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Abstract 1 

Disruption of cortical connectivity likely contributes to loss of consciousness (LOC) during both 2 

sleep and general anesthesia, but the degree of overlap in the underlying mechanisms is 3 

unclear. Both sleep and anesthesia comprise states of varying levels of arousal and 4 

consciousness, including states of largely maintained consciousness (sleep: N1, REM; 5 

anesthesia: sedated but responsive) as well as states of substantially reduced consciousness 6 

(sleep: N2/N3; anesthesia: unresponsive). Here, we tested the hypotheses that (1) cortical 7 

connectivity will reflect clear changes when transitioning into states of reduced consciousness, 8 

and (2) these changes are similar for arousal states of comparable levels of consciousness 9 

during sleep and anesthesia. Using intracranial recordings from five neurosurgical patients, we 10 

compared resting state cortical functional connectivity (as measured by weighted phase lag 11 

index) in the same subjects across arousal states during natural sleep [wake (WS), N1, N2, N3, 12 

REM] and propofol anesthesia [pre-drug wake (WA), sedated/responsive (S) and unresponsive 13 

(U)]. In wake states WS and WA, alpha-band connectivity within and between temporal, 14 

parietal and occipital regions was dominant. This pattern was largely unchanged in N1, REM 15 

and S. Transitions into states of reduced consciousness N2, N3 and U were characterized by 16 

dramatic and strikingly similar changes in connectivity, with dominant connections shifting to 17 

frontal cortex. We suggest that shifts from temporo-parieto-occipital to frontal cortical 18 

connectivity may reflect impaired sensory processing in states of reduced consciousness. The 19 

data indicate that functional connectivity can serve as a biomarker of arousal state and suggest 20 

common mechanisms of LOC in sleep and anesthesia.   21 
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1. Introduction 22 

Elucidating the changes in the brain that occur upon loss and recovery of consciousness (LOC, 23 

ROC) is critical to our understanding of the neural basis of consciousness, and is a prerequisite 24 

for improving diagnosis and prognosis of disorders of consciousness and noninvasive 25 

monitoring of awareness in clinical settings (Bayne et al., 2017; Bernat, 2017; Stein and Glick, 26 

2016). A primary hurdle is identifying changes that are specific to LOC and ROC, as opposed to 27 

nonspecific changes in brain activity in response to endogenous or exogenous factors (e.g. 28 

neuromodulators during sleep or anesthetic agents). This can be clarified by investigating 29 

common features of LOC and ROC during sleep and anesthesia (Mashour, 2006; Shushruth, 30 

2013; Tung and Mendelson, 2004). A handful of studies have compared the changes in neural 31 

activity that occur during transitions between arousal states during sleep versus anesthesia in 32 

human subjects (Li et al., 2018; Murphy et al., 2011), but commonalities in neural mechanisms 33 

have been elusive, perhaps because sleep and anesthesia data in these studies were obtained 34 

in different subjects, or because of the metrics investigated, or both. Here, we compare 35 

changes in functional connectivity in the same subjects during sleep and propofol anesthesia. 36 

Although endogenous sleep and arousal centers play a role in LOC/ROC under both 37 

sleep and anesthesia (Lydic and Baghdoyan, 2005), changes in the contents of consciousness 38 

are likely secondary to actions in neocortex (Voss et al., 2019), which is the focus of the current 39 

study. Common mechanisms for LOC/ROC under sleep and anesthesia are suggested by similar 40 

effects of LOC on sensory cortex observed under both conditions. For example, primary sensory 41 

cortex is still responsive to environmental stimuli, and basic organizational features such as 42 

frequency tuning in auditory cortex are preserved (Nir et al., 2015; Raz et al., 2014), while 43 

responses in higher order cortical sensory areas are largely suppressed (Liu et al., 2012; Wilf et 44 

al., 2016). In addition, cortical connectivity, which is central to leading theories of consciousness 45 

(Dehaene and Changeux, 2011; Friston, 2005; Tononi et al., 2016), is altered upon LOC during 46 

anesthesia (Boly et al., 2012a; Lee et al., 2017; Lee et al., 2013b; Murphy et al., 2011; Ranft et 47 

al., 2016; Sanders et al., 2018) and non-rapid eye movement (NREM) sleep (Boly et al., 2012b; 48 

Spoormaker et al., 2010).  49 
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These studies suggest that LOC under a variety of conditions converges on specific 50 

changes in cortical connectivity. However, a major impediment to identifying these changes is a 51 

lack of consensus on key details, for example whether overall or long-range connectivity 52 

decreases (Boly et al., 2012a; Lee et al., 2013b; Ranft et al., 2016; Spoormaker et al., 2010) or 53 

increases (Boly et al., 2012b; Lee et al., 2017; Monti et al., 2013; Murphy et al., 2011) upon LOC. 54 

Moreover, despite the evidence for common mechanisms of LOC under anesthesia and during 55 

NREM sleep, there are obvious differences between sleep and anesthesia as well (Akeju and 56 

Brown, 2017). Specifically, subjects are arousable from the latter but not from the former, and 57 

this maintained connectedness with the environment likely involves cortical activation. The 58 

structure of natural sleep, in its transitions between REM and multiple stages of NREM sleep, is 59 

not mimicked by steady-state anesthesia. A recent imaging study found substantial differences 60 

in the changes in functional magnetic resonance imaging (fMRI) functional connectivity that 61 

occur during sleep and propofol anesthesia (Li et al., 2018). Furthermore, delta-band activity 62 

during the deepest stages of NREM sleep (N3) most closely resembles brain activity under 63 

anesthesia (Murphy et al., 2011), but unresponsiveness (and presumably reduced level of 64 

consciousness) occurs as well in stage 2 NREM (N2) sleep (Strauss et al., 2015). Direct 65 

comparisons of changes in connectivity associated with LOC under natural sleep and anesthesia 66 

may help resolve these discrepancies. 67 

Here, we investigated changes in cortical functional connectivity across arousal states 68 

under natural sleep and anesthesia. Intracranial recordings obtained from neurosurgical 69 

patients with pharmacologically resistant epilepsy allowed us to compare connectivity using 70 

data obtained from the same recording sites in the same subjects.   71 
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2. Materials and Methods 72 

2.1. Subjects 73 

Experiments were carried out in five neurosurgical patients diagnosed with medically refractory 74 

epilepsy who were undergoing chronic invasive electrophysiological monitoring to identify 75 

seizure foci prior to resection surgery (Supplementary Table 1). Research protocols were 76 

approved by the University of Iowa Institutional Review Board and the National Institutes of 77 

Health, and written informed consent was obtained from all subjects. Research participation 78 

did not interfere with acquisition of clinically necessary data, and subjects could rescind 79 

consent for research without interrupting their clinical management. Subjects were right- 80 

handed, left language-dominant native English speakers. All subjects underwent standard 81 

neuropsychological assessment prior to electrode implantation, and none had cognitive deficits 82 

that would impact the results of this study. The subjects were tapered off their antiepileptic 83 

medication during chronic monitoring when overnight sleep data were collected (see below). 84 

All subjects had their medication regimens reinstated at the end of the monitoring period, prior 85 

to induction of general anesthesia for the resection surgery. 86 

 87 

2.2. Experimental procedures 88 

Electrocorticographic (ECoG) recordings were made using subdural and depth electrodes (Ad-89 

