4). In total, we found 9 cell types. The top 10
enriched TFs for each cluster are shown in Figure 4B, which provides a means for identifying
cell type associated with each cluster. For example, binding motifs of PU.1(encoded by SPI1),
IRF4, CEBPA, and CEBPB are highly enriched in clusters 0, 6, 7 and 8, suggesting those
clusters are probably monocytes [33]. Motifs of EOMES and TBX5 were enriched in clusters 1,
2 and 5, suggesting those clusters are T cells. Enrichment of EBF1 [34] and BCL11A motifs [35]
suggests cluster 3 represents B cells. The differential footprinting analysis between cluster 0 and
cluster 1 further suggests that cluster 0 represents monocytes, because the monocytic TFs PU.1,
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JUNB, JUN, CEBPA and CEBPE [33,36,37] all have significant higher binding probability in
cluster O cells (Figure 4).

Using VisCello [19], we can display chromatin accessibility values of TSS regions of several
marker genes across cell clusters (Figure 5A and Supplementary Figure 4A), such as MS4A1
(CD20) for B cells, GNLY and NKG?7 for natural killer (NK) cells, CD3E for T cells, CD14,
LYZ, and FCGR3A (CD16) for monocyte cells, and CST3 for dendritic cells (DC) [38]. We also
displayed UCSC genome browser tracks for two example genes, CD14 (Figure 5B) and the
FCERIA (Supplementary Figure 4B). Taken together, based on the chromatin accessibility
profile of known cell-type-specific marker genes, we annotated cell cluster as T cells, B cells,
CD14" monocytes, CD16" monocytes, dendritic cells, natural killer cells.

Discussion

scATAC-pro provides a comprehensive solution for scCAS data QC and analysis. It reports a
number of commonly used QC metrics for both aggregated data of all barcodes and barcodes of
called cells. These metrics evaluate multiple steps of the experimental protocol, including the
transposase reaction (insert size), quality of nucleus preparation (insert size, fraction of unique
reads, cell vs non-cell reads, mitochondrial reads), cell encapsulation (cell vs non-cell reads),
PCR amplification (duplicate rate), library preparation and sequencing (fraction of unique reads
and reads with MAP > 30). Although there is no universally optimal QC metric for all kinds of
scCAS data, the fraction of fragments in peak per cell is the most widely used in the literature.
Alternative metric such as the TSS enrichment score per cell is introduced recently [17], but its
utility may be limited for cell types that have a large fraction of active TSS-distal peaks. Having
a comprehensive annotation of cis-regulatory elements across all human cell types will facilitate
the task of evaluating quality of gene-distal ATAC-Seq peaks.

Because there is no clear optimal method for many analytical tasks, scATAC-pro provides
multiple methods that allow users to tailor their analyses and to address dataset-specific
characteristics. To guide the users, we have provided carefully evaluated default setting for each
analytical task, including both method choice and parameter setting of the selected method(s).

The open-source and modular design of scATAC-pro facilitates the maintenance and future
development of the software. Several experimental protocols exist for generating scCAS data.
Data generated using these protocols have different characteristics and qualities. sScATAC-pro is
the first software tool that enables analysis of all types of scCAS data. By doing so, scATAC-pro
facilitates the integration of rapidly growing scCAS data.

The current version of sScATAC-pro generates a static summary report. It can be
enhanced by generating dynamic summary report in future versions of the software. For
example, for downstream analyses, the results can be updated in real time based on the cell
clusters compared. Display of cis-interactions within an arbitrary genomic region specified by
the user will be another very useful feature to add.

Conclusions
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scATAC-pro is a comprehensive open source software tool for processing, analyzing and
visualizing single-cell chromatin accessibility sequence data. With the rapid accumulation of
single-cell chromatin accessibility sequencing data, application of scATAC-pro will facilitate a
better understanding of epigenomic heterogeneity in healthy and diseased tissues.

Methods
scATAC-pro workflow

scATAC-pro consists of two units, data processing unit and downstream analysis unit (Figure

1). The data processing unit takes raw fastq files for reads and barcodes as the input and outputs
peak-by-cell count matrix, QC report and genome track files. It consists of the following
modules: demultiplexing, adaptor trimming, read mapping, peak calling, cell calling, genome
track file generation and quality control assessment. The downstream analysis unit consists of the
following modules: dimension reduction, cell clustering, differential accessibility analysis, Gene
Ontology analysis, TF motif enrichment analysis, TF footprinting analysis, linking regulatory
DNA sequences with gene promoters, and integration of multiple datasets. We provide flexible
options for all modules.

