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Abstract

Disruption of cortical connectivity likely contributes to loss of consciousness (LOC) during both
sleep and general anesthesia, but the degree of overlap in the underlying mechanisms is
unclear. Both sleep and anesthesia comprise states of varying levels of arousal and
consciousness, including states of largely maintained consciousness (sleep: N1, REM;
anesthesia: sedated but responsive) as well as states of substantially reduced consciousness
(sleep: N2/N3; anesthesia: unresponsive). Here, we tested the hypotheses that (1) cortical
connectivity will reflect clear changes when transitioning into states of reduced consciousness,
and (2) these changes are similar for arousal states of comparable levels of consciousness
during sleep and anesthesia. Using intracranial recordings from five neurosurgical patients, we
compared resting state cortical functional connectivity (as measured by weighted phase lag
index) in the same subjects across arousal states during natural sleep [wake (WS), N1, N2, N3,
REM] and propofol anesthesia [pre-drug wake (WA), sedated/responsive (S) and unresponsive
(U)]. In wake states WS and WA, alpha-band connectivity within and between temporal,
parietal and occipital regions was dominant. This pattern was largely unchanged in N1, REM
and S. Transitions into states of reduced consciousness N2, N3 and U were characterized by
dramatic and strikingly similar changes in connectivity, with dominant connections shifting to
frontal cortex. We suggest that shifts from temporo-parieto-occipital to frontal cortical
connectivity may reflect impaired sensory processing in states of reduced consciousness. The
data indicate that functional connectivity can serve as a biomarker of arousal state and suggest

common mechanisms of LOC in sleep and anesthesia.
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1. Introduction
Elucidating the changes in the brain that occur upon loss and recovery of consciousness (LOC,
ROC) is critical to our understanding of the neural basis of consciousness, and is a prerequisite
for improving diagnosis and prognosis of disorders of consciousness and noninvasive
monitoring of awareness in clinical settings (Bayne et al., 2017; Bernat, 2017; Stein and Glick,
2016). A primary hurdle is identifying changes that are specific to LOC and ROC, as opposed to
nonspecific changes in brain activity in response to endogenous or exogenous factors (e.g.
neuromodulators during sleep or anesthetic agents). This can be clarified by investigating
common features of LOC and ROC during sleep and anesthesia (Mashour, 2006; Shushruth,
2013; Tung and Mendelson, 2004). A handful of studies have compared the changes in neural
activity that occur during transitions between arousal states during sleep versus anesthesia in
human subjects (Li et al., 2018; Murphy et al., 2011), but commonalities in neural mechanisms
have been elusive, perhaps because sleep and anesthesia data in these studies were obtained
in different subjects, or because of the metrics investigated, or both. Here, we compare
changes in functional connectivity in the same subjects during sleep and propofol anesthesia.
Although endogenous sleep and arousal centers play a role in LOC/ROC under both
sleep and anesthesia (Lydic and Baghdoyan, 2005), changes in the contents of consciousness
are likely secondary to actions in neocortex (Voss et al., 2019), which is the focus of the current
study. Common mechanisms for LOC/ROC under sleep and anesthesia are suggested by similar
effects of LOC on sensory cortex observed under both conditions. For example, primary sensory
cortex is still responsive to environmental stimuli, and basic organizational features such as
frequency tuning in auditory cortex are preserved (Nir et al., 2015; Raz et al., 2014), while
responses in higher order cortical sensory areas are largely suppressed (Liu et al., 2012; Wilf et
al., 2016). In addition, cortical connectivity, which is central to leading theories of consciousness
(Dehaene and Changeux, 2011; Friston, 2005; Tononi et al., 2016), is altered upon LOC during
anesthesia (Boly et al., 2012a; Lee et al., 2017; Lee et al., 2013b; Murphy et al., 2011; Ranft et
al., 2016; Sanders et al., 2018) and non-rapid eye movement (NREM) sleep (Boly et al., 2012b;

Spoormaker et al., 2010).
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These studies suggest that LOC under a variety of conditions converges on specific
changes in cortical connectivity. However, a major impediment to identifying these changes is a
lack of consensus on key details, for example whether overall or long-range connectivity
decreases (Boly et al., 2012a; Lee et al., 2013b; Ranft et al., 2016; Spoormaker et al., 2010) or
increases (Boly et al., 2012b; Lee et al., 2017; Monti et al., 2013; Murphy et al., 2011) upon LOC.
Moreover, despite the evidence for common mechanisms of LOC under anesthesia and during
NREM sleep, there are obvious differences between sleep and anesthesia as well (Akeju and
Brown, 2017). Specifically, subjects are arousable from the latter but not from the former, and
this maintained connectedness with the environment likely involves cortical activation. The
structure of natural sleep, in its transitions between REM and multiple stages of NREM sleep, is
not mimicked by steady-state anesthesia. A recent imaging study found substantial differences
in the changes in functional magnetic resonance imaging (fMRI) functional connectivity that
occur during sleep and propofol anesthesia (Li et al., 2018). Furthermore, delta-band activity
during the deepest stages of NREM sleep (N3) most closely resembles brain activity under
anesthesia (Murphy et al., 2011), but unresponsiveness (and presumably reduced level of
consciousness) occurs as well in stage 2 NREM (N2) sleep (Strauss et al., 2015). Direct
comparisons of changes in connectivity associated with LOC under natural sleep and anesthesia
may help resolve these discrepancies.

Here, we investigated changes in cortical functional connectivity across arousal states
under natural sleep and anesthesia. Intracranial recordings obtained from neurosurgical
patients with pharmacologically resistant epilepsy allowed us to compare connectivity using

data obtained from the same recording sites in the same subjects.
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2. Materials and Methods

2.1. Subjects

Experiments were carried out in five neurosurgical patients diagnosed with medically refractory
epilepsy who were undergoing chronic invasive electrophysiological monitoring to identify
seizure foci prior to resection surgery (Supplementary Table 1). Research protocols were
approved by the University of lowa Institutional Review Board and the National Institutes of
Health, and written informed consent was obtained from all subjects. Research participation
did not interfere with acquisition of clinically necessary data, and subjects could rescind
consent for research without interrupting their clinical management. Subjects were right-
handed, left language-dominant native English speakers. All subjects underwent standard
neuropsychological assessment prior to electrode implantation, and none had cognitive deficits
that would impact the results of this study. The subjects were tapered off their antiepileptic
medication during chronic monitoring when overnight sleep data were collected (see below).
All subjects had their medication regimens reinstated at the end of the monitoring period, prior

to induction of general anesthesia for the resection surgery.

