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Summary 

Clear cell renal cell carcinoma (ccRCC) accounts for 70–80% of kidney cancer 

diagnoses and displays high molecular and histologic heterogeneity. Hence, it is 

necessary to reveal the underlying molecular mechanisms involved in progression of 

ccRCC to better stratify the patients and design effective treatment strategies. Here, 

we analyzed the survival outcome of ccRCC patients as a consequence of the 

differential expression of four transcript isoforms of the pyruvate kinase muscle type 

(PKM). We first extracted a classification biomarker consisting of eight gene pairs 

whose within-sample relative expression orderings (REOs) could be used to robustly 

classify the patients into two groups with distinct molecular characteristics and survival 

outcomes. Next, we validated our findings in a validation cohort and an independent 

Japanese ccRCC cohort. We finally performed drug repositioning analysis based on 

transcriptomic expression profiles of drug-perturbed cancer cell lines and proposed 

that paracetamol, nizatidine, dimethadione and conessine can be repurposed to treat 

the patients in one of the subtype of ccRCC whereas chenodeoxycholic acid, fenoterol 

and hexylcaine can be repurposed to treat the patients in the other subtype.  

Keywords: PKM, alternative splicing, transcriptomics, biomarker, drug repositioning 
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Introduction 

Clear cell renal cell carcinoma (ccRCC) is the most common subtype among renal 

cancer (Motzer et al., 2017) and ccRCC shows high inter individual 

heterogeneity(Ricketts et al., 2018). Thus, it is difficult to predict survival outcomes of 

patients in clinical practice and design effective therapeutic strategies. Previous 

studies have already proposed strategies for stratification of ccRCC patients into 

subgroups based on different genetic and/or transcriptomic characteristics and 

prognoses of the patients (Brannon et al., 2010; Cancer Genome Atlas Research, 2013; 

Kosari et al., 2005; Takahashi et al., 2001). However, these studies failed to identify a 

clinically practical biomarker for classification of the patients at the personalized level 

or recommend personalized chemotherapy regimens for these patients.  

In a recent study, we have found that pyruvate kinase muscle type (PKM), an enzyme 

that is involved in the final step of glycolysis and catalyzes the formation of ATP from 

ADP as phosphoenolpyruvate undergoes dephosphorylation to pyruvate, plays a very 

important role in controlling tumor metabolism in ccRCC (Li et al., 2019b). We have 

also observed that the expression level of four protein-coding transcripts of PKM, 

including ENST00000335181, encoding PKM2 which is the most studied isoform of 

PKM, as well as ENST00000561609, ENST00000389093 and ENST00000568883 are 

highly associated with patients’ prognoses. Among them, high expression of 

ENST00000335181 and ENST00000561609 indicate a favorable survival while high 

expression of ENST00000389093 and ENST00000568883 indicate an unfavorable 

survival. Moreover, a number of conserved biological functions associated with the 

progression of ccRCC were oppositely dysregulated by these transcripts. Here, we 

hypothesized that different molecular subtypes among ccRCC patients may be 

characterized by the different expression patterns induced by these four prognostic 

transcripts and biomarkers that may be used in clinical practice can be identified. 

Previous studies have proposed transcriptomics-based biomarkers for classification of 

tumors based on the quantitative measurement of one or multiple signature genes 

(Fujita et al., 2012; Jones et al., 2005; Klatte et al., 2009; Kosari et al., 2005; Zhao et 

al., 2006). However, this kind of transcriptional signatures are rarely used in clinical 

practice due to technological and translational barriers (Winslow et al., 2012). Besides 

problems in tissue sampling and quality control, an important factor is experimental 

batch effect which brings high variation of gene expression induced by the different 
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laboratory conditions and personnel (Guan et al., 2018). To solve these problems, the 

use of biomarkers based on the within-sample relative expression orderings (REOs) of 

gene pairs has been proposed (Guo et al., 2018; Qi et al., 2016a; Qi et al., 2016b), 

which is robust against batch effects, invariant to monotone data normalization (Eddy 

et al., 2010; Wang et al., 2013) and poor sample preparation (Chen et al., 2017b; 

Cheng et al., 2017; Liu et al., 2017).  

