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ABSTRACT  27 

Germline genetic variation contributes to cancer etiology, but self-reported race is not 28 

always consistent with genetic ancestry, and samples may not have identifying ancestry 29 

information. Here we describe a flexible computational pipeline, PopInf, to visualize principal 30 

components analysis output and assign ancestry to samples with unknown genetic ancestry, 31 

given a reference population panel of known origins. PopInf is implemented as a reproducible 32 

workflow in Snakemake with a tutorial on GitHub. We provide a pre-processed reference 33 

population panel that can be quickly and efficiently implemented in cancer genetics studies. We 34 

ran PopInf on TCGA liver cancer data and identify discrepancies between reported race and 35 

inferred genetic ancestry. Significance. The PopInf pipeline facilitates visualization and 36 

identification of genetic ancestry across samples, so that this ancestry can be accounted for in 37 

studies of disease risk. All code and a tutorial are available on Github: 38 

https://github.com/SexChrLab/PopInf. 39 

 40 
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INTRODUCTION 49 

Cancer is a complex disease with genetic and environmental factors contributing to its risk 50 

and progression. The underlying genetic architecture of cancer, like other complex diseases, is 51 

influenced by common population-specific genetic variation (1,2). Common genetic variation is 52 

shared within populations of shared genetic ancestry. Unaccounted population structure can 53 

confound the results of genetic analyses, like in cancer GWAS, by causing spurious associations 54 

to disease phenotypes (3). Thus, assessing genetic ancestry and population structure in studies 55 

on the effects of genetic loci and genetic background on cancer is crucial.  56 

Cancer research has begun to recognize the importance of identifying genetic ancestry 57 

across patients in cancer genetic datasets (4) and across cancer cell lines (5). Yuan et al. (4) 58 

characterized genetic ancestry across The Cancer Genome Atlas (TCGA) patient cohort to 59 

investigate the effect genetic ancestry has on genomic alterations across different cancers and to 60 

provide researchers with detailed ancestry information on each patient. Though this publicly 61 

accessible resource is of great research value for those using the TCGA data, researchers 62 

utilizing other datasets will have to independently infer the ancestry of their samples.  63 

Methods and software are currently available to characterize population structure (6,7), 64 

estimate local and global ancestry proportions (7,8), or predict ancestry using genomic data (9). 65 

These rely on a pre-defined reference panel and may not report admixed samples. Having an 66 

easily reproducible and modifiable workflow to visualize PCA and identify ancestry in individuals 67 

of unknown ancestral origin would thus be a useful addition to the cancer genetics researchers 68 

tool kit. 69 

Here we present PopInf v1.0, a pipeline to visualize PCA output and assign ancestry to 70 

individuals with unknown ancestry, given a flexible reference population panel of known origins. 71 

PopInf v1.0, takes, as input, variants from a sample with unknown or unverified genetic ancestry 72 

in variant call format (VCF), compares the variants in the unknown sample to a user defined 73 

reference panel, and outputs an inferred ancestry origin report with accompanying PCA plots of 74 
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the unknown samples and the reference panel. We ran PopInf on variants from 148 samples from 75 

the Genotype Tissue Expression (GTEx) Project (10) and on 403 samples from the TCGA liver 76 

cancer dataset (11) and identify discrepancies between reported race and inferred genetic 77 

ancestry. Further, we analyze each sample by chromosome and find cases of chromosome-78 

specific admixture that is not reported in genome-wide analyses. 79 

 80 

MATERIALS AND METHODS 81 

 PopInf v1.0 uses a combination of publicly available software and custom scripts to 82 

generate PCA plots and a tab-delimited inferred ancestry report for samples of unknown ancestry 83 

or unverified self-reported population ancestry. PopInf v1.0 uses GATK v3.7 (12), VCFtools 84 

v.0.1.14 (13), bedtools v.2.27.1 (14), and Plink v.1.9 (15) to prepare the unknown ancestry dataset 85 

and reference panel, smartpca - a program within EIGENSOFT v6.0.1 package (6) - for PCA, and 86 

a custom R script (16) to infer individuals ancestry and plot the results of PCA of the study samples 87 

and reference panel. Our pipeline is incorporated into the reproducible workflow system, 88 