Tech Medical, Racine, WI). Subdural arrays consisted of platinum-iridium discs (2.3 mm 90 

diameter, 5-10 mm inter-electrode distance), embedded in a silicon membrane. Depth arrays 91 

(8-12 electrodes, 5 mm inter-electrode distance) were stereotactically implanted along the 92 

anterolateral-to-posteromedial axis of Heschl’s gyrus (HG). Additional arrays targeted insular 93 

cortex and provided coverage of planum temporale and planum polare. This allowed for 94 

bracketing suspected epileptogenic zones from dorsal, ventral, medial and lateral aspects 95 

(Nagahama et al., 2018; Reddy et al., 2010; Supplementary Fig. 1). Depth electrodes also 96 

targeted amygdala and hippocampus, and provided additional coverage of the superior 97 

temporal sulcus. A subgaleal electrode was used as a reference. All electrodes were placed 98 

solely on the basis of clinical requirements, as determined by the team of epileptologists and 99 

neurosurgeons (Nourski and Howard, 2015).  100 
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Two sets of no-task, resting-state (RS) data were recorded: overnight sleep data and 101 

anesthesia data. RS ECoG, EEG and video data were collected from subjects during natural 102 

overnight sleep (Supplementary Fig. 2a). Sleep data were collected in the dedicated, electrically 103 

shielded suite in The University of Iowa Clinical Research Unit while the subjects lay in the 104 

hospital bed. Data were recorded using a Neuralynx Atlas System (Neuralynx Inc., Bozeman, 105 

MT), amplified, filtered (0.1–4000 Hz bandpass, 12 dB/octave rolloff), sampled at 16 kHz. Stages 106 

of sleep were defined manually using facial EMG and scalp EEG data based on standard clinical 107 

criteria (2017) by board-certified physicians who participate in the inter-scorer reliability 108 

program of the AASM. Scalp and facial electrodes were placed by an accredited technician, and 109 

data were recorded by a clinical acquisition system (Nihon Kohden EEG-2100) in parallel with 110 

research acquisition. Facial electrodes were placed following guidelines of the AASM 
90 

at the 111 

left and right mentalis for EMG and adjacent to left and right outer canthi for EOG. EEG was 112 

obtained from electrodes placed following the international 10-20 system at A1, A2, F3, F3, F4, 113 

O1 and O2 in all subjects, with the following additional electrodes: C3 and C4 in all subjects but 114 

R376; E1 and E2 in L372 and R376; CZ and FZ in L409 and L423; and F8 in L423. All subjects had 115 

periods of REM, N1 and N2 sleep identified; three out of five subjects had N3 sleep periods as 116 

well. One subject (L403) experienced multiple seizures in the second half of the night; those 117 

data were excluded from analysis. 118 

Anesthesia RS data were collected in the operating room prior to electrode removal and 119 

seizure focus resection surgery. Data were recorded using a TDT RZ2 processor (Tucker-Davis 120 

Technologies, Alachua, FL), amplified, filtered (0.7–800 Hz bandpass, 12 dB/octave rolloff), and 121 

digitized at a sampling rate of 2034.5 Hz. We note that the highpass cutoff frequency on this 122 

hardware precluded analysis of frequencies below 1 Hz. Although no specific instructions were 123 

given about keeping eyes open or closed, subjects were observed to have eyes closed during 124 

nearly all resting state recordings. Data were recorded in 6-minute blocks, interleaved with an 125 

auditory stimulus paradigm as part of a separate study (Nourski et al., 2018a, b). Data were 126 

collected during an awake baseline period and during induction of general anesthesia with 127 

incrementally titrated propofol infusion (50 – 150 μg/kg/min; Supplementary Fig. 2b).  128 
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Awareness was assessed using the Observer's Assessment of Alertness/Sedation 129 

(OAA/S) scale (Chernik et al., 1990), and using the bispectral index [BIS (Gan et al., 1997)] (BIS 130 

Complete 4-Channel Monitor; Medtronic) recorded continuously throughout the experiment. 131 

OAA/S was assessed just before and just after collection of each RS data block. Two levels of 132 

anesthesia (arousal states) were targeted: sedated but responsive to command (S; OAA/S ≥ 3) 133 

and unresponsive (U; OAA/S ≤ 2) (Nourski et al., 2018a). In four of five subjects, OAA/S values 134 

crossed the boundary between S and U over the course of the 6-minute RS block (e.g. RS block 135 

#1 in subject L372; see Supplementary Fig. 2b). In these cases, only the first and last 60-second 136 

segments of the block were analyzed; data from the first segment were assigned to the S state, 137 

and data from the second segment were assigned to the U state.  138 

 139 

2.3. Data analysis 140 

2.3.1. Band power analysis 141 

Data were assigned to specific arousal states based on sleep scoring and OAA/S assessment. For 142 

each subject, sleep and anesthesia data were divided into segments of length 60 seconds for all 143 

analyses except the classification analysis (Fig. 5; see below), for which 10-second segments 144 

were used. Time-frequency analysis was performed using the demodulated band transform 145 

(DBT; Kovach and Gander, 2016), which optimizes frequency resolution for each frequency 146 

band specified, while minimizing spectral leakage across bands. PSDs were estimated for each 147 

data segment from the squared magnitude of the DBT. For each subject, PSDs were averaged 148 

across segments assigned to identical arousal states. ECoG band power was calculated as the 149 

average power across frequency in each band. Band power within ROI group was computed as 150 

the average across all recording sites in that ROI group, and arousal state-dependent changes in 151 

band power were evaluated using linear mixed effects models as follows. The data were 152 

normalized to total power and log transformed, then fit with a model incorporating fixed 153 

effects of state, ROI, and the interaction of state and ROI, and random effects for channels 154 

nested within subjects and with random slopes for brain state by subject, using the R package 155 

lme4 (Bates et al., 2015). Estimated marginal means and 95% CIs for each ROI and state were 156 

calculated, as well as pairwise between-states contrasts within each ROI with p-values adjusted 157 
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by multivariate t for all comparisons within a band, using the R package emmeans (Lenth, 158 

2019). 159 

 160 

2.3.2. Connectivity analysis  161 

Connectivity was measured using the debiased weighted phase lag index (wPLI) (Vinck et al., 162 

2011), a non-directed measure of phase synchronization that eschews synchronization near 163 

zero phase lag to avoid artifacts due to volume conduction. For each data segment, wPLI was 164 

estimated for every electrode pair from the sign of the imaginary part of the DBT-derived cross-165 

spectrum at each frequency and averaged across frequencies within each band of interest 166 

(delta: 1-4 Hz, theta: 4-8 Hz, alpha: 8-13 Hz, beta: 13-30 Hz, gamma: 30-70 Hz; high gamma: 70-167 