In this study, we used the genes dysregulated by the prognostic transcripts of PKM to 

extract classification biomarker instead of using themselves. Since different transcripts 

of PKM share similar sequence, it may be difficult to design distinct primers to detect 

their relative abundance when using real-time PCR. Thus, gene pair biomarker is more 

feasible and practical in clinical diagnosis. We applied REOs-based method to identify 

classification biomarker for ccRCC by extracting the expression profiles of genes which 

were consistently negatively dysregulated by the four favorable and unfavorable 

prognostic transcripts of PKM. We developed a REOs-based biomarker using the 

global gene expression profiling of ccRCC in The Cancer Genome Atlas (TCGA) 

database and stratified the patients into two subtypes exhibiting different transcriptomic 

expression patterns and different patient prognosis. We also validated our findings in 

TCGA database as well as in another independent Japanese cohort. We finally 

proposed several candidate drugs that can be used in treatment of each subtype based 

on transcriptomic expression profiles of drug-perturbed cancer cell lines from 

Connectivity Map 2.0 (CMap2).  
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Result 

Identification of signature gene set associated with four prognostic transcripts 
of PKM 

In a recent study, we have found that there are molecular subtypes that could be 

characterized by the expression of the four prognostic PKM transcripts (Li et al., 2019b). 

In order to develop a REOs-based biomarker, we identified a signature gene set 

associated with these four transcripts based on the gene expression profiles of TCGA 

ccRCC samples. We performed differential expression analysis between the tumor 

samples from patients with high (top 25%) and low (bottom 25%) expression of each 

favorable transcript, and identified 2010 consistently significantly (FDR < 1.0e-5) 

differentially expressed genes (DEGs) for the two favorable transcripts (Figure 1). 

Similarly, we identified 5469 DEGs consistently significantly (FDR < 1.0e-5) DEGs for 

the two unfavorable transcripts. We found that the two sets of DEGs has a significant 

overlap (n=1135; hypergeometric distribution test, p<1.11e-16). We also observed that 

the concordance score of these overlapped genes is 100%, which means the up-

regulated genes associated with high expression of favorable transcripts within these 

1135 genes are all down-regulated when the unfavorable transcripts exhibit high 

expression; and vice versa.  

We followed-up survival information from the corresponding patients and found 539 of 

the 1135 genes (of which 305 and 234 are favorable and unfavorable, respectively) 

are significantly (univariate Cox model, FDR < 0.01) associated with patients’ overall 

survival (OS). To identify the associated biological functions with these 539 genes, we 

performed GO term enrichment analysis and observed that these genes are 

significantly enriched in RNA splicing, RNA catabolic process and nuclear transport 

pathways (FDR<0.05; Table S1). Therefore, we concluded that these 539 genes may 

be used as the core signature genes that are associated with the differential alternative 

splicing of PKM among ccRCC patients and may be used for classification of tumor 

samples.  

We calculated the co-expression coefficients between the expression of the 539 

signature genes and found two major clusters in which all favorable genes are 

positively co-expressed while all unfavorable genes are negatively co-expressed in the 

opposite cluster using the hierarchical clustering (Figure 2A). Based on the expression 

profiles of these 539 signature genes, we employed consensus clustering to classify 
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TCGA ccRCC samples into distinct stable groups through repeated subsampling and 

clustering (Wilkerson and Hayes, 2010). As shown in Figure 2B, we determined an 

optimum number of two clusters, cluster 1 and 2, based on the lowest proportion of 

ambiguous clustering (Senbabaoglu et al., 2014). Using survival analysis, we observed 

the patients whose tumor samples classified in cluster 1 (N = 231) had significantly 

shorter OS than those classified in cluster 2 (N = 297) with statistical significance (log-

rank test, P=6.73e-07; Figure 2C). The result demonstrated that there are two different 

molecular subtypes in ccRCC with significantly different survival outcomes which are 

strongly associated with the function of the two favorable and two unfavorable 

transcripts. 

Development of the REOs-based classification biomarker  

To identify a biomarker that can be used in the clinical practice, we next focused on 

development of a REOs-based classification biomarker based on the gene expression 

profiles of the 539 signature genes. In brief, REOs-based biomarkers employs gene 

pairs with consistently reversed expression orders between the two molecular groups 

as indicators, and screens for a minimum combination of these gene pairs that serves 

as risk indicators for classification. In order to obtain a robust biomarker, we generated 

100 training and 100 validation datasets by randomly selecting from TCGA ccRCC 

cohort and randomly separated the samples into two respective groups with 70% and 

30% samples. We identified 171 gene pairs that exhibited consistent reverse gene 

pairs in all training datasets. We next generated 17100 reverse gene pair combinations 

with a forward selection procedure and selected a final REOs-based biomarker 

consisted of eight reverse gene pairs with an optimal mean F-score of 0.9725 in all 

training datasets. The full screening process are shown in Figure 1 and detailed in 

Method section.  