We designed the workbench to be user friendly. In each run, users just need to specify the input
file (“--input” flag), the module name (“--step” flag) and a configuration file (“--config” flag), in
which users provide additional parameters or options for the analysis modules. Users can choose
to run the entire or partial workflow. By default, all results are saved in the “output” directory
under the current directory (--output_dir “./output”).

Demultiplexing

Given the fastq files and the barcode fastq files, the barcode sequences are written into the name
of each read sequence (in the format as @BARCODE:ORIGINAL READ NAME) to facilitate
the tasks of downstream modules, such as generating peak-by-cell matrix and quality assessment
at single cells. For data generated using 10x genomics, sciATAC-seq and dsciATAC-seq
protocols, users need to provide the paired-end read fastq files and the index fastq file (also
supports multiple index fastq files). For scTHS-seq data, users need to specify the parameter
isSingleEnd=TRUE in the configuration file because scTHS-seq data are single-end reads. This
module is skipped if the barcode for each read is recorded in the required format. For example, in
the mouse sci-ATAC-seq atlas data, [2,5], the barcode for each read is saved in the name of each
read in the SRA file.

Adaptor trimming

To map sequencing reads confidently to the reference genome, sScATAC-pro first trims off the
adaptor sequence and primer oligo sequence from raw reads using trim_galore
(http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/) as the default, which can
automatically detect and trim the adaptor and primer sequences. Alternatively, users can also use
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Trimmomatic [39], which is faster but users need to specify the sequence of the adaptor in the
configuration file.

Read mapping

Different alignment methods make different compromise between mapping accuracy and speed.
BWA, Bowtie and Bowtie2 are three popular and top-ranked aligners based on previous
benchmarking studies [20,27]. scATAC-pro enables all three aligners for read mapping. Based
on its popularity for single cell ATAC-seq studies, cellranger-atac use BWA as its aligner, we
use BWA (bwa-mem) as the default aligner based on its balance between mapping speed and
accuracy. Users can provide addition options in the configuration file by specifying
MAPPTING METHOD and corresponding parameters. For instance, if users want to use 10
CPUs for parallel computing, they can set BWA_OPTS = -t 10 if BWA is used, BOWTIE OPTS
=-p 10 if BOWTIE is used and BOWTIE2 OPTS = -p 10 if Bowtie2 is used. After mapping,
scATAC-pro uses samtools [40] to sort, index, mark duplicates and filter low quality reads in the
bam file.

The position sorted bam file, filtered bam file (default MAPQ score > 30), and the mapping
statistics are automatically generated and saved for downstream modules. A file called
fragment.txt that records the genomic location, barcode and the number of duplicates of each
unique fragment is generated using a custom R script to facilitate downstream analysis.

Peak calling

By default, we identify open chromatin regions by identifying peaks using aggregated fragments
across all barcodes. MACS? is a popular peak calling tool for ATAC-Seq and ChIP-Seq data. We
also enable the GEM algorithm for peak calling. It is recommended by the ENCODE consortium
for its good performance on calling TF motif enriched peaks. The processed scCAS data is then
summarized as the peak-by-barcode matrix. Peaks that only appear in rare cell types are
challenging to call by the above approach of using aggregated fragments across all barcodes. An
alternative approach is to bin the genome without peak calling or combination of binning the
genome and peak calling [5]. For the combination strategy, we first segment the genome into 5
kb bins and generate bin-by-barcode count matrix, removing barcodes with low total number of
fragments (e.g. 1,000). We then cluster the barcodes followed by peak calling for each cluster.
Peaks or bins overlapped with blacklisted genomic regions are removed for downstream
analysis. Users can specify PEAK CALLER to be one of MACS2, GEM, BIN, or, COMBINED in
the configuration file.

Cell calling

Not all barcodes are real cells in a typical scCAS dataset due to cell collision and/or cell debris.
How to distinguish cell barcodes from non-cell barcodes is still a challenging problem.
Generally, users select cell barcodes either by filtering out low quality barcodes based on some
summary statistics, such as total number of fragments and fraction of fragments in peak regions.
Alternatively, users can use model-based approaches. For example, the cellRanger-atac method
fits a mixture of two zero-inflated negative binomial models to discriminate cell barcodes and
non-cell barcodes. EmptyDrops [41], originally designed to identify cells from scRNA-Seq data,
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models the counts using a Dirichlet-multinomial distribution. scATAC-pro provides all of the
aforementioned strategies/methods. Based on our experience, cellranger-atac and EmptyDrops
(with the default fdr of 0.001) tend to call too many cells,while the knee point approach of
EmptyDrops and cellRanger-atac are too stringent. Therefore, we choose the filtering strategy as
the default since it is simple and intuitive. For the filtering strategy, users can filter barcodes
based on one or multiple summary statistics such as the total number of unique fragments,
fraction of fragments in peaks, fraction of fragments in mitochondrial genome, and fraction of
fragments overlapping with annotated promoters, enhancers, and TSS regions. Since the
implementation of cellRanger-atac cell calling is not publicly available, we implemented the
algorithm using custom R scripts.