2.2. Experimental procedures

Electrocorticographic (ECoG) recordings were made using subdural and depth electrodes (Ad-
Tech Medical, Racine, WI). Subdural arrays consisted of platinum-iridium discs (2.3 mm
diameter, 5-10 mm inter-electrode distance), embedded in a silicon membrane. Depth arrays
(8-12 electrodes, 5 mm inter-electrode distance) were stereotactically implanted along the
anterolateral-to-posteromedial axis of Heschl’s gyrus (HG). Additional arrays targeted insular
cortex and provided coverage of planum temporale and planum polare. This allowed for
bracketing suspected epileptogenic zones from dorsal, ventral, medial and lateral aspects
(Nagahama et al., 2018; Reddy et al., 2010; Supplementary Fig. 1). Depth electrodes also
targeted amygdala and hippocampus, and provided additional coverage of the superior
temporal sulcus. A subgaleal electrode was used as a reference. All electrodes were placed
solely on the basis of clinical requirements, as determined by the team of epileptologists and

neurosurgeons (Nourski and Howard, 2015).
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101 Two sets of no-task, resting-state (RS) data were recorded: overnight sleep data and

102  anesthesia data. RS ECoG, EEG and video data were collected from subjects during natural

103  overnight sleep (Supplementary Fig. 2a). Sleep data were collected in the dedicated, electrically
104  shielded suite in The University of lowa Clinical Research Unit while the subjects lay in the

105  hospital bed. Data were recorded using a Neuralynx Atlas System (Neuralynx Inc., Bozeman,
106  MT), amplified, filtered (0.1-4000 Hz bandpass, 12 dB/octave rolloff), sampled at 16 kHz. Stages
107  of sleep were defined manually using facial EMG and scalp EEG data based on standard clinical
108  criteria (2017) by board-certified physicians who participate in the inter-scorer reliability

109  program of the AASM. Scalp and facial electrodes were placed by an accredited technician, and
110  data were recorded by a clinical acquisition system (Nihon Kohden EEG-2100) in parallel with
111  research acquisition. Facial electrodes were placed following guidelines of the AASM *°at the
112 left and right mentalis for EMG and adjacent to left and right outer canthi for EOG. EEG was
113  obtained from electrodes placed following the international 10-20 system at A1, A2, F3, F3, F4,
114 Ol and 02 in all subjects, with the following additional electrodes: C3 and C4 in all subjects but
115 R376; Eland E2in L372 and R376; CZ and FZ in L409 and L423; and F8 in L423. All subjects had
116  periods of REM, N1 and N2 sleep identified; three out of five subjects had N3 sleep periods as
117  well. One subject (L403) experienced multiple seizures in the second half of the night; those
118  data were excluded from analysis.

119 Anesthesia RS data were collected in the operating room prior to electrode removal and
120  seizure focus resection surgery. Data were recorded using a TDT RZ2 processor (Tucker-Davis
121 Technologies, Alachua, FL), amplified, filtered (0.7-800 Hz bandpass, 12 dB/octave rolloff), and
122 digitized at a sampling rate of 2034.5 Hz. We note that the highpass cutoff frequency on this
123 hardware precluded analysis of frequencies below 1 Hz. Although no specific instructions were
124  given about keeping eyes open or closed, subjects were observed to have eyes closed during
125  nearly all resting state recordings. Data were recorded in 6-minute blocks, interleaved with an
126 auditory stimulus paradigm as part of a separate study (Nourski et al., 2018a, b). Data were

127  collected during an awake baseline period and during induction of general anesthesia with

128  incrementally titrated propofol infusion (50 — 150 pg/kg/min; Supplementary Fig. 2b).
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Awareness was assessed using the Observer's Assessment of Alertness/Sedation
(OAA/S) scale (Chernik et al., 1990), and using the bispectral index [BIS (Gan et al., 1997)] (BIS
Complete 4-Channel Monitor; Medtronic) recorded continuously throughout the experiment.
OAA/S was assessed just before and just after collection of each RS data block. Two levels of
anesthesia (arousal states) were targeted: sedated but responsive to command (S; OAA/S = 3)
and unresponsive (U; OAA/S < 2) (Nourski et al., 2018a). In four of five subjects, OAA/S values
crossed the boundary between S and U over the course of the 6-minute RS block (e.g. RS block
#1 in subject L372; see Supplementary Fig. 2b). In these cases, only the first and last 60-second
segments of the block were analyzed; data from the first segment were assigned to the S state,

and data from the second segment were assigned to the U state.

2.3. Data analysis

2.3.1. Band power analysis

Data were assigned to specific arousal states based on sleep scoring and OAA/S assessment. For
each subject, sleep and anesthesia data were divided into segments of length 60 seconds for all
analyses except the classification analysis (Fig. 5; see below), for which 10-second segments
were used. Time-frequency analysis was performed using the demodulated band transform
(DBT; Kovach and Gander, 2016), which optimizes frequency resolution for each frequency
band specified, while minimizing spectral leakage across bands. PSDs were estimated for each
data segment from the squared magnitude of the DBT. For each subject, PSDs were averaged
across segments assigned to identical arousal states. ECoG band power was calculated as the
average power across frequency in each band. Band power within ROl group was computed as
the average across all recording sites in that ROl group, and arousal state-dependent changes in
band power were evaluated using linear mixed effects models as follows. The data were
normalized to total power and log transformed, then fit with a model incorporating fixed
effects of state, ROI, and the interaction of state and ROI, and random effects for channels
nested within subjects and with random slopes for brain state by subject, using the R package
Ime4 (Bates et al., 2015). Estimated marginal means and 95% Cls for each ROl and state were

calculated, as well as pairwise between-states contrasts within each ROI with p-values adjusted
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158 by multivariate t for all comparisons within a band, using the R package emmeans (Lenth,

159  2019).

160

161 2.3.2. Connectivity analysis

162  Connectivity was measured using the debiased weighted phase lag index (wPLI) (Vinck et al.,
163  2011), a non-directed measure of phase synchronization that eschews synchronization near
164  zero phase lag to avoid artifacts due to volume conduction. For each data segment, wPLI was
165  estimated for every electrode pair from the sign of the imaginary part of the DBT-derived cross-
166  spectrum at each frequency and averaged across frequencies within each band of interest

167  (delta: 1-4 Hz, theta: 4-8 Hz, alpha: 8-13 Hz, beta: 13-30 Hz, gamma: 30-70 Hz; high gamma: 70-
168 120 Hz). As the analysis results tended to be correlated in the frequency domain, we chose to
169  present only the results for the delta, alpha and gamma band. Alpha-band wPLI in particular is a
170  commonly used measure of functional connectivity (Blain-Moraes et al., 2014; Blain-Moraes et
171 al.,, 2015; Lee et al., 20133; Lee et al., 2017; van Dellen et al., 2014). In addition, we observed
172  evidence for alpha-band oscillatory components in the resting state power spectra, further

173  motivating focus on this band. Therefore, our primary measure of functional connectivity was
174  alpha-band wPLlI, but connectivity in delta and gamma bands is presented as well for

175  comparison.

