

1 **Mitochondrial pyruvate carrier is required for optimal brown fat thermogenesis**

2
3 Vanja Panic¹, Stephanie Pearson¹, James Banks¹, Trevor S. Tippetts², Sanghoon Lee¹,
4 Judith Simcox¹, Gisela Geoghegan¹, Claire Bensard¹, Tyler van Ry¹, Will L. Holland²,
5 Scott Summers², James Cox¹, Greg Ducker¹, Jared Rutter^{1,4}, Claudio J. Villanueva^{1,3}

6
7 ¹Department of Biochemistry, University of Utah, Salt Lake City, UT, 84112, USA.

8 ²Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City,
9 UT, 84112, USA.

10 ³Department of Integrative Biology and Physiology, University of California, Los
11 Angeles, CA, 90095, USA.

12 ⁴Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT, 84112, USA.

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44 Corresponding Author:

45 Claudio J. Villanueva

46 cvillanueva@ucla.edu

47 **Abstract**

48

49 Brown adipose tissue (BAT) is composed of thermogenic cells that convert chemical
50 energy into heat to help maintain a constant body temperature and counteract metabolic
51 disease in mammals. The metabolic adaptations required for thermogenesis are not
52 fully understood. Here we explore how steady state levels of metabolic intermediates
53 are altered in brown adipose tissue in response to cold exposure. Transcriptome and
54 metabolome analysis revealed changes in pathways involved in amino acid, glucose,
55 and TCA cycle metabolism. Using isotopic labeling experiments, we found that activated
56 brown adipocytes increased labeling of pyruvate and TCA cycle intermediates from
57 ^{13}C -glucose. Although glucose oxidation has been implicated as being essential for
58 thermogenesis, its requirement for efficient thermogenesis has not been directly tested.
59 Here we show that mitochondrial pyruvate uptake is essential for optimal
60 thermogenesis, as conditional deletion of *Mpc1* in brown adipocytes leads to impaired
61 cold adaptation. Isotopic labeling experiments using ^{13}C -glucose showed that loss of
62 MPC1 led to impaired labeling of TCA cycle intermediates, while labeling of glycolytic
63 intermediates was unchanged. Loss of MPC1 in BAT increased 3-hydroxybutyrate
64 levels in blood and BAT in response to the cold, suggesting that ketogenesis provides
65 an alternative fuel source that partially compensates for impaired mitochondrial
66 oxidation of cytosolic pyruvate. Collectively, these studies highlight that complete
67 glucose oxidation is essential for optimal brown fat thermogenesis.

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92 |

93

94 Introduction

95

96 The ability to thermoregulate has allowed mammals to thrive in cold regions of the
97 world. Brown adipose tissue (BAT) thermogenesis is an energy demanding process that
98 has been key to the evolution and survival of mammals (Gaudry et al., 2019, Oelkrug et
99 al., 2015, Barnett and Dickson, 1989). With the excess calorie intake associated with a
100 western diet, mechanisms that promote energy expenditure in the cold will provide
101 attractive therapeutic interventions to treating metabolic diseases associated with
102 obesity (Cypess et al., 2009, Vijgen et al., 2011). Cold exposure triggers the activation
103 of the sympathetic nervous system to secrete norepinephrine, which signals through the
104 β 3-adrenergic receptor (β 3-AR) and stimulates production of cyclic AMP (cAMP)
105 (Townsend and Tseng, 2014, Londos et al., 1985). cAMP promotes the activation of
106 protein kinase A (PKA), which in turn upregulates transcription of thermogenic pathways
107 and leads to the activation of lipolysis (Cannon and Nedergaard, 2004, Zhang et al.,
108 2005). Free fatty acids released can directly activate Uncoupling Protein 1 (UCP1),
109 which uncouples the electron transport chain to generate heat (Fedorenko et al., 2012,
110 Klaus et al., 1991, Busiello et al., 2015). Cold exposure stimulates uptake of both
111 glucose, TG-rich lipoproteins and free fatty acids from the blood (Labbe et al., 2015,
112 Heine et al., 2018, Ferre et al., 1986). While the relative contribution and importance of
113 FFA as a BAT fuel source has been extensively studied (Bartelt et al., 2011, Khedoe et
114 al., 2015, Townsend and Tseng, 2014, Lee et al., 2015), our understanding of metabolic
115 fate of glucose and the importance of its catabolism in thermogenesis *in vivo* remains
116 unknown.

117

118 Human brown fat was only believed to be found in newborns, but now we appreciate
119 that adults have brown adipose tissue, a discovery that was made through use of
120 glucose tracer (^{18}F -fluorodeoxyglucose) and positron-emission tomographic and
121 computed tomographic (PET–CT) scans (Cypess et al., 2009, Virtanen et al., 2009). In
122 addition, it was previously recognized that cold exposure could lower blood glucose
123 levels in adults (Martineau and Jacobs, 1989). The role of glucose uptake on
124 metabolism has been explored *in vitro* using immortalized brown adipocytes where
125 siRNAs targeting GLUT1, GLUT4, hexokinase, or pyruvate kinase (enzymes catalyzing
126 the first and the last step of glycolysis) demonstrated the importance of glycolysis, as
127 β 3-AR agonist failed to increase glucose uptake and oxygen consumption in these cells
128 (Winther et al., 2018). However, there is no adequate *in vivo* model demonstrating the
129 importance of BAT glycolysis or glucose oxidation on adaptive thermogenesis. We will
130 address this question *in vivo* by blocking pyruvate import into mitochondria of brown
131 adipocytes by knocking out the mitochondrial pyruvate carrier (MPC).

132

133 MPC is a multimeric complex in the inner mitochondrial membrane that consists of
134 MPC1 and MPC2 subunits (Bricker et al., 2012, Herzig et al., 2012, Schell et al., 2014).
135 Deletion of either subunit leads to instability of a functional MPC complex. MPC links the
136 end product of glycolysis to glucose oxidation by transporting pyruvate into the
137 mitochondrial matrix (Mowbray, 1975). Loss of function studies targeting MPC1 or
138 MPC2 has been shown to limit mitochondrial pyruvate transport in yeast, flies and

139 mammals (Herzig et al., 2012, Bricker et al., 2012). Once in the mitochondria, pyruvate
140 is decarboxylated to acetyl-CoA for further processing in the TCA cycle to generate
141 NADH and fuel ATP production by OXPHOS complexes. Alternatively, cytosolic
142 pyruvate can be reduced to lactate by lactate dehydrogenase complex A (LDHA), a
143 process commonly upregulated in cancer cells (Vander Heiden et al., 2009). While it is
144 clear that cold exposure or direct stimulation of β 3-AR stimulates glucose utilization by
145 BAT in both humans (Cypess et al., 2009, Saito et al., 2009) and rodents (Mirbolooki et
146 al., 2014, Vallerand et al., 1990), it is not clear how important glucose oxidation is during
147 thermogenesis nor what the metabolic fate of glucose is in activated BAT. Recently,
148 comparative metabolomics analysis has shown that activation of BAT led to increased
149 levels of the TCA cycle intermediate succinate, however it's unclear whether glucose-
150 derived TCA cycle intermediates are required for thermogenesis (Mills et al., 2018).

151

152 In this study we use comprehensive metabolomics analysis of BAT and serum from
153 mice housed at different temperatures, to gain insight into the metabolic pathways
154 altered with cold exposure. We find changes in glucose, amino acid, and TCA cycle
155 intermediates in BAT. Using [$U-^{13}C$]-glucose, we found increased glycolytic and TCA
156 cycle metabolism during BAT stimulation. To test whether glucose oxidation is required
157 for thermogenesis, we generated mice lacking mitochondrial pyruvate carrier 1 subunit
158 (MPC1) in brown adipose tissue. We found that mice lacking MPC1 in BAT are cold
159 sensitive, indicating that pyruvate import into the mitochondria is essential for efficient
160 thermogenesis. Furthermore, when we profiled serum and BAT metabolites of MPC1-
161 null mice, and found elevated 3-hydroxybutyrate levels. Prior studies supporting a role
162 for ketogenesis in thermogenesis, suggests an alternative carbon source that
163 compensates for the loss of pyruvate transport. Together this study provides new
164 insights into the metabolic fate of glucose in brown adipose tissue during activation of
165 thermogenesis in response to acute cold exposure.

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187 Results

188

189 Cold-induced changes in transcriptome and metabolite profiling of BAT

190

191 To systematically profile the transcriptional changes that are altered in response to
192 acute cold exposure, we measured steady state levels of RNA in BAT from mice at
193 room temperature (24°C) or cold (4°C) for five hours. We found that 1,907 transcripts
194 were upregulated with cold exposure, while 3,273 were decreased (**Supplemental**
195 **Table 1 and 2**). Hierarchical clustering and Principal Component Analysis (PCA)
196 revealed that the gene expression patterns in cold room and room temperature exposed
197 BATs form two distinctive and independent clusters (**Supplementary Fig. 1a, 1b**).
198 Using Gene Set Enrichment Analysis (GSEA) we found that cold exposure stimulated
199 distinct transcriptional changes in BAT that involve various aspects of metabolism.
200 Notable changes include induction of glucose metabolic process, sphingolipid
201 metabolism, amino acid metabolism, and cellular respiration, while pathways involved in
202 cell cycle control, DNA repair, and glycoprotein metabolism were downregulated (**Fig.**
203 **1a-b**).

204

205 To test whether steady state levels of metabolic intermediates were altered, we used
206 targeted GC-MS analysis to complete comprehensive metabolic profiling of BAT (**Fig.**
207 **1c**) and serum (**Fig. 1d**) from mice across different temperatures (30°C, 23°C, and 4°C).
208 The BAT metabolome showed elevated levels of glycolytic intermediates, TCA cycle
209 intermediates, ketone bodies, and branched chain amino acids when mice were
210 challenged with the cold (**Fig. 1c**). Notably, amino acids like tyrosine, alanine, threonine,
211 and tryptophan increased in BAT, while their levels decreased in serum with cold
212 exposure. Perhaps BAT uptake could lead to their depletion in the blood. Similar to a
213 recent report (Yoneshiro et al., 2019a), we observed that branched chain amino acids,
214 including Valine, Leucine, and Isoleucine were elevated in BAT, while only Leucine and
215 Valine were upregulated in serum (**Fig. 1c and 1d**). Notably, glucose and pyruvate
216 levels in BAT were elevated in response to 4°C, while both glucose and pyruvate levels
217 were similar between mice housed at 30°C and 23°C. This finding would suggest that
218 there is an increase in the rate of pyruvate synthesis in response to the cold (**Fig. 1c**). A
219 list of measured metabolites from BAT and serum are detailed in (**supplemental table**
220 **3-4**).

221

222 The observed transcriptional and metabolite changes point to a reliance on pathways
223 involved in carbohydrate metabolism (**Fig. 2a**). This prompted further analysis of
224 glucose catabolism in brown adipocytes under aerobic conditions in response to a β3-
225 AR agonist CL-316,243 (**Fig. 2b**). *In vitro* tracing experiments using [$U-^{13}C$]-Glucose
226 showed that activation of brown adipocytes treated with CL-316,243 had significant ^{13}C -
227 glucose-derived M+3 isotopologues of ^{13}C -Pyruvate, ^{13}C -Lactate and ^{13}C -Glycerol-3-
228 Phosphate. Differentiated brown adipocytes that were treated with CL-316,243 had
229 more than 50% of pyruvate and lactate labeled. Surprisingly, there was little alanine
230 labeling from [$U-^{13}C$]-glucose, despite the rise in M+3 ^{13}C -Alanine in response to β3-AR

231 activation (**Fig. 2b**). During incubation with [$U-^{13}C$]-Glucose, there was depletion of M+6
232 glucose in the media after CL-316,243 administration, while M+3 pyruvate in the media
233 increased, but did not respond to CL-316,243 treatment (**Supplemental Fig. 1c**). To
234 test whether M+3 lactate derived from [$U-^{13}C$]-Glucose was being released into the
235 media, we measured media M+3 lactate, and found that CL-316,243 increased the
236 release of M+3 lactate into the media when compared to vehicle (**Supplemental Fig.**
237 **1c**). These results suggest that activation of thermogenesis in brown adipocytes leads
238 to increased lactate synthesis and secretion.

239
240 To address whether conditions that increase oxidative metabolism correlate with MPC
241 levels, we measured the expression of *Mpc1* and *Mpc2* in BAT of C57BL6 mice
242 challenged with thermoneutrality (30°C) or cold exposure (4°C) for 1-day or 1-week.
243 Using real-time PCR, we found that both *Mpc1* and *Mpc2* expression had increased in
244 BAT (**Fig. 3a**). This was accompanied by induction of thermogenic transcripts, including
245 *Ucp1* and *Dio2*, while *Cidea* expression was unchanged (**Fig. 3a**). Similarly, we saw
246 increased protein expression of MPC1, MPC2, and UCP1 in BAT after 1-week of cold
247 exposure (**Fig. 3b**). In contrast, another mitochondrial protein, Cytochrome C, remained
248 unchanged after a similar cold exposure. The increased expression of MPC1 may
249 provide additional pyruvate transport and oxidative capacity for sustaining prolonged
250 thermogenesis in BAT.

251
252 **BAT-selective deletion of *Mpc1* leads to cold sensitivity and impaired glucose
253 handling**

254
255 To test whether MPC is required for thermogenesis we generated mice with conditional
256 deletion of *Mpc1* in BAT by crossing *Mpc1*^{F/F} mice(Gray et al., 2015) with UCP1-
257 Cre(Kong et al., 2014) transgenic mice to generate *Mpc1*^{F/F} UCP1Cre mice. The conditional
258 deletion of *Mpc1* in brown adipose tissue was confirmed by gene expression analysis
259 (**Fig. 3c**). To test whether loss of MPC1 resulted in destabilization of MPC2, we
260 completed western blot analysis and found that MPC2 was also depleted in BAT of
261 *Mpc1*^{F/F} UCP1Cre mice (**Fig. 3d**). To address whether loss of MPC1 and MPC2 was
262 specific to brown adipose tissue, we also completed western blot analysis on iWAT, and
263 found similar levels of both MPC1 and MPC2 (**Fig. 3e**). To test whether MPC1 is
264 required for thermogenesis, we completed a cold tolerance test at 4°C and measured
265 core body temperature. Upon 5 hours of cold exposure, *Mpc1*^{F/F} UCP1Cre mice had
266 significantly lower core body temperatures when compared to their *Mpc1*^{F/F} littermate
267 controls, suggesting that mitochondrial pyruvate transport is essential for optimal
268 thermogenesis (**Fig. 3f**). The cold sensitivity was not due to depletion of glucose, as
269 blood glucose levels were similar between *Mpc1*^{F/F} and *Mpc1*^{F/F} UCP1Cre mice
270 (**Supplemental Fig. 3a**).

271
272 To determine whether loss of MPC1 led to changes in systemic glucose metabolism, we
273 completed a glucose tolerance test at room temperature (23°C) or with cold (4°C), and
274 found that *Mpc1*^{F/F} UCP1Cre mice had glucose excursion curves that were impaired when
275 compared to their *Mpc1*^{F/F} littermate controls (**Fig. 4a**). The loss of MPC1 in BAT did not
276 change body composition of chow-fed mice (**Supplemental Fig. 4a**). We also found

277 that CL-316,243 administration resulted in a greater decrease in blood glucose levels in
278 *Mpc1*^{F/F} controls when compared to *Mpc1*^{F/F} UCP1Cre mice (**Supplemental Fig. 4b**). In
279 contrast, insulin sensitivity was similar between the two groups as demonstrated by %
280 change in glucose over time (**Fig. 4b**). Histological analysis by H&E staining of BAT,
281 iWAT, eWAT, and liver showed little to no differences in tissue morphology between the
282 control and MPC1 null mice (**Fig. 4c**). Given that *Mpc1*^{F/F} UCP1Cre mice had a cold
283 sensitive phenotype, we measured gene expression of thermogenic-associated
284 transcripts in BAT, and found that *Mpc1*^{F/F} UCP1Cre mice had reduced expression of
285 *UCP1*, *Dio2*, *Elovl3*, and *PPARy* relative to *Mpc1*^{F/F} control mice (**Fig. 4d**). No changes
286 were observed in expression of genes involved in *de novo* lipogenesis and ketolysis
287 (**Supplemental Fig. 3c**). To test whether there is compensation for loss of
288 mitochondrial pyruvate uptake, we measured expression of genes that encode for
289 transporters and enzymes involved in fatty acid oxidation. While we observed increased
290 levels of the fatty acid transporter CD36 in *Mpc1*^{F/F} UCP1Cre mice, we saw no differences
291 in *ATGL*, *CPT1b*, *CPT2*, or *AGPAT* expression (**Fig. 4d**). This suggested that by gene
292 expression, we do not see a compensatory upregulation of fatty acid oxidation in brown
293 adipose tissue of mice lacking MPC1. We also did not find compensatory changes in
294 thermogenic gene expression in iWAT (**Supplemental Fig. 3d**). In order to assess
295 whether there is a difference in energy expenditure, food intake, or activity, we placed
296 mice in Columbus Instruments Animal Monitoring System (CLAMS), and through
297 continuous monitoring measured energy balance in mice challenged with 6°C. Although
298 we did not find a significant reduction in energy expenditure with the loss of MPC1, RER
299 was significantly elevated in *Mpc1*^{F/F} UCP1Cre mice when compared to controls (**Fig. 3e-g**). Notably, both *Mpc1*^{F/F} and *Mpc1*^{F/F} UCP1Cre mice had reduction in RER, suggesting a
300 metabolic switch towards fat utilization.
301