Quality assessment

scATAC-pro provides mapping statistics for all reads as well as reads belonging to called cells.
The following QC metrics are reported: total reads, total number of mapped reads, unique
mapping rate, fraction of reads in mitochondrial genome, number of duplicate reads, high-quality
reads (MAPQ >30), library complexity, fraction of reads in annotated genomic regions and TSS
enrichment profile. The same set of summary statistics is also reported for reads belonging to
called cells. scATAC-pro also reports the number of cells called, median number of fragments
per cell, fraction of mapped reads belonging to cells.

Normalization

The default Term Frequency-Inverse Document Frequency (TF-IDF) normalization is
implemented using the TF.IDF function in Seurat v3. We also provides an alternative
normalization method, which first log-transforms the count followed by regression to remove the
confounding factor due to sequencing depth per cell.

Dimension reduction, cell clustering, and visualization

scATAC-pro supports principal component analysis (PCA) (which is also called Latent Semantic
Indexing (LSI) if the data were first normalized by TF-IDF) and latent Dirichlet allocation
(LDA) for dimension reduction. We use the Seurat v3 toolkit to implement PCA, Louvain
clustering algorithm, and the R CisTopic package to implement LDA. We provide t-distributed
stochastic neighbor embedding (tSNE) and uniform manifold approximation and projection
(UMAP) (implemented by Seurat v3) for visualization.

Differential accessibility analysis

Peaks with differential accessibility across different cell clusters are potentially cell-specific gene
regulatory elements. We use Wilcoxon test as the default method to perform differential
accessibility analysis. Alternative methods such as logistic regression based (LR) method
(implemented in Seurat v3), DESeq?2 [42] and negative binomial regression based test
(implemented in Seurat v3) are also available. Users can compare any given two clusters or
compare one cluster versus the rest of the clusters using the module runDA and specity group1,
group? in the configuration file.
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Generation of genome browser track files

scATAC-pro outputs bigWig and bedGraph files for visualizing chromatin accessibility signal in
a genome browser. The signal is normalized by reads per kilobase per million mapped reads, for
aggregated data or for each cell cluster. Those files are generated using the bamCoverage
command in deepTools toolkit [43].

TF motif enrichment analysis

scATAC-pro constructs the TF binding accessibility profile for each single cell using the
chromVAR with a slight modification. chromVAR computes a gain or loss accessibility score for
peaks sharing the same motif by comparing to accessibility score of peaks with similar mean
accessibility and GC contents. To speed up this analysis, in sScATAC-pro, instead of using the
whole peak-by-cell matrix, we select top 30% of most variable peaks. This reduces the running
time of chromVAR by eight times compared to using the full matrix of the PBMC data. We then
identify TFs that have significantly higher accessibility in one cell cluster than in the other cell
cluster by conducting a two-sample Wilcoxon test. TFs that are significantly higher chromatin
accessible in each cell cluster is saved in a text file and visualized using heatmap.

TF footprinting analysis

We use Hint-ATAC [30] to perform TF footprinting analysis, which is the first tool designed
specifically for ATAC-seq data. Due to the sparsity of scCAS data, it is impossible to predict TF
footprints at single cell level, but feasible at cell cluster level since the read depth per cluster is
similar to bulk ATAC-seq data. We also use Hint-ATAC to do differential TF footprinting
analysis.

Summary reports

scATAC-pro automatically updates the summary report after processing and/or downstream
analysis were done through custom R scripts. If some analysis modules are not executed,
scATAC-pro still generates the report with results of executed modules.