Within this eight gene pairs, if more than four gene pairs exhibited reversal REOs in a 

sample, this sample would be classified into the high-risk group; otherwise, this sample 

would be classified into the low-risk group (Figure 2D). We tested these gene pairs in 

the 100 validation datasets, and found that these gene pairs also showed a good 

classification accuracy with a mean F-score 0.9742. We also tested these gene pairs 

using the complete TCGA cohort, and this biomarker classified 231 samples into high-

risk group and 297 samples into low-risk group. Notably, these two groups showed 

significantly different OS (Figure 2E; log rank test, P=1.69e-07). 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 12, 2019. ; https://doi.org/10.1101/823336doi: bioRxiv preprint 

https://doi.org/10.1101/823336
http://creativecommons.org/licenses/by/4.0/


Validation of the REOs-based classification biomarker  

To validate if these gene pairs can be used as a biomarker for classification of ccRCC 

samples, we tested these gene pairs in 100 ccRCC samples obtained from an 

independent Japanese cohort. The biomarker classified 35 samples as high-risk group 

and 65 samples as low-risk group, and these two groups showed significantly different 

OS (Figure 2F, P=7.46e-05). We next investigated whether the high and low-risk 

groups identified in both TCGA and Japanese cohorts exhibited similar biological 

differences. We extracted the top 20% most significant DEGs (n=2694) between high 

and low-risk groups in both the TCGA and Japanese cohorts, and observed a 

significant overlap between them (n =1463; hypergeometric distribution test, p < 1.11e-

16) with a concordance score 100%. In addition, we identified 66 and 80 GO terms that 

are significantly enriched with upregulated genes (FDR<1.0e-05) in the high-risk group 

of the TCGA and Japanese cohorts, respectively, and found that 55 of them are 

common in both cohorts (Figure 3). Specifically, the high-risk group was characterized 

by upregulated genes involved in ATP synthesis, mitochondrial respiratory process, 

oxidative phosphorylation, ribonucleotide and purine nucleotide metabolic process, 

RNA catabolic process, protein targeting to ER and membrane pathways. And the low-

risk group was characterized by upregulated genes involved in histone modification 

and covalent chromatin modification pathways. The results suggested the molecular 

subtypes identified by our analysis also have consistent biological differences. 

Moreover, these 55 GO terms included all 27 GO terms that we recently reported to 

be associated with the four prognostic transcripts in pan cancer analysis (Li et al., 

2019b). We also identified three GO terms that are significantly enriched with 

downregulated genes in the high-risk group for both cohorts, and two of them, which 

are the histone modification and covalent chromatin modification pathways, are 

common in both groups. These results further indicated that the molecular subtypes 

stratified by the gene pairs are functionally related to the four prognostic transcripts of 

PKM. 

Further, we compared our REOs-based classification with previously reported TCGA 

(m1 to m4) and ccA/ccB classification schemes (Brannon et al., 2010; Cancer Genome 

Atlas Research, 2013) (Figure 4). In TCGA cohort, approximately 96% of TCGA m1 

tumors were involved in our low-risk group, and m1 group was also reported with the 

best prognoses in TCGA classification scheme. In addition, 73% of TCGA tumors in 
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both m2 and m4 subtypes were involved in our high-risk groups, and they were also 

shown to be with the poorest prognoses in TCGA classification. These results 

demonstrated that the high and low-risk groups classified by our biomarker are 

reinforced by the previously observed survival outcomes m1, m2 and m4. Notably, the 

high and low-risk groups respectively accounted for 42% and 58% of tumors previously 

reported as unclassified (m3) in the TCGA classification scheme. In Japanese cohort, 

71% of ccA and 80% of ccB were observed in the low and high-risk groups, 

respectively. We found that the favorable survival for ccA cases again reinforced the 

low-risk group classification based on our gene pairs used as a biomarker (Figure 4). 

