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ABSTRACT

Germline genetic variation contributes to cancer etiology, but self-reported race is not
always consistent with genetic ancestry, and samples may not have identifying ancestry
information. Here we describe a flexible computational pipeline, Poplinf, to visualize principal
components analysis output and assign ancestry to samples with unknown genetic ancestry,
given a reference population panel of known origins. Poplnf is implemented as a reproducible
workflow in Snakemake with a tutorial on GitHub. We provide a pre-processed reference
population panel that can be quickly and efficiently implemented in cancer genetics studies. We
ran Popinf on TCGA liver cancer data and identify discrepancies between reported race and
inferred genetic ancestry. Significance. The Poplinf pipeline facilitates visualization and
identification of genetic ancestry across samples, so that this ancestry can be accounted for in
studies of disease risk. All code and a tutorial are available on Github:

https://github.com/SexChrLab/Poplnf.

Keywords: population ancestry, principal components analysis, visualization, computational

pipeline, cancer GWAS
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INTRODUCTION

Cancer is a complex disease with genetic and environmental factors contributing to its risk
and progression. The underlying genetic architecture of cancer, like other complex diseases, is
influenced by common population-specific genetic variation (1,2). Common genetic variation is
shared within populations of shared genetic ancestry. Unaccounted population structure can
confound the results of genetic analyses, like in cancer GWAS, by causing spurious associations
to disease phenotypes (3). Thus, assessing genetic ancestry and population structure in studies
on the effects of genetic loci and genetic background on cancer is crucial.

Cancer research has begun to recognize the importance of identifying genetic ancestry
across patients in cancer genetic datasets (4) and across cancer cell lines (5). Yuan et al. (4)
characterized genetic ancestry across The Cancer Genome Atlas (TCGA) patient cohort to
investigate the effect genetic ancestry has on genomic alterations across different cancers and to
provide researchers with detailed ancestry information on each patient. Though this publicly
accessible resource is of great research value for those using the TCGA data, researchers
utilizing other datasets will have to independently infer the ancestry of their samples.

Methods and software are currently available to characterize population structure (6,7),
estimate local and global ancestry proportions (7,8), or predict ancestry using genomic data (9).
These rely on a pre-defined reference panel and may not report admixed samples. Having an
easily reproducible and modifiable workflow to visualize PCA and identify ancestry in individuals
of unknown ancestral origin would thus be a useful addition to the cancer genetics researchers
tool kit.

Here we present PoplInf v1.0, a pipeline to visualize PCA output and assign ancestry to
individuals with unknown ancestry, given a flexible reference population panel of known origins.
PoplInf v1.0, takes, as input, variants from a sample with unknown or unverified genetic ancestry
in variant call format (VCF), compares the variants in the unknown sample to a user defined

reference panel, and outputs an inferred ancestry origin report with accompanying PCA plots of
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75  the unknown samples and the reference panel. We ran Poplnf on variants from 148 samples from
76  the Genotype Tissue Expression (GTEx) Project (10) and on 403 samples from the TCGA liver
77  cancer dataset (11) and identify discrepancies between reported race and inferred genetic
78  ancestry. Further, we analyze each sample by chromosome and find cases of chromosome-
79  specific admixture that is not reported in genome-wide analyses.

80

81 MATERIALS AND METHODS

82 PopInf v1.0 uses a combination of publicly available software and custom scripts to
83  generate PCA plots and a tab-delimited inferred ancestry report for samples of unknown ancestry
84  or unverified self-reported population ancestry. Popinf v1.0 uses GATK v3.7 (12), VCFtools
85 v.0.1.14 (13), bedtools v.2.27.1 (14), and Plink v.1.9 (15) to prepare the unknown ancestry dataset
86  and reference panel, smartpca - a program within EIGENSOFT v6.0.1 package (6) - for PCA, and
87  acustom R script (16) to infer individuals ancestry and plot the results of PCA of the study samples
88 and reference panel. Our pipeline is incorporated into the reproducible workflow system,
89  Snakemake v5.4.0 (17).