302 303 **Mitochondrial pyruvate transport is required to generate ¹³C-glucose-derived 304 TCA cycle intermediates**

305

306 While it is well established that cold exposure or CL-316,243 driven stimulation of β3-
307 adrenergic receptor stimulates glucose uptake in brown adipose tissue, the metabolic
308 fate of carbons from glucose has not been fully characterized. In order to assess how
309 glucose is metabolized in control cells and those lacking MPC1, we retrovirally
310 expressed MSCV-CreERT2 or empty MSCV control in *Mpc1*^{F/F} brown preadipocytes to
311 create a tamoxifen inducible knockout system. This allowed us to generate *Mpc1* nulls
312 cells on day 1 of differentiation as confirmed by western blot (**Fig. 5a**) and gene
313 expression analysis (**Fig. 5b**). Although *Mpc2* mRNA was not changed (**Fig. 5b**), loss of
314 MPC1 led to destabilization and loss of MPC2 (**Fig. 5a**). First, we measured the [U -¹³C]-
315 Glucose-derived incorporation into the glycolysis intermediates (**Fig. 5c**). Similar to our
316 previous results, we found that 5 hours of CL-316,243 stimulation leads to extensive
317 M+3 labeling of pyruvate and lactate in both control and *Mpc1* null cells. Although
318 labeling of alanine was limited, there was a noticeable CL-316,243 mediated induction
319 of M+3 alanine, however loss of MPC1 showed similar incorporation relative to controls.
320 Next, we measured ¹³C incorporation into TCA-cycle intermediates and found
321 enrichment of ¹³C-glucose-derived TCA cycle metabolites in control cells treated with
322 CL-316,243, which largely reflected the percent labeling of M+3 pyruvate and M+3

323 lactate (**Fig. 5d**). In contrast, MPC-null cells had impaired isotopic labeling of TCA cycle
324 intermediates, including citrate/isocitrate, succinate, fumarate, and malate (**Fig. 5d**).
325 This would suggest that MPC is necessary for β 3-AR-driven glucose catabolism in
326 brown adipocytes. Finally, to assess the impact of different fuels on oxygen
327 consumption in brown adipocytes, we measure oxygen consumption on vehicle or CL-
328 316,243 stimulated cells treated with either UK5099 (MPC inhibitor), etomoxir (CPT1
329 inhibitor), or both (**Fig. 5e**). We found that acute inhibition of pyruvate import with
330 UK5099, resulted in elevated OCR in the basal state, an outcome that was not seen
331 with etomoxir treatment. However, CL-316,243 administration increased OCR despite
332 inhibition with UK5099 or etomoxir, while treatment with both UK5099/Etomoxir resulted
333 in complete block of CL-316,243 stimulated oxygen consumption. We also found
334 significant changes in basal respiration and proton leak that mirrored OCR
335 (**Supplemental Fig. 4a**). This would suggest that brown adipocytes are able to
336 compensate when they lack one source of fuel but not both. Notably, we found both
337 M+3 pyruvate and M+3 lactate in the media, particularly with the loss of MPC1
338 (**Supplemental Fig. 4a**). Upon stimulation with CL-316,243, we found greater levels of
339 M+3 pyruvate and M+3 lactate in the media, with no distinguishable differences
340 between control and knockout cells.

341

342 **Metabolic profiling shows increase in ketogenesis with loss of MPC in brown** 343 **adipose tissue**

344

345 To understand the systemic metabolic adaptations that occur with the loss of MPC in
346 BAT, we completed metabolomics analysis of serum and BAT in cold challenged
347 *Mpc1*^{F/F} or *Mpc1*^{F/F} UCP1^{Cre} mice. We hypothesized that there may be compensatory
348 mechanisms that allow *Mpc1*^{F/F} UCP1^{Cre} mice to cope with the loss of MPC during cold
349 stress. Our metabolite analysis showed that cold exposed *Mpc1*^{F/F} UCP1^{Cre} mice had
350 elevated 3-hydroxybutyrate, 2-hydroxybutyrate, adenosine 5'-monophosphate (AMP), 2-
351 monopalmitoylglycerol, malonic acid, and cis-acotinic acid relative to *Mpc1*^{F/F} mice (**Fig.**
352 **6a**). Analysis of the top 25 BAT metabolites showed a significant increase in 3-
353 hydroxybutyrate, while TCA cycle intermediates such as succinic, citric, and isocitric
354 acid were decreased (**Fig. 6b**). A list of measured metabolites in BAT and serum of
355 *Mpc1*^{F/F} or *Mpc1*^{F/F} UCP1^{Cre} mice are included in **Supplemental Table 3-4**. To test
356 whether ketones were induced with cold exposure, we measured serum 3-
357 hydroxybutyrate in *Mpc1*^{F/F} and *Mpc1*^{F/F} UCP1^{Cre} mice, and found that cold exposure
358 elevated serum 3-hydroxybutyrate levels in *Mpc1*^{F/F} control mice (**Fig. 6c**). Notably, loss
359 of MPC1 in brown adipose tissue led to blood 3-hydroxybutyrate levels that surpassed
360 those of control mice in the cold (**Fig. 6c**). This prompted us to think that liver, being the
361 major ketogenic organ, may be oxidizing more free fatty acids to produce 3-
362 hydroxybutyrate as an alternative fuel for the extrahepatic organs during cold.
363 Therefore, we examined the expression of genes implicated in fatty acid synthesis,
364 oxidation, and ketone body production. While *FASN*, *ACC1*, and *Acly*, genes involved in
365 fatty acid synthesis, were downregulated in *Mpc1*^{F/F} UCP1^{Cre} mice, *CPT1b*, *CPT2*, and
366 *ACAD* (fatty acid oxidation genes) were increased, followed by increased levels of
367 *HMGCS2* which is directly involved in ketogenesis (**Fig. 6d**). In contrast, upstream
368 regulators of ketogenesis, including *PPAR α* and *Pgc1 α* , were not changed in the livers

369 (Supplemental Figure 5a). No notable differences were seen in serum free fatty acids
370 (Supplemental Figure 5b), suggesting that activation of ketogenesis is likely
371 contributing to rise in 3-hydroxybutyrate levels. Together, these findings suggest that
372 activation of hepatic ketone production may provide a compensatory mechanism to
373 counteract the inability to directly oxidize pyruvate in the BAT mitochondria.

374

375

376 Discussion

377

378 There is a prevailing view that BAT relies primarily on FFAs as the primary source of
379 energy for brown fat thermogenesis. However, it has been demonstrated in the past that
380 cold activation of BAT leads to utilization of other substrates besides fatty acids, such as
381 glucose, amino acids (Lopez-Soriano et al., 1988, Yoneshiro et al., 2019b) and
382 acylcarnitines (Simcox et al., 2017). In this study we address a fundamental question in
383 BAT thermogenesis: What is the role of glucose oxidation in short-term non-shivering
384 thermogenesis? Is glycolysis or glucose-derived TCA cycle intermediates needed for
385 efficient thermogenesis in BAT? Thus far, there have not been adequate *in vivo* models
386 to answer these questions. In this study we combined *in vitro* U-¹³C-glucose tracing
387 experiments with comprehensive *in vivo* transcriptome and metabolome analysis of
388 activated brown fat to address these questions.

389

390 Gene expression profiling of brown adipose tissue showed that mice exposed to short-
391 term cold exposure exhibit evidence of activated cellular respiration, amino acid
392 metabolism, and glucose metabolism. Similar, but distinct findings have been reported
393 with prolonged cold exposure (2-4 days and 10 days respectively)(Hao et al., 2015,
394 Rosell et al., 2014). In order to see how acute cold exposure affected the metabolome
395 in mice, we followed up these studies by performing GC-MS metabolomics analysis on
396 serum and BAT of mice housed at 30°C, 23°C, and 4°C for 5 hours. This analyses
397 revealed increased branched chain amino acids, ketones, glucose, and TCA cycle
398 metabolites in BAT with decreased temperatures. These results confirmed the
399 previously proposed idea that BAT is a highly metabolically active tissue that
400 upregulates uptake of various fuels to support the energy demand needed to adapt
401 during cold stress. When stimulated with CL-316,243 for 5 hours and given [U-¹³C]-
402 labeled glucose, brown adipocytes significantly upregulated ¹³C incorporation into
403 pyruvate, lactate, and TCA cycle intermediates, suggesting that glucose catabolism
404 occurs early in BAT activation. These results are an important complement to recent
405 studies that have described the metabolic response to chronic cold exposure (Hao et
406 al., 2015, Marcher et al., 2015, Rosell et al., 2014). It is not surprising that acute
407 activation of BAT leads to uptake of most substrates available to fuel the heat
408 production process as an initial response to the cold shock. In contrast, cold acclimation
409 or chronic exposure, leads to BAT remodeling and adaptive changes such as increased
410 BAT mass, blood flow, and increased mitochondrial number(Lopez-Soriano et al., 1988,
411 Rafael et al., 1985). Our observation that branched chain amino acids (BCAA) are
412 elevated in BAT with cold exposure is consistent with recent findings highlighting their
413 requirement for optimal thermogenesis (Yoneshiro et al., 2019b).

414

415 Here we show that mitochondrial pyruvate transport, presumably by its utilization in the
416 TCA cycle, is essential for efficient thermogenesis. In wild type mice challenged with
417 short-term cold exposure, we observe higher levels of MPC1 and MPC2 in BAT
418 compared to that of mice housed at thermoneutrality. We propose that the induction of
419 MPC1 and MPC2 is an adaptive mechanism to increase oxidative capacity during
420 prolonged cold exposure. The inability to directly import pyruvate into the mitochondria
421 for further oxidation leads to hypothermia, an indication of impaired thermogenesis. This
422 was observed in our MPC1^{F/F} UCP1-Cre mouse model where animals had lower core
423 body temperatures during the cold challenge. We also noted small but significant
424 reductions in thermogenic gene expression (*UCP1*, *Dio2*, *Elov13*, *PPARγ*), but there
425 were no compensatory changes in BAT expression of genes required for fatty acid
426 oxidation. However, we did note that loss of MPC leads to upregulation of CD36, which
427 may drive increased fatty acid uptake during the cold (Bartelt et al., 2011). In addition,
428 there may be compensation by activating pathways that involve glutamine oxidation,
429 transamination of alanine to pyruvate in the mitochondria, glutamine anaplerosis via
430 glutamate to α-ketoglutarate by glutaminase and glutamate dehydrogenase enzymes, or
431 conversion of glutamine-derived malate to pyruvate by mitochondrial malic enzyme
432 (Bender and Martinou, 2016, Gray et al., 2015, McCommis et al., 2015, Schell et al.,
433 2014, Vacanti et al., 2014, Yang et al., 2014).

434 | One striking feature observed with cold adaptation in *Mpc1*^{F/F} UCP1^{Cre} mice and their
435 littermate controls was elevated ketone levels in the blood. MPC1^{F/F} UCP1^{Cre} mice had
436 significantly elevated serum 3-hydroxybutyrate levels after 6 hours of cold challenge,
437 but there were no measurable differences between the two groups after 6 hours at room
438 temperature. These changes were accompanied by elevated 3-hydroxybutyrate levels
439 in the BAT. Ketogenesis occurs primarily in the liver during exercise or prolonged
440 fasting, and more recently was found to be a cold-induced metabolite (Newman and
441 Verdin, 2014b, Newman and Verdin, 2014a, Wang et al., 2019). Ketones can be
442 exported to extrahepatic tissues for further oxidation as they are rich energy sources.
443 When we measured ketogenic gene expression in the liver, we found that *Mpc1*^{F/F}
444 UCP1^{Cre} mice had significantly increased HMGCS2 levels compared to control mice.
445 Together with serum and BAT metabolomics data this suggest that *Mpc1*^{F/F} UCP1^{Cre} mice
446 compensate by activating ketone production. At first, we speculated that 3-
447 hydroxybutyrate is utilized by BAT of *Mpc1*-deficient mice to compensate for the inability
448 to oxidize pyruvate. However, in order for ketones to be catabolized in peripheral
449 tissues they have to utilize OXCT1 for import and succinyl-CoA to donate coenzyme-A.
450 In the BAT metabolomics analysis, MPC1^{F/F} UCP1^{Cre} mice had lower levels of TCA cycle
451 intermediates compared to their littermate controls, including succinic acid, citric acid,
452 and malic acid. This would suggest that oxidative metabolism is limited in the absence
453 of MPC1. Further, this poses a question of why would MPC1^{F/F} UCP1^{Cre} mice make more
454 3-hydroxybutyrate and what role it might have in these mice? One likely explanation is
455 that BAT utilizes ketones for thermogenesis. Alternatively, ketones can promote energy
456 expenditure, mitochondrial biogenesis, and stimulate the expression of *Ucp1* in
457 WAT (Srivastava et al., 2012).

459

460 Taken together, our studies aimed to gain a better understanding of the metabolic fate
461 of glucose in BAT during short-term cold exposure. Here we report a novel mouse
462 model of *Mpc1* loss in brown adipocytes that allowed us to assess the importance of
463 efficient pyruvate import and oxidation for thermogenesis. Understanding the metabolic
464 pathways and key metabolites that are upregulated in brown fat during cold exposure
465 could provide new therapeutic targets to treat metabolic disorders such as obesity and
466 diabetes.

467

468

469

470

471

472 **Methods**

473

474 **Animals**

475 All procedures were approved by the Institutional Animal Care and Use Committee
476 (IACUC) of University of Utah. Mice were housed at 22°C-23°C using a 12 hr light/12 hr
477 dark cycle. Animals were maintained on a regular Chow diet (2920x-030917M). Mice
478 had ad libitum access to water at all times. Food was only withdrawn during
479 experiments. C57BL6J male mice at 3 months of age were purchased from Jackson
480 Laboratories. MPC1^{F/F} mice were generated as previously described (Birsoy et al.,
481 2015). Floxed mice were crossed with mice expressing UCP1-Cre (Jax #024670) to
482 generate conditional mouse model. Floxed Cre-negative mice were used as wild-type
483 controls. The age of mice used for all the studies were 12-20 weeks old. No animals
484 were excluded from any experiments.

485

486 **Cold Exposure**

487 For short-term cold exposure studies (5-6 hours) mice were single housed with no food,
488 no bedding, with ad libitum access to water. Starting at T0 mice were placed at either
489 30°C (thermoneutrality), 23°C (room temperature), or 4-6°C (cold exposure) for 6 hrs.
490 Body temperatures were taken once every hour with a physitemp A590 rectal probe
491 using an Oakton Thermocouple digital thermometer. For long-term cold exposure
492 studies (1 week) mice were single housed, with bedding and ad libitum access to food
493 and water.

494

495 **Glucose Tolerance and Insulin Tolerance Tests**

496 For glucose tolerance test 12 weeks old mice were fasted for 6 hours and then
497 administered 1g/kg of body weight of glucose by intraperitoneal injection. For insulin
498 tolerance test non-fasted mice were administered 0.75 units/kg of body weight of
499 insulin. Glucose levels were measured by tail vein using Contour next one glucometers
500 at the indicated time points.

501

502 **Metabolic Cages**

503 Food and water intake, energy expenditure and ambulatory activity were measured by
504 using Comprehensive Lab Animal Monitoring System (CLAMS) (Columbus
505 Instruments). Mice were single housed in metabolic cages with ad libitum access to

506 food and water on a 12 hr light/12 hr dark cycle. Temperature was initially set at 30°C,
507 measurements were obtained for a period of 24 hours after which the temperature was
508 decreased to 23°C for another 24 hours, after which it was switched to 7°C for 24 hrs.
509 Energy expenditure was calculated as a function of oxygen consumption and carbon
510 dioxide production in the CLAMS cages.

511

512 **CL-316,243 Treatment**

513 CL-316,243 (1mg/kg body weight; Sigma) or a vehicle control sterile PBS pH 7.4 was
514 injected intraperitoneally. After drug or vehicle were administered, glucose levels were
515 measured once every hour for 6 hours by tail vein using Contour next one glucometers.
516 During this time mice were single housed at 23°C, with no food but water was readily
517 available.