120 Hz). As the analysis results tended to be correlated in the frequency domain, we chose to 168 

present only the results for the delta, alpha and gamma band. Alpha-band wPLI in particular is a 169 

commonly used measure of functional connectivity (Blain-Moraes et al., 2014; Blain-Moraes et 170 

al., 2015; Lee et al., 2013a; Lee et al., 2017; van Dellen et al., 2014). In addition, we observed 171 

evidence for alpha-band oscillatory components in the resting state power spectra, further 172 

motivating focus on this band. Therefore, our primary measure of functional connectivity was 173 

alpha-band wPLI, but connectivity in delta and gamma bands is presented as well for 174 

comparison. 175 

 176 

2.3.3. Anatomical reconstruction and ROI parcellation  177 

Electrode localization relied on post-implantation T1-weighted structural MR images and post-178 

implantation CT images. All images were initially aligned with pre-operative T1 images using 179 

linear coregistration implemented in FSL (FLIRT) (Jenkinson et al., 2002). Electrodes were 180 

identified in the post-implantation MRI as magnetic susceptibility artifacts and in the CT as 181 

metallic hyperdensities. Electrode locations were further refined within the space of the pre-182 

operative MRI using three-dimensional non-linear thin-plate spline warping (Rohr et al., 2001), 183 

which corrected for post-operative brain shift and distortion. The warping was constrained with 184 

50-100 control points, manually selected throughout the brain, which aligned to visibly 185 

corresponding landmarks in the pre- and post-implantation MRIs. 186 
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To compare functional connectivity between arousal states, the dimensionality of the 187 

adjacency matrices (i.e. the wPLI connectivity matrices) was reduced by assigning electrodes to 188 

one of 37 specific ROIs organized into 7 ROI groups (Fig. 3; Table 1; Supplementary Table 2) 189 

based upon anatomical reconstructions of electrode locations in each subject. For subdural 190 

arrays, it was informed by automated parcellation of cortical gyri (Destrieux et al., 2010; 191 

Destrieux et al., 2017) as implemented in the FreeSurfer software package. For depth arrays, 192 

ROI assignment was informed by MRI sections along sagittal, coronal and axial planes. For 193 

recording sites in HG, delineation of core auditory cortex and adjacent non-core areas (HGPM 194 

and HGAL, respectively) was based on physiological criteria (Brugge et al., 2009; Nourski et al., 195 

2016). Specifically, recording sites were assigned to the HGPM ROI if they exhibited phase-196 

locked ECoG responses to 100 Hz click trains and if the averaged evoked potentials to these 197 

stimuli featured short-latency (<20 ms) components. Such response features are not present 198 

within HGAL. Additionally, correlation coefficients between average evoked potential 199 

waveforms recorded from adjacent sites were examined to identify discontinuities in response 200 

profiles along HG that could be interpreted as reflecting a transition from HGPM to HGAL. 201 

Recording sites identified as seizure foci or characterized by excessive noise, and depth 202 

electrode contacts localized to the white matter or outside brain, were excluded from analyses 203 

and are not listed in Supplementary Table 2. 204 

 205 

2.3.4. ROI-based connectivity analysis 206 

Connectivity between ROIs was computed as the average wPLI value between all pairs of 207 

recording sites in the two ROIs. For analyses in which connectivity was summarized across 208 

subjects (see Fig. 4 and Supplementary Figs. 6 & 7), ROIs were only included if at least 3 out of 5 209 

subjects had electrode coverage in that ROI; 29 out of 37 ROIs met this criterion. For display 210 

purposes only, adjacency matrices for each subject were averaged across segments assigned to 211 

identical arousal states, and the matrices thresholded to retain only the 10% strongest 212 

connections. Quantitative analyses were based on unthresholded adjacency matrices. 213 

Changes in connectivity with arousal state were evaluated by computing differences 214 

between adjacency matrices, and quantified by calculating the operator norm (d) of the 215 
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difference matrix; smaller values of d indicate more similar matrices. This difference metric was 216 

chosen instead of either the Pearson correlation or the Frobenius norm because it retains 217 

information about the structure of the matrix. Specifically, for a matrix M, dM is the maximum, 218 

over all vectors v with ||v|| = 1, of ||Mv||, and indicates how much M stretches these 219 

vectors; with M representing the difference between adjacency matrices measured in two 220 

arousal states, v could represent the inputs to or the activity of the nodes of the network at a 221 

particular time point, and Mv would then be the effect on that activity of the difference in brain 222 

state. The operator norm [computed in Matlab as norm (M)] is related to the spectrum of M
T
M: 223 

dM = the square root of the maximum eigenvalue of M
T
M.  224 

To compare arousal state-dependent differences in d (for example, to see whether dWS,N1 is 225 

different than dN1,N2), effect sizes were calculated as Cliff’s delta, δ; (Cliff, 1993). Cliff’s delta 226 

ranges from -1 to 1 where 0 indicates completely overlapping distributions and -1 or 1 indicate 227 

distributions where all observed values of one group are less/greater than all observed values 228 

of the comparison group. Effect sizes were first calculated for each subject, and then reported 229 

as the mean effect size across subjects, δ�. A permutation method was used to estimate p-230 

values for these comparisons; within each subject and each experiment (sleep and anesthesia), 231 

restricted random permutations of state labels for the data segments, preserving the order of 232 

observations, produced an estimated distribution under the null hypothesis that the 233 

comparisons do not depend on arousal state (Besag and Clifford, 1989; Winkler et al., 2015). 234 

Independent p-values obtained within individual subjects for a given test were combined across 235 

subjects using Stouffer’s Z-transform method (Heard and Rubin-Delanchy, 2018; Stouffer et al., 236 

1949). Non-parametric approaches (Cliff’s delta and permutation method) were preferable to 237 

parametric statistics for these data, as the distributions of operator norms and differences were 238 

skewed and the magnitude varied between subjects. Given the small number of subjects, these 239 

statistical methods treat each subject as a single-case and then combine results in a meta-240 

analysis. Because p-values and effect sizes were first estimated in single subjects, this approach 241 

reduces the influence of possible outlier subjects and non-normally distributed measures.  242 
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2.3.5. Classification analysis 243 

We used a classification analysis as an additional evaluation of changes in connectivity as a 244 

function of arousal state. Here, data from each subject was divided into 10-second segments, 245 

and adjacency matrices were computed for each segment. To ensure that the data from the 246 

two experiments (sleep and anesthesia) were on the same scale, adjacency matrices computed 247 

from the anesthesia data were scaled by the slope derived from a regression analysis that 248 

related wPLI values computed for sleep vs. anesthesia data for each subject. A linear classifier 249 

(implemented using SGDClassifier from Python's Scikit-Learn library) was trained on a subset 250 

(80%) of WS and N2 segments, and then applied to unseen data from all arousal states (WS, N1, 251 

N2, N3, REM, WA, S, U) in each subject. Data from the sleep experiment were chosen over 252 

those from the anesthesia experiment to train the classifier because the former yielded many 253 

more data segments (see Supplementary Fig. 2). Rather than using a binary classification, we 254 

applied a logistic weighting function that assigned each segment a weight from 0 (most ‘N2-255 

like’) to 1 (most ‘WS-like’). We report the median logistic prediction scores across all 25 256 

pairwise permutations of WS and N2 train/test splits (4/5 train, 1/5 test) in each subject. Given 257 

an unequal number of observations in WS and N2 datasets (see Supplementary Table 3), 258 

training sets were balanced in each permutation via random sampling. Hyperparameters 259 

corresponding to the strength of regularization (alpha parameter) and the tolerance threshold 260 