Drug discovery with reversed expression effect 

In addition to classification of the tumors, we also performed drug repositioning 

analysis to identify drug candidates that can be used in treatment of each subtype. We 

assumed that if a drug could reverse the dysregulated gene expression pattern from a 

tumor subtype to normal pattern, it could be potentially useful for treating the specific 

tumor subtype. We used a method developed in our previous study for drug 

repurposing (Turanli et al., 2019a; Turanli et al., 2018; Turanli et al., 2019b) and found 

several drugs that could be used for treatment of the high and low-risk groups. We 

found that four different drugs including paracetamol, nizatidine, dimethadione and 

conessine could be used to reverse the gene expression in samples from high-risk 

group, since over 80% drug-perturbed genes were mapped to the DEGs between 

these samples and normal samples. Interestingly, it has been reported that 

paracetamol, an analgesic and antipyretic drug, inhibits the cell proliferation and 

induces cell apoptosis in pancreatic cancer (Malsy et al., 2017), ovarian cancer and 

lung cancer cells (Lian et al., 2018). Nizatidine, a histamine H2 receptor antagonist, 

was also recommended to be added into the combination therapy for cancer treatment 

(Barton-Burke, 1996; Ben-Sasson, 2007; Feitelberg et al., 2013). Therefore, the anti-

cancer effects of two of the proposed drugs have been validated in previous studies.  

Similarly, we found that three different drugs including chenodeoxycholic acid, 

fenoterol and hexylcaine, could be used to reverse the gene expression in samples of 

low-risk group towards normal samples. It has been reported that chenodeoxycholic 

acid, a bile acid, shows anti-proliferative activity in human cancer cells (Faustino et al., 

2016). Fenoterol, a β adrenoreceptor agonist, has been shown to inhibit proliferation 

of glioblastomas and astrocytomas cells (Bernier et al., 2013; Toll et al., 2011). 
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Hexylcaine, a short-acting local anesthetic, has also been used to treat cancer (Gleich, 

2000). In this context, these three drugs may also be potentially used for treatment of 

the subtype of ccRCC patients. 

Moreover, we identified the gene targets for each of the drugs using DrugBank 

database (Wishart et al., 2006). HRH2, encoding the histamine H2 receptor, has been 

reported as the gene target of nizatidine (Meredith et al., 1985). We observed that it is 

significantly up-regulated in the samples of high-risk group compared to normal 

samples. It has been demonstrated that in vitro and in vivo histamine-induced tumor 

cell proliferation can be blocked by H2 antagonists (Deva and Jameson, 2012; Natori 

et al., 2005; Tomita et al., 2003). Thus, nizatidine may be used as a promising drug for 

the patients classified in the high-risk group. On the other hand, GPBAR1, encoding 

an enzyme of the G protein-coupled receptor superfamily, has been reported as a 

target of chenodeoxycholic acid. It has been shown that GPBAR1 antagonizes kidney 

cancer cell proliferation and migration (Su et al., 2017). Based on our analysis, we 

have observed that GPBAR1 is significantly downregulated in the low-risk group 

compared to normal samples. Thus, chenodeoxycholic acid, as an activator of 

GPBAR1, may be used as a promising drug for treating the patients classified in the 

low-risk group. 
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Discussion 

PKM is one of the important regulators of Warburg effect in different human cancers 

(Dayton et al., 2016). Our recent study showed that four different transcripts of PKM 

mediated opposite survival outcomes for ccRCC patients. In this study, we identified 

the core signature genes which were consistently dysregulated by these four 

prognostic transcripts of PKM. Using these signature genes, we identified eight gene 

pairs whose within-samples REOs could be used to classify patients into two groups 

with significantly different OS. REOs-based biomarkers take the advantages of the 

robustness of the intra sample gene expression pattern, and it is relatively insensitive 

to both experimental and bioinformatics variations compared to conventional 

biomarkers based on absolute quantification. Although RNA sequencing data was 

used for the biomarker classification in this study, much cheaper technics could be 

used once the biomarker is used in clinical practice. For instance, we could use real-

time PCR, which is much cheaper compared to the sequencing approach, to determine 

the relative abundance of the genes involved in these 8 gene pairs to classify a ccRCC 

tumor sample since we only need to detect their REOs. This could greatly facilitate the 

use of REOs-based biomarker in clinical practice.  

The genes involved in our classification of ccRCC tumor samples also showed closed 

relationship with tumor development. For instance, RP9, one of genes involved in the 

REOs gene pairs, plays an important role in pre-mRNA splicing and could interact with 

well-known oncogene PIM-1(Maita et al., 2000). TAZ, another gene involved in the 

REOs gene pairs, encodes tafazzin whose overexpression promotes tumorigenicity in 

many cancers and its inhibition also induces tumor cell apoptosis (Chen et al., 2017a; 

Li et al., 2019a; Pathak et al., 2014). Another example is NOLC1 which functions as a 

chaperone for shuttling between the nucleolus and cytoplasm (Meier and Blobel, 1992). 