518

519 **Cell Culture**

520 Brown preadipocytes were isolated from 6-week old MPC1 F/F mice (Rodriguez-
521 Cuenca et al., 2007). Intrascapular BAT was removed, minced, and digested in buffer
522 containing 1% collagenase, DMEM (Cat# 11995073, Invitrogen Life) and antibiotics-50
523 IU Penicillin/mL and 50µg Streptomycin/mL (Cat# 15140122, Invitrogen Life) plus
524 Primocin 100µg/mL (Cat# ANT-PM-2, Invivogen). Samples were incubated in the
525 shaking water bath at 37°C for 45 minutes after which they were allow to cool on ice for
526 20 minutes. Infranatant was filtered through a 100µm filter and centrifuged for 5 minutes
527 at 500xg. The digestion buffer was removed and pellet was washed twice with DMEM
528 with antibiotics. After the last spin pellet was resuspended in 1 mL of DMEM containing
529 10% FBS (Cat# FB-01, Omega Scientific, Inc.) and antibiotics. Cells were then plated
530 into a 6-well plate and the next day they were immortalized by retroviral expression of
531 SV40 Large T-antigen (Cat# 13970, Adgene) using hygromycin for selection. For MPC1
532 null studies, stable expression of CreERT was generated using pMSCV CreERT2
533 retroviral vector (Cat# 22776, Adgene) with puromycin selection marker. For gene
534 expression experiments, the cells were plated in 12-well plates (75,000 cells/well) in
535 DMEM containing 10%FBS, 1nM T3 (Cat# T6397, Sigma), and 20nM insulin (Cat#
536 91077C, Sigma). Upon confluency cells were given differentiation cocktail containing
537 10%FBS, 1nM T3, 20nM insulin, 1µM rosiglitazone (Cat#71740, Cayman Chemical),
538 0.5µM dexamethasone (Cat# D4902, Sigma), 0.5mM isobutylmethylxanthine (Cat#
539 I5879, Sigma), and 0.125mM indomethacin (Cat# I7378, Sigma). After 1 day of
540 differentiation 100nM 4-hydroxy-tamoxifen (Cat# 3412, Tocris) was added to knock out
541 MPC1 gene or DMSO (Cat# D2650, Sigma) was added as a control. After two days of
542 differentiation, media was changed to DMEM containing 10% FBS, 1nM T3, 20nM
543 insulin, and 1µM rosiglitazone. Cells were harvested on day 9 of differentiation for
544 different experimental analyses.

545

546 **Brown Adipocyte U-¹³C glucose and U-¹³C palmitate labeling**

547 Cells were plated in a 6-well plate at a seeding density of 200,000 cells/well. On day 8
548 of differentiation cells were washed twice with 1XPBS and media was changed to high-
549 glucose DMEM (Cat# 11995073, Thermo Fisher) containing 10% FBS overnight. The
550 next day this media was removed and cells were washed twice with 1X PBS. They were
551 incubated in a glucose/phenol red/glutamine free DMEM (Cat# A14430-01, Thermo

552 Fisher) with added 5.5mM glucose (Cat# G8270, Sigma), GlutaMaxTM(Cat# 35050061,
553 Thermo Fisher), and MEM Non-Essential Amino Acid Solution (Cat# 11140050, Thermo
554 Fisher). Cells were allowed to equilibrate for 4 hours before the media was changed to
555 the same composed DMEM but this time containing 5.5mM U-¹³C D-Glucose (Cat#
556 CLM-1396-5, Cambridge Isotopes). For U-¹³C palmitate labeling same composed media
557 containing 5.5mM glucose was used with added 150 μ M U-¹³C Sodium palmitate (CLM-
558 6059-1, Cambridge Isotopes) conjugated to fatty acid free BSA (Cat# 700-107P, Gemini
559 Bio Products) and 1mM Carnitine (Cat# C0823, Sigma). In both experiments cells were
560 stimulated with 100nM CL-316,243 or vehicle for 5 hours. Before harvesting the cells
561 1mL od media was taken and centrifuged at 21,000xg for 10 minutes at 4°C. 40 μ L of
562 supernatant were added to 160 μ L of ice-cold 80% methanol for metabolic tracing
563 analysis. The remaining media was removed and cells were harvested by addition of
564 200 μ L of -80°C chilled buffer containing 20% water and 80% methanol (Cat#
565 AA47192M6, Fisher Scientific). Lysed cells were kept on dry ice for 5 min before
566 collection. Samples were spun down as before and 100 μ L of supernatant was directly
567 used for metabolic tracer analysis.

568

569 Measure of oxygen consumption

570

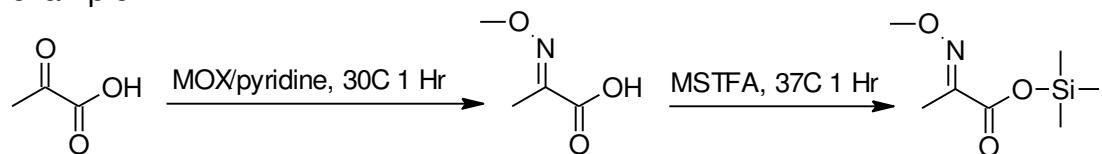
571 Oxygen consumption rate was measured using a Seahorse XF96e analyzer. 35,000
572 differentiated brown adipocytes were plated in each well of a XF 96-well cell culture
573 plate in 100 μ L of DMEM culture media and allowed to attach overnight. Cells were pre-
574 treated overnight in vehicle or 10 μ M UK5099 and incubated at 37°C in 5% CO₂. Next
575 day the culture media was replaced with standard assay media (DMEM, 25mM glucose,
576 1mM pyruvate, 2mM glutamine, pH 7.4). Cells were pretreated with 10 μ M Etomoxir for
577 15 minutes and activated with/without 100nM CL-316,243. Cells were run on a XF96e
578 analyzer for a Mito Stress Test using manufacturers protocol and standard drug
579 concentrations (Oligomycin 2.5 μ M, FCCP 2 μ M, Rotenone 0.5 μ M, and Antimycin A
580 0.5 μ M). Assay protocol was standard (3 measurements per phase, acute injection
581 followed by 3 minutes of mixing, 0 minutes waiting, and 3 minutes measuring). Data
582 was normalized to total cellular protein levels per well (ThermoFisher BCA Kit cat
583 #23227).

584

585 FFA measurement

586 Free fatty acids were measured from the blood serum of MPC1 null mice and their
587 littermate controls that were housed at room temperature or challenged by cold for 6
588 hours. 10 μ L of the serum was used for analysis using commercial kit (Cat# MAK044-
589 1KT, Sigma) according to the manufacturer instructions.

590


591 Metabolite Extraction

592 In order to extract metabolites from the tissue, each sample was transferred to 2.0ml
593 ceramic bead mill tubes (bioExpress). Each sample received 450ul of 90% cold
594 methanol in diH₂O for every 25mg of tissue. The samples were then homogenized in an
595 OMNI Bead Ruptor 24. Homogenized samples were then incubated at -20 °C for 1 hr.
596 D4-succinic acid (Sigma 293075) was added to each sample as an internal standard.
597 After incubation, all the samples were centrifuged at 20,000 x g for 10 minutes at 4°C.

598 450ul of supernatant was then transferred from each bead mill tube into a labeled, fresh
599 micro centrifuge tube where another internal standard d27-myristic acid (CDN Isotopes:
600 D-1711). Samples were then dried *en vacuo*. For metabolite extraction from serum,
601 90% methanol in diH₂O containing d4-succinic acid was added to each sample to give
602 a final methanol concentration of 80%. Samples were vortexed and incubated at -20°C
603 for 1hr. After incubation, all samples were centrifuged at 20,000 x g for 10 minutes at
604 4°C. Another internal standard, d27-myristic acid (CDN Isotopes: D-1711), was added to
605 each sample. Process blanks were made using the extraction solvent and went through
606 the same process steps as the real samples. The samples were then dried *en vacuo*.
607

608 **GC-MS analysis of metabolites**

609 All GC-MS analysis was performed with an Agilent 7200 GC-QTOF and an Agilent
610 7693A automatic liquid sampler. Dried samples were suspended in 40 μ L of a 40
611 mg/mL O-methoxymethylamine hydrochloride (MOX) (MP Bio #155405) in dry pyridine (EMD
612 Millipore #PX2012-7) and incubated for one hour at 37 °C in a sand bath. 25 μ L of this
613 solution was added to auto sampler vials. 60 μ L of N-methyl-N-
614 trimethylsilyltrifluoracetamide (MSTFA with 1%TMCS, Thermo #TS48913) was added
615 automatically via the auto sampler and incubated for 30 minutes at 37 °C. After
616 incubation, samples were vortexed and 1 μ L of the prepared sample was injected into
617 the gas chromatograph inlet in the split mode with the inlet temperature held at 250°C.
618 A 5:1 split ratio was used for analysis for the majority of metabolites. Any metabolites
619 that saturated the instrument at the 5:1 split were analyzed at a 50:1 split ratio. The gas
620 chromatograph had an initial temperature of 60°C for one minute followed by a
621 10°C/min ramp to 325°C and a hold time of 10 minutes. A 30-meter Agilent Zorbax DB-
622 5MS with 10 m Duraguard capillary column was employed for chromatographic
623 separation. Helium was used as the carrier gas at a rate of 1 mL/min. Below is a
624 description of the two step derivatization process used to convert non-volatile
625 metabolites to a volatile form amenable to GC-MS. Pyruvic acid is used here as an
626 example.

630 **Analysis of GC-MS metabolomics data**

631 Data was collected using MassHunter software (Agilent). Metabolites were identified
632 and their peak area was recorded using MassHunter Quant. This data was transferred
633 to an Excel spread sheet (Microsoft, Redmond WA). Metabolite identity was established
634 using a combination of an in-house metabolite library developed using pure purchased
635 standards, the NIST library and the Fiehn library. There are a few reasons a specific
636 metabolite may not be observable through GC-MS. The metabolite may not be
637 amenable to GC-MS due to its size, or a quaternary amine such as carnitine, or simply
638 because it does not ionize well. Metabolites that do not ionize well include oxaloacetate,
639 histidine and arginine. Cysteine can be observed depending on cellular conditions. It
640 often forms disulfide bonds with proteins and is generally at a low concentration.
Metabolites may not be quantifiable if they are only present in very low concentrations.

641

642 **LC-MS Metabolite Analysis**

643 Extracted polar metabolite samples were analyzed by LC-MC. Separation was achieved
644 by hydrophilic interaction liquid chromatography (HILIC) using a Vanquish HPLC system
645 (ThermoFisher Scientific). The column was an Xbridge BEH amide column (2.1 mm x
646 150mm, 2.5 μ M particular size, 130 \AA pore size, Waters Co.) run with a gradient of
647 solvent A (20 mM ammonium hydroxide, 20 mM ammonium acetate in 95:5
648 acetonitrile:Water, pH 9.5) and solvent B (100% acetonitrile) at a constant flow rate of
649 150 μ L/min. The gradient function was: 0 min, 90% B; 2 min, 90% B; 3 min, 75% B; 7
650 min, 75% B; 8 min, 70% B; 9 min, 70% B; 10 min, 50% B; 12 min, 50% B; 13 min, 25%
651 B; 14 min, 25% B; 16 min, 0% B; 20.5 min, 0% B; 21 min; 90% B; 25 min, 90% B.
652 Autosampler temperature was 4 $^{\circ}$ C, column temperature 30 $^{\circ}$ C and injection volume 2
653 μ L. Samples were injected by electrospray ionization into a QExactive HF orbitrap mass
654 spectrometer (ThermoFisher Scientific) operating in negative ion mode with a resolving
655 power of 120,000 at m/z of 200 and a full scan range of 75-1000. Data were analyzed
656 using the MAVEN software package and specific peaks assigned based on exact mass
657 and comparison with known standards (Melamud et al., 2010). Extracted peak
658 intensities were corrected for natural isotopic abundance (Su et al., 2017).

659

660 **Gene Expression**

661 RNA was isolated from differentiated brown adipocytes or from brown adipose tissue or
662 white adipose tissue using Trizol reagent (Cat# 15596018, ThermoFisher). Tissue
663 samples were homogenized with a TissueLyzer II (Qiagen). Isolated RNA was reverse
664 transcribed using SuperScript VILO Mastermix (Cat# 11755500, ThermoFisher). Gene
665 expression was quantified using Quant Studio 6 Flex Real-Time PCR instrument, 384-
666 well (Applied Biosystems by Invitrogen) with KAPA SYBR FAST qPCR 2x Master Mix
667 Rox Low (Cat# KK4621, Kapa Biosystems). Relative mRNA expression of indicated
668 transcripts was normalized to expression of the housekeeping gene RPS3. Primers
669 were designed using Universal Probe Library (Roche) or qPrimer Depot. A list of primer
670 sequences can be found in **Supplementary Table 5**.

671

672 **Western Blots**

673 Cells were lysed using Radioimmunoprecipitation assay (RIPA) buffer (Boston
674 Bioproducts, Inc.) plus protease inhibitor cocktail (Cat# 04693124001, Sigma Aldrich)
675 and phosphatase inhibitor cocktail (Cat# 78428, ThermoFisher). Lysates were
676 passaged through a 25-gauge needle 10 times. Snap-frozen tissues were homogenized
677 using a TissueLyzer II (Qiagen) in the same lysis buffer. Cell/tissue lysates were
678 centrifuged twice at 13,000 rpm at 4 $^{\circ}$ C for 10 minutes. Lipid layer was removed after
679 each centrifugation. Protein concentrations were measured using Pierce BCA Protein
680 Assay Kit (Cat# 23225, Thermo Fisher). 20 μ g of total protein was denatured using
681 Laemmli buffer and samples were heated at 50 $^{\circ}$ C for 10 minutes. Protein was loaded
682 onto 10% acrylamide/bisacrylamide gels and transferred to a nitrocellulose membrane
683 (GE Healthcare) for 60 minutes at 100 V for detection with the indicated antibodies.
684 Briefly, membranes were blocked in 5% milk/PBST for 1 hr and then incubated with
685 primary antibodies (1:1,000 dilution) in 5% BSA/PBST overnight at 4 $^{\circ}$ C. Horse radish
686 peroxidase-conjugated secondary antibodies (1:4,000 dilution) were given for 1 hr.

687 Western blots were developed using WesternSure Premium Chemiluminescent
688 substrate (Cat# C807723-02, LI-COR Biosciences) and detected by ChemiDoc™ MP
689 Imaging System (BioRad).

690

691 **Antibodies and Reagents**

692 MPC1 (14462), MPC2 (46141), β -Actin (4970), Akt (9272) were purchased from Cell
693 Signaling Technologies, UCP1 (AB10983), Cytochrome C [7H8.2C12] (AB13575),
694 HMGB1 (AB18256) were purchased from Abcam. 4-hydroxy-tamoxifen (4-OHT) and
695 UK5099 were purchased from Tocris. CL-316,243 (C5796) was purchased from Sigma.
696 U-¹³C D-Glucose (CLM-1396-5) and U-¹³C Sodium palmitate (CLM-6059-1) were
697 purchased from Cambridge Isotopes. Sodium palmitate (P9767) was purchased from
698 Sigma Aldrich. DL-[1-¹⁴C] 3-hydroxybutyric acid sodium salt (ARC1455) was purchased
699 from American Radiolabeled Chemicals. DL- β -Hydroxybutyric acid sodium salt (H6501)
700 was purchased from Sigma.

701

702 **Quantification and Statistical Analysis**

703 Assessment of metabolomics t-test p-value, fold change, and generation of hierarchical
704 clustering heat maps were performed in MetaboAnalyst 3.0 (Xia and Wishart, 2016).
705 The data was interquartile range filtered, sum normalized, log2 transformed and
706 autoscaled. Comparison of differentially abundant plasma or BAT metabolites from 3-
707 month-old mice in 30°C, 23°C, or 4°C was performed in MetaboAnalyst 3.0 by using 1-
708 way ANOVA analysis followed by Tukey's HSD post hoc test. All other data are
709 presented as mean \pm SEM and Student's t-test was used to determine significance,
710 unless otherwise stated.

711

712 **RNA sequencing and data processing**

713 We used the standard procedure of Qiagen RNeasy kit to extract total RNA from BAT of
714 mice. The RNA library for sequencing was prepared using TruSeq Stranded mRNA
715 Library Prep Kit (Illumina , San Diego, CA, USA) and rRNA was removed by Ribo-Zero
716 following the protocol provided by the manufacturer. The final libraries were normalized
717 in preparation pooling by Kapa Library Quantification Kit for Illumina Platforms and the
718 libraries were sequenced with the Illumina HiSeq 2000 sequencing platform within a
719 lane for all six samples. For RNA-seq data process, we used Rsubread (Bioconductor
720 release 3.8) [23558742] to align sequence reads to reference genome and used edgeR
721 [22287627] and Limma [25605792] R packages (Bioconductor release 3.8) to normalize
722 gene expression level to log2 transcripts per million (TPM) [22872506]. We aligned
723 sequence reads to GRCh38 human genome reference sequence and mapped the
724 aligned sequences to Ensembl or Entrez Gene IDs. After normalization for every
725 sample, we used young room temperature (5 mice) and cold room exposed (5 mice)
726 samples in this study. The raw RNA-seq data files and normalized expression profile
727 data is available through GEO (GSEOOOOOO).

728

729

730 **Clustering analysis and Gene Set Enrichment Analysis (GSEA).**

731 We removed genes of which expression level is zero across all samples and explored
732 the expression clusters between young room temperature and cold room exposed

733 groups. We performed unsupervised hierarchical clustering analysis and Principal
734 Component Analysis (PCA). We used Euclidean distance metric in hierarchical
735 clustering, and the first three components in PCA. Furthermore, we validated this result
736 with the supervised learning method, Random Forest. To identify biological processes
737 whose expression differed between the clusters, we ran GSEA using Gene Ontology
738 biological process (version 4.0) gene signatures [16199517]. In this analysis, we used
739 all genes and calculated p-values by permuting the class labels 1000 times. Gene sets
740 with a false discovery rate (FDR) q-value < 0.25 were considered significant. To
741 visualize relationships among the top-performing gene signatures, we used
742 EnrichmentMap [22962466].

743

744

745

746

747

748

749 **References**

750

751 BARNETT, S. A. & DICKSON, R. G. 1989. Wild mice in the cold: some findings on adaptation. *Biol
752 Rev Camb Philos Soc*, 64, 317-40.