176

177  2.3.3. Anatomical reconstruction and ROI parcellation

178  Electrode localization relied on post-implantation T1-weighted structural MR images and post-
179  implantation CT images. All images were initially aligned with pre-operative T1 images using
180 linear coregistration implemented in FSL (FLIRT) (Jenkinson et al., 2002). Electrodes were

181 identified in the post-implantation MRI as magnetic susceptibility artifacts and in the CT as

182  metallic hyperdensities. Electrode locations were further refined within the space of the pre-
183  operative MRI using three-dimensional non-linear thin-plate spline warping (Rohr et al., 2001),
184  which corrected for post-operative brain shift and distortion. The warping was constrained with
185  50-100 control points, manually selected throughout the brain, which aligned to visibly

186  corresponding landmarks in the pre- and post-implantation MRls.
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To compare functional connectivity between arousal states, the dimensionality of the
adjacency matrices (i.e. the wPLI connectivity matrices) was reduced by assigning electrodes to
one of 37 specific ROIs organized into 7 ROI groups (Fig. 3; Table 1; Supplementary Table 2)
based upon anatomical reconstructions of electrode locations in each subject. For subdural
arrays, it was informed by automated parcellation of cortical gyri (Destrieux et al., 2010;
Destrieux et al., 2017) as implemented in the FreeSurfer software package. For depth arrays,
ROI assignment was informed by MRI sections along sagittal, coronal and axial planes. For
recording sites in HG, delineation of core auditory cortex and adjacent non-core areas (HGPM
and HGAL, respectively) was based on physiological criteria (Brugge et al., 2009; Nourski et al.,
2016). Specifically, recording sites were assigned to the HGPM ROI if they exhibited phase-
locked ECoG responses to 100 Hz click trains and if the averaged evoked potentials to these
stimuli featured short-latency (<20 ms) components. Such response features are not present
within HGAL. Additionally, correlation coefficients between average evoked potential
waveforms recorded from adjacent sites were examined to identify discontinuities in response
profiles along HG that could be interpreted as reflecting a transition from HGPM to HGAL.
Recording sites identified as seizure foci or characterized by excessive noise, and depth
electrode contacts localized to the white matter or outside brain, were excluded from analyses

and are not listed in Supplementary Table 2.

2.3.4. ROI-based connectivity analysis
Connectivity between ROIs was computed as the average wPLI value between all pairs of
recording sites in the two ROIs. For analyses in which connectivity was summarized across
subjects (see Fig. 4 and Supplementary Figs. 6 & 7), ROls were only included if at least 3 out of 5
subjects had electrode coverage in that ROI; 29 out of 37 ROIs met this criterion. For display
purposes only, adjacency matrices for each subject were averaged across segments assigned to
identical arousal states, and the matrices thresholded to retain only the 10% strongest
connections. Quantitative analyses were based on unthresholded adjacency matrices.

Changes in connectivity with arousal state were evaluated by computing differences

between adjacency matrices, and quantified by calculating the operator norm (d) of the
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difference matrix; smaller values of d indicate more similar matrices. This difference metric was
chosen instead of either the Pearson correlation or the Frobenius norm because it retains
information about the structure of the matrix. Specifically, for a matrix M, dy is the maximum,
over all vectors v with | |v|| =1, of | |Mv] |, and indicates how much M stretches these
vectors; with M representing the difference between adjacency matrices measured in two
arousal states, v could represent the inputs to or the activity of the nodes of the network at a
particular time point, and Mv would then be the effect on that activity of the difference in brain
state. The operator norm [computed in Matlab as norm (M)] is related to the spectrum of M'M:
dm = the square root of the maximum eigenvalue of M'M.

To compare arousal state-dependent differences in d (for example, to see whether dws i is
different than dyi ny), effect sizes were calculated as Cliff’s delta, 6; (Cliff, 1993). Cliff’s delta
ranges from -1 to 1 where O indicates completely overlapping distributions and -1 or 1 indicate
distributions where all observed values of one group are less/greater than all observed values
of the comparison group. Effect sizes were first calculated for each subject, and then reported
as the mean effect size across subjects, 6. A permutation method was used to estimate p-
values for these comparisons; within each subject and each experiment (sleep and anesthesia),
restricted random permutations of state labels for the data segments, preserving the order of
observations, produced an estimated distribution under the null hypothesis that the
comparisons do not depend on arousal state (Besag and Clifford, 1989; Winkler et al., 2015).
Independent p-values obtained within individual subjects for a given test were combined across
subjects using Stouffer’s Z-transform method (Heard and Rubin-Delanchy, 2018; Stouffer et al.,
1949). Non-parametric approaches (Cliff's delta and permutation method) were preferable to
parametric statistics for these data, as the distributions of operator norms and differences were
skewed and the magnitude varied between subjects. Given the small number of subjects, these
statistical methods treat each subject as a single-case and then combine results in a meta-
analysis. Because p-values and effect sizes were first estimated in single subjects, this approach

reduces the influence of possible outlier subjects and non-normally distributed measures.
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2.3.5. Classification analysis

We used a classification analysis as an additional evaluation of changes in connectivity as a
function of arousal state. Here, data from each subject was divided into 10-second segments,
and adjacency matrices were computed for each segment. To ensure that the data from the
two experiments (sleep and anesthesia) were on the same scale, adjacency matrices computed
from the anesthesia data were scaled by the slope derived from a regression analysis that
related wPLI values computed for sleep vs. anesthesia data for each subject. A linear classifier
(implemented using SGDClassifier from Python's Scikit-Learn library) was trained on a subset
(80%) of WS and N2 segments, and then applied to unseen data from all arousal states (WS, N1,
N2, N3, REM, WA, S, U) in each subject. Data from the sleep experiment were chosen over
those from the anesthesia experiment to train the classifier because the former yielded many
more data segments (see Supplementary Fig. 2). Rather than using a binary classification, we
applied a logistic weighting function that assigned each segment a weight from 0 (most ‘N2-
like’) to 1 (most ‘WS-like’). We report the median logistic prediction scores across all 25
pairwise permutations of WS and N2 train/test splits (4/5 train, 1/5 test) in each subject. Given
an unequal number of observations in WS and N2 datasets (see Supplementary Table 3),
training sets were balanced in each permutation via random sampling. Hyperparameters
corresponding to the strength of regularization (alpha parameter) and the tolerance threshold
(i.e. when to stop training the model) were optimized for each training set permutation using
three-fold cross-validation. Specifically, each training set was split into three folds, and one of
those three folds was used as a test set to evaluate the performance of a given hyperparameter
value when training a model on the remaining two folds. For each hyperparameter value
evaluated, this process was repeated three times to average over all test sets. Hyperparameter
values yielding the lowest average test set error were then used in the final model being
applied to unseen data for each train/test permutation. Probability density functions for each
arousal state and each subject were estimated from logistic prediction scores using kernel
density estimation (ksdensity function in Matlab) and represented as violin plots (see Fig. 5 and

Supplementary Fig. 8).