Benchmarking of clustering algorithms for scCAS data

The single-cell data were simulated by resampling bulk ATAC-seq data on 13 primary human
blood cell types [7]. Specifically, we simulated data for 200 cells for each of the 13 cell types.
For each cell, 10,000 reads were randomly selected from the mapped reads in the bulk data.
Peaks were called using MACS2 using the aggregated single-cell data. The performance of each
method was evaluated using the adjusted rand index and bulk sorted cell types as the ground
truth (Supplementary Fig 2). To investigate the robustness of each method as a function of cell
type composition, we sampled a total of 1,000 cells from the 13 cell types with different cell type
compositions. The fractions of different cell types were generated based on the Dirichlet
distribution (with shape parameter alpha = 3 for each component). For each method, the default
parameters were used, except for the number of clusters, which was set to 13.
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The datasets analyzed during this study are included in this published article and its
supplementary information files. The software packages are available from the GitHub
repository https://github.com/tanlabcode/scATAC-pro under a MIT license and are also
deposited in zenodo with DOI: 10.5281/zenodo.3520939.
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Scasat cellranger-atac scATAC-pro
Open source Yes No Yes
Preprocessing Aflapt§r Demultlp!exm.g, Demultlp!exm.g,
trimming adapter trimming adapter trimming
Read mapping Bowtie2 BWA BWA, Bowtie, Bowtie2
. MACS2, GEM, Binning,
Peak calling MACS2 ZINBA [44] COMBINED
) . . Filtering, EmptyDrop,
Cell calling Filtering Mixture of NB model Mixture of NB model
Dimension
: PCA, LSI, PLSA, PCA, LDA, LSI, tSNE,
re?duct}on .and MDS, tSNE (SNE UMAP
visualization
. Louvain on features of
. K-means, Louvain on . .
. k-medoids on reduced dimensions,
Clustering I features of reduced . . .
original features . . cisTopic on original
dimensions
features
TF binding analysis | No TF motif enrichment TF mqtlf enrichment, TF
footprinting
. . Information DESeq2, Wilcoxon test,
Differential . . , e .
R gain, Fisher’s Custom model logistic regression,
accessibility . - .
exact test negative binomial test
GO analysis Yes No Yes
QC report No Yes Yes
Genome browser
track file generation Yes No Yes
Support of multiple | Yes (but need
experimental multiplexed No Yes
protocols fastq file)

Table 1. Comparison of the features of three comprehensive software for the processing
and analysis of single-cell chromatin accessibility sequencing data. MDS: multidimensional
scaling; NB: negative binomial; PLSA: probability latent semantic analysis; LSI, latent semantic
indexing; LDA, latent Dirichlet allocation; UMAP, uniform manifold approximation and
projection (UMAP); tSNE, t-distributed stochastic neighbor embedding.
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Figure legend

Figure 1. The scATAC-pro workflow. The workbench consists of two units, data processing
unit and downstream analysis unit. Modules of the data processing unit include demultiplexing
and adaptor trimming of the raw reads, followed by mapping of reads to the reference genome,
filtering of low-quality reads. Aggregated reads are used for generating genome browser tracks,
peak calling and cell calling. Quality check (QC) reports are generated based on both aggregated
data and single cell data. Modules of the downstream analysis unit consists of dimension
reduction, clustering, differential accessibility between different cell populations, genome
browser track generation, TF binding motif and footprinting analyses, and prediction of
chromatin interactions. Most modules provide more than one analytical methods.
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Figure 2. Summary statistics for read mapping, library complexity, and cell calling.
scATAC-Seq data of human peripheral blood mononuclear cells (PBMCs) was used for
illustration purpose. Global mapping statistics are based on all data (A). Cell barcode mapping
statistics are based on called cells (B, C). MAPQ, mapping quality score.

scATAC-pro Report Global QC Cell Barcode QC Downstream Analysis '
A Global mapping statistics B Cell barcode summary C Cell barcode mapping statistics
Sample: pbmc10k
Cell called by FILTER Total_pairs 152047101 100%
Total_pairs 234252877 100%
Estimated number of cells 6783 Total_pairs_mapped 151349982 99.5%
Total_pairs_mapped 232469423 99.2%
Median fragments per cell 11537 Total_uniq_mapped 145500980 95.7%
Total_uniq_mapped 220128641 94%
o Fraction of mapped reads in cells 65.1% Total_mito_mapped 236221 0.2%
Total_mito_mapped 498673 0.2%
Fraction of MAPQ30 in cells 65.5% Total_dups 72415524  47.6%
Total_dups 98905770 42.2%