753 BARTELTT, A., BRUNS, O. T., REIMER, R., HOHENBERG, H., ITTRICH, H., PELDSCHUS, K., KAUL, M.
754 G., TROMSDORF, U. I., WELLER, H., WAURISCH, C., EYCHMULLER, A., GORDTS, P. L.,
755 RINNINGER, F., BRUEGELMANN, K., FREUND, B., NIELSEN, P., MERKEL, M. & HEEREN, J.
756 2011. Brown adipose tissue activity controls triglyceride clearance. *Nat Med*, 17, 200-5.

757 BENDER, T. & MARTINOU, J. C. 2016. The mitochondrial pyruvate carrier in health and disease:
758 To carry or not to carry? *Biochim Biophys Acta*, 1863, 2436-42.

759 BIRSOY, K., WANG, T., CHEN, W. W., FREINKMAN, E., ABU-REMAILEH, M. & SABATINI, D. M.
760 2015. An Essential Role of the Mitochondrial Electron Transport Chain in Cell
761 Proliferation Is to Enable Aspartate Synthesis. *Cell*, 162, 540-51.

762 BRICKER, D. K., TAYLOR, E. B., SCHELL, J. C., ORSAK, T., BOUTRON, A., CHEN, Y. C., COX, J. E.,
763 CARDON, C. M., VAN VRANKEN, J. G., DEPHOURE, N., REDIN, C., BOUDINA, S., GYGI, S.
764 P., BRIVET, M., THUMMEL, C. S. & RUTTER, J. 2012. A mitochondrial pyruvate carrier
765 required for pyruvate uptake in yeast, Drosophila, and humans. *Science*, 337, 96-100.

766 BUSIELLO, R. A., SAVARESE, S. & LOMBARDI, A. 2015. Mitochondrial uncoupling proteins and
767 energy metabolism. *Front Physiol*, 6, 36.

768 CANNON, B. & NEDERGAARD, J. 2004. Brown adipose tissue: function and physiological
769 significance. *Physiol Rev*, 84, 277-359.

770 CYPESS, A. M., LEHMAN, S., WILLIAMS, G., TAL, I., RODMAN, D., GOLDFINE, A. B., KUO, F. C.,
771 PALMER, E. L., TSENG, Y. H., DORIA, A., KOLODNY, G. M. & KAHN, C. R. 2009.
772 Identification and importance of brown adipose tissue in adult humans. *N Engl J Med*,
773 360, 1509-17.

774 FEDORENKO, A., LISHKO, P. V. & KIRICHOK, Y. 2012. Mechanism of fatty-acid-dependent UCP1
775 uncoupling in brown fat mitochondria. *Cell*, 151, 400-13.

776 FERRE, P., BURNOL, A. F., LETURQUE, A., TERRETAZ, J., PENICAUD, L., JEANRENAUD, B. &
777 GIRARD, J. 1986. Glucose utilization in vivo and insulin-sensitivity of rat brown adipose
778 tissue in various physiological and pathological conditions. *Biochem J*, 233, 249-52.

779 GAUDRY, M. J., CAMPBELL, K. L. & JASTROCH, M. 2019. Evolution of UCP1. *Handb Exp*
780 *Pharmacol*, 251, 127-141.

781 GRAY, L. R., SULTANA, M. R., RAUCKHORST, A. J., OONTHONPAN, L., TOMPKINS, S. C., SHARMA,
782 A., FU, X., MIAO, R., PEWA, A. D., BROWN, K. S., LANE, E. E., DOHLMAN, A., ZEPEDA-
783 OROZCO, D., XIE, J., RUTTER, J., NORRIS, A. W., COX, J. E., BURGESS, S. C., POTTHOFF, M.
784 J. & TAYLOR, E. B. 2015. Hepatic Mitochondrial Pyruvate Carrier 1 Is Required for
785 Efficient Regulation of Gluconeogenesis and Whole-Body Glucose Homeostasis. *Cell*
786 *Metab*, 22, 669-81.

787 HAO, Q., YADAV, R., BASSE, A. L., PETERSEN, S., SONNE, S. B., RASMUSSEN, S., ZHU, Q., LU, Z.,
788 WANG, J., AUDOUZE, K., GUPTA, R., MADSEN, L., KRISTIANSEN, K. & HANSEN, J. B. 2015.
789 Transcriptome profiling of brown adipose tissue during cold exposure reveals extensive
790 regulation of glucose metabolism. *Am J Physiol Endocrinol Metab*, 308, E380-92.

791 HEINE, M., FISCHER, A. W., SCHLEIN, C., JUNG, C., STRAUB, L. G., GOTTSCHLING, K., MANGELS,
792 N., YUAN, Y., NILSSON, S. K., LIEBSCHER, G., CHEN, O., SCHREIBER, R., ZECHNER, R.,
793 SCHEJA, L. & HEEREN, J. 2018. Lipolysis Triggers a Systemic Insulin Response Essential for
794 Efficient Energy Replenishment of Activated Brown Adipose Tissue in Mice. *Cell Metab*,
795 28, 644-655 e4.

796 HERZIG, S., RAEMY, E., MONTESSUIT, S., VEUTHEY, J. L., ZAMBONI, N., WESTERMANN, B., KUNJI,
797 E. R. & MARTINOU, J. C. 2012. Identification and functional expression of the
798 mitochondrial pyruvate carrier. *Science*, 337, 93-6.

799 KHEDOE, P. P., HOEKE, G., KOOIJMAN, S., DIJK, W., BUIJS, J. T., KERSTEN, S., HAVEKES, L. M.,
800 HIEMSTRA, P. S., BERBEE, J. F., BOON, M. R. & RENSEN, P. C. 2015. Brown adipose tissue
801 takes up plasma triglycerides mostly after lipolysis. *J Lipid Res*, 56, 51-9.

802 KLAUS, S., CASTEILLA, L., BOUILAUD, F. & RICQUIER, D. 1991. The uncoupling protein UCP: a
803 membranous mitochondrial ion carrier exclusively expressed in brown adipose tissue.
804 *Int J Biochem*, 23, 791-801.

805 KONG, X., BANKS, A., LIU, T., KAZAK, L., RAO, R. R., COHEN, P., WANG, X., YU, S., LO, J. C.,
806 TSENG, Y. H., CYPESS, A. M., XUE, R., KLEINER, S., KANG, S., SPIEGELMAN, B. M. &
807 ROSEN, E. D. 2014. IRF4 is a key thermogenic transcriptional partner of PGC-1alpha. *Cell*,
808 158, 69-83.

809 LABBE, S. M., CARON, A., BAKAN, I., LAPLANTE, M., CARPENTIER, A. C., LECOMTE, R. & RICHARD,
810 D. 2015. In vivo measurement of energy substrate contribution to cold-induced brown
811 adipose tissue thermogenesis. *FASEB J*, 29, 2046-58.

812 LEE, J., ELLIS, J. M. & WOLFGANG, M. J. 2015. Adipose fatty acid oxidation is required for
813 thermogenesis and potentiates oxidative stress-induced inflammation. *Cell Rep*, 10, 266-
814 79.

815 LONDOS, C., HONNOR, R. C. & DHILLON, G. S. 1985. cAMP-dependent protein kinase and
816 lipolysis in rat adipocytes. III. Multiple modes of insulin regulation of lipolysis and
817 regulation of insulin responses by adenylate cyclase regulators. *J Biol Chem*, 260, 15139-
818 45.

819 LOPEZ-SORIANO, F. J., FERNANDEZ-LOPEZ, J. A., MAMPEL, T., VILLARROYA, F., IGLESIAS, R. &
820 ALEMANY, M. 1988. Amino acid and glucose uptake by rat brown adipose tissue. Effect
821 of cold-exposure and acclimation. *Biochem J*, 252, 843-9.

822 MARCHER, A. B., LOFT, A., NIELSEN, R., VIHERVAARA, T., MADSEN, J. G., SYSI-AHO, M., EKROOS,
823 K. & MANDRUP, S. 2015. RNA-Seq and Mass-Spectrometry-Based Lipidomics Reveal
824 Extensive Changes of Glycerolipid Pathways in Brown Adipose Tissue in Response to
825 Cold. *Cell Rep*, 13, 2000-13.

826 MARTINEAU, L. & JACOBS, I. 1989. Free fatty acid availability and temperature regulation in
827 cold water. *J Appl Physiol (1985)*, 67, 2466-72.

828 MCCOMMIS, K. S., CHEN, Z., FU, X., MCDONALD, W. G., COLCA, J. R., KLETZIEN, R. F., BURGESS,
829 S. C. & FINCK, B. N. 2015. Loss of Mitochondrial Pyruvate Carrier 2 in the Liver Leads to
830 Defects in Gluconeogenesis and Compensation via Pyruvate-Alanine Cycling. *Cell Metab*,
831 22, 682-94.

832 MELAMUD, E., VASTAG, L. & RABINOWITZ, J. D. 2010. Metabolomic analysis and visualization
833 engine for LC-MS data. *Anal Chem*, 82, 9818-26.

834 MILLS, E. L., PIERCE, K. A., JEDRYCHOWSKI, M. P., GARRITY, R., WINTHER, S., VIDONI, S.,
835 YONESHIRO, T., SPINELLI, J. B., LU, G. Z., KAZAK, L., BANKS, A. S., HAIGIS, M. C.,
836 KAJIMURA, S., MURPHY, M. P., GYGI, S. P., CLISH, C. B. & CHOUCANI, E. T. 2018.
837 Accumulation of succinate controls activation of adipose tissue thermogenesis. *Nature*,
838 560, 102-106.

839 MIRBOLOOKI, M. R., UPADHYAY, S. K., CONSTANTINESCU, C. C., PAN, M. L. & MUKHERJEE, J.
840 2014. Adrenergic pathway activation enhances brown adipose tissue metabolism: a
841 [(1)(8)F]FDG PET/CT study in mice. *Nucl Med Biol*, 41, 10-6.

842 MOWBRAY, J. 1975. A mitochondrial monocarboxylate transporter in rat liver and heart and its
843 possible function in cell control. *Biochem J*, 148, 41-7.

844 NEWMAN, J. C. & VERDIN, E. 2014a. beta-hydroxybutyrate: much more than a metabolite.
845 *Diabetes Res Clin Pract*, 106, 173-81.

846 NEWMAN, J. C. & VERDIN, E. 2014b. Ketone bodies as signaling metabolites. *Trends Endocrinol
847 Metab*, 25, 42-52.

848 OELKRUG, R., POLYMEROPoulos, E. T. & JASTROCH, M. 2015. Brown adipose tissue:
849 physiological function and evolutionary significance. *J Comp Physiol B*, 185, 587-606.

850 RAFAEL, J., VSIANSKY, P. & HELDMAIER, G. 1985. Increased contribution of brown adipose
851 tissue to nonshivering thermogenesis in the Djungarian hamster during cold-adaptation.
852 *J Comp Physiol B*, 155, 717-22.

853 RODRIGUEZ-CUENCA, S., MONJO, M., FRONTERA, M., GIANOTTI, M., PROENZA, A. M. & ROCA,
854 P. 2007. Sex steroid receptor expression profile in brown adipose tissue. Effects of
855 hormonal status. *Cell Physiol Biochem*, 20, 877-86.

856 ROSELL, M., KAFOROU, M., FRONTINI, A., OKOLO, A., CHAN, Y. W., NIKOLOPOULOU, E.,
857 MILLERSHIP, S., FENECH, M. E., MACINTYRE, D., TURNER, J. O., MOORE, J. D.,
858 BLACKBURN, E., GULLICK, W. J., CINTI, S., MONTANA, G., PARKER, M. G. & CHRISTIAN,
859 M. 2014. Brown and white adipose tissues: intrinsic differences in gene expression and
860 response to cold exposure in mice. *Am J Physiol Endocrinol Metab*, 306, E945-64.

861 SAITO, M., OKAMATSU-OGURA, Y., MATSUSHITA, M., WATANABE, K., YONESHIRO, T., NIO-
862 KOBAYASHI, J., IWANAGA, T., MIYAGAWA, M., KAMEYA, T., NAKADA, K., KAWAI, Y. &

863 TSUJISAKI, M. 2009. High incidence of metabolically active brown adipose tissue in
864 healthy adult humans: effects of cold exposure and adiposity. *Diabetes*, 58, 1526-31.

865 SCHELL, J. C., OLSON, K. A., JIANG, L., HAWKINS, A. J., VAN VRANKEN, J. G., XIE, J., EGNATCHIK,
866 R. A., EARL, E. G., DEBERARDINIS, R. J. & RUTTER, J. 2014. A role for the mitochondrial
867 pyruvate carrier as a repressor of the Warburg effect and colon cancer cell growth. *Mol
868 Cell*, 56, 400-13.

869 SIMCOX, J., GEOGHEGAN, G., MASCHEK, J. A., BENSARD, C. L., PASQUALI, M., MIAO, R., LEE, S.,
870 JIANG, L., HUCK, I., KERSHAW, E. E., DONATO, A. J., APTE, U., LONGO, N., RUTTER, J.,
871 SCHREIBER, R., ZECHNER, R., COX, J. & VILLANUEVA, C. J. 2017. Global Analysis of Plasma
872 Lipids Identifies Liver-Derived Acylcarnitines as a Fuel Source for Brown Fat
873 Thermogenesis. *Cell Metab*, 26, 509-522 e6.

874 SRIVASTAVA, S., KASHIWAYA, Y., KING, M. T., BAXA, U., TAM, J., NIU, G., CHEN, X., CLARKE, K. &
875 VEECH, R. L. 2012. Mitochondrial biogenesis and increased uncoupling protein 1 in
876 brown adipose tissue of mice fed a ketone ester diet. *FASEB J*, 26, 2351-62.

877 SU, X., LU, W. & RABINOWITZ, J. D. 2017. Metabolite Spectral Accuracy on Orbitraps. *Anal
878 Chem*, 89, 5940-5948.

879 TOWNSEND, K. L. & TSENG, Y. H. 2014. Brown fat fuel utilization and thermogenesis. *Trends
880 Endocrinol Metab*, 25, 168-77.

881 VACANTI, N. M., DIVAKARUNI, A. S., GREEN, C. R., PARKER, S. J., HENRY, R. R., CIARALDI, T. P.,
882 MURPHY, A. N. & METALLO, C. M. 2014. Regulation of substrate utilization by the
883 mitochondrial pyruvate carrier. *Mol Cell*, 56, 425-35.

884 VALLERAND, A. L., PERUSSE, F. & BUKOWIECKI, L. J. 1990. Stimulatory effects of cold exposure
885 and cold acclimation on glucose uptake in rat peripheral tissues. *Am J Physiol*, 259,
886 R1043-9.

887 VANDER HEIDEN, M. G., CANTLEY, L. C. & THOMPSON, C. B. 2009. Understanding the Warburg
888 effect: the metabolic requirements of cell proliferation. *Science*, 324, 1029-33.

889 VIJGEN, G. H., BOUVY, N. D., TEULE, G. J., BRANS, B., SCHRAUWEN, P. & VAN MARKEN
890 LICHTENBELT, W. D. 2011. Brown adipose tissue in morbidly obese subjects. *PLoS One*,
891 6, e17247.

892 VIRTANEN, K. A., LIDELL, M. E., ORAVA, J., HEGLIND, M., WESTERGREN, R., NIEMI, T.,
893 TAITTONEN, M., LAINE, J., SAVISTO, N. J., ENERBACK, S. & NUUTILA, P. 2009. Functional
894 brown adipose tissue in healthy adults. *N Engl J Med*, 360, 1518-25.

895 WANG, W., ISHIBASHI, J., TREFELY, S., SHAO, M., COWAN, A. J., SAKERS, A., LIM, H. W.,
896 O'CONNOR, S., DOAN, M. T., COHEN, P., BAUR, J. A., KING, M. T., VEECH, R. L., WON, K.
897 J., RABINOWITZ, J. D., SNYDER, N. W., GUPTA, R. K. & SEALE, P. 2019. A PRDM16-Driven
898 Metabolic Signal from Adipocytes Regulates Precursor Cell Fate. *Cell Metab*, 30, 174-189
899 e5.

900 WINTHER, S., ISIDOR, M. S., BASSE, A. L., SKJOLDBORG, N., CHEUNG, A., QUISTORFF, B. &
901 HANSEN, J. B. 2018. Restricting glycolysis impairs brown adipocyte glucose and oxygen
902 consumption. *Am J Physiol Endocrinol Metab*, 314, E214-E223.

903 XIA, J. & WISHART, D. S. 2016. Using MetaboAnalyst 3.0 for Comprehensive Metabolomics Data
904 Analysis. *Curr Protoc Bioinformatics*, 55, 14 10 1-14 10 91.

905 YANG, C., KO, B., HENSLEY, C. T., JIANG, L., WASTI, A. T., KIM, J., SUDDERTH, J., CALVARUSO, M.
906 A., LUMATA, L., MITSCHE, M., RUTTER, J., MERRITT, M. E. & DEBERARDINIS, R. J. 2014.

907 Glutamine oxidation maintains the TCA cycle and cell survival during impaired
908 mitochondrial pyruvate transport. *Mol Cell*, 56, 414-24.