(i.e. when to stop training the model) were optimized for each training set permutation using 261 

three-fold cross-validation. Specifically, each training set was split into three folds, and one of 262 

those three folds was used as a test set to evaluate the performance of a given hyperparameter 263 

value when training a model on the remaining two folds. For each hyperparameter value 264 

evaluated, this process was repeated three times to average over all test sets. Hyperparameter 265 

values yielding the lowest average test set error were then used in the final model being 266 

applied to unseen data for each train/test permutation. Probability density functions for each 267 

arousal state and each subject were estimated from logistic prediction scores using kernel 268 

density estimation (ksdensity function in Matlab) and represented as violin plots (see Fig. 5 and 269 

Supplementary Fig. 8).  270 
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2.3.6. Regional connectivity analysis 271 

State-dependent differences in regional connectivity were quantified by dividing ROIs into a 272 

posterior (‘back’) group (temporal, parietal and occipital ROIs), and an anterior (‘front’) group 273 

(frontal ROIs). Mean alpha-band wPLI across all pairs of recording sites within each group were 274 

used to calculate bias in connectivity, defined as the difference between within-posterior and 275 

within-anterior connectivity. State-dependence of long-range alpha-band connectivity was 276 

assayed by measuring wPLI across the top 25% most distant pairs of recording sites. Euclidean 277 

distances between sites were measured using standard 3D coordinates (Right-Anterior-278 

Superior, RAS). Changes in within-posterior versus within-anterior connectivity and changes in 279 

long-range connectivity were assessed using permutation analysis as described above for state-280 

dependent differences in d.  281 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 30, 2019. ; https://doi.org/10.1101/823963doi: bioRxiv preprint 

https://doi.org/10.1101/823963
http://creativecommons.org/licenses/by-nc-nd/4.0/


 12

3. Results 282 

3.1. Electrode coverage 283 

Data from a total of 864 recording sites from five subjects (Supplementary Table 1), spanning a 284 

total of 37 regions of interest (ROIs) were analyzed (Table 1). Each subject contributed between 285 

154 and 198 sites (median 172; Supplementary Table 2, Supplementary Fig. 1). The focus of this 286 

study was on changes in cortical connectivity across arousal states. As sensory awareness is a 287 

key element of consciousness (Boly et al., 2017), we centered our analysis around cortical 288 

hierarchical organization in the auditory modality, which is a convenient choice and a frequent 289 

focus of studies of both sleep and general anesthesia (e.g. Liu et al., 2012; Raz et al., 2014; 290 

Strauss et al., 2015). Clinical considerations dictated dense sampling of the temporal lobe, 291 

including auditory and auditory-related cortex, providing comprehensive electrode coverage 292 

across multiple levels of the auditory cortical hierarchy in all subjects. 293 

 294 

3.2. Defining arousal states 295 

Polysomnography based on scalp electroencephalography (EEG), electrooculography, 296 

electromyography, and video was used to assign sleep stages. All five subjects exhibited 297 

overnight sleep patterns typical of healthy adult subjects (Supplementary Fig. 2a). There was a 298 

high correspondence between the ratio of delta to beta band power in frontal ECoG electrodes 299 

and the assigned sleep stage (cf. Kremen et al., 2019). Overnight recordings in all subjects 300 

featured wake (WS) state as well as N1, N2 and REM sleep stages; N3 was also observed in 3 of 301 

5 subjects (Supplementary Table 3). The total duration of scored recordings in each subject was 302 

between 306.8 and 649.6 minutes (median 534.4).  303 

 During the anesthesia experiment, all subjects transitioned from wake (WA) to sedated 304 

(S; OAA/S>2) and unresponsive (U; OAA/S ≤2) states as propofol infusion rate was increased 305 

(Supplementary Fig. 2b). OAA/S scores exhibited a good correspondence with bispectral index 306 

(BIS) values, as expected for sedation and anesthesia induced by propofol alone (Glass et al., 307 

1997). WA, S and U states were characterized by median BIS values of 93 (range 80-98), 78 308 

(range 36-97) and 52 (range 33-74), respectively.  309 
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3.3. Changes in spectral power under sleep and anesthesia 310 

Power spectral density (PSD) measurements made during WS and WA states exhibited shapes 311 

typical of resting state eyes-closed recordings, with power falling off approximately as 1/f
2
 and 312 

broad peaks typically observed in the alpha and beta bands (Fig. 1; Supplementary Fig. 3). There 313 

were only small differences observed between WS and N1, and none between WA and S (Fig. 314 

2). By contrast, transitions into states N2 and U were characterized by large band- and region-315 

specific changes in PSDs. As expected, N2 sleep was characterized by a widespread increase in 316 

delta power (see Fig. 2a). Of note, increases in alpha power in N2, as might be expected due to 317 

sleep spindles (Andrillon et al., 2011), were not consistent across subjects. Loss of 318 

responsiveness under anesthesia (U) was associated with large increases in delta power within 319 

PFC and sensorimotor areas, and a selective increase in alpha power in PFC (see Fig. 2b), 320 

consistent with previous observations (Purdon et al., 2013).  321 

 322 

3.4. Changes in functional connectivity under sleep and anesthesia 323 

Functional connectivity was assayed using the debiased weighted phase lag index (wPLI) (Vinck 324 

et al., 2011). As ECoG power spectra featured peaks in the alpha band, we focused on alpha-325 

band wPLI, but presented analyses of functional connectivity in other canonical frequency 326 

bands as well. Like other phase-related measures, wPLI can be sensitive to uncorrelated noise 327 

(Vinck et al., 2011), leading to correlations with spectral power. However, in the dataset 328 

presented here power did not exhibit an appreciable correlation with wPLI residuals (mean 329 

across patients R
2
 = 0.02, maximum R

2
 = 0.04) after accounting for state, indicating that spectral 330 

power changes did not contribute substantially to our measure of functional connectivity. 331 

Adjacency matrices were computed first for each pair of recording sites (Fig. 3a), then 332 

transformed into ROI-based adjacency matrices (Fig. 3b), from which chord connectivity plots 333 

were created (Fig. 3c). Single-subject examples of chord connectivity plots for delta, alpha and 334 

gamma bands across arousal states during sleep and anesthesia are shown in Supplementary 335 

Figures 4 and 5. Qualitatively, in the wake states (WA, WS) alpha-band connectivity was 336 

dominated by connections within and between the temporal and parietal lobes in all five 337 

subjects (Fig. 4). This pattern was largely preserved in N1, REM and S states. By contrast, for N2 338 
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and U, alpha-band connectivity showed a shift to connectivity within prefrontal ROIs and 339 

between prefrontal cortex and select ROIs, including HGPM, insula, gyrus rectus and PMC (see 340 

Fig. 4, third column). More modest changes in connectivity were observed in other frequency 341 

bands (Supplementary Fig. 6). In the three subjects in whom N3 sleep was observed, the shift in 342 

alpha-band connectivity was even more pronounced in N3 compared to N2 (Supplementary Fig. 343 