Snakemake v5.4.0 (17).  89 

Input 90 

Two sets of variant data are required to use PopInf v1.0: 1) variants from reference 91 

populations, and 2) variants from sample(s) of unknown or self-reported race or ancestry. These 92 

files need to be mapped to the same reference genome and in VCF file format. Additionally, two 93 

sample information text files, one for the reference panel and one for the unknown dataset, are 94 

needed for input, each with three tab-delimited columns. For the reference panel sample 95 

information text file, column one must contain sample names identical to the naming in the VCF 96 

file with one sample per row; column two must specify genetic sex information (“Male” “Female” 97 

or “N/A” if unknown, case insensitive); column three must contain population assignment. For the 98 

study sample information text file, columns one and two are similar to the reference panel file, but 99 

column three is a dummy variable with a single arbitrary value that is the same on every row. For 100 
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example, column three of the sample information text file for the unknown set of samples could 101 

be set as “unknown”. Finally, the user must provide the FASTA file (.fa) of the reference genome 102 

used for read mapping along with a FASTA index file (.fai) and a sequence dictionary file (.dict).  103 

 104 

Data processing 105 

PopInf v1.0 implements filtering, merging, and file conversion prior to PCA. Single 106 

nucleotide polymorphisms (SNPs) are extracted from both the reference panel and study sample 107 

VCF files, using GATK v3.7 SelectVariants and merged using GATK v3.7 CombineVariants (12). 108 

To ensure PopInf analyzes SNPs that overlap with both the reference and unknown variant sets, 109 

missing genotype data is removed using VCFtools v.0.1.14 (vcftools --max-missing flag) (13). If 110 

analyzing the X chromosome, the pseudoautosomal regions and X-transposed region (18,19) are 111 

masked using bedtools v.2.27.1 (14). Prior to running PCA, the merged VCF file is pruned for 112 

linkage disequilibrium (LD) and converted to plink format using Plink v1.9 (15). PCA on a user-113 

defined set of chromosomes (e.g. whole genome, all autosomes, or a single chromosome) is 114 

carried out using smartpca (6). 115 

 116 

Output 117 

PopInf v1.0 generates PCA plots for the first ten PCs for the study samples and the 118 

reference panel, and an inferred ancestry report. Genetic ancestry of each study sample is 119 

inferred based on the distance between the study sample and the centroid coordinates of PCs 1 120 

and 2 of each reference population. A study sample is inferred to originate from a particular 121 

population if it falls within N standard deviations (SDs) from the reference population centroid. To 122 

provide multiple levels of confidence, the ancestry is inferred using 1, 2, and 3 SDs. If the sample 123 

does not fall within three standard deviations of any population, the sample’s ancestry will be 124 

assigned to the closest population or will be assigned as having admixed ancestry: PopInf 125 

calculates the midpoint coordinates between each pairwise combination of reference populations 126 
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and then compares those distances to the study sample. For a sample to be assigned as admixed, 127 

it must be closer to the midpoint of two populations than to the 3rd standard deviation of any 128 

population. If the study sample is closer to the 3rd standard deviation of a population than any of 129 

the midpoints, it will be assigned to that population.  130 

 131 

RESULTS 132 

Usage examples 133 

We ran PopInf v1.0 using variants from two human genetic datasets: one from healthy 134 

individuals and one from cancer patients. The GTEx Project (10) dataset consisted of 148 135 

individuals and the TCGA liver cancer dataset (11) consisted of 403 individuals (Supplementary 136 

Table 1; Supplementary Table 2; Figure 1). Both datasets included self-reported race for most 137 

individuals. We inferred the genetic ancestries of these samples based on a reference panel 138 

consisting of variants from 986 unrelated individuals from populations across Africa, Europe, East 139 

Asian, and South Asia from 1000 Genomes Release 3 (20) (Supplementary Table 3).  140 

We find that, using genome-wide genotypes, the genetic ancestry of most study samples 141 

does match that which is reported, with notable exceptions, and that we are able to infer ancestry 142 

of samples of unreported origin. The inferred ancestry matches closely with the self-reported race 143 

information in the GTEx dataset (Supplementary Table 4). One of the GTEx individuals was 144 

missing self-reported race. Based on genetic ancestry, this individual was inferred as admixed 145 

East Asian and South Asian (Supplementary Table 4). In the TCGA liver cancer dataset, we found 146 

11 individuals with discrepancies between self-reported race and inferred ancestry; for all of these 147 

individuals, their self-reported race was white and inferred ancestry was South Asian 148 