90 Input

91 Two sets of variant data are required to use PoplInf v1.0: 1) variants from reference
92  populations, and 2) variants from sample(s) of unknown or self-reported race or ancestry. These
93 files need to be mapped to the same reference genome and in VCF file format. Additionally, two
94  sample information text files, one for the reference panel and one for the unknown dataset, are
95 needed for input, each with three tab-delimited columns. For the reference panel sample
96 information text file, column one must contain sample names identical to the naming in the VCF
97 file with one sample per row; column two must specify genetic sex information (“Male” “Female”
98 or “N/A”if unknown, case insensitive); column three must contain population assignment. For the
99  study sample information text file, columns one and two are similar to the reference panel file, but

100  column three is a dummy variable with a single arbitrary value that is the same on every row. For
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101  example, column three of the sample information text file for the unknown set of samples could
102  be set as “unknown”. Finally, the user must provide the FASTA file (.fa) of the reference genome
103  used for read mapping along with a FASTA index file (.fai) and a sequence dictionary file (.dict).

104

105 Data processing

106 PopInf v1.0 implements filtering, merging, and file conversion prior to PCA. Single
107  nucleotide polymorphisms (SNPs) are extracted from both the reference panel and study sample
108  VCF files, using GATK v3.7 SelectVariants and merged using GATK v3.7 CombineVariants (12).
109 To ensure Poplinf analyzes SNPs that overlap with both the reference and unknown variant sets,
110  missing genotype data is removed using VCFtools v.0.1.14 (vcftools --max-missing flag) (13). If
111 analyzing the X chromosome, the pseudoautosomal regions and X-transposed region (18,19) are
112  masked using bedtools v.2.27.1 (14). Prior to running PCA, the merged VCF file is pruned for
113  linkage disequilibrium (LD) and converted to plink format using Plink v1.9 (15). PCA on a user-
114  defined set of chromosomes (e.g. whole genome, all autosomes, or a single chromosome) is
115  carried out using smartpca (6).

116

117  Output

118 PopInf v1.0 generates PCA plots for the first ten PCs for the study samples and the
119 reference panel, and an inferred ancestry report. Genetic ancestry of each study sample is
120 inferred based on the distance between the study sample and the centroid coordinates of PCs 1
121 and 2 of each reference population. A study sample is inferred to originate from a particular
122  population if it falls within N standard deviations (SDs) from the reference population centroid. To
123  provide multiple levels of confidence, the ancestry is inferred using 1, 2, and 3 SDs. If the sample
124  does not fall within three standard deviations of any population, the sample’s ancestry will be
125  assigned to the closest population or will be assigned as having admixed ancestry: Poplnf

126  calculates the midpoint coordinates between each pairwise combination of reference populations
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127  andthen compares those distances to the study sample. For a sample to be assigned as admixed,
128 it must be closer to the midpoint of two populations than to the 3rd standard deviation of any
129  population. If the study sample is closer to the 3rd standard deviation of a population than any of
130 the midpoints, it will be assigned to that population.

131

132 RESULTS

133 Usage examples

134 We ran Poplnf v1.0 using variants from two human genetic datasets: one from healthy
135 individuals and one from cancer patients. The GTEx Project (10) dataset consisted of 148
136 individuals and the TCGA liver cancer dataset (11) consisted of 403 individuals (Supplementary
137  Table 1; Supplementary Table 2; Figure 1). Both datasets included self-reported race for most
138 individuals. We inferred the genetic ancestries of these samples based on a reference panel
139  consisting of variants from 986 unrelated individuals from populations across Africa, Europe, East
140  Asian, and South Asia from 1000 Genomes Release 3 (20) (Supplementary Table 3).

141 We find that, using genome-wide genotypes, the genetic ancestry of most study samples
142  does match that which is reported, with notable exceptions, and that we are able to infer ancestry
143  of samples of unreported origin. The inferred ancestry matches closely with the self-reported race
144  information in the GTEx dataset (Supplementary Table 4). One of the GTEXx individuals was
145  missing self-reported race. Based on genetic ancestry, this individual was inferred as admixed
146  East Asian and South Asian (Supplementary Table 4). In the TCGA liver cancer dataset, we found
147 11 individuals with discrepancies between self-reported race and inferred ancestry; for all of these
148 individuals, their self-reported race was white and inferred ancestry was South Asian
149  (Supplementary Table 5). We further inferred ancestry for the 10 individuals in the TCGA liver
150 cancer dataset with no self-reported race (Supplementary Table 5).