It has been reported that enhancement of NOLC1 promotes cell senescence and 

represses hepatocellular carcinoma cell proliferation by disturbing the organization of 

nucleolus (Yuan et al., 2017).  

In conclusion, we identified two molecular subtypes of ccRCC patients with high and 

low-risk of mortality, and developed a REOs-based classification biomarker which 

could be used to identify which subtype of the patients belong to in a personalized 

manner. In addition, we also suggested specific treatment strategies for each subtype 

based on their global gene expression patterns. Therefore, it is worthwhile to further 
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explore the potential clinical use of the here identified biomarker in assisting clinical 

diagnosis and treatment of ccRCC patients. 

 

Materials and methods 

Data and preprocessing 

The TCGA transcript-expression level profiles (TPM and count values) of ccRCC and 

matched normal kidney samples was downloaded from https://osf.io/gqrz9 (Tatlow and 

Piccolo, 2016) on November 27, 2018, which was quantified by Kallisto (Bray et al., 

2016) based on  the GENCODE reference transcriptome (version 24). The clinical 

information of TCGA samples was downloaded through R package TCGAbiolinks 

(Colaprico et al., 2016). The whole-exome sequence data of 100 ccRCC samples of 

patients from Japanese cohort (Sato et al., 2013) was downloaded from European 

Genome-phenome Archive (accession number: EGAS00001000509). BEDTools 

(Quinlan and Hall, 2010) was used for converting BAM to FASTQ file. Kallisto was 

used for estimating the count and TPM values of transcripts based on the same 

reference transcriptome of TCGA data. The sum value of the multiple transcripts of a 

gene was used as the expression value of this gene. The genes with average TPM 

values >1 in ccRCC patients were analyzed. 

Differential expression analysis 

DESeq2 (Love et al., 2014) was used to identify DEGs between two groups. The raw 

count values of genes were used as input of DESeq2. The Benjamini-Hochberg (BH) 

procedure was used to estimate FDR. 

Overlapping of two lists of DEGs 

If DEG list 1 with L1 genes and DEG list 2 with L2 genes have k overlapping genes and 

s of these genes shows the same directions which means high expression of these 

genes indicates favorable/unfavorable survival or group 1/2 in both lists, the probability 

of observing at least s consistent genes by chance can be calculated according to the 

following cumulative hypergeometric distribution model: 

P = 1 −�
�𝐿𝐿2𝑖𝑖 ��

𝐿𝐿−𝐿𝐿2
𝐿𝐿1−𝑖𝑖�

� 𝐿𝐿𝐿𝐿1�

𝑠𝑠−1

𝑖𝑖=0
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where L represents the number of the background genes commonly detected in the 

datasets from which the DEGs are extracted. The two DEG lists were considered to 

be significantly overlapping if P < 0.05. 

The concordance score s/k is used to evaluate the consistency of DEGs between the 

two lists. Obviously, the score ranges from 0 to 1, and the higher concordance score 

suggests the better consistency of two lists of DEGs. 

Consensus clustering 

Consensus clustering (Wilkerson and Hayes, 2010) was used for tumor classification 

based on the normalized expression profiles of signature genes by Z-score 

transformation. To achieve robust clusters, the data was resampled for 1000 times by 

considering 80% samples and signature genes resampling. The resampled data was 

transformed into a similarity matrix, termed as consensus matrix. K-means clustering 

was used to stratify samples based on the consensus matrix. The number of optimum 

cluster was determined by the lowest proportion of ambiguous clustering.  

Survival analysis 

The univariate Cox regression model was used to evaluate the correlation of gene 

expression levels with OS. Survival curves were estimated by the Kaplan-Meier 

method and compared with the log-rank test.  

Functional enrichment analysis 

GO enrichment was performed by the enrichGo function in R package ClusterProfiler 

(Yu et al., 2012), in which the hypergeometric distribution was used to calculate the 

statistical significance of biological pathways enriched with DEGs of interest.  

