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Abstract 8 

Both spike rate and timing transmit information in the brain, yet how rate-modulated cellular 9 
properties affect spike timing is largely unexplored. Phase response curves (PRCs), quantifying 10 
how a neuron transforms input to output by spike timing, exhibit strong rate-adaptation, but its 11 
mechanism and relevance for network output are poorly understood. Using our Purkinje cell 12 
(PC) model and pyramidal neuron model, we demonstrate that the rate-adaptation is caused by 13 
rate-dependent subthreshold membrane potentials efficiently regulating the activation of Na+ 14 
channels. Then we use a realistic PC network model to examine how rate-dependent responses 15 
synchronize spikes in the scenario of reciprocal inhibition-caused high-frequency oscillations. 16 
Large and broad PRCs at high rates increase oscillation power and spike correlations. The 17 
irregularity of spiking and the network connectivity also regulate oscillations. The combination 18 
of these factors enables transient oscillations between fast-spiking neurons. Our work 19 
demonstrates that rate-adaptation of PRCs can spatio-temporally organize neuronal output. 20 

Introduction 21 

    The propensity of neurons to fire synchronously depends on the interaction between cellular 22 
and network properties (Ermentrout et al., 2001). A phase response curve (PRC) quantifies 23 
how a weak stimulus exerted at different phases during the interspike interval can shift 24 
subsequent spike timing in repetitively firing neurons (Ermentrout et al., 2001; Gutkin et al., 25 
2005). Essentially, the PRC measures how a neuron transforms an input to output by spike 26 
timing. Therefore, it determines the potential of network synchronization (Ermentrout et al., 27 
2001; Ermentrout et al., 2008; Gutkin et al., 2005; Smeal et al., 2010). The PRC is not static 28 
and shows significant adaptation with spike rate. It was theoretically predicted that PRCs 29 
decrease at high firing rates in pyramidal neurons (Gutkin et al., 2005), which unfortunately 30 
did not match later experimental observations showing an increased PRC peak at higher rates 31 
(Tsubo et al., 2007). Similarly, for PRCs in Purkinje Cells (PCs), the responses to weak stimuli 32 
at low spiking rates are small and surprisingly flat. With increased rates, responses in later 33 
phases become phase-dependent, with onset-phases left-shifted and gradually increasing peak 34 
amplitudes, which has never been theoretically replicated or explained (Couto et al., 2015; 35 
Phoka et al., 2010), nor has its effect in synchronizing spike outputs been explored.  36 

    On the circuit level, reciprocal inhibition causing high frequency oscillations has been 37 
observed in many regions of the brain such as cerebellum and hippocampus (Bartos et al., 2002; 38 
Cheron et al., 2004; de Solages et al., 2008) . However, how cellular properties such as PRCs 39 
regulate the oscillations is still poorly understood. Furthermore, the functional importance of 40 
oscillations in information transmission will be largely determined by their spatio-temporal 41 
scale, which is difficult to predict given the hard-wired inhibitory connections. Since the PRC 42 
is spike rate-dependent, it is interesting to explore whether this cellular property can 43 
dynamically regulate the spatial range of oscillations based on spike rate changes. 44 
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    To examine the mechanism of rate-dependent PRCs, we use our physiologically detailed PC 45 
model (Zang et al., 2018) and a simple pyramidal neuron model to explore the rate adaptation 46 
of PRCs. By analyzing simulation data and in vitro experimental data (Rancz and Hausser, 47 
2010), we identify that rate-dependent subthreshold membrane potentials can modulate the 48 
activation of Na+ channels to shape neuronal PRC profiles. We also build a PC network model 49 
connected by inhibitory axon collaterals to simulate high-frequency oscillations (de Solages et 50 
al., 2008; Witter et al., 2016). Rate adaptation of PRCs can increase the power of oscillations 51 
to link the rate with spike timing. Moreover, firing irregularity and network connectivity also 52 
regulate the oscillation level. The combination of these factors enables PC spikes uncorrelated 53 
at low basal rates to become transiently correlated in a subgroup of cells at high rates. 54 

Results 55 

PRC Exhibits Rate Adaptation in PCs 56 
 57 

 58 
Figure 1. PRC Exhibits Strong Rate Adaptation in PC model 59 
(A) Schematic representation of the definition and computation of PRCs. The current pulse has 60 
a duration of 0.5 ms and an amplitude of 50 pA. Different spike rates were achieved by somatic 61 
current injection (Couto et al., 2015; Phoka et al., 2010). (B) The rate adaptation of flat and 62 
phase-dependent parts of PRCs. (C) PRC peaks at different rates fitted by the Boltzmann 63 
function. 64 