Total_pairs_MAPQ30 143362255 94.3%
Total_mito_ MAPQ30 189280 0.1%

Total_pairs_MAPQ30 215331878 91.9%
Total_mito_ MAPQ30 397362 0.2%

Total_dups_MAPQ30 69898188  46%
Total_dups_MAPQ30 94300385  40.3%

Library complexity 55.2%
Library complexity 59.8%
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Figure 3. Quality assessment metrics for called single cells. scATAC-Seq data of human
PBMCs was used for illustration purpose. (A) Plot of the fraction of fragments in peaks versus
the total number of unique fragments. The plot can be used to distinguish cell barcodes from
non-cell barcodes. (B) Distribution of insert fragment sizes. The plot can be used to evaluate the
quality of transposase reaction. (C) Transcription start site (TSS) enrichment profile. (D)
Distribution of the total number of unique fragments for cell and non-cell barcodes. The plot can
be used to evaluate the amount of cell debris sequenced. (E) Boxplot of fragments overlapping
annotated genomic regions per cell. (F) Overall statistics of data aggregated from all called cells.

scATAC-pro Report Global QC Cell Barcode QC Downstream Analysis <
A Total fragments vs. fraction in peaks B Distribution of insert size C TSS enrichment score profile
1.00 f-—=~ Cell 125
Non-cell
” onred 0.0075 g‘
Lo7s- 8 0.0
3 > €
< % 00050 £ 75
5050+ s £
£ ] ]
8 &
w o 50
0251 » 0.0025 @
& . f 25
000...\... . 0.0000
16401 16402 16403 16404 16405 0 200 400 -1000 500 ) 500 1000
Total num unique fragments Insert size Distance to TSS (bp)
D Total number of unique fragments E Overlap with annotated regions F Overall statistics
251 e ! o
Gelt 08 Fraction in peaks 68.4%
Non-cell
2.0+ Fraction in promoters 45.5%
061
>15 Fraction in enhancers (ENCODE) 23.7%
£ 1 c
é % Fraction in TSS 47.8%
o @041
1.04 &
0.0+ H
v v v v v 0.01 -
1e+01_ 1e+02 ie¢93 1e+04 1e+05
Total num unique fragments Peaks TSS Promoter Enhancer Mito

16


https://doi.org/10.1101/824326
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/824326; this version posted October 31, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Figure 4. Summary report for downstream analyses. scATAC-Seq data of human PBMCs
was used for illustration purpose. Results of the following analyses are shown: clustering
analysis (A), transcription factor (TF) motif enrichment analysis (B), differential footprinting
analysis between cluster0 and cluster1 (C) , enriched gene ontology (GO) terms for clusterO (D),

and predicted cis-interactions at CD /4 locus (E).
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Figure 5. Visualization of scATAC-Seq data. (A) Chromatin accessibility signal of single
cells. Normalized chromatin accessibility signal for peaks overlapping with transcriptional start
sites of selected marker genes. Data is visualized using visCello. (B) Chromatin accessibility
signal of aggregated cells along the genome. Genome browser view of normalized chromatin
accessibility signal at the CD14 locus across cell clusters. (C) Cell type assignment based on
chromatin accessibility signals of known cell type marker genes. Inset, clustering result without
cell type assignment.
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Supplementary figure legend

Supplementary Figure 1. Performance comparison of principal component analysis (PCA)
implemented in Seurat and scATAC-pro. (A) Computation time as a function of the fraction
of features (peaks) used. (B) Similarity of the clustering results based on PCA by Seurat and
scATAC-pro. Clustering was done using the Louvain algorithm. Similarity was measured using
the adjusted rand index.
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Supplementary Figure 2. Performance comparison of different clustering algorithms using
simulated data. (A) Adjusted rand index for different algorithms using the FACS-sorted cell
types as the ground truth. Cells from 13 types were sampled with equal probability. (B)
Computation time of each method. (C) Adjusted rand index of 100 sets of simulated data. Cells
were sampled from the 13 types with different proportions. The proportions of different cell
types were generated based on the Dirichlet distribution (with shape parameter alpha = 3 for each

component).
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Supplementary Figure 3. Screenshot of the user interface of the visualization tool, VisCello.
scATAC-Seq data of human peripheral blood mononuclear cells (PBMCs) was used for
illustration purpose. Chromatin accessibility score of peak overlapping with the transcriptional
start site of MS4A1 is displayed. Users can use gene name or peak coordinate as the search
keyword to explore the accessibility of interested regions. The raw and normalized data can be
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visualized using uniform manifold approximation and projection (UMAP) or t-distributed
stochastic neighbor embedding (tSNE) with different numbers of principal components
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Supplementary Figure 4. Chromatin accessibility of transcription start site (TSS) of two
dendritic cell markers CS73 (A) and FCERI1A (B) shown in UMAP and UCSC genome
browser, respectively.
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