10
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2.3.6. Regional connectivity analysis

State-dependent differences in regional connectivity were quantified by dividing ROls into a
posterior (‘back’) group (temporal, parietal and occipital ROIs), and an anterior (‘front’) group
(frontal ROIs). Mean alpha-band wPLI across all pairs of recording sites within each group were
used to calculate bias in connectivity, defined as the difference between within-posterior and
within-anterior connectivity. State-dependence of long-range alpha-band connectivity was
assayed by measuring wPLI across the top 25% most distant pairs of recording sites. Euclidean
distances between sites were measured using standard 3D coordinates (Right-Anterior-
Superior, RAS). Changes in within-posterior versus within-anterior connectivity and changes in
long-range connectivity were assessed using permutation analysis as described above for state-

dependent differences in d.

11
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3. Results

3.1. Electrode coverage

Data from a total of 864 recording sites from five subjects (Supplementary Table 1), spanning a
total of 37 regions of interest (ROIs) were analyzed (Table 1). Each subject contributed between
154 and 198 sites (median 172; Supplementary Table 2, Supplementary Fig. 1). The focus of this
study was on changes in cortical connectivity across arousal states. As sensory awareness is a
key element of consciousness (Boly et al., 2017), we centered our analysis around cortical
hierarchical organization in the auditory modality, which is a convenient choice and a frequent
focus of studies of both sleep and general anesthesia (e.g. Liu et al., 2012; Raz et al., 2014;
Strauss et al., 2015). Clinical considerations dictated dense sampling of the temporal lobe,
including auditory and auditory-related cortex, providing comprehensive electrode coverage

across multiple levels of the auditory cortical hierarchy in all subjects.

3.2. Defining arousal states
Polysomnography based on scalp electroencephalography (EEG), electrooculography,
electromyography, and video was used to assign sleep stages. All five subjects exhibited
overnight sleep patterns typical of healthy adult subjects (Supplementary Fig. 2a). There was a
high correspondence between the ratio of delta to beta band power in frontal ECoG electrodes
and the assigned sleep stage (cf. Kremen et al., 2019). Overnight recordings in all subjects
featured wake (WS) state as well as N1, N2 and REM sleep stages; N3 was also observed in 3 of
5 subjects (Supplementary Table 3). The total duration of scored recordings in each subject was
between 306.8 and 649.6 minutes (median 534.4).

During the anesthesia experiment, all subjects transitioned from wake (WA) to sedated
(S; OAA/S>2) and unresponsive (U; OAA/S <2) states as propofol infusion rate was increased
(Supplementary Fig. 2b). OAA/S scores exhibited a good correspondence with bispectral index
(BIS) values, as expected for sedation and anesthesia induced by propofol alone (Glass et al.,
1997). WA, S and U states were characterized by median BIS values of 93 (range 80-98), 78

(range 36-97) and 52 (range 33-74), respectively.
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310  3.3. Changes in spectral power under sleep and anesthesia

311  Power spectral density (PSD) measurements made during WS and WA states exhibited shapes
312 typical of resting state eyes-closed recordings, with power falling off approximately as 1/f* and
313  broad peaks typically observed in the alpha and beta bands (Fig. 1; Supplementary Fig. 3). There
314  were only small differences observed between WS and N1, and none between WA and S (Fig.
315  2). By contrast, transitions into states N2 and U were characterized by large band- and region-
316  specific changes in PSDs. As expected, N2 sleep was characterized by a widespread increase in
317  delta power (see Fig. 2a). Of note, increases in alpha power in N2, as might be expected due to
318  sleep spindles (Andrillon et al., 2011), were not consistent across subjects. Loss of

319 responsiveness under anesthesia (U) was associated with large increases in delta power within
320 PFCand sensorimotor areas, and a selective increase in alpha power in PFC (see Fig. 2b),

321  consistent with previous observations (Purdon et al., 2013).

322

323  3.4. Changes in functional connectivity under sleep and anesthesia

324  Functional connectivity was assayed using the debiased weighted phase lag index (wPLI) (Vinck
325 etal., 2011). As ECoG power spectra featured peaks in the alpha band, we focused on alpha-
326  band wPLI, but presented analyses of functional connectivity in other canonical frequency

327  bands as well. Like other phase-related measures, wPLI can be sensitive to uncorrelated noise
328  (Vinck etal., 2011), leading to correlations with spectral power. However, in the dataset

329 presented here power did not exhibit an appreciable correlation with wPLI residuals (mean
330  across patients R? = 0.02, maximum R? = 0.04) after accounting for state, indicating that spectral
331  power changes did not contribute substantially to our measure of functional connectivity.

332 Adjacency matrices were computed first for each pair of recording sites (Fig. 3a), then
333  transformed into ROIl-based adjacency matrices (Fig. 3b), from which chord connectivity plots
334  were created (Fig. 3c). Single-subject examples of chord connectivity plots for delta, alpha and
335 gamma bands across arousal states during sleep and anesthesia are shown in Supplementary
336  Figures 4 and 5. Qualitatively, in the wake states (WA, WS) alpha-band connectivity was

337 dominated by connections within and between the temporal and parietal lobes in all five

338  subjects (Fig. 4). This pattern was largely preserved in N1, REM and S states. By contrast, for N2
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and U, alpha-band connectivity showed a shift to connectivity within prefrontal ROIs and
between prefrontal cortex and select ROlIs, including HGPM, insula, gyrus rectus and PMC (see
Fig. 4, third column). More modest changes in connectivity were observed in other frequency
bands (Supplementary Fig. 6). In the three subjects in whom N3 sleep was observed, the shift in
alpha-band connectivity was even more pronounced in N3 compared to N2 (Supplementary Fig.