    PRCs were obtained by repeatedly exerting a weak stimulus at different phases of the 65 
interspike interval (ISI). The resulting change in ISI relative to original ISI corresponds to the 66 
PRC value at that phase (Fig. 1A). All previous abstract and detailed PC models failed to 67 
replicate the experimentally observed rate-adaptation of PRCs (Akemann and Knopfel, 2006; 68 
Couto et al., 2015; De Schutter and Bower, 1994; Khaliq et al., 2003; Phoka et al., 2010). Our 69 
recent PC model was well constrained against a wide range of experimental data (Zang et al., 70 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 29, 2019. ; https://doi.org/10.1101/822478doi: bioRxiv preprint 

https://doi.org/10.1101/822478
http://creativecommons.org/licenses/by/4.0/


 3 

2018). Here, we explored whether this model can capture the rate-adaptation of PRCs under 71 
similar conditions. When the PC model fires at 12 Hz, responses (phase advances) to weak 72 
stimuli are small and nearly flat for the whole ISI (Fig. 1B). Only at a very narrow late phase 73 
do the responses become phase-dependent, increasing slightly. With increased rates, the 74 
responses remain small and flat during early phases. However, later, phase-dependent 75 
responses gradually become larger, with onset-phases shifted left. In agreement with 76 
experiments under the same stimulus conditions (Phoka et al., 2010), the peak of PRCs finally 77 
became saturated at ~ 0.06 at high rates. The relationship between normalized PRC peaks and 78 
rates can be fitted by the Boltzman function and matches experimental data (Fig. 1C, fitted 79 
with 1/(1 + e−(rate−a)/b), a = 49.1, b = 26.4 in the model vs a = 44.1 and b = 20.5 in experiments 80 
(Couto et al., 2015). PRCs in our model show similar rate adaption with inhibitory stimuli 81 
(phase delay, Fig. S1A). Rate-adaptive PRCs require the presence of a dendrite in the PC model 82 
(not shown), but the dendrite can be passive (Fig. S1B). We also tested the effect of increasing 83 
stimulus amplitude on PRC adaptation. Increasing stimulus amplitude consistently shifted 84 
onset-phases of phase-dependent parts to the left and increased their amplitudes (Fig. S1C).  85 

    To unveil the biophysical principles governing rate-adaptive PRC profiles, we need to 86 
answer three questions: Why are responses flat in early phases? Why do responses become 87 
phase-dependent during later phases? What changes cause the rate adaptation of PRCs? 88 

The Biophysical Mechanism of Rate Adaptation of PRCs in PCs 89 

To answer the aforementioned questions, we examine how spike properties vary with rate 90 
and find that the facilitation of Na+ currents relative to K+ currents, due to elevated subthreshold 91 
membrane potentials at high rates, underlies the rate adaptation of PRCs. After each spike, 92 
there is a pronounced after-hyperpolarization (AHP) caused by the large conductance Ca2+-93 
activated K+ current, and subsequently the membrane potential gradually depolarizes due to 94 
intrinsic Na+ currents and dendritic axial current (Zang et al., 2018). As confirmed by re-95 
analyzing in vitro somatic membrane potential recordings (shared by Ede Rancz and Michael 96 
Häusser (Rancz and Hausser, 2010)), subthreshold membrane potential levels are significantly 97 
elevated at high rates, but spike thresholds rise only slightly with rate (Fig. 2A). This means 98 
the ISI phase where Na+ activation threshold (~ - 55 mV for 0.5% activation in PCs (Khaliq et 99 
al., 2003; Zang et al., 2018)) is crossed shifts left and larger phase ranges of membrane 100 
potentials are above the threshold at high rates (Fig. 2B).  101 

During early phases of all rates, membrane potentials are distant from the Na+ activation 102 
threshold (Fig. 2A,B). The depolarizations to weak stimuli fail to activate sufficient Na+ 103 
channels to speed up voltage trajectories, and phase advances are caused by just the passive 104 
depolarizations (Fig. 2C). Consequently, phase advances in early phases are small and flat (or 105 
phase independent). At later phases, membrane potentials gradually approach and surpass the 106 
Na+ activation threshold. Stimulus-evoked depolarizations activate more Na+ channels to speed 107 
up trajectories in return. Therefore, phase advances become large and phase- (actually voltage-) 108 
dependent. At low rates, membrane potentials are below the Na+ activation threshold during 109 
nearly the entire interspike period (Fig. 2B). Responses are thus generally phase-independent. 110 
At high rates, onset-phases of phase-dependent responses parallel the left shifts of Na+ 111 
activation threshold-corresponding phases, due to elevated subthreshold membrane potentials. 112 
Because high rate-corresponding elevated membrane potentials have larger slopes at the foot 113 
of the Na+ activation curve, a same ∆V (passive depolarization) activates more Na+ channels 114 
and consequently causes larger PRC peaks at high rates (Fig. 2C,D). Under all conditions 115 
(except phase = 0.2, 162 Hz), stimulus-evoked depolarizations also increase outward currents, 116 
but this increase is smaller than that of inward currents (mainly Na+) due to the high activation 117 
threshold of K+ currents (mainly Kv3) in PCs (Martina et al., 2003; Zang et al., 2018). As the 118 
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stimulus becomes stronger, its triggered passive depolarization increases and the required pre-119 
stimulus membrane potential (phase) to reach Na+ activation threshold is lowered (left shifted). 120 
Thus, increasing the stimulus amplitude not only increases the PRC peaks, but also shifts the 121 
onset-phases of phase-dependent responses to the left (Fig. S1C). 122 