909 YONESHIRO, T., WANG, Q., TAJIMA, K., MATSUSHITA, M., MAKI, H., IGARASHI, K., DAI, Z.,
910 WHITE, P. J., MCGARRAH, R. W., ILKAYEVA, O. R., DELEYE, Y., OGURI, Y., KURODA, M.,
911 IKEDA, K., LI, H., UENO, A., OHISHI, M., ISHIKAWA, T., KIM, K., CHEN, Y., SPONTON, C. H.,
912 PRADHAN, R. N., MAJD, H., GREINER, V. J., YONESHIRO, M., BROWN, Z.,
913 CHONDRONIKOLA, M., TAKAHASHI, H., GOTO, T., KAWADA, T., SIDOSSIS, L., SZOKA, F. C.,
914 MCMANUS, M. T., SAITO, M., SOGA, T. & KAJIMURA, S. 2019a. BCAA catabolism in
915 brown fat controls energy homeostasis through SLC25A44. *Nature*, 572, 614-619.

916 YONESHIRO, T., WANG, Q., TAJIMA, K., MATSUSHITA, M., MAKI, H., IGARASHI, K., DAI, Z.,
917 WHITE, P. J., MCGARRAH, R. W., ILKAYEVA, O. R., DELEYE, Y., OGURI, Y., KURODA, M.,
918 IKEDA, K., LI, H., UENO, A., OHISHI, M., ISHIKAWA, T., KIM, K., CHEN, Y., SPONTON, C. H.,
919 PRADHAN, R. N., MAJD, H., GREINER, V. J., YONESHIRO, M., BROWN, Z.,
920 CHONDRONIKOLA, M., TAKAHASHI, H., GOTO, T., KAWADA, T., SIDOSSIS, L., SZOKA, F. C.,
921 MCMANUS, M. T., SAITO, M., SOGA, T. & KAJIMURA, S. 2019b. BCAA catabolism in
922 brown fat controls energy homeostasis through SLC25A44. *Nature*.

923 ZHANG, J., HUPFELD, C. J., TAYLOR, S. S., OLEFSKY, J. M. & TSIEN, R. Y. 2005. Insulin disrupts
924 beta-adrenergic signalling to protein kinase A in adipocytes. *Nature*, 437, 569-73.

925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951

952
953
954
955
956
957
958
959
960
961
962

**963 Figure 1. Transcriptome and metabolomics analysis of brown fat shows
964 increased carbohydrate metabolism and glycolytic metabolism during cold
965 exposure.**

(a) Network visualization of enriched biological pathways altered with cold exposure in BAT (N=5).
(b) GSEA pathway analysis of differentially expressing genes (FDR<0.05) in BAT at 4°C versus room temperature (N=5).
(c-d) Heat map of relative normalized changes in BAT (c) and serum (d) metabolites at 30°C, 23°C, and 4°C. Dendograms illustrate hierarchical clustering of pattern similarity across metabolites (left) and conditions (top). Each column represents average within the group (N=5 per group). Data was sum normalized, log transformed, and autoscaled.

**975 Figure 2. Transcriptome and metabolomics analysis of brown fat shows
976 increased carbohydrate metabolism during cold exposure.**

(a) Atom mapping for [U-¹³C]glucose tracing into glycolysis and the TCA cycle. White balls are ¹²C atoms. Black balls are ¹³C atoms.
(b) Tracing analysis from U-¹³C glucose in differentiated brown adipocytes treated with vehicle or 100nM CL-316,243 for 5 hours (N=3).

**981 Figure 3. Loss of MPC1 in BAT impairs thermogenesis and leads to cold
982 sensitivity.**

(a) Relative gene expression in brown adipose tissue from mice adapted to 30°C or 4°C for 1 day or 1 week. N=4-5.
(b) Western blot analysis of brown adipose tissue of mice adapted to 30°C or 4°C for 1 week. N=4-5.
(c) Gene expression of MPC1 and MPC2 in brown adipose tissue after 6 hours of cold exposure. N=7.
(d) Western blot analysis of brown adipose tissue and white adipose tissue (e) at 4°C. N=4.
(f) Core body temperature during cold challenge at 4°C. N=7.

994 **Figure 4. Conditional deletion of *Mpc1* in BAT impairs systemic glucose**

995 metabolism.

996 (a) Glucose tolerance test at room temperature (23°C) and cold (4°C) in *Mpc1*^{F/F} and

997 *Mpc1*^{F/F} UCP1^{Cre} 3-4 months old, N=5.

998 (b) Insulin tolerance test at room temperature (23°C) in *Mpc1*^{F/F} and *Mpc1*^{F/F} UCP1^{Cre}, 3-4

999 months old, N=6.

1000 (c). Representative H&E images of BAT, iWAT, eWAT, and liver from *Mpc1*^{F/F} and

1001 *Mpc1*^{F/F} UCP1^{Cre} mice exposed to 4°C for 6 hours.

1002 (d) Gene expression in BAT from *Mpc1*^{F/F} and *Mpc1*^{F/F} UCP1^{Cre} mice exposed to 4°C for

1003 6 hours. N=6.

1004 (e-h) Energy expenditure, RER, and locomotor activity of *Mpc1*^{F/F} and *Mpc1*^{F/F} UCP1^{Cre}

1005 mice at 6°C. N=4.

1006

1007 **Figure 5. Mitochondrial pyruvate transport is required for ¹³C-glucose-derived**

1008 TCA cycle intermediates

1009 (a) Western blot analysis of differentiated brown *Mpc1*^{F/F} adipocytes expressing

1010 pMSCV2 or CreERT2 treated with ethanol or 4-hydroxy tamoxifen. N=3.

1011 (b) Gene expression analysis in differentiated brown *Mpc1*^{F/F} adipocytes expressing

1012 pMSCV2 or CreERT2 treated with ethanol or 4-hydroxy tamoxifen N=3

1013 (c-d) U-¹³C-glucose labeling in *Mpc1*^{F/F} adipocytes expressing CreERT2 treated with

1014 ethanol or 4-hydroxy tamoxifen, with/without 100nM CL-316,243 for 5 hours (N=6).

1015 (e) Oxygen consumption rate in differentiated brown adipocytes treated with/without

1016 100nM CL-316,243 ± 10μM UK5099, 10μM Etomoxir, or both. (N=10-12).

1017

1018 **Figure 6. Conditional deletion of MPC1 in brown fat leads to increased**

1019 ketogenesis.

1020 (a) Volcano plot showing changes in serum metabolites between *Mpc1*^{F/F} and *Mpc1*^{F/F}-

1021 UCP1^{Cre} mice housed at 4°C for 6 hours. N=6.

1022 (b) Heat map of top 25 metabolites in BAT from *Mpc1*^{F/F} and *Mpc1*^{F/F} UCP1^{Cre} mice

1023 housed at 4°C for 6 hours. Dendograms illustrate hierarchical clustering across

1024 metabolites (left) and genotypes (top). N=6. Data was sum normalized, log transformed,

1025 and autoscaled.

1026 (c) Serum 3-hydroxybutyrate levels from *Mpc1*^{F/F} and *Mpc1*^{F/F} UCP1^{Cre} mice housed at

1027 23°C or 4°C for 6 hours. N=6.

1028 (d) Gene expression analysis of livers from *Mpc1*^{F/F} and *Mpc1*^{F/F} UCP1^{Cre} mice housed at

1029 4°C for 6 hours. N=6.

1030

1031 (a) Hierarchical clustering illustrates large-scale differences in gene expression between

1032 cold room and room temperature exposed BAT.

1034 (b) Unsupervised principal component analysis (PCA) shows that cold room and room
1035 temperature exposed BATs are separated and form distinctive clusters in principal
1036 components. The first three principal components were used to present the samples in
1037 the 3-dimentional PCA plot.

1038 (c) ^{13}C labeling of M+6 glucose and M+3 pyruvate and lactate in the media of brown
1039 adipocytes treated with vehicle or 100nM CL-316,243 for 1 or 5 hours (N=3).

1040 (d) Total intracellular pyruvate and lactate (M and M+3) of brown adipocytes treated with
1041 vehicle or 100nM CL-316,243 for 1 or 5 hours (N=3).

1042

1043 Supplemental Figure 2

1044 (a) Blood glucose levels in $Mpc1^{F/F}$ and $Mpc1^{F/F} UCP1^{Cre}$ mice exposed to 4°C for 6 hours
1045 (N=6).

1046

1047

1048 Supplemental Figure 3

1049 (a) Body composition of $Mpc1^{F/F}$ and $Mpc1^{F/F} UCP1^{Cre}$ mice housed at room temperature
1050 by NMR.

1051 (b) Time-dependent changes in blood glucose levels in $Mpc1^{F/F}$ and $Mpc1^{F/F} UCP1^{Cre}$ mice
1052 mice 3-4 months old treated with 1mg/kg CL-316,243 (N=6).

1053 (c) Gene expression in BAT from $Mpc1^{F/F}$ and $Mpc1^{F/F} UCP1^{Cre}$ mice housed at 4°C for 6
1054 hours.

1055 (d) Gene expression in iWAT from $Mpc1^{F/F}$ and $Mpc1^{F/F} UCP1^{Cre}$ mice housed at 4°C for 6
1056 hours.

1057

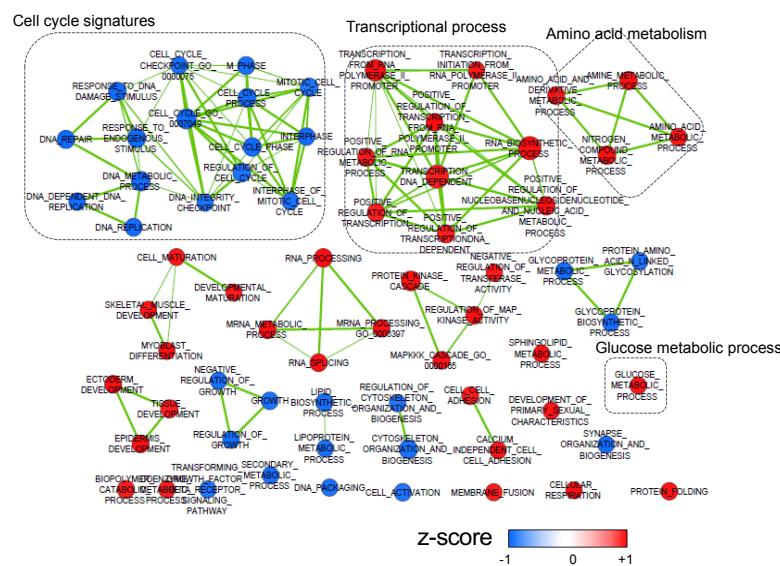
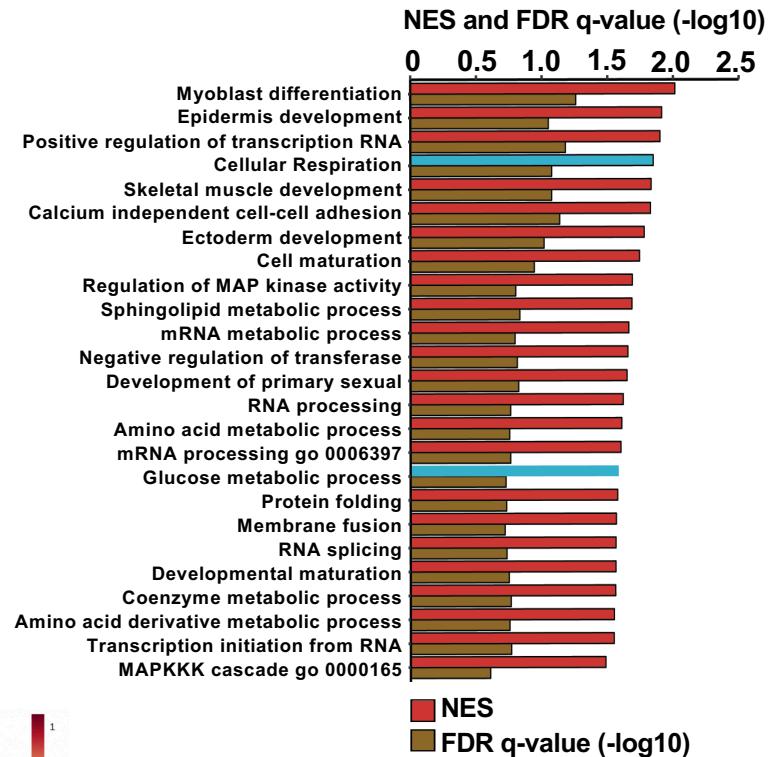
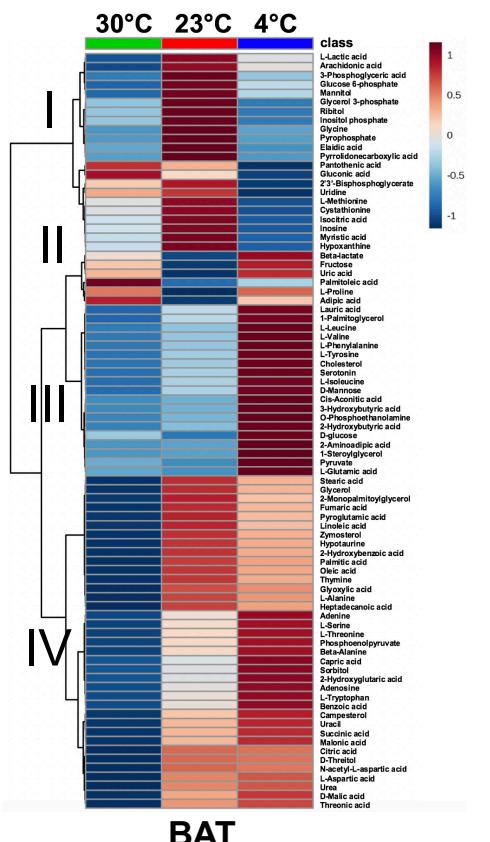
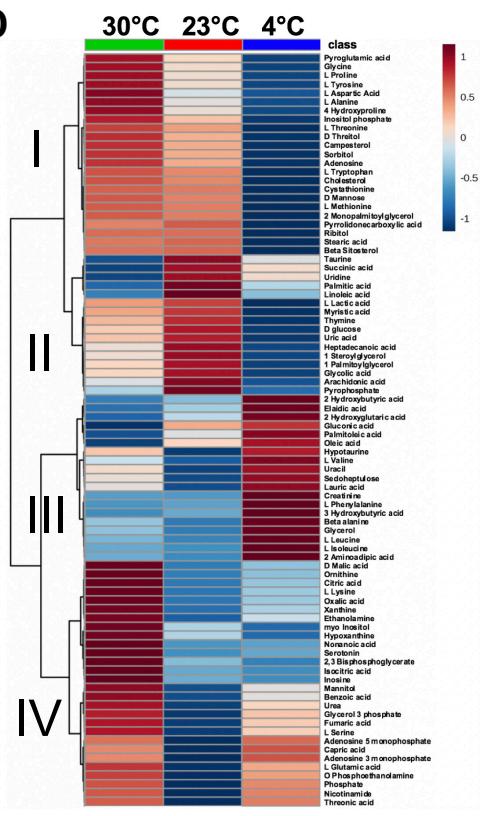
1058 Supplemental Figure 4