7).

3.5. Common neural signature of functional connectivity changes in sleep and anesthesia

A striking transition boundary in the alpha-band connectivity patterns between two sets of
arousal states: [WS, N1, REM, WA, S] and [N2, N3, U] is apparent in the chord connectivity
plots. Differences in the degree of conscious experience in these two sets suggest a functional
boundary as well: the first set comprises states in which subjects are responsive (WS, WA, S), or
have high incidence of reportable conscious experience within the context of dreaming (N1,
REM), while the second set comprises states in which subjects are unresponsive and have low
incidence of reportable conscious experience (Eer et al., 2009; Leslie et al., 2009; Siclari et al.,
2013). To quantify these observations, changes in connectivity with arousal state were
measured using the differences between un-thresholded ROI x ROI adjacency matrices.
Specifically, the magnitude of the difference in connectivity between states J and K was
computed as djk = | |A;—Ak| |, where A is the adjacency matrix for that state and | |[M| | is the
operator norm of the matrix M (see Methods). Using this metric, functional connectivity was
evaluated within each experiment (sleep, anesthesia) to test the hypothesis that differences
across the transition boundary (sleep: dnin2 and drem,n2; anesthesia: ds ) were larger in
magnitude than differences that do not cross that boundary (sleep: dwsni, dwsrem; anesthesia:
dwa,s). Mean effect sizes across subjects (mean Cliff’s delta, 611, see methods) are reported and
a permutation test was performed to estimate how chance arrangements of the data compare
to the actual differences observed. We found that within the alpha-band, dwsn: was
significantly smaller than dyi n, (60 = 0.38, p =0.00013), as was dwa s compared to dsy (6 =
0.70, p = 0.046). Additionally, dwsrem Was significantly smaller than drem,n2 (6 1 =0.25, p=
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0.0025). Comparable results (i.e. both dws n1 < dni,n2 and dwa s < dsy significant) were not found
within delta and gamma bands (Supplementary Fig. 6; Supplementary Table 4).

Further support for a transition boundary distinguishing alpha-band connectivity profiles
was provided by classification analysis (Fig. 5a). Rather than starting with the average
connectivity profiles, as in the difference norms analysis above, the classification analysis was
based directly on the minute-by-minute connectivity matrices measured during the overnight
sleep experiment. The classifier was trained on data segments from two states appearing to fall
on either side of the boundary, WS and N2, and then tested on data segments from all arousal
states. We used a logistic weighting function to assign a value between 0 (‘N2-like’) and 1 (‘WS-
like’) to each segment. For this analysis, adjacency matrices were calculated from shorter (10-
second) segments of data to provide a larger dataset on which to train the classifier, and the
analysis was performed on each subject separately. As expected, median prediction scores on
N2 and WS were highly skewed toward 0 and 1, respectively (N2: 0.10; WS: 0.90). Separation in
median prediction score for N2 and WS segments was greater for alpha (difference of medians
= 0.80) compared to other frequency bands (delta, difference of medians = 0.54; gamma,
difference of medians = 0.49). N3 data were classified as ‘N2-like’ (median logistic prediction
score = 0.12). Importantly, both N1 and REM tended to be classified as ‘WS-like’ (median
logistic prediction score = 0.68 and 0.56, respectively). These results were generally consistent
across the five subjects (Supplementary Fig. 8).

The similarities between connectivity profiles measured during sleep and anesthesia
(i.e. between WS and WA, between N1 and S, and between N2 and U; Fig. 4) suggest a
commonality in the mechanisms governing transitions between arousal states in the two
experiments. The hypothesis that certain pairs of states in sleep and anesthesia can be
considered ‘equivalent’ (i.e. WS and WA, N1 and S, N2 and U) was tested by comparing the
distances between alpha-band connectivity profiles measured in equivalent states with those
measured in states hypothesized to be ‘non-equivalent’ (i.e. on opposite sides of the transition
boundary in Figure 4). Thus, dequiv (i-€. dws,wa, dn1,s and dyz,u) were compared to dnon-equiv [i-€-
mean (dws,u,dwa,nz), mean (dyi,u, ds,n2) and mean (dni,u, dsn2), respectively]. We found that

dws,wa and dyi,s were significantly smaller than their corresponding dyon-equiv (61 =0.22, p =
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0.0022 and 6 | =0.23, p =0.00076, respectively) but dy,,u was not (611 =0.14, p = 0.31). These
data indicate similarity in alpha-band connectivity profiles observed during N1 sleep and
sedation. Comparable results (i.e. both dws,wa and dny s significantly smaller than their
corresponding dnon-equiv) Were not found within delta and gamma bands (Supplementary Fig. 6;
Supplementary Table 4).

Classification analysis also provided support for the idea that connectivity profiles under
sleep and anesthesia overlap. Here, classifiers trained on WS and N2 data from the sleep
experiment (see Fig. 5a) were applied to anesthesia data (Fig. 5b) in order to determine
whether the transition boundary observed during sleep generalized to changes in arousal state
under anesthesia. The classifiers tended to assign WA and S segments to the WS-like category
(median logistic prediction score = 0.68 and 0.55, respectively) and assigned U segments with
high probability to the N2-like category (median logistic prediction score = 0.11). Taken
together, the results of these two analyses suggest substantial overlap in connectivity profiles

between ‘equivalent’ sleep and anesthesia arousal states.

3.6. Regional distribution of functional connectivity strength across arousal states

The changes in regional distribution of connectivity across the transition boundary, i.e. the shift
from temporo-parietal to prefrontal connectivity, were strikingly similar in the sleep and
anesthesia experiments (see Fig. 4). Boly and colleagues (Boly et al., 2017) presented evidence
that the neural correlates of consciousness correspond primarily to activity in the ‘back’ of the
brain, specifically involving broad regions in the temporal, parietal and occipital lobes, and
excluding regions in the frontal lobe. Motivated by this perspective, we quantified the
differences in regional connectivity observed across arousal states in the current study. We
divided ROls into two groups: a posterior group that included all temporal, parietal and occipital
ROIs, and an anterior group that included all frontal ROls. We then compared the mean alpha-
band wPLI across all pairs of recording sites within each group, and calculated a regional bias in
connectivity as the difference between within-anterior and within-posterior connectivity. Figure
6a shows the bias in connectivity, with biases toward within-posterior connectivity indicated by

negative values and within-anterior by positive values. There was a shift from posterior and
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425  towards anterior connectivity with reduced arousal in both sleep [change in regional bias from
426  N2-N16LC =0.69, p <0.0001; N2-WS 61 =0.72, p < 0.0001] and anesthesia (S-WA 6 =0.98, p
427 =0.0011; U-S&11=1.0, p=0.00037; U-WA &1 | = 1.0, p < 0.0001). The shift from WS to N1 was
428  not significant (N1-WS 61 = 0.34, p = 0.093). REM was different from N2 (N2-REM 61 =0.81, p
429  <0.0001) but not significantly different from wake (REM-WS 611 =0.23, p =0.30). Thus, the