7). 344 

 345 

3.5. Common neural signature of functional connectivity changes in sleep and anesthesia 346 

A striking transition boundary in the alpha-band connectivity patterns between two sets of 347 

arousal states: [WS, N1, REM, WA, S] and [N2, N3, U] is apparent in the chord connectivity 348 

plots. Differences in the degree of conscious experience in these two sets suggest a functional 349 

boundary as well: the first set comprises states in which subjects are responsive (WS, WA, S), or 350 

have high incidence of reportable conscious experience within the context of dreaming (N1, 351 

REM), while the second set comprises states in which subjects are unresponsive and have low 352 

incidence of reportable conscious experience (Eer et al., 2009; Leslie et al., 2009; Siclari et al., 353 

2013). To quantify these observations, changes in connectivity with arousal state were 354 

measured using the differences between un-thresholded ROI × ROI adjacency matrices. 355 

Specifically, the magnitude of the difference in connectivity between states J and K was 356 

computed as dJ,K = ||AJ – AK||, where A is the adjacency matrix for that state and ||M|| is the 357 

operator norm of the matrix M (see Methods). Using this metric, functional connectivity was 358 

evaluated within each experiment (sleep, anesthesia) to test the hypothesis that differences 359 

across the transition boundary (sleep: dN1,N2 and dREM,N2; anesthesia: dS,U) were larger in 360 

magnitude than differences that do not cross that boundary (sleep: dWS,N1, dWS,REM; anesthesia: 361 

dWA,S). Mean effect sizes across subjects (mean Cliff’s delta, δ�, see methods) are reported and 362 

a permutation test was performed to estimate how chance arrangements of the data compare 363 

to the actual differences observed. We found that within the alpha-band, dWS,N1 was 364 

significantly smaller than dN1,N2 (δ� = 0.38, p = 0.00013), as was dWA,S compared to dS,U (δ� = 365 

0.70, p = 0.046). Additionally, dWS,REM was significantly smaller than dREM,N2 (δ� = 0.25, p = 366 
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0.0025). Comparable results (i.e. both dWS,N1 < dN1,N2 and dWA,S < dS,U significant) were not found 367 

within delta and gamma bands  (Supplementary Fig. 6; Supplementary Table 4). 368 

Further support for a transition boundary distinguishing alpha-band connectivity profiles 369 

was provided by classification analysis (Fig. 5a). Rather than starting with the average 370 

connectivity profiles, as in the difference norms analysis above, the classification analysis was 371 

based directly on the minute-by-minute connectivity matrices measured during the overnight 372 

sleep experiment. The classifier was trained on data segments from two states appearing to fall 373 

on either side of the boundary, WS and N2, and then tested on data segments from all arousal 374 

states. We used a logistic weighting function to assign a value between 0 (‘N2-like’) and 1 (‘WS-375 

like’) to each segment. For this analysis, adjacency matrices were calculated from shorter (10-376 

second) segments of data to provide a larger dataset on which to train the classifier, and the 377 

analysis was performed on each subject separately. As expected, median prediction scores on 378 

N2 and WS were highly skewed toward 0 and 1, respectively (N2: 0.10; WS: 0.90). Separation in 379 

median prediction score for N2 and WS segments was greater for alpha (difference of medians 380 

= 0.80) compared to other frequency bands (delta, difference of medians = 0.54; gamma, 381 

difference of medians = 0.49). N3 data were classified as ‘N2-like’ (median logistic prediction 382 

score = 0.12). Importantly, both N1 and REM tended to be classified as ‘WS-like’ (median 383 

logistic prediction score = 0.68 and 0.56, respectively). These results were generally consistent 384 

across the five subjects (Supplementary Fig. 8).  385 

The similarities between connectivity profiles measured during sleep and anesthesia 386 

(i.e. between WS and WA, between N1 and S, and between N2 and U; Fig. 4) suggest a 387 

commonality in the mechanisms governing transitions between arousal states in the two 388 

experiments. The hypothesis that certain pairs of states in sleep and anesthesia can be 389 

considered ‘equivalent’ (i.e. WS and WA, N1 and S, N2 and U) was tested by comparing the 390 

distances between alpha-band connectivity profiles measured in equivalent states with those 391 

measured in states hypothesized to be ‘non-equivalent’ (i.e. on opposite sides of the transition 392 

boundary in Figure 4). Thus, dEquiv (i.e. dWS,WA, dN1,S and dN2,U) were compared to dNon-equiv [i.e. 393 

mean (dWS,U,dWA,N2), mean (dN1,U, dS,N2) and mean (dN1,U, dS,N2), respectively]. We found that 394 

dWS,WA and dN1,S were significantly smaller than their corresponding dNon-equiv (δ� = 0.22, p = 395 
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0.0022 and δ� = 0.23, p = 0.00076, respectively) but dN2,U was not (δ� = 0.14, p = 0.31). These 396 

data indicate similarity in alpha-band connectivity profiles observed during N1 sleep and 397 

sedation. Comparable results (i.e. both dWS,WA and dN1,S significantly smaller than their 398 

corresponding dNon-equiv) were not found within delta and gamma bands  (Supplementary Fig. 6; 399 

Supplementary Table 4). 400 

Classification analysis also provided support for the idea that connectivity profiles under 401 

sleep and anesthesia overlap. Here, classifiers trained on WS and N2 data from the sleep 402 

experiment (see Fig. 5a) were applied to anesthesia data (Fig. 5b) in order to determine 403 

whether the transition boundary observed during sleep generalized to changes in arousal state 404 

under anesthesia. The classifiers tended to assign WA and S segments to the WS-like category 405 

(median logistic prediction score = 0.68 and 0.55, respectively) and assigned U segments with 406 

high probability to the N2-like category (median logistic prediction score = 0.11). Taken 407 

together, the results of these two analyses suggest substantial overlap in connectivity profiles 408 

between ‘equivalent’ sleep and anesthesia arousal states. 409 

 410 

3.6. Regional distribution of functional connectivity strength across arousal states 411 

The changes in regional distribution of connectivity across the transition boundary, i.e. the shift 412 

from temporo-parietal to prefrontal connectivity, were strikingly similar in the sleep and 413 

anesthesia experiments (see Fig. 4). Boly and colleagues (Boly et al., 2017) presented evidence 414 

that the neural correlates of consciousness correspond primarily to activity in the ‘back’ of the 415 

brain, specifically involving broad regions in the temporal, parietal and occipital lobes, and 416 

excluding regions in the frontal lobe. Motivated by this perspective, we quantified the 417 

differences in regional connectivity observed across arousal states in the current study. We 418 

divided ROIs into two groups: a posterior group that included all temporal, parietal and occipital 419 

ROIs, and an anterior group that included all frontal ROIs. We then compared the mean alpha-420 

band wPLI across all pairs of recording sites within each group, and calculated a regional bias in 421 

connectivity as the difference between within-anterior and within-posterior connectivity. Figure 422 

6a shows the bias in connectivity, with biases toward within-posterior connectivity indicated by 423 

negative values and within-anterior by positive values. There was a shift from posterior and 424 
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towards anterior connectivity with reduced arousal in both sleep [change in regional bias from 425 

N2-N1 δ� = 0.69, p < 0.0001; N2-WS δ� = 0.72, p < 0.0001] and anesthesia (S-WA δ� = 0.98, p 426 