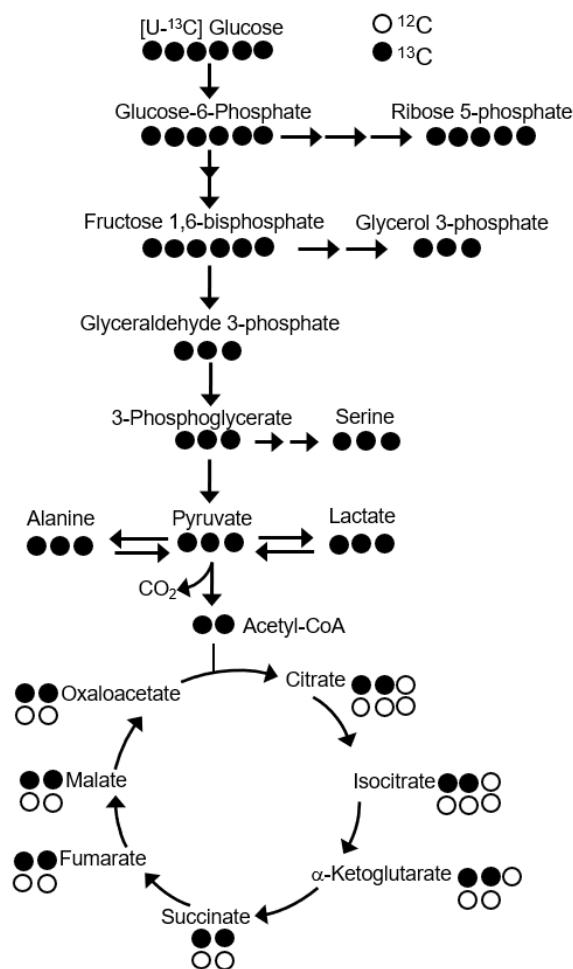
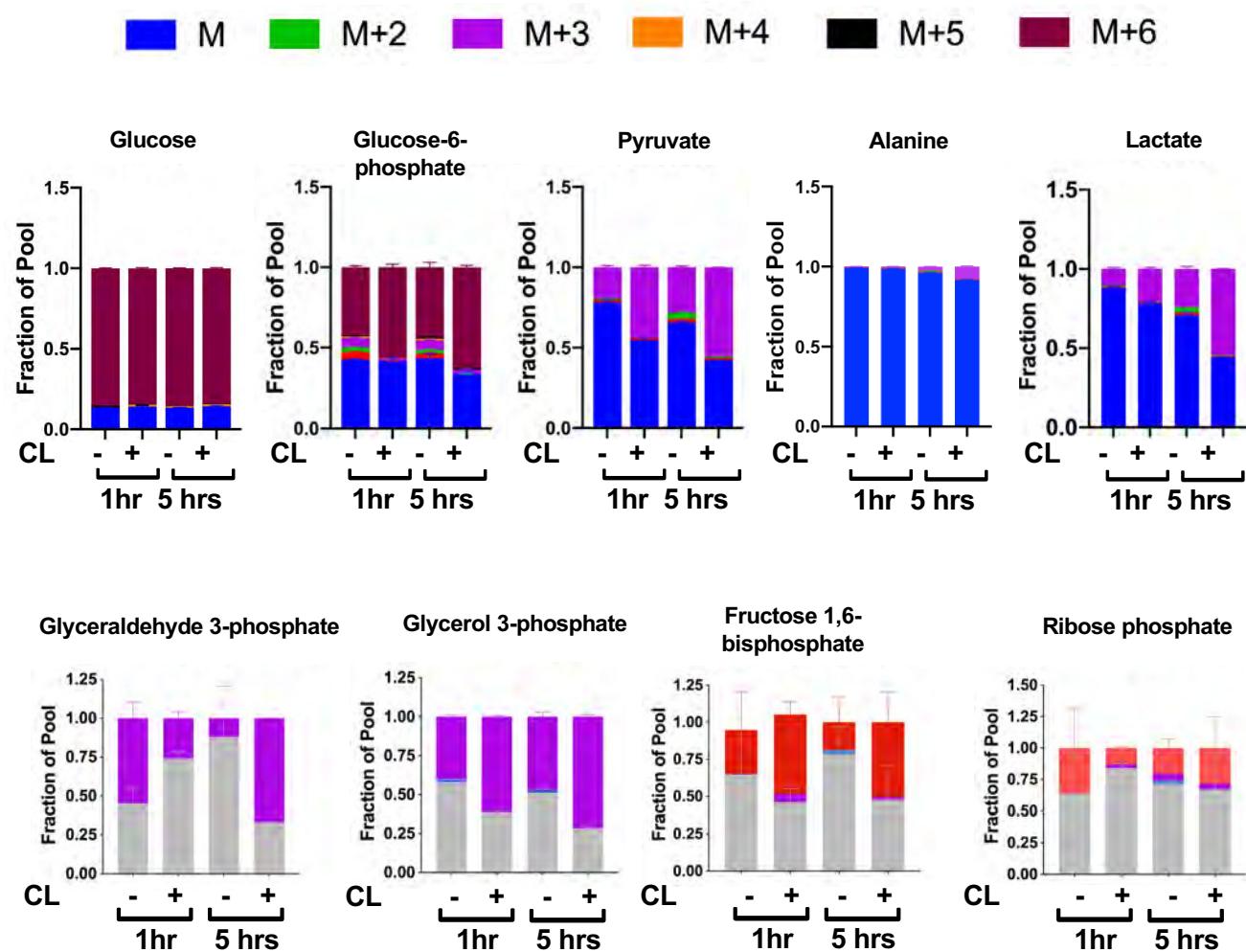
1059 (a) Seahorse analysis of basal respiration, proton leak, or ATP production in
1060 differentiated brown adipocytes treated with/without 100nM CL-316,243 \pm 10 μM
1061 UK5099, 10 μM Etomoxir, or both. (N=10-12).

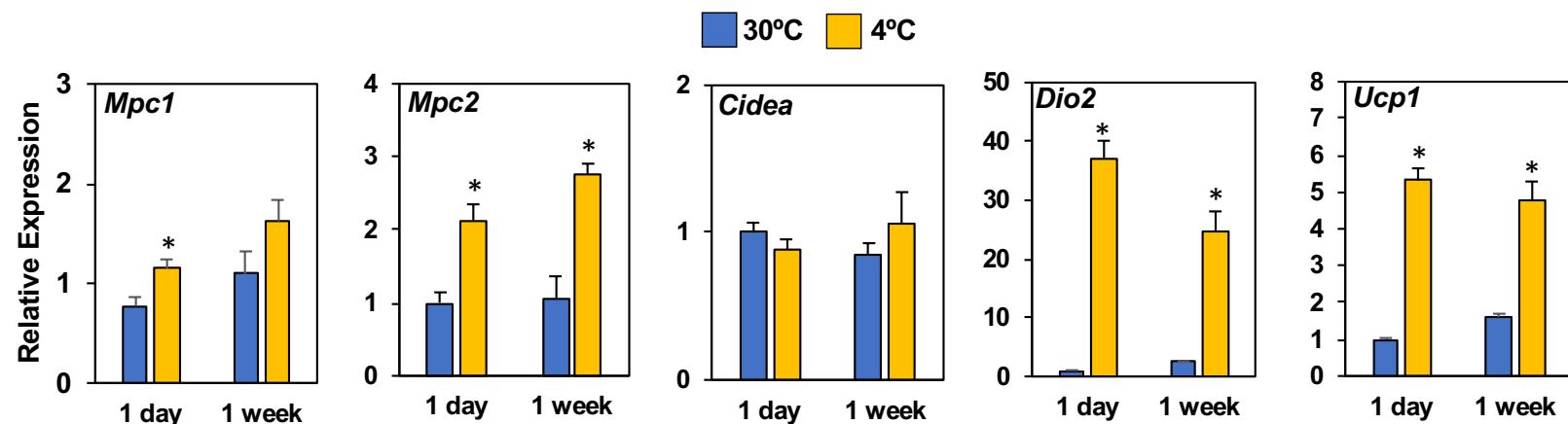
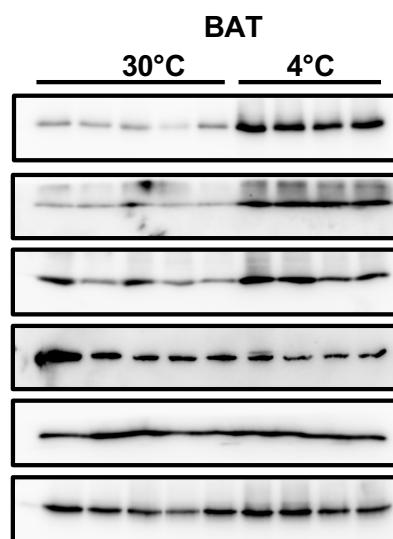
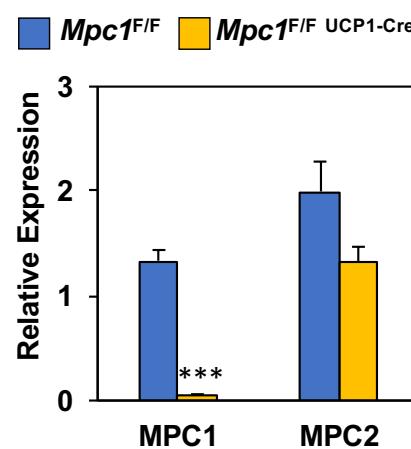
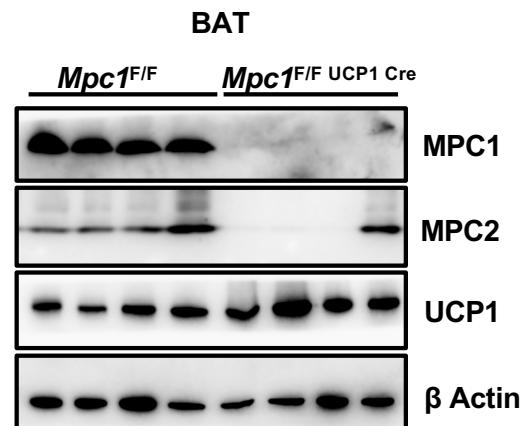
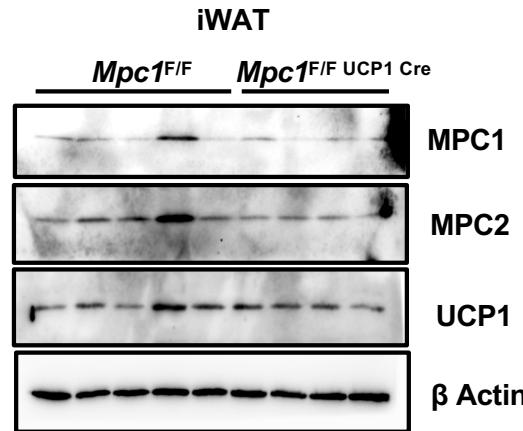
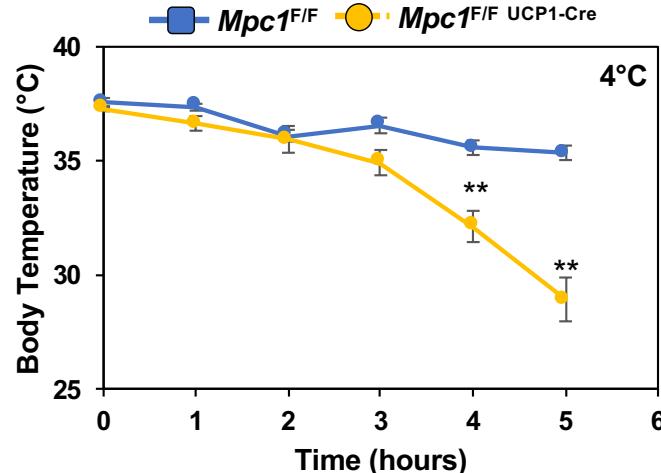
1062 (b) Total media pyruvate and lactate from $Mpc1^{F/F}$ adipocytes expressing CreERT2
1063 treated with ethanol or 4-hydroxy tamoxifen, with/without 100nM CL-316,243 for 5 hours
1064 in [^{13}C] glucose (N=6).

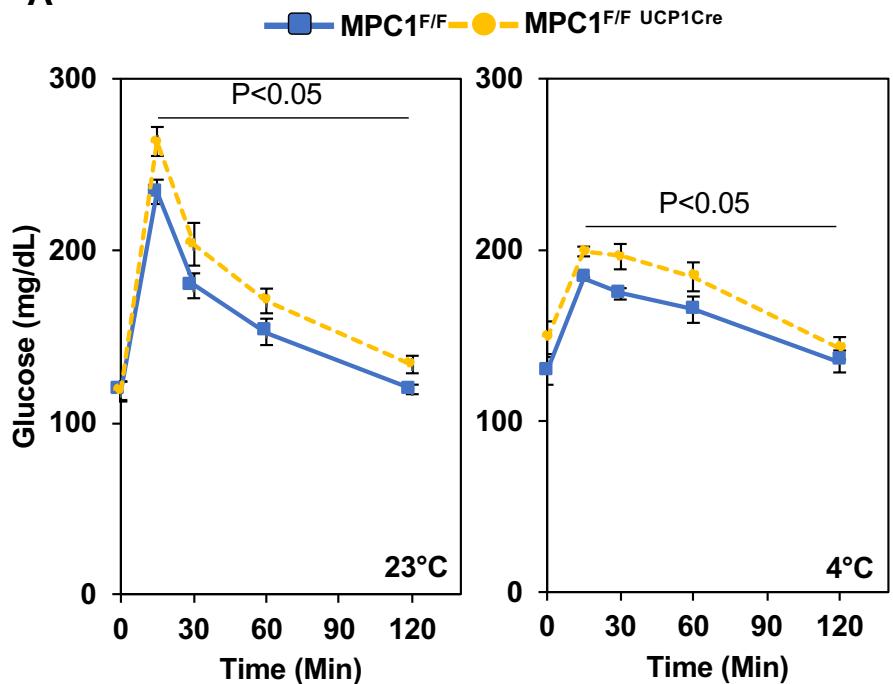
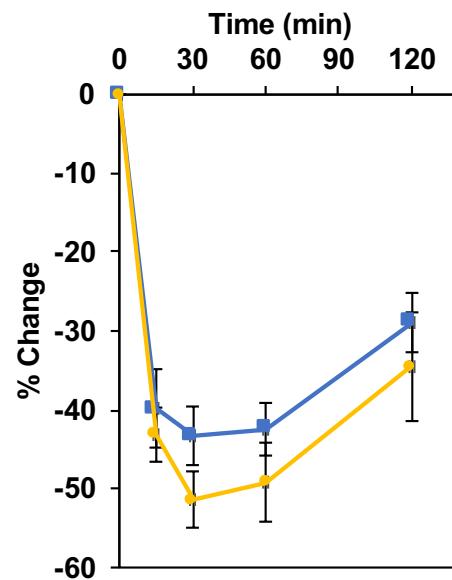
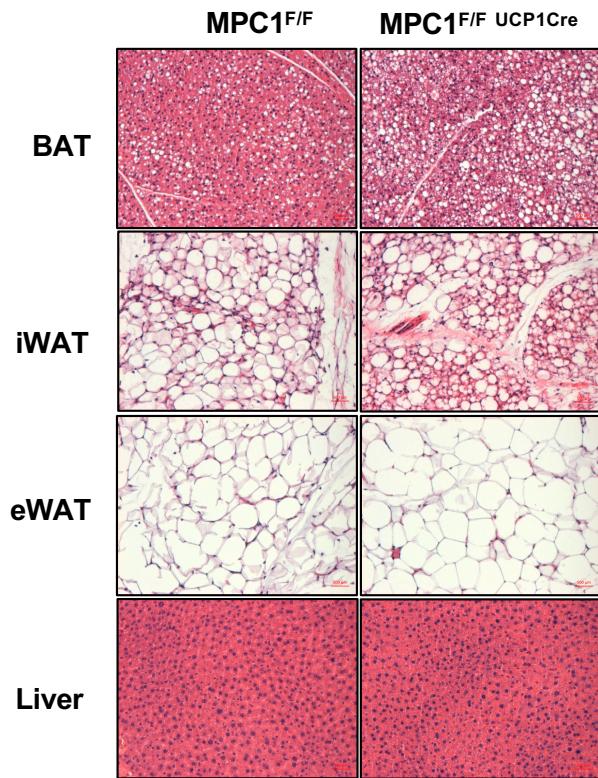
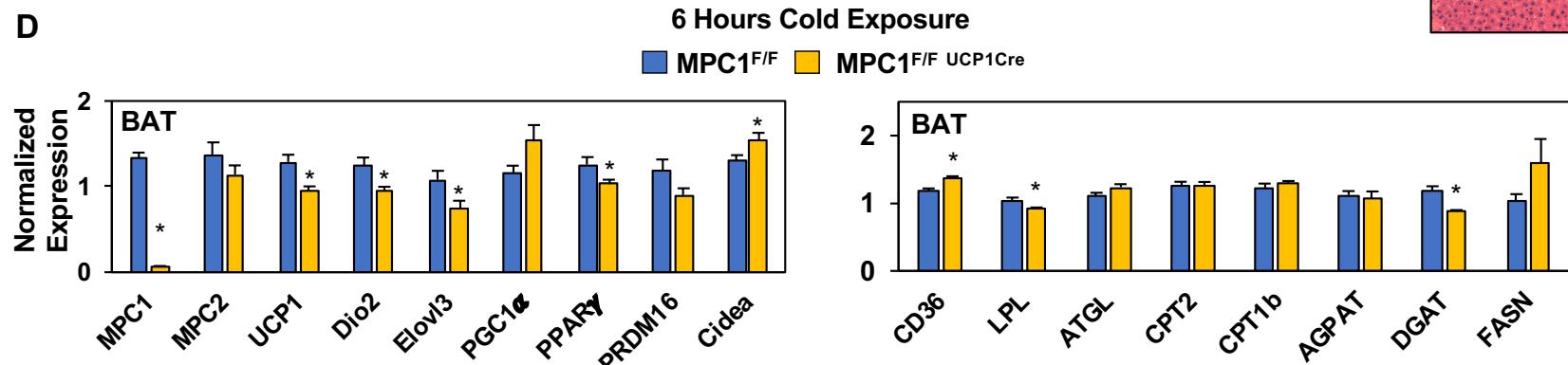
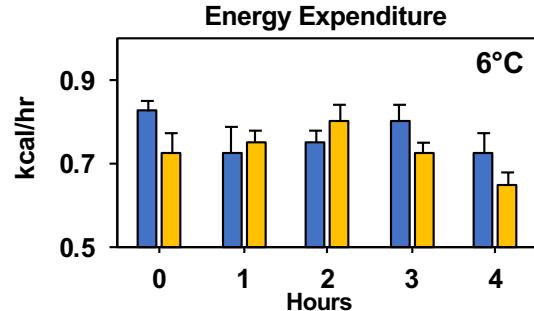
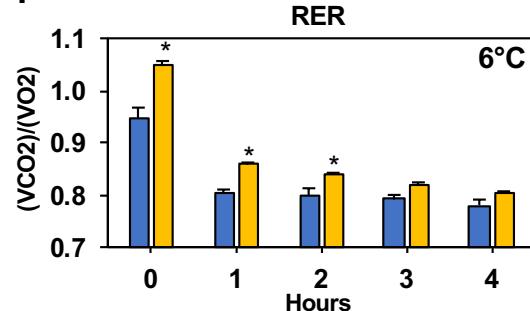
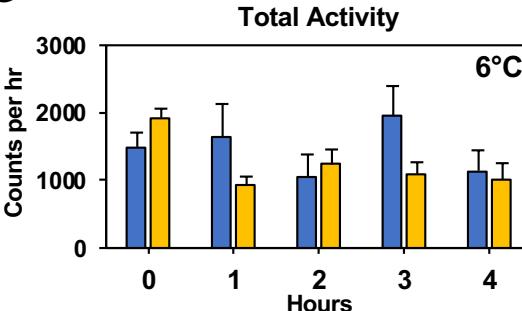
1065

1066 Supplemental Figure 5





1067 (a) Gene expression in livers from $Mpc1^{F/F}$ and $Mpc1^{F/F} UCP1^{Cre}$ mice housed at 4°C for 6
1068 hours.