430 data indicate that alpha-band connectivity in WS versus N2 and in WA versus U exhibits a

431 similar shift from connectivity within posterior towards connectivity within anterior regions.
432 Finally, disruption in long-range cortico-cortical connectivity has been noted upon LOC
433  during sleep and anesthesia in several studies (Boly et al., 2012a; Lee et al., 2013b; Ranft et al.,
434  2016; Spoormaker et al., 2010), though these findings have been challenged by other studies
435  (Boly etal., 2012b; Lee et al., 2017; Monti et al., 2013; Murphy et al., 2011). To investigate this
436  issue in the dataset presented here, we assayed the state-dependence of long-range alpha-

437  band connectivity by measuring wPLI across the most distant pairs of recording sites, defined as
438  highest quartile of Euclidean distances in each subject (Fig. 6b). We found no evidence for a

439  decrease in long-range functional connectivity, observing a rather modest increase in N2 and U
440  relative to wake (N2-WS 67 =0.56,, p < 0.0001; U-WA &6 =0.74,, p=0.0061) and N1/S (N2-N1
441 60 =0.63,, p<0.0001; U-S61=0.86, p=0.0056). We did not find significant changes in long-
442  range connectivity between WS and N1 (N1-WS & 1=-0.19,, p=0.15) or WA and S (S-WA &[ 1 =-
443  0.05,, p = 0.68), but long-range connectivity was reduced in REM (R-WS 61 =-0.69,, p =

444 0.00041).
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445 4. Discussion

446  The search for reliable biomarkers of LOC/ROC is of great scientific interest and clinical

447  relevance for anesthesia (Drummond, 2000) as well as for diagnosis and prognosis of disorders
448  of consciousness (Bayne et al., 2017; Bernat, 2017). Here, we leveraged a unique opportunity to
449  obtain intracranial electrophysiological recordings from neurosurgery patients both during

450  natural sleep and under propofol anesthesia. We found that different arousal states were

451  associated with distinct patterns of functional connectivity. This association was similar for

452  sleep and anesthesia, suggesting that cortical network configuration could index changes in

453  consciousness.

454

455  4.1. ROI- and band-specific effects of sleep and anesthesia on power spectral density

456 A practical biomarker of conscious vs unconscious state must generalize to multiple settings
457  where LOC is encountered, including sleep and general anesthesia. Previous attempts to use
458  band-specific power to distinguish arousal states under general anesthesia have been largely
459  unsuccessful (Otto, 2008; Struys et al., 1998). This difficulty likely stems from agent-specific

460  changes in power spectra, for example differing between propofol, ketamine and

461  dexmedetomidine anesthesia (Mashour, 2020). The changes that we observed during natural
462  sleep, specifically widespread increases in spectral power in the delta band (see Fig. 2a), are
463  hallmarks of N2 and N3, but not N1, sleep (Prerau et al., 2017; Steriade et al., 1993). In contrast
464  to observations during natural sleep, under propofol anesthesia we observed region-specific
465  (not global) increases in delta power (see Fig. 2b), and increases in frontal alpha power (see Fig.
466  2b). These observations under propofol are consistent with previous reports (Chennu et al.,

467  2016; Feshchenko et al., 2004; Ni Mhuircheartaigh et al., 2013; Purdon et al., 2013; Supp et al.,
468  2011; Tinker et al., 1977; Wang et al., 2014) and some have suggested that changes in frontal
469 alpha and delta power are reliable indicators of loss of consciousness under propofol (Purdon
470  etal., 2013). However, a recent study using the isolated forearm technique challenges the

471  reliability of such an approach (Gaskell et al., 2017). Consistent with the latter findings, changes
472  in power in the present study did not consistently distinguish N1 from N2 and S from U (see Fig.

473 2).In addition, these changes across arousal states were not consistently paralleled by changes
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in connectivity. For example, alpha power did not consistently increase in N2 compared to WS
and N1 states, yet this band exhibited the most prominent connectivity changes observed
during sleep (see Fig. 2, Fig. 4). Conversely, although the transition to N2 and N3 sleep was
characterized by an increase in delta power in multiple ROIls, connectivity within and across
these ROIs did not undergo a comparable degree of reorganization (see Fig, 2, Supplementary
Fig. 6a). These results indicate that the observed changes in connectivity do not merely follow
changes in power and instead reflect functional reorganization of cortical networks. The
absence of meaningful correlations between connectivity and power (see Results) further

support this idea.

4.2. Changes in connectivity during sleep and anesthesia

The sharing of information between cortical regions is a critical element in theories of
consciousness and brain function (Dehaene and Changeux, 2011; Friston, 2005; Tononi et al.,
2016). Altered cortical connectivity observed during sleep and anesthesia has been interpreted
within this theoretical context to explain reduced awareness upon LOC (Alkire et al., 2008;
Mashour and Hudetz, 2017). Although there have been studies that examined functional
connectivity during sleep and anesthesia (Boly et al., 2012a; Boly et al., 2012b; Lee et al., 2017;
Lee et al., 2013b; Murphy et al., 2011; Ranft et al., 2016; Spoormaker et al., 2010), no previous
study has directly compared the two in the same subjects. Of particular relevance is the study
by Murphy et al. (Murphy et al., 2011) that examined changes in neural activity during sleep
and anesthesia. However, that study utilized data from two different sets of subjects and did
not compare changes in functional connectivity between the two data sets. A recent study in
human volunteers that did measure changes in functional connectivity patterns derived from
fMRI during transitions in arousal state found substantial differences between sleep and
propofol anesthesia (again, imaged in two different groups of subjects) (Li et al., 2018).
Interestingly, the latter study found that cortical changes during NREM sleep were confined to
frontal cortex, while changes under propofol anesthesia were widespread. Here, measuring

ECoG-derived functional connectivity in the same subjects during sleep and anesthesia, we
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found substantial overlap in the regional changes in functional connectivity during transitions in
arousal state.