= 0.0011; U-S δ� = 1.0, p = 0.00037; U-WA δ� = 1.0, p < 0.0001). The shift from WS to N1 was 427 

not significant (N1-WS δ� = 0.34, p = 0.093). REM was different from N2 (N2-REM δ� = 0.81, p 428 

< 0.0001) but not significantly different from wake (REM-WS δ� = 0.23, p = 0.30). Thus, the 429 

data indicate that alpha-band connectivity in WS versus N2 and in WA versus U exhibits a 430 

similar shift from connectivity within posterior towards connectivity within anterior regions.  431 

Finally, disruption in long-range cortico-cortical connectivity has been noted upon LOC 432 

during sleep and anesthesia in several studies (Boly et al., 2012a; Lee et al., 2013b; Ranft et al., 433 

2016; Spoormaker et al., 2010), though these findings have been challenged by other studies 434 

(Boly et al., 2012b; Lee et al., 2017; Monti et al., 2013; Murphy et al., 2011). To investigate this 435 

issue in the dataset presented here, we assayed the state-dependence of long-range alpha-436 

band connectivity by measuring wPLI across the most distant pairs of recording sites, defined as 437 

highest quartile of Euclidean distances in each subject (Fig. 6b). We found no evidence for a 438 

decrease in long-range functional connectivity, observing a rather modest increase in N2 and U 439 

relative to wake (N2-WS δ� = 0.56,, p < 0.0001; U-WA δ� = 0.74,, p = 0.0061) and N1/S (N2-N1 440 

δ� = 0.63,, p < 0.0001; U-S δ� = 0.86,, p = 0.0056). We did not find significant changes in long-441 

range connectivity between WS and N1 (N1-WS δ� = -0.19,, p = 0.15) or WA and S (S-WA δ� = -442 

0.05,, p = 0.68), but long-range connectivity was reduced in REM (R-WS δ� = -0.69,, p = 443 

0.00041).   444 
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4. Discussion 445 

The search for reliable biomarkers of LOC/ROC is of great scientific interest and clinical 446 

relevance for anesthesia (Drummond, 2000) as well as for diagnosis and prognosis of disorders 447 

of consciousness (Bayne et al., 2017; Bernat, 2017). Here, we leveraged a unique opportunity to 448 

obtain intracranial electrophysiological recordings from neurosurgery patients both during 449 

natural sleep and under propofol anesthesia. We found that different arousal states were 450 

associated with distinct patterns of functional connectivity. This association was similar for 451 

sleep and anesthesia, suggesting that cortical network configuration could index changes in 452 

consciousness. 453 

 454 

4.1. ROI- and band-specific effects of sleep and anesthesia on power spectral density 455 

A practical biomarker of conscious vs unconscious state must generalize to multiple settings 456 

where LOC is encountered, including sleep and general anesthesia. Previous attempts to use 457 

band-specific power to distinguish arousal states under general anesthesia have been largely 458 

unsuccessful (Otto, 2008; Struys et al., 1998). This difficulty likely stems from agent-specific 459 

changes in power spectra, for example differing between propofol, ketamine and 460 

dexmedetomidine anesthesia (Mashour, 2020). The changes that we observed during natural 461 

sleep, specifically widespread increases in spectral power in the delta band (see Fig. 2a), are 462 

hallmarks of N2 and N3, but not N1, sleep (Prerau et al., 2017; Steriade et al., 1993). In contrast 463 

to observations during natural sleep, under propofol anesthesia we observed region-specific 464 

(not global) increases in delta power (see Fig. 2b), and increases in frontal alpha power (see Fig. 465 

2b). These observations under propofol are consistent with previous reports (Chennu et al., 466 

2016; Feshchenko et al., 2004; Ni Mhuircheartaigh et al., 2013; Purdon et al., 2013; Supp et al., 467 

2011; Tinker et al., 1977; Wang et al., 2014) and some have suggested that changes in frontal 468 

alpha and delta power are reliable indicators of loss of consciousness under propofol (Purdon 469 

et al., 2013). However, a recent study using the isolated forearm technique challenges the 470 

reliability of such an approach (Gaskell et al., 2017). Consistent with the latter findings, changes 471 

in power in the present study did not consistently distinguish N1 from N2 and S from U (see Fig. 472 

2). In addition, these changes across arousal states were not consistently paralleled by changes 473 
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in connectivity. For example, alpha power did not consistently increase in N2 compared to WS 474 

and N1 states, yet this band exhibited the most prominent connectivity changes observed 475 

during sleep (see Fig. 2, Fig. 4). Conversely, although the transition to N2 and N3 sleep was 476 

characterized by an increase in delta power in multiple ROIs, connectivity within and across 477 

these ROIs did not undergo a comparable degree of reorganization (see Fig, 2, Supplementary 478 

Fig. 6a). These results indicate that the observed changes in connectivity do not merely follow 479 

changes in power and instead reflect functional reorganization of cortical networks. The 480 

absence of meaningful correlations between connectivity and power (see Results) further 481 

support this idea. 482 

 483 

4.2. Changes in connectivity during sleep and anesthesia 484 

The sharing of information between cortical regions is a critical element in theories of 485 

consciousness and brain function (Dehaene and Changeux, 2011; Friston, 2005; Tononi et al., 486 

2016). Altered cortical connectivity observed during sleep and anesthesia has been interpreted 487 

within this theoretical context to explain reduced awareness upon LOC (Alkire et al., 2008; 488 

Mashour and Hudetz, 2017). Although there have been studies that examined functional 489 

connectivity during sleep and anesthesia (Boly et al., 2012a; Boly et al., 2012b; Lee et al., 2017; 490 

Lee et al., 2013b; Murphy et al., 2011; Ranft et al., 2016; Spoormaker et al., 2010), no previous 491 

study has directly compared the two in the same subjects. Of particular relevance is the study 492 

by Murphy et al. (Murphy et al., 2011) that examined changes in neural activity during sleep 493 

and anesthesia. However, that study utilized data from two different sets of subjects and did 494 

not compare changes in functional connectivity between the two data sets. A recent study in 495 

human volunteers that did measure changes in functional connectivity patterns derived from 496 

fMRI during transitions in arousal state found substantial differences between sleep and 497 

propofol anesthesia (again, imaged in two different groups of subjects) (Li et al., 2018). 498 

Interestingly, the latter study found that cortical changes during NREM sleep were confined to 499 

frontal cortex, while changes under propofol anesthesia were widespread. Here, measuring 500 

ECoG-derived functional connectivity in the same subjects during sleep and anesthesia, we 501 
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found substantial overlap in the regional changes in functional connectivity during transitions in 502 

arousal state. 503 

We observed consistent and pronounced changes in connectivity upon transitions into 504 

N2 and U, specifically increased connectivity within and between anterior (frontal) brain 505 

regions, as has been observed using electrophysiological measures previously under propofol 506 

anesthesia (Purdon et al., 2013; Supp et al., 2011), and reduced connectivity elsewhere. What is 507 

novel about the results presented here is the degree of overlap between changes in 508 

connectivity profiles across arousal states in sleep and anesthesia, including a pronounced 509 

transition boundary between N1 and N2 and between S and U (Fig. 4). On a superficial level, 510 

one might expect some overlap in arousal states, and thus in the changes upon transitions 511 

between arousal states, during sleep and anesthesia, yet differences are expected as well. For 512 

example, WS and WA are both wake states, but disparities in the time of day of the recordings 513 