1069 (b) Free fatty acid levels in serum of $Mpc1^{F/F}$ and $Mpc1^{F/F} UCP1^{Cre}$ mice housed either at
1070 challenged with 4°C for 6 hours.







1071 (c) Ketogenic gene expression in iWAT from $Mpc1^{F/F}$ and $Mpc1^{F/F} UCP1^{Cre}$ mice housed
1072 at 4°C for 6 hours. Data was analyzed by Student's t-test. Values are shown as
1073 mean+s.e.m. (N=6).








1074

1075

A**B****C****D****Figure 1**

A**B****Figure 2**

A**B****C****D****E****F****Figure 3**

A**B****C****D****E****F****G****Figure 4**

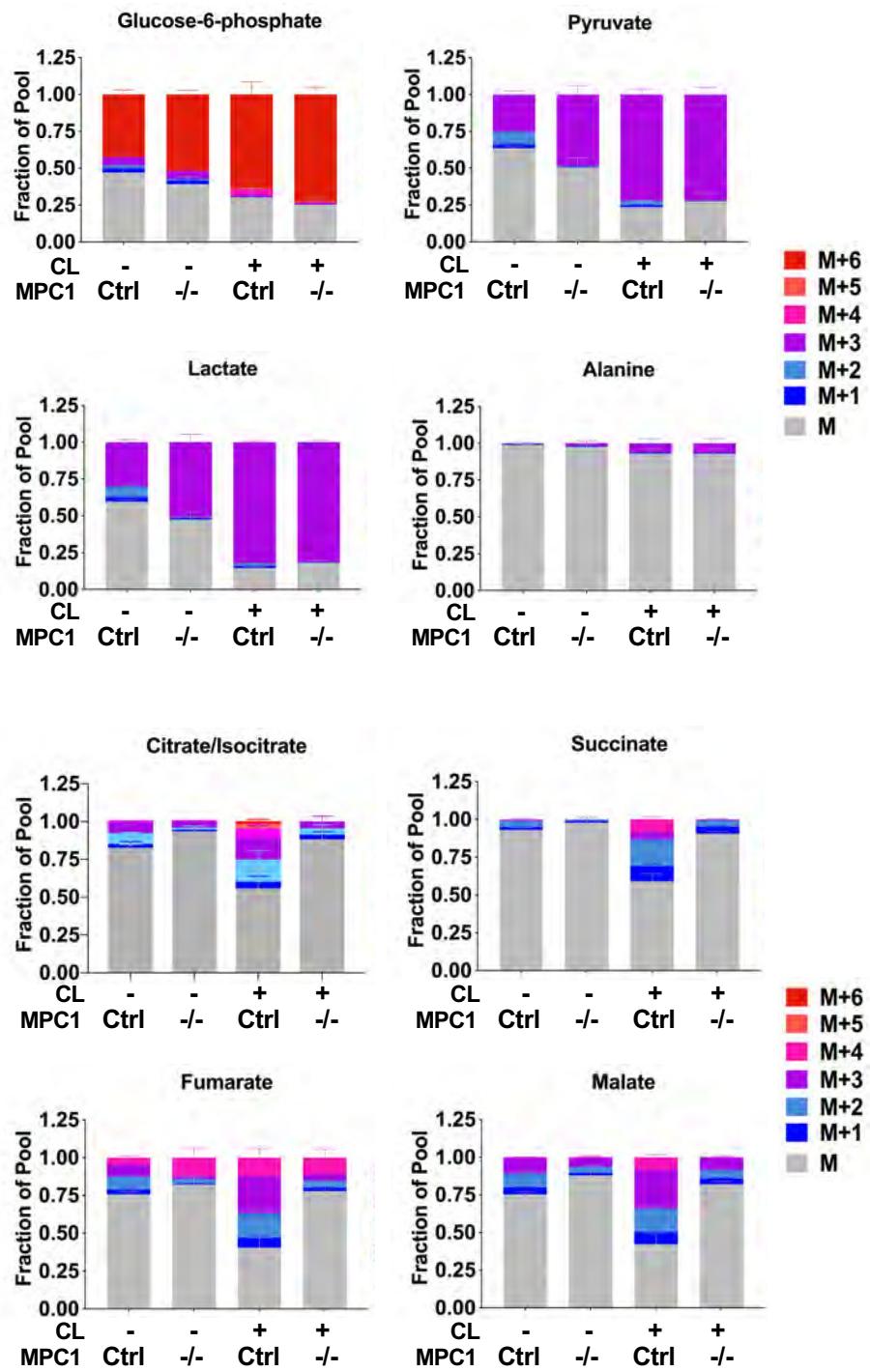
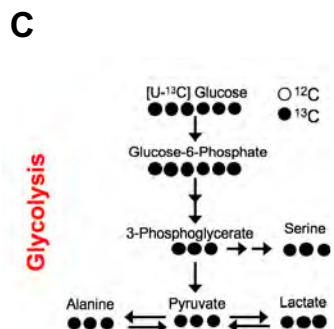
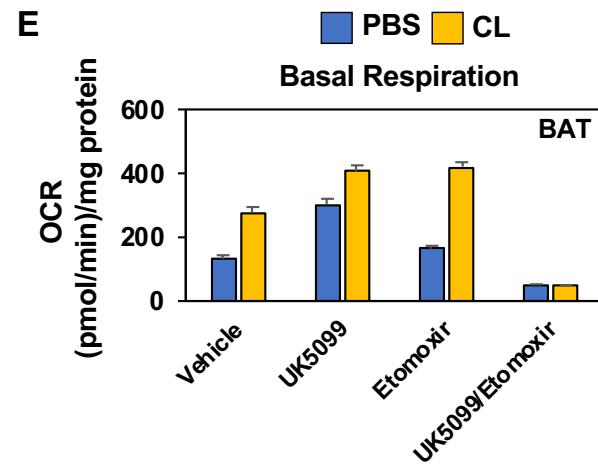
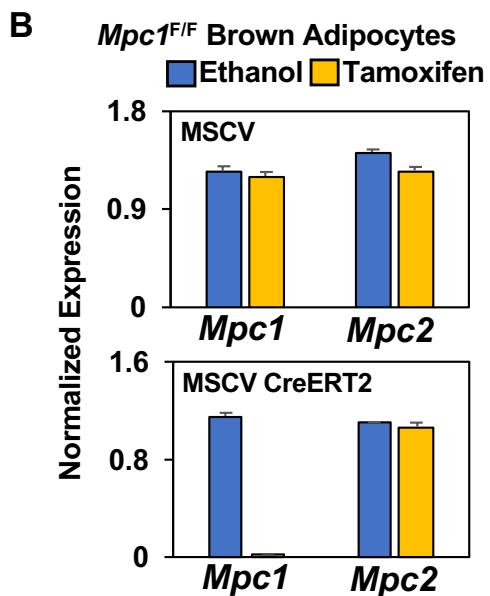
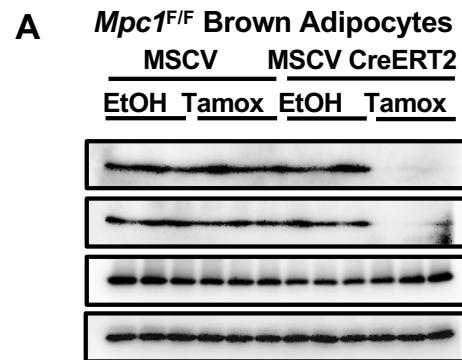
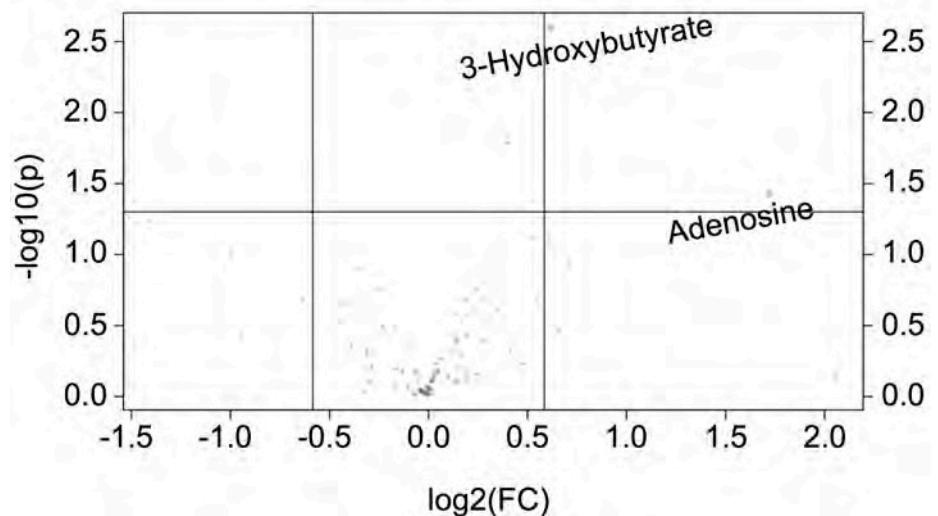
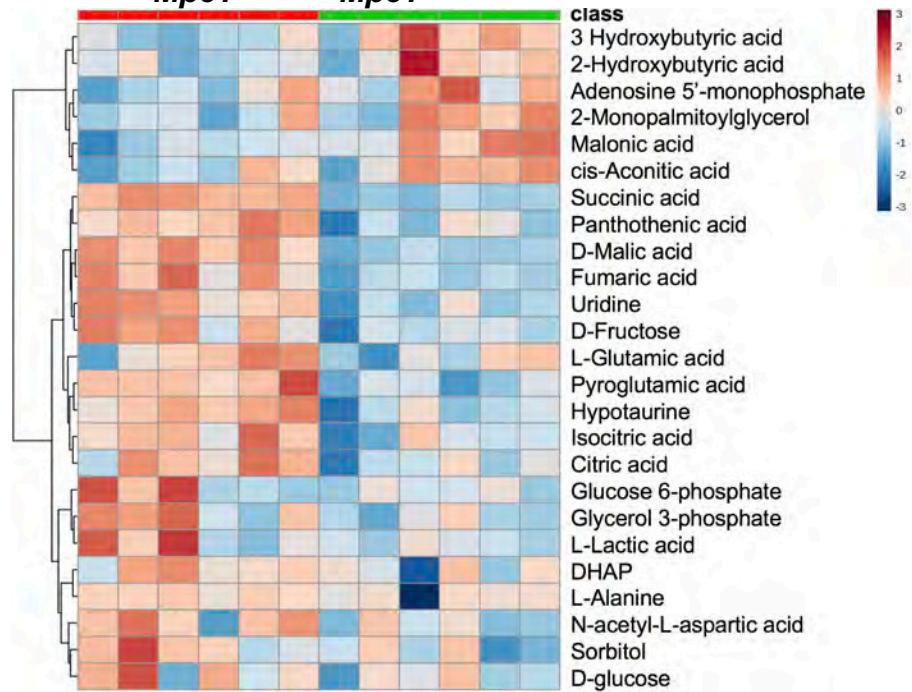
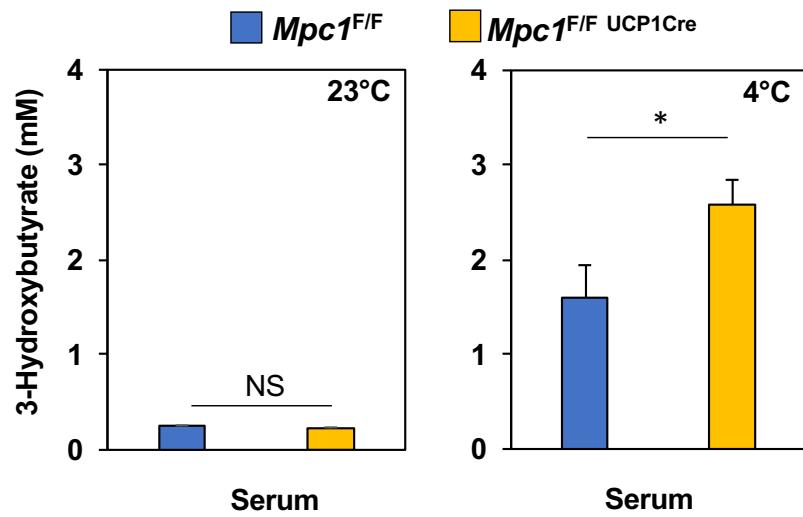
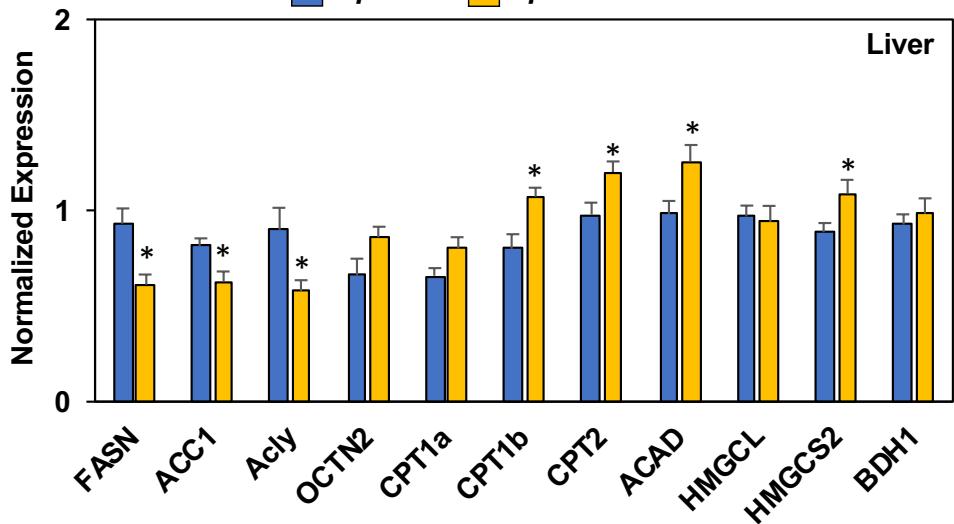
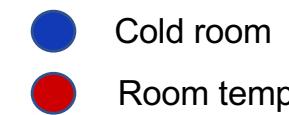
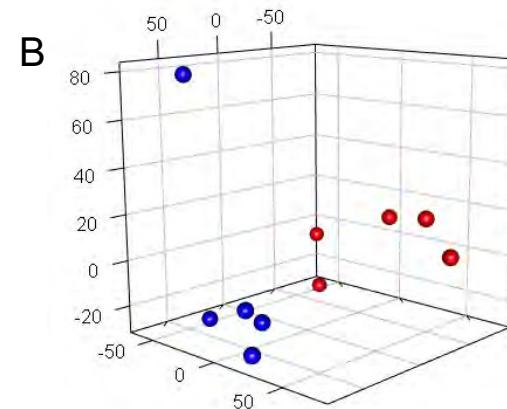
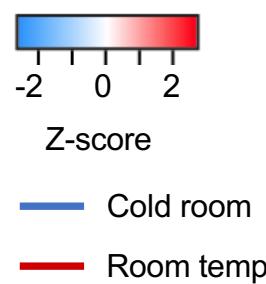
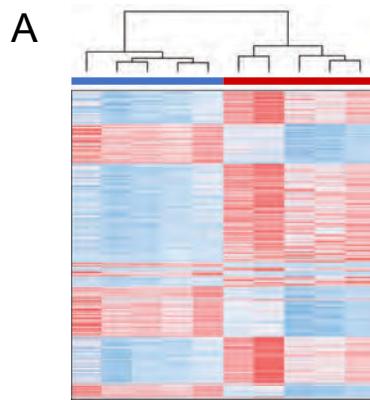