We observed consistent and pronounced changes in connectivity upon transitions into
N2 and U, specifically increased connectivity within and between anterior (frontal) brain
regions, as has been observed using electrophysiological measures previously under propofol
anesthesia (Purdon et al., 2013; Supp et al., 2011), and reduced connectivity elsewhere. What is
novel about the results presented here is the degree of overlap between changes in
connectivity profiles across arousal states in sleep and anesthesia, including a pronounced
transition boundary between N1 and N2 and between S and U (Fig. 4). On a superficial level,
one might expect some overlap in arousal states, and thus in the changes upon transitions
between arousal states, during sleep and anesthesia, yet differences are expected as well. For
example, WS and WA are both wake states, but disparities in the time of day of the recordings
(overnight versus morning), the behavioral state of the subject (e.g. WA was just prior to major
surgery) and environment (monitoring suite versus operating room) could result in substantial
differences in cortical network organization. Similarly, although both N2 and U are
unresponsive states with low probability of reportable conscious experience, differences in
brain state due to the presence of the anesthetic agent versus endogenous sleep factors might
result in distinct brain connectivity patterns.

Previous studies of the incidence of dreaming and conscious experience under
anesthesia suggest that the observed transition boundary may reflect entry into and out of
conscious states. Specifically, on one side of the boundary are states in which subjects are likely
having conscious experiences, i.e. responsive (WS, WA, S) or dreaming frequently and vividly
with high incidence of reportable conscious experience (REM, N1). On the other side are
arousal states in which subjects are unlikely to be having conscious experiences, i.e.
unresponsive and with low incidence of reportable conscious experience (Leslie et al., 2009;
Siclari et al., 2013). This boundary was observed both with difference norms and classification
analyses applied to the ROI-by-ROI adjacency matrices (see Fig. 4, 5) and with the analysis of
intra-regional and long-range connectivity (see Fig. 6). However, even though connectivity

patterns during propofol sedation (S) generally aligned with other conscious states, both the
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classification and intra-regional connectivity analyses were consistent with fluctuations in
arousal level in this state (see Fig. 5b, 6a).

A recent essay on the neural correlates of consciousness (NCC) suggests an interesting
interpretation of these changes in connectivity. Boly and colleagues (Boly et al., 2017)
presented evidence from lesion studies and from experiments utilizing serial awakening during
sleep to argue that the “full NCC”, that is the collection of all regions underlying specific
contents of consciousness, comprises large portions of the parietal, occipital, and temporal
lobes, whereas frontal lobe structures underlie functions associated with, but not necessary for,
those conscious contents. The regions within the full NCC are most closely associated with
sensory awareness, and thus would underlie the internal generative models central to theories
of predictive processing and the mismatch detection and message passing functions critical to
those schemes (Friston, 2005). Alpha-band power and phase synchronization in particular are
associated with feedback connectivity in the visual cortical hierarchy (van Kerkoerle et al.,
2014). Thus, it is possible that the shift in cortical connectivity from predominantly temporo-
parieto-occipital (posterior) to frontal (anterior) upon LOC may reflect a reduction in predictive
processing during states of reduced consciousness. This is consistent with the finding that
anterior alpha synchronization of EEG in response to propofol correlates with disrupted sensory
processing in human volunteers (Supp et al., 2011).

Although clinical considerations precluded electrode coverage of the thalamus, previous
studies suggest that some of the changes in cortico-cortical connectivity observed in this study
could be driven by altered thalamo-cortical synchronization (Saalmann et al., 2012). For
example, the increased thalamo-cortical synchronization observed during sleep spindles
(Andrillon et al., 2011) and during propofol anesthesia (Flores et al., 2017) may have a similar
effect on functional connectivity within frontal cortex, as suggested by computational studies
(Vijayan et al., 2013). However, the observations that the frontal shift in alpha-band
connectivity was even more pronounced in N3 than it is in N2 (Supplementary Fig. 7), even
though spindles are less common in N3 (Andrillon et al., 2011), and that significant changes in
alpha power were not observed during sleep (see Fig. 2a), suggest that the changes in alpha-

band connectivity were unlikely driven solely by sleep spindle activity.
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The disintegration of cortical networks observed upon LOC during sleep, anesthesia and
coma (Alkire et al., 2008) has been ascribed to disrupted long-range connectivity. For example,
several reports suggest reduced resting-state cortico-cortical (fronto-parietal) feedback
connectivity under a variety of anesthetic agents, including propofol (fMRI: Boly et al., 20123;
Ranft et al., 2016; EEG: Lee et al., 2013b), consistent with results using invasive
electrophysiological recordings in rodent models (Imas et al., 2005; Raz et al., 2014). Disrupted
long-range resting-state functional connectivity has also been reported in fMRI studies during
NREM sleep (Spoormaker et al., 2010) and anesthesia (Ranft et al., 2016). However, other
studies have shown no differences in changes in short- versus long-range connectivity (fMRI:
Monti et al., 2013), or even increases in long-range connectivity during anesthesia (fMRI:
Murphy et al., 2011; EEG: Lee et al., 2017) and sleep (fMRI: Boly et al., 2012b). Similarly, in the
present study, we saw little evidence for decreases specifically in long-range connections (see
Fig. 6b). The reasons for the diverse findings of the effects on connectivity are unclear. It is
possible that the dynamics and heterogeneity of the resting state cortical network contribute to
this diversity. For example, network configuration prior to LOC has been shown to influence
observed changes in connectivity during sleep (Wilson et al., 2019). Application of methods to
these data that can characterize connectivity at finer temporal resolution may address this

issue.

4.3. Caveats and limitations

The key limitations of this study are the small number of participants (n = 5), and that the
subjects had a neurologic disorder, and thus may not be entirely representative of a healthy
population. These caveats are inherent to all human intracranial electrophysiology studies. Our
statistical methods focused on within-subject comparisons between states and should be
generalized with caution. However, results were consistent across subjects who all had
different clinical histories of their seizure disorder, antiepileptic medication regimens, and
seizure foci. Recordings from cortical sites confirmed to be seizure foci were excluded from
analyses. Finally, all subjects participated in multiple additional research protocols over the

course of their hospitalization, including a range of behavioral tasks. Behavioral and neural data
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obtained in these other experiments were examined for consistency with a corpus of published
human intracranial electrophysiology data (reviewed in Nourski, 2017). None of the subjects
exhibited aberrant responses that could be interpreted as grounds for caution in inclusion in
this study.

The motivation for exploring changes in connectivity across arousal states is to elucidate
the neural underpinnings that define these states. We note, however, that the arousal states as
defined in this study are likely non-uniform regarding consciousness. For example, healthy
adults are able to report on conscious experience (i.e. dreaming) about 40% and 20% of the
time in N2 and N3 sleep (Siclari et al., 2013). Dreaming also occurs under propofol anesthesia in
about 20% of patients (Leslie et al., 2009). This suggests that differences in brain connectivity
between the conscious and unconscious states may be even greater than those reported here,
had it been possible to reliably distinguish dreaming vs. non-dreaming states in our data set.