(Supplementary Table 5). We further inferred ancestry for the 10 individuals in the TCGA liver 149 

cancer dataset with no self-reported race (Supplementary Table 5). 150 

We additionally ran PopInf v1.0 on each autosome and the X chromosome separately, 151 

finding that chromosome-specific ancestry does not always match that inferred from the whole 152 
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genome (Figure 2A and C). We identify 16 individuals in the GTEx dataset and 56 individuals in 153 

the TCGA dataset (Figure 2 B and D) with variation in chromosome-specific ancestry. All of the 154 

admixed individuals had different inferred ancestry results among their chromosomes, as 155 

expected. However, there were also 60 (12 from GTEx and 48 from TCGA) individuals inferred 156 

as having only one ancestry when analyzing all autosomes together that showed variation in 157 

chromosome-specific ancestry (Figure 2 B and D). These ancestry differences across the genome 158 

shows that assigning ancestry based only on genome-wide genotypes may result in missing 159 

clusters of ancestry across any single chromosome, which may lower our ability to identify risk 160 

alleles in datasets consisting of samples of diverse and admixed backgrounds.  161 

 162 

CONCLUSION 163 

Here, we provide a workflow that will set up and run PCA, summarize the PCA output, and 164 

provide the user with plots and an easily searchable inferred ancestry report for samples with 165 

unknown or unverified population information. Inferred ancestry results from the GTEx and TCGA 166 

datasets revealed heterogeneity in ancestry across the genome, and by chromosome. PopInf can 167 

be modified to work with any reference panel, and may be applied to similarly infer chromosomal 168 

and genome-wide ancestry in diverse populations. 169 

 170 
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FIGURES 190 

 191 

 192 

Figure 1. Principal Component Analysis (PCA) output from a sample datasets plotted 193 

against the reference dataset. Principal Components 1 and 2 for all individuals for A) autosomes 194 

merged and B) X chromosome for the GTEx dataset, and C) autosomes merged and D) X 195 

chromosome for the TCGA dataset. Purple points represent the reference samples of African 196 

descent, blue points represent reference samples of East Asian descent, dark green points 197 

represent reference samples of European descent, and light green represents reference samples 198 
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of South Asian descent in the 1000 Genomes reference panel. Yellow points represent samples 199 

from the sample datasets (GTEx and TCGA). 200 

 201 

 202 

Figure 2. Inferred ancestry for all autosomes combined and each chromosome separately. 203 

A) All 148 GTEx individuals, B) the subset of GTEx individuals with variation in inferred ancestry 204 

among their chromosomes. C) All 403 TCGA individuals D) the subset of TCGA individuals with 205 

variation in inferred ancestry among their chromosomes. Males and females were run together, 206 

and only the autosomes and X chromosome were analyzed. The x-axis represents the 207 

chromosome analyzed and the y-axis represents the individual from the GTEx dataset. Colors 208 

represent inferred ancestry. 209 

  210 
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     211 

Supplementary Table 1. GTEx samples used as the unknown sample dataset. Here we 212 

analyzed the population ancestry from whole genome sequence data from 148 samples available 213 

from the GTEx dataset. GTEx (release V6p) whole genome sequence data (dbGaP accession 214 

#8834) were downloaded from dbGaP.  215 

 216 

Supplementary Table 2. TCGA samples used as the unknown sample dataset. Here we 217 

analyzed the population ancestry from whole exome sequence data from 403 samples available 218 

from the TCGA dataset. TCGA whole exome sequence data (dbGaP accession #11368) were 219 

downloaded from NCI Genomic Data Commons (21).  220 

 221 

Supplementary Table 3. 1000 Genomes samples used for this reference panel. Here we 222 

chose 986 unrelated individuals from 1000 Genomes release 3 data downloaded as VCF mapped 223 

to GRCh37 from ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/. To include global 224 

genetic variation in the reference panel, we chose individuals across populations in Africa, Asia, 225 

and Europe.  226 

 227 

Supplementary Table 4. GTEx inferred ancestry and self-reported race comparison. We ran 228 

PopInf for all autosomes merged and the X chromosome separately on each individual in the 229 

GTEx dataset. We compared these results to the self-reported race information for each 230 

individual.  231 

 232 

Supplementary Table 5. TCGA inferred ancestry and self-reported race comparison. We 233 

ran PopInf for all autosomes merged and the X chromosome separately on each individual in the 234 

TCGA dataset. We compared these results to the self-reported race information for each 235 

individual. 236 
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