151 We additionally ran PoplInf v1.0 on each autosome and the X chromosome separately,

152  finding that chromosome-specific ancestry does not always match that inferred from the whole
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153  genome (Figure 2A and C). We identify 16 individuals in the GTEx dataset and 56 individuals in
154  the TCGA dataset (Figure 2 B and D) with variation in chromosome-specific ancestry. All of the
155 admixed individuals had different inferred ancestry results among their chromosomes, as
156  expected. However, there were also 60 (12 from GTEx and 48 from TCGA) individuals inferred
157  as having only one ancestry when analyzing all autosomes together that showed variation in
158  chromosome-specific ancestry (Figure 2 B and D). These ancestry differences across the genome
159 shows that assigning ancestry based only on genome-wide genotypes may result in missing
160 clusters of ancestry across any single chromosome, which may lower our ability to identify risk
161  alleles in datasets consisting of samples of diverse and admixed backgrounds.

162

163 CONCLUSION

164 Here, we provide a workflow that will set up and run PCA, summarize the PCA output, and
165  provide the user with plots and an easily searchable inferred ancestry report for samples with
166  unknown or unverified population information. Inferred ancestry results from the GTEx and TCGA
167  datasets revealed heterogeneity in ancestry across the genome, and by chromosome. Poplinf can
168  be modified to work with any reference panel, and may be applied to similarly infer chromosomal
169  and genome-wide ancestry in diverse populations.
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193  Figure 1. Principal Component Analysis (PCA) output from a sample datasets plotted
194  against the reference dataset. Principal Components 1 and 2 for all individuals for A) autosomes
195 merged and B) X chromosome for the GTEx dataset, and C) autosomes merged and D) X
196 chromosome for the TCGA dataset. Purple points represent the reference samples of African
197  descent, blue points represent reference samples of East Asian descent, dark green points

198 represent reference samples of European descent, and light green represents reference samples
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199  of South Asian descent in the 1000 Genomes reference panel. Yellow points represent samples

200 from the sample datasets (GTEx and TCGA).
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203 Figure 2. Inferred ancestry for all autosomes combined and each chromosome separately.
204 A) All 148 GTEx individuals, B) the subset of GTEx individuals with variation in inferred ancestry
205 among their chromosomes. C) All 403 TCGA individuals D) the subset of TCGA individuals with
206 variation in inferred ancestry among their chromosomes. Males and females were run together,
207 and only the autosomes and X chromosome were analyzed. The x-axis represents the
208 chromosome analyzed and the y-axis represents the individual from the GTEx dataset. Colors
209 represent inferred ancestry.

210
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211

212  Supplementary Table 1. GTEx samples used as the unknown sample dataset. Here we
213  analyzed the population ancestry from whole genome sequence data from 148 samples available
214  from the GTEx dataset. GTEx (release V6p) whole genome sequence data (dbGaP accession
215  #8834) were downloaded from dbGaP.

216

217  Supplementary Table 2. TCGA samples used as the unknown sample dataset. Here we
218 analyzed the population ancestry from whole exome sequence data from 403 samples available
219  from the TCGA dataset. TCGA whole exome sequence data (dbGaP accession #11368) were
220 downloaded from NCI Genomic Data Commons (21).

221

222  Supplementary Table 3. 1000 Genomes samples used for this reference panel. Here we
223  chose 986 unrelated individuals from 1000 Genomes release 3 data downloaded as VCF mapped

224  to GRCh37 from ftp://ftp.1000genomes.ebi.ac.uk/vol1/fip/release/20130502/. To include global

225  genetic variation in the reference panel, we chose individuals across populations in Africa, Asia,
226  and Europe.

227

228 Supplementary Table 4. GTEx inferred ancestry and self-reported race comparison. We ran
229  Poplnf for all autosomes merged and the X chromosome separately on each individual in the
230 GTEx dataset. We compared these results to the self-reported race information for each
231 individual.

232

233  Supplementary Table 5. TCGA inferred ancestry and self-reported race comparison. We
234  ran Poplnf for all autosomes merged and the X chromosome separately on each individual in the
235 TCGA dataset. We compared these results to the self-reported race information for each

236 individual.

11
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