We also note the challenges in assessing awareness under anesthesia, and specifically
the delicate balance between interrogating a subject’s awareness and changing the state of
their arousal with that interrogation. The approach employed here, the OAA/S, is considered
the gold standard for assessing awareness in the perioperative setting (Chernik et al., 1990),
and it has been cross-validated using EEG-based measures such as BIS (Vanluchene et al., 2004).
The BIS values recorded in the current study corresponded well to those associated with wake,
sedated and unconscious states in previous reports (Vanluchene et al., 2004). Importantly, we
did not observe consistent increases in BIS values post-OAA/S assessments compared to pre-
OAA/S assessments (see Supplementary Fig. 2), indicating that our assessments likely did not

alter the arousal state of the subjects.

4.4. Functional significance and future directions

The results presented here have broad implications for understanding the neural mechanisms
associated with loss of consciousness and for better understanding and differential diagnosis of
disorders of consciousness. We demonstrate a transition boundary in profiles of functional
connectivity that separates states of different levels of consciousness. Phase synchronization is

postulated to mediate rapid communication of conscious content over multiple spatial scales in
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cortex, contributing importantly to the rich repertoire of human behavior that characterizes
conscious states (Fries, 2015). The finding that changes in functional connectivity based on
phase synchronization indexes arousal state similarly in both sleep and anesthesia motivates
further exploration of the changes in brain activity and connectivity common to changes in
consciousness. These findings have practical clinical ramifications as well. Connectivity can be
measured non-invasively using EEG or fMRI in patients with disorders of consciousness.
Algorithms that track region-specific functional connectivity may provide a basis for noninvasive
monitoring of arousal state in patients otherwise inaccessible to standard assessments of
arousal based on response to command. Future experiments aimed at exploring in more detail
the differences between LOC in sleep and anesthesia, and generalizing to other anesthetic
agents such as dexmedetomidine and volatile anesthetics, will elucidate further fundamental

questions about the nature of consciousness and arousal that remain unresolved.
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Fig. 1: Electrode coverage and electrocorticographic (ECoG) power spectra. Exemplary data

from subject L372. a, Electrode coverage of the lateral surface of the left cerebral hemisphere

(top) and left superior temporal plane (bottom). Recording sites are color-coded according to

the region of interest group (see Methods for details and Supplementary table 2 for

abbreviation key). b, ECoG power spectra during sleep. Data from four representative sites

(left-to-right). WS: wake (sleep experiment); PSD: power spectral density. ¢, ECoG power

spectra during anesthesia. WA: wake (anesthesia experiment); S: sedated; U: unresponsive.
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Fig. 2: Changes in ECoG band power across arousal states. a, ECoG band power during sleep,
plotted as marginal means and 95% confidence intervals. b, ECoG band power during
anesthesia. Data from 5 subjects. Changes in delta, alpha and gamma power are shown in top,
middle and bottom rows, respectively. WS: wake (sleep experiment), WA: wake (anesthesia

experiment); S: sedated; U: unresponsive.
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Fig. 3: Analysis of alpha-band functional connectivity in wake state. Example from subject
L372. a, Adjacency matrix for all recording sites. b, Adjacency matrix, collapsed for all regions of
interest (ROIs). ¢, Chord connectivity plot. Line thickness reflects mean wPLI values that
characterize pairs of ROIs. For display purposes, the chord plot was thresholded to retain the

10% strongest connections.
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668  Fig. 4: ROIl-based analysis of alpha-band functional connectivity across arousal states. Data

669  from five subjects. See caption of Fig. 3c for details.
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Fig. 5: Classification of data segments. Logistic prediction distributions for adjacency matrices
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across five subjects (except for N3, which is for 3 subjects). Centered dot and surrounding
horizontal lines represent each distribution’s median and first and third quartiles, respectively.

For distributions from individual subjects, see Supplementary Figure 8.
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677
678  Fig. 6: Intra-regional and long-range connectivity changes with arousal state. a: Mean alpha

679  wPLI averaged within posterior quadrants of the adjacency matrices minus the average within
680  anterior quadrants. Values greater than zero indicate greater within-posterior connectivity

681  compared to within-anterior connectivity. b: Mean alpha wPLI values for recording site pairs
682  distanced greater than the 75th percentile. Significance: n.s., p > 0.05; **, p < 0.01; ***, p <
683  0.005; **** p<0.001 (permutation test). Although subject L372 exhibited larger effects than
684  the othersin N2 for both analyses, and in U for the long-range connectivity analysis, statistical
685  significance and conclusions were robust to omitting that subject’s (or any individual subject’s)

686  data from the analyses.
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687 Tables

688  Table 1. Regions of interest.

ROI | ROI abbrev.
Auditory core:
Heschl’s gyrus, posterolateral | HGPM
Superior temporal plane (STP):
Heschl’s gyrus, anterolateral HGAL
Planum temporale PT
Planum polare PP
Superior temporal gyrus (STG):
Superior temporal gyrus, posterior STGP
Superior temporal gyrus, mid STGM
Superior temporal gyrus, anterior STGA
Auditory-related:
Insula Ins
Superior temporal sulcus STS
Middle temporal gyrus, posterior MTGP
Middle temporal gyrus, mid MTGM
Middle temporal gyrus, anterior MTGA
Supramarginal gyrus SMG
Angular gyrus AG
Prefrontal:
Inferior frontal gyrus, pars opercularis IFGop
Inferior frontal gyrus, pars triangularis IFGtr
Inferior frontal gyrus, pars orbitalis IFGor
Middle frontal gyrus MFG
Superior frontal gyrus* SFG
Orbital gyrus 0G
Transverse frontopolar gyrus TFG
Cingulate gyrus, anterior* CGA
Sensorimotor:
Precentral gyrus PreCG
Postcentral gyrus PostCG
Other:
Premotor cortex PMC
Parahippocampal gyrus PHG
Fusiform gyrus FG
Inferior temporal gyrus ITG
Temporal pole TP
Gyrus rectus GR
Superior parietal lobule* SPL
Middle occipital gyrus MOG
Inferior occipital gyrus* 10G
Lingual gyrus* LG
Cingulate gyrus, mid* CGM
Amygdala Amyg
Hippocampus Hipp

689  *Limited coverage (present in 1 or 2 subjects out of 5)
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