(overnight versus morning), the behavioral state of the subject (e.g. WA was just prior to major 514 

surgery) and environment (monitoring suite versus operating room) could result in substantial 515 

differences in cortical network organization. Similarly, although both N2 and U are 516 

unresponsive states with low probability of reportable conscious experience, differences in 517 

brain state due to the presence of the anesthetic agent versus endogenous sleep factors might 518 

result in distinct brain connectivity patterns.  519 

Previous studies of the incidence of dreaming and conscious experience under 520 

anesthesia suggest that the observed transition boundary may reflect entry into and out of 521 

conscious states. Specifically, on one side of the boundary are states in which subjects are likely 522 

having conscious experiences, i.e. responsive (WS, WA, S) or dreaming frequently and vividly 523 

with high incidence of reportable conscious experience (REM, N1). On the other side are 524 

arousal states in which subjects are unlikely to be having conscious experiences, i.e. 525 

unresponsive and with low incidence of reportable conscious experience (Leslie et al., 2009; 526 

Siclari et al., 2013). This boundary was observed both with difference norms and classification 527 

analyses applied to the ROI-by-ROI adjacency matrices (see Fig. 4, 5) and with the analysis of 528 

intra-regional and long-range connectivity (see Fig. 6). However, even though connectivity 529 

patterns during propofol sedation (S) generally aligned with other conscious states, both the 530 
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classification and intra-regional connectivity analyses were consistent with fluctuations in 531 

arousal level in this state (see Fig. 5b, 6a). 532 

 A recent essay on the neural correlates of consciousness (NCC) suggests an interesting 533 

interpretation of these changes in connectivity. Boly and colleagues (Boly et al., 2017) 534 

presented evidence from lesion studies and from experiments utilizing serial awakening during 535 

sleep to argue that the “full NCC”, that is the collection of all regions underlying specific 536 

contents of consciousness, comprises large portions of the parietal, occipital, and temporal 537 

lobes, whereas frontal lobe structures underlie functions associated with, but not necessary for, 538 

those conscious contents. The regions within the full NCC are most closely associated with 539 

sensory awareness, and thus would underlie the internal generative models central to theories 540 

of predictive processing and the mismatch detection and message passing functions critical to 541 

those schemes (Friston, 2005). Alpha-band power and phase synchronization in particular are 542 

associated with feedback connectivity in the visual cortical hierarchy (van Kerkoerle et al., 543 

2014). Thus, it is possible that the shift in cortical connectivity from predominantly temporo-544 

parieto-occipital (posterior) to frontal (anterior) upon LOC may reflect a reduction in predictive 545 

processing during states of reduced consciousness. This is consistent with the finding that 546 

anterior alpha synchronization of EEG in response to propofol correlates with disrupted sensory 547 

processing in human volunteers (Supp et al., 2011). 548 

Although clinical considerations precluded electrode coverage of the thalamus, previous 549 

studies suggest that some of the changes in cortico-cortical connectivity observed in this study 550 

could be driven by altered thalamo-cortical synchronization (Saalmann et al., 2012). For 551 

example, the increased thalamo-cortical synchronization observed during sleep spindles 552 

(Andrillon et al., 2011) and during propofol anesthesia (Flores et al., 2017) may have a similar 553 

effect on functional connectivity within frontal cortex, as suggested by computational studies 554 

(Vijayan et al., 2013). However, the observations that the frontal shift in alpha-band 555 

connectivity was even more pronounced in N3 than it is in N2 (Supplementary Fig. 7), even 556 

though spindles are less common in N3 (Andrillon et al., 2011), and that significant changes in 557 

alpha power were not observed during sleep (see Fig. 2a), suggest that the changes in alpha-558 

band connectivity were unlikely driven solely by sleep spindle activity.  559 
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The disintegration of cortical networks observed upon LOC during sleep, anesthesia and 560 

coma (Alkire et al., 2008) has been ascribed to disrupted long-range connectivity. For example, 561 

several reports suggest reduced resting-state cortico-cortical (fronto-parietal) feedback 562 

connectivity under a variety of anesthetic agents, including propofol (fMRI: Boly et al., 2012a; 563 

Ranft et al., 2016; EEG: Lee et al., 2013b), consistent with results using invasive 564 

electrophysiological recordings in rodent models (Imas et al., 2005; Raz et al., 2014). Disrupted 565 

long-range resting-state functional connectivity has also been reported in fMRI studies during 566 

NREM sleep (Spoormaker et al., 2010) and anesthesia (Ranft et al., 2016). However, other 567 

studies have shown no differences in changes in short- versus long-range connectivity (fMRI: 568 

Monti et al., 2013), or even increases in long-range connectivity during anesthesia (fMRI: 569 

Murphy et al., 2011; EEG: Lee et al., 2017) and sleep (fMRI: Boly et al., 2012b). Similarly, in the 570 

present study, we saw little evidence for decreases specifically in long-range connections (see 571 

Fig. 6b). The reasons for the diverse findings of the effects on connectivity are unclear. It is 572 

possible that the dynamics and heterogeneity of the resting state cortical network contribute to 573 

this diversity. For example, network configuration prior to LOC has been shown to influence 574 

observed changes in connectivity during sleep (Wilson et al., 2019). Application of methods to 575 

these data that can characterize connectivity at finer temporal resolution may address this 576 

issue.  577 

 578 

4.3. Caveats and limitations 579 

The key limitations of this study are the small number of participants (n = 5), and that the 580 

subjects had a neurologic disorder, and thus may not be entirely representative of a healthy 581 

population. These caveats are inherent to all human intracranial electrophysiology studies. Our 582 

statistical methods focused on within-subject comparisons between states and should be 583 

generalized with caution. However, results were consistent across subjects who all had 584 

different clinical histories of their seizure disorder, antiepileptic medication regimens, and 585 

seizure foci. Recordings from cortical sites confirmed to be seizure foci were excluded from 586 

analyses. Finally, all subjects participated in multiple additional research protocols over the 587 

course of their hospitalization, including a range of behavioral tasks. Behavioral and neural data 588 
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obtained in these other experiments were examined for consistency with a corpus of published 589 

human intracranial electrophysiology data (reviewed in Nourski, 2017). None of the subjects 590 

exhibited aberrant responses that could be interpreted as grounds for caution in inclusion in 591 

this study. 592 

The motivation for exploring changes in connectivity across arousal states is to elucidate 593 

the neural underpinnings that define these states. We note, however, that the arousal states as 594 

defined in this study are likely non-uniform regarding consciousness. For example, healthy 595 

adults are able to report on conscious experience (i.e. dreaming) about 40% and 20% of the 596 

time in N2 and N3 sleep (Siclari et al., 2013). Dreaming also occurs under propofol anesthesia in 597 

about 20% of patients (Leslie et al., 2009). This suggests that differences in brain connectivity 598 

between the conscious and unconscious states may be even greater than those reported here, 599 

had it been possible to reliably distinguish dreaming vs. non-dreaming states in our data set. 600 