Figure 5

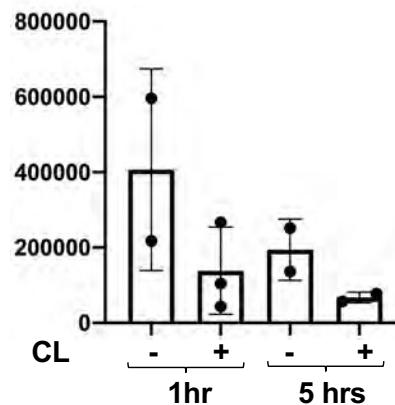

A

Serum

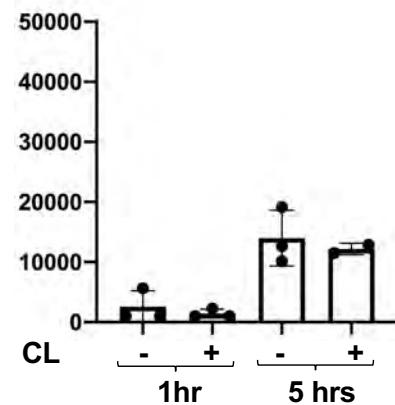

B

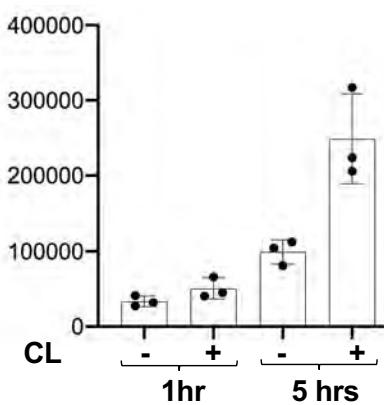




Brown Adipose Tissue $Mpc1^{F/F}$ $Mpc1^{F/F} \text{UCP1Cre}$

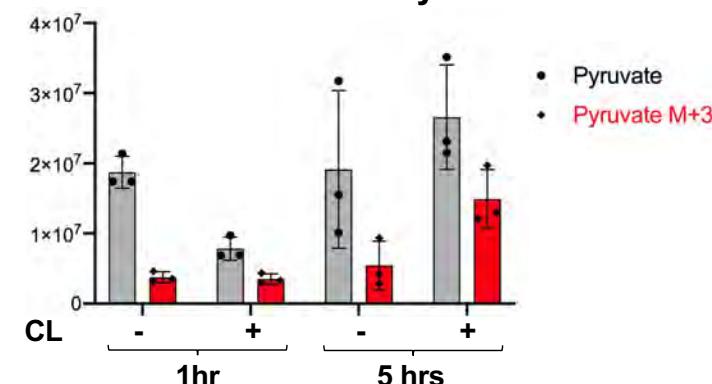
C

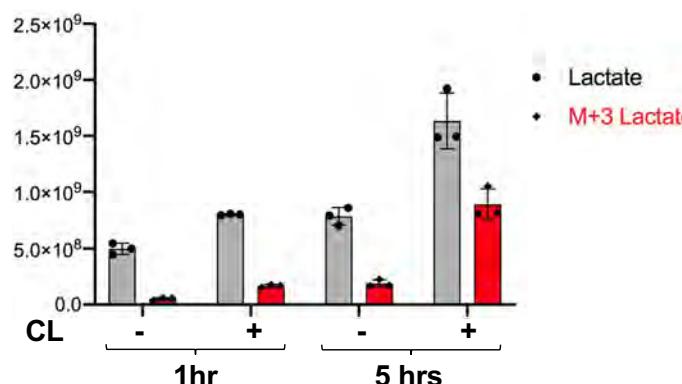


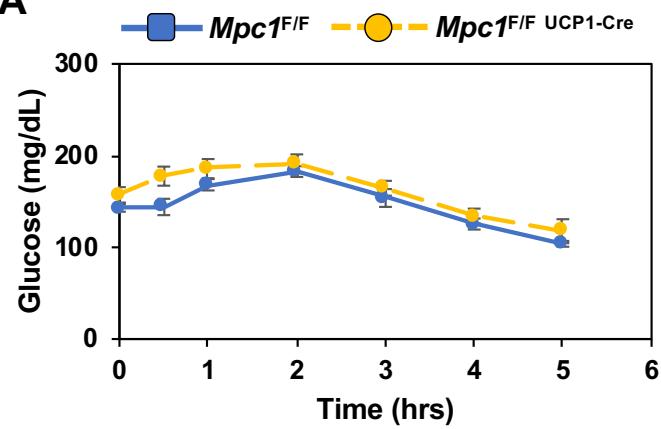
D


6 Hours Cold Exposure $Mpc1^{F/F}$ $Mpc1^{F/F} \text{UCP1Cre}$ **Figure 6**

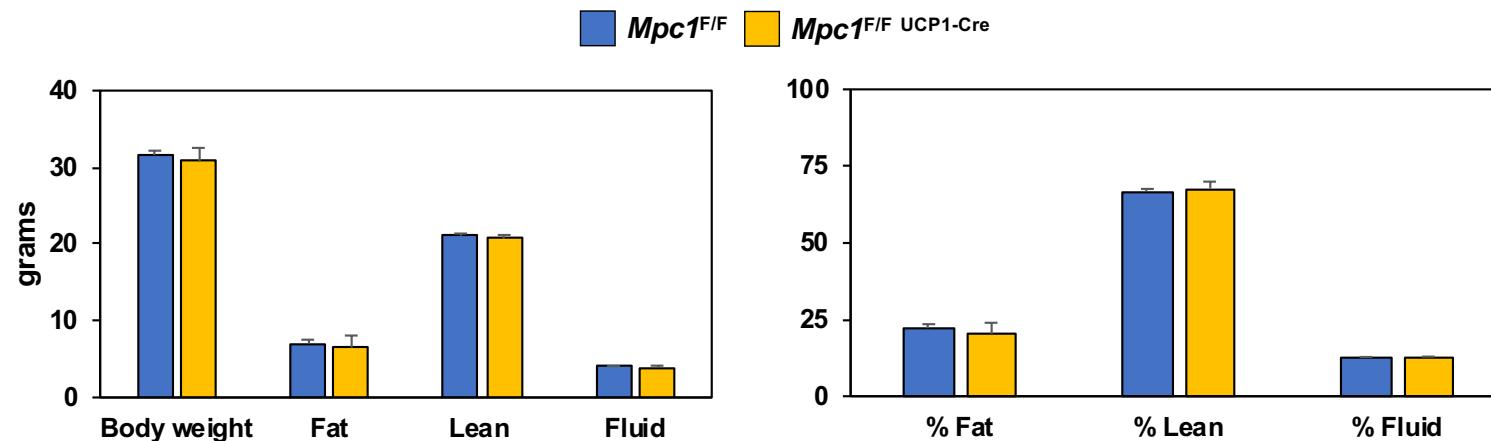

C M+6 Media Glucose


M+3 Media Pyruvate

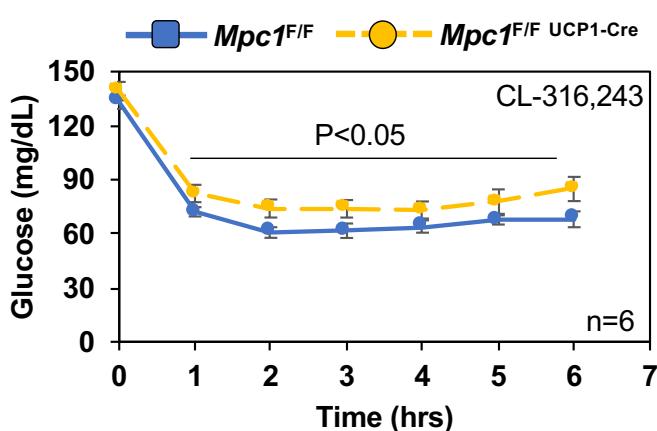

M+3 Media Lactate


D Total Intracellular Pyruvate

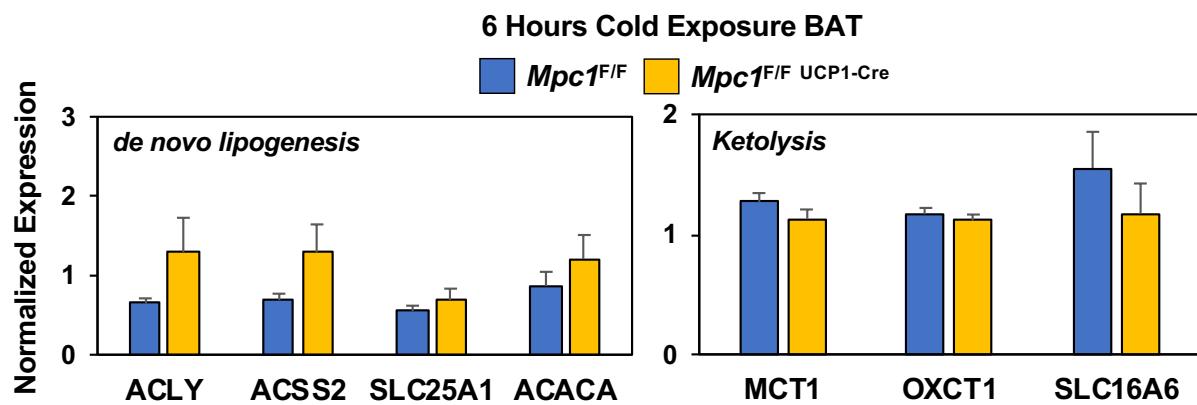
Total Intracellular Lactate

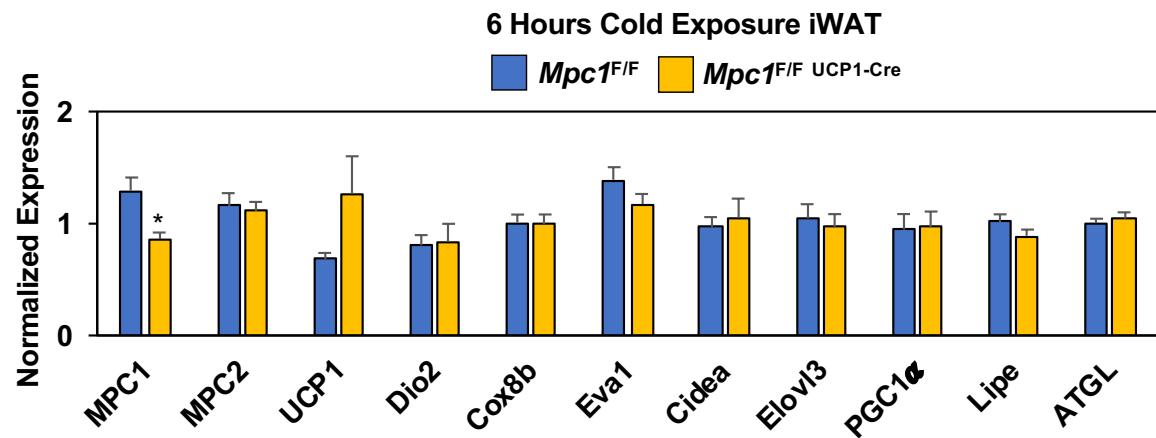


Supplement Figure 1

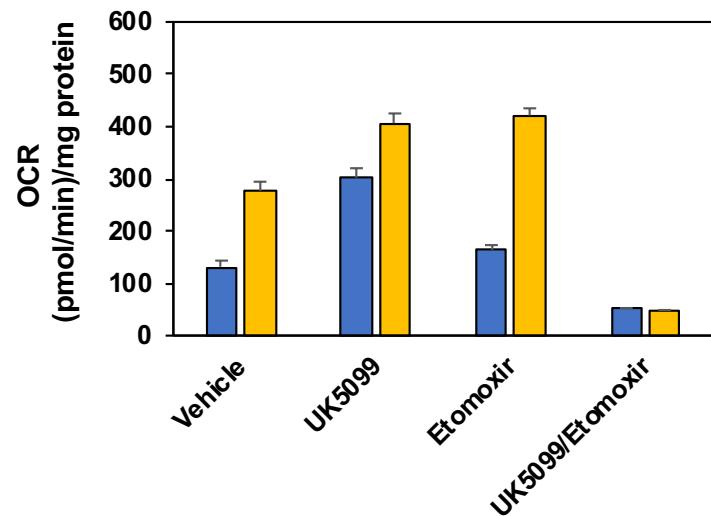

A**Supplement Figure 3**

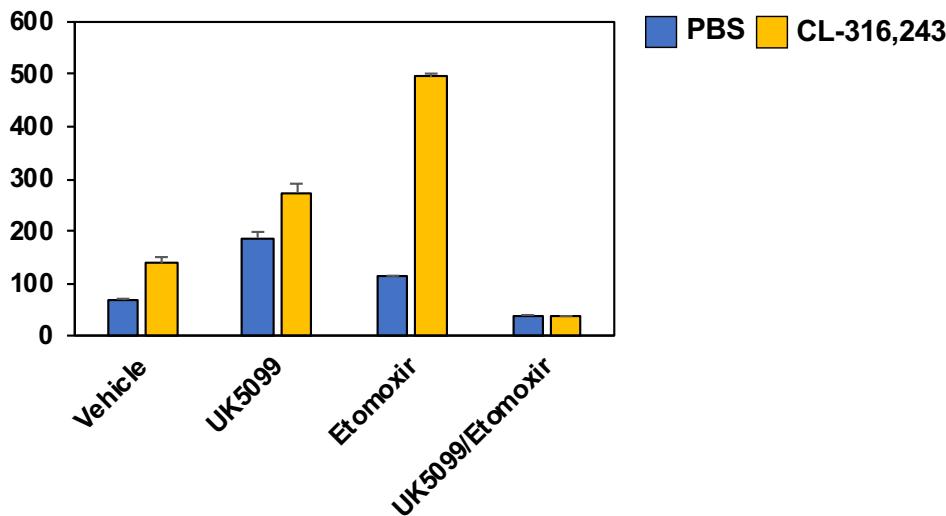
Supplement Figure 3


A


B

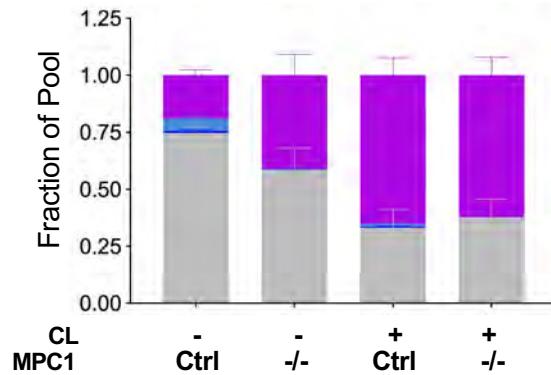
C


D

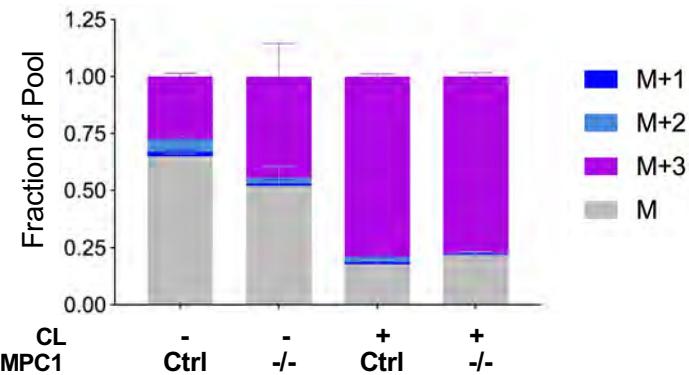

Supplement Figure 4

A

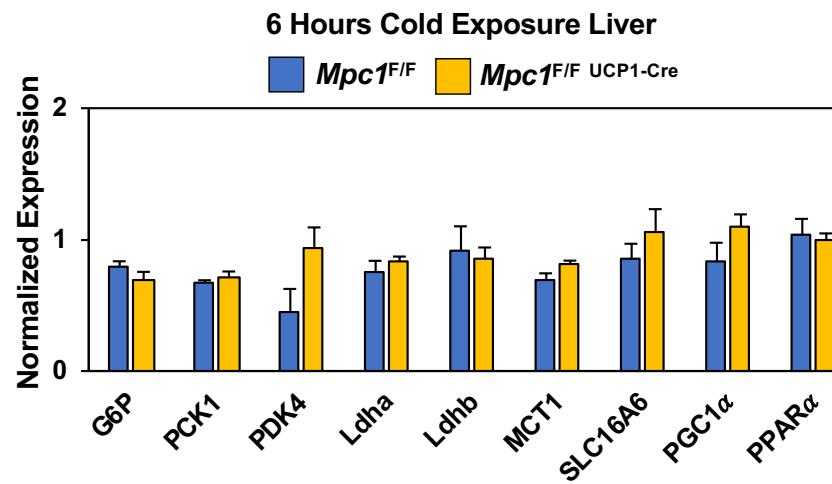
Basal Respiration

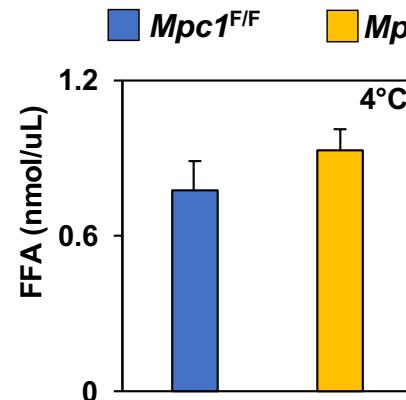


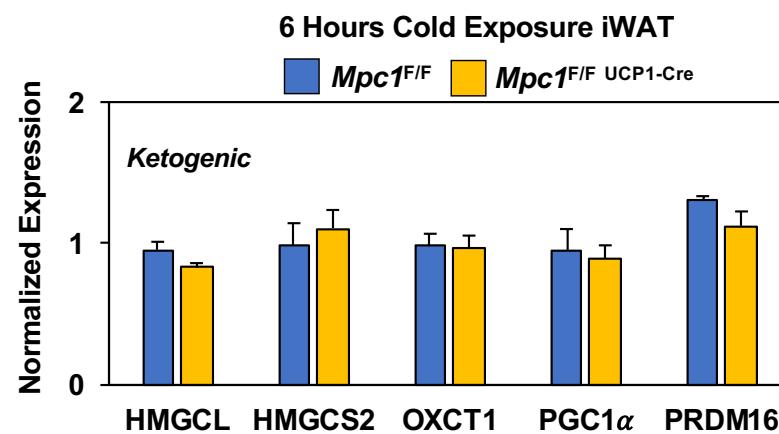
Proton Leak



B


Media Pyruvate


Media Lactate


A

B

C

Supplement Figure 5