Development of the REOs-based biomarker 

In each sample, the REO of every two signature genes (i and j) is denoted as either 

Gi > Gj or Gi < Gj exclusively, where Gi and Gj represent the expression values of gene 

i and j, respectively. For a given gene pair (Gi and Gj), we used Fisher’s exact test to 

evaluate whether the frequency of group 1 samples with a specific REO pattern (Gi > 

Gj or Gi <Gj) was significantly different from that in group 2 samples in each training 

dataset. The P values are adjusted using BH procedure. The gene pairs detected with 

0.05 FDR control and over 70% difference of the frequency of their REOs between two 

groups were denoted as reversed gene pairs. The overlapped reversed gene pairs 
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consistently identified from all the training datasets were selected as the candidate 

signature gene pairs. Totally, we found 171 signature gene pairs. For each signature 

gene pair, according to their within-sample REO, we classified the samples of each 

training dataset into high or low-risk groups and then evaluated the sensitivity and 

specificity of this gene pair. Here, the sensitivity is defined as the ratio of correctly 

identified high risk samples to all high-risk samples and the specificity is defined as the 

ratio of correctly identified low-risk samples to all low-risk samples. Then, from these 

signature gene pairs, we performed a forward selection procedure in each training 

dataset to search a set of gene pairs that achieved the highest F-score value, a 

harmonic mean of sensitivity and specificity, which is calculated as follows: 

𝐹𝐹 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
2(sensitivity ∗ specificity)
(sensitivity + specificity)

 

Taking each of the 171 gene pairs as a seed, we added another gene pair to the 

biomarker at a time until the F-score did not increase. The classification rule is that a 

sample is classified into high or low-risk group if the majority of the REOs of the set of 

gene pairs within this sample vote for high or low-risk. We got 171 biomarkers based 

on each training dataset. Totally, we got 17100 candidate biomarkers for all the 100 

training datasets. Finally, we selected the biomarker with the lowest (1-F1)2+(1-

F2)2+∙∙∙+(1-Fn)2 as the final biomarker, in which Fn is the F-score value in the nth training 

dataset.  

Application of CMap2 data to drug discovery 

The pre-procession of CMap2 data was described in our previous study (Turanli et al., 

2019b). In brief, the gene expression profiles of three cell lines, HL60, MCF2 and PC3, 

were downloaded from https://portals. broadinstitute.org/cmap/ (CMap Build 02). For 

each cell line, gene Log2FC was used for comparison between treatment instances 

and its respective controls. Then, the confidence score was calculated per each drug-

gene interaction using the P values from three cell lines. An approximation confidence 

score to 1 was assumed as the higher confidence level. The drug-gene pairs with 

CS>0.5 were used in further analysis.  
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Figure legends 

Figure 1. The flowchart for developing and validating the ccRCC classification 

biomarker. In brief, we extract the 1135 overlapped DEGs associated with favorable 

and unfavorable transcripts, and select 539 prognostic signature genes from them. 

Next, we screen gene pair biomarker using randomly generated training dataset. Lastly, 

we validate the performance of the biomarker in all randomly generated validation 

dataset and an independent Japanese ccRCC dataset. 

Figure 2. Molecular classification and prognostic prediction of patients by classification 

biomarker. (A) Hierarchical clustering of 539 signature genes based on the correlation 

between genes. The spearman correlation coefficients between genes were used for 

clustering. (B) Consensus clustering for TCGA ccRCC patients based on the 

expression values of the 539 signature genes. (C) Kaplan-Meier plot of OS of two 

clusters identified by consensus clustering in TCGA ccRCC cohort. (D) The 

composition of classification biomarker and voting rule. (E) Kaplan-Meier plot of OS of 

high- and low-risk identified by classification biomarker in TCGA ccRCC cohort. (F) 

Kaplan-Meier plot of OS of high- and low-risk identified by classification biomarker in 

Japanese ccRCC cohort.  

Figure 3. The dysregulated biological functions in high- and low-risk ccRCC groups 

and. Heat map of the p values (on the negative log 10 scale) for the enriched GO terms 

in TCGA and Japanese KIRC cohort. Red color denotes the GO terms enriched with 

up-regulated genes. Blue color denotes the GO terms enriched with down-regulated 

genes. * FDR<1.0e-05.  

Figure 4. Pie charts showing the intersection of the different classification schemes for 

ccRCC. ‘m1’, ‘m2’, ‘m3’ and ‘m4’ indicate the molecular subtypes proposed by TCGA, 

and ‘ccA’ and ‘ccB’ are molecular subtypes reported by another previous study. 

 

Supplementary Table legend 

Table S1. The enriched GO terms for the 539 signature genes 
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