We also note the challenges in assessing awareness under anesthesia, and specifically 601 

the delicate balance between interrogating a subject’s awareness and changing the state of 602 

their arousal with that interrogation. The approach employed here, the OAA/S, is considered 603 

the gold standard for assessing awareness in the perioperative setting (Chernik et al., 1990), 604 

and it has been cross-validated using EEG-based measures such as BIS (Vanluchene et al., 2004). 605 

The BIS values recorded in the current study corresponded well to those associated with wake, 606 

sedated and unconscious states in previous reports (Vanluchene et al., 2004). Importantly, we 607 

did not observe consistent increases in BIS values post-OAA/S assessments compared to pre-608 

OAA/S assessments (see Supplementary Fig. 2), indicating that our assessments likely did not 609 

alter the arousal state of the subjects. 610 

 611 

4.4. Functional significance and future directions 612 

The results presented here have broad implications for understanding the neural mechanisms 613 

associated with loss of consciousness and for better understanding and differential diagnosis of 614 

disorders of consciousness. We demonstrate a transition boundary in profiles of functional 615 

connectivity that separates states of different levels of consciousness. Phase synchronization is 616 

postulated to mediate rapid communication of conscious content over multiple spatial scales in 617 
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cortex, contributing importantly to the rich repertoire of human behavior that characterizes 618 

conscious states (Fries, 2015). The finding that changes in functional connectivity based on 619 

phase synchronization indexes arousal state similarly in both sleep and anesthesia motivates 620 

further exploration of the changes in brain activity and connectivity common to changes in 621 

consciousness. These findings have practical clinical ramifications as well. Connectivity can be 622 

measured non-invasively using EEG or fMRI in patients with disorders of consciousness. 623 

Algorithms that track region-specific functional connectivity may provide a basis for noninvasive 624 

monitoring of arousal state in patients otherwise inaccessible to standard assessments of 625 

arousal based on response to command. Future experiments aimed at exploring in more detail 626 

the differences between LOC in sleep and anesthesia, and generalizing to other anesthetic 627 

agents such as dexmedetomidine and volatile anesthetics, will elucidate further fundamental 628 

questions about the nature of consciousness and arousal that remain unresolved. 629 
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Figures 645 

 646 

 647 

Fig. 1: Electrode coverage and electrocorticographic (ECoG) power spectra. Exemplary data 648 

from subject L372. a, Electrode coverage of the lateral surface of the left cerebral hemisphere 649 

(top) and left superior temporal plane (bottom). Recording sites are color-coded according to 650 

the region of interest group (see Methods for details and Supplementary table 2 for 651 

abbreviation key). b, ECoG power spectra during sleep. Data from four representative sites 652 

(left-to-right). WS: wake (sleep experiment); PSD: power spectral density. c, ECoG power 653 

spectra during anesthesia. WA: wake (anesthesia experiment); S: sedated; U: unresponsive.  654 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 30, 2019. ; https://doi.org/10.1101/823963doi: bioRxiv preprint 

https://doi.org/10.1101/823963
http://creativecommons.org/licenses/by-nc-nd/4.0/


 26

 655 

Fig. 2: Changes in ECoG band power across arousal states. a, ECoG band power during sleep, 656 

plotted as marginal means and 95% confidence intervals. b, ECoG band power during 657 

anesthesia. Data from 5 subjects. Changes in delta, alpha and gamma power are shown in top, 658 

middle and bottom rows, respectively. WS: wake (sleep experiment), WA: wake (anesthesia 659 

experiment); S: sedated; U: unresponsive. 660 
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 661 

Fig. 3: Analysis of alpha-band functional connectivity in wake state. Example from subject 662 

L372. a, Adjacency matrix for all recording sites. b, Adjacency matrix, collapsed for all regions of 663 

interest (ROIs). c, Chord connectivity plot. Line thickness reflects mean wPLI values that 664 

characterize pairs of ROIs. For display purposes, the chord plot was thresholded to retain the 665 

10% strongest connections.  666 
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 667 

Fig. 4: ROI-based analysis of alpha-band functional connectivity across arousal states. Data 668 

from five subjects. See caption of Fig. 3c for details.  669 
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 670 

Fig. 5: Classification of data segments. Logistic prediction distributions for adjacency matrices 671 

from sleep and anesthesia arousal states (panels a and b, respectively) analyzed by a linear 672 

classifier trained on a subset of WS and N2 data. Each violin plot shows the average distribution 673 

across five subjects (except for N3, which is for 3 subjects). Centered dot and surrounding 674 

horizontal lines represent each distribution’s median and first and third quartiles, respectively. 675 

For distributions from individual subjects, see Supplementary Figure 8.  676 
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 677 

Fig. 6: Intra-regional and long-range connectivity changes with arousal state. a: Mean alpha 678 

wPLI averaged within posterior quadrants of the adjacency matrices minus the average within 679 

anterior quadrants. Values greater than zero indicate greater within-posterior connectivity 680 

compared to within-anterior connectivity. b: Mean alpha wPLI values for recording site pairs 681 

distanced greater than the 75th percentile. Significance: n.s., p > 0.05; **, p < 0.01; ***, p < 682 

0.005; ****, p < 0.001 (permutation test). Although subject L372 exhibited larger effects than 683 

the others in N2 for both analyses, and in U for the long-range connectivity analysis, statistical 684 

significance and conclusions were robust to omitting that subject’s (or any individual subject’s) 685 

data from the analyses.  686 
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Tables 687 

Table 1. Regions of interest. 688 

ROI ROI abbrev. 

Auditory core: 

Heschl’s gyrus, posterolateral HGPM 

Superior temporal plane (STP): 

Heschl’s gyrus, anterolateral HGAL 

Planum temporale  PT 

Planum polare  PP 

Superior temporal gyrus (STG): 

Superior temporal gyrus, posterior  STGP 

Superior temporal gyrus, mid  STGM 

Superior temporal gyrus, anterior  STGA 

Auditory-related: 

Insula  Ins 

Superior temporal sulcus  STS 

Middle temporal gyrus, posterior MTGP 

Middle temporal gyrus, mid  MTGM 

Middle temporal gyrus, anterior  MTGA 

Supramarginal gyrus  SMG 

Angular gyrus  AG 

Prefrontal: 

Inferior frontal gyrus, pars opercularis  IFGop 

Inferior frontal gyrus, pars triangularis  IFGtr 

Inferior frontal gyrus, pars orbitalis  IFGor 

Middle frontal gyrus  MFG 

Superior frontal gyrus* SFG 

Orbital gyrus  OG 

Transverse frontopolar gyrus  TFG 

Cingulate gyrus, anterior* CGA 

Sensorimotor: 

Precentral gyrus  PreCG 

Postcentral gyrus  PostCG 

Other: 

Premotor cortex  PMC 

Parahippocampal gyrus PHG 

Fusiform gyrus  FG 

Inferior temporal gyrus  ITG 

Temporal pole  TP 

Gyrus rectus  GR 

Superior parietal lobule* SPL 

Middle occipital gyrus  MOG 

Inferior occipital gyrus* IOG 

Lingual gyrus* LG 

Cingulate gyrus, mid* CGM 

Amygdala  Amyg 

Hippocampus  Hipp 

*Limited coverage (present in 1 or 2 subjects out of 5)  689 
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