 123 

 124 
Figure 2. Modulated Subthreshold Membrane Potentials Account for the Rate-125 
adaptation of PRCs. 126 
(A and B) Experimental and simulated voltage trajectories in PCs during ISIs at different rates. 127 
The model used (Zang et al., 2018) was not fitted to this specific experimental data. Spike 128 
thresholds at different rates are labeled in plots. The Na+ activation threshold is defined as -55 129 
mV (stippled line). Right plots show left-shifted Na+-activation threshold-corresponding 130 
phases at high rates. (C) Stimulus-triggered variations of inward ionic currents (solid) and 131 
outward ionic currents (dashed) at different phases and rates. Ionic currents are shifted to 0 132 
(grey line) at the time of stimulus to compare their relative changes. At phase = 0.2, the outward 133 
current is still decreasing due to the inactivation of the large conductance Ca2+-activated K+ 134 
current at 162 Hz. (D) Larger slopes of the Na+ activation curve at high membrane potentials. 135 
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General Effect of Subthreshold Membrane Potentials on Shaping PRCs 136 

Here, we examine whether the critical role of subthreshold membrane potentials in shaping 137 
PRC profiles also applies to other neuron types. A frequently used pyramidal neuron model, 138 
the Traub model (Ermentrout et al., 2001) was tested. It shows an opposite rate-adaptation of 139 
PRCs compared to PCs (Fig. 3A). In the Traub model, responses become smaller and relatively 140 
phase-independent at high rates. In contrast to PCs, subthreshold membrane potentials are 141 
significantly lower at high rates due to the accumulation of delayed rectifier K+ current (kdr, 142 
Fig. 3B,C), which has a low activation threshold and large conductance. The lower 143 
subthreshold membrane potentials are far below the Na+-activation threshold, making 144 
responses to weak stimuli passive at high rates. Accordingly, PRCs in the model become 145 
smaller and relatively phase-independent at high rates, this was not confirmed in more recent 146 
experimental recordings(Tsubo et al., 2007). We minimally modified the Traub model by 147 
reducing the conductance of the kdr current, raising its activation threshold and increasing the 148 
AHP current (details in Methods) (Fig. 3D-F). With these modifications, subthreshold 149 
membrane potentials are significantly elevated at high spiking rates. Accordingly, onset-phases 150 
of phase-dependent responses shift left and peaks increase at high rates. These simulation 151 
results confirm that, for any type of neuron, spike rate-dependent subthreshold membrane 152 
potentials and their effect on nonlinear activation of Na+ currents are crucial in shaping 153 
neuronal PRC profiles. 154 

 155 
 156 

 157 
Figure 3. Subthreshold Membrane Potential Regulates PRC changes in Pyramidal 158 
Neuron Models. 159 
(A) Rate-adaptation of PRCs in the original Traub model. (B) Lowered ISI membrane potential 160 
at high rates. (C) Comparison of ionic currents at low (solid, 7 Hz) and high (dashed, 227 Hz) 161 
rates. (D) Rate-adaptation of PRCs in the modified Traub model. (E) Elevated ISI membrane 162 
potential at high rates. (F) Comparison of ionic currents at low (solid, 9 Hz) and high (dashed, 163 
49 Hz) rates. In C and F, current peaks are truncated to show currents during ISIs. In E, spike 164 
peaks are truncated to show the elevated ISI membrane potential at high rates. 165 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 29, 2019. ; https://doi.org/10.1101/822478doi: bioRxiv preprint 

https://doi.org/10.1101/822478
http://creativecommons.org/licenses/by/4.0/


 6 

 166 
Rate-dependent High-frequency Oscillations 167 
 168 

 169 
Figure 4. High-frequency Oscillations Show Adaptation with Cellular Spike Rates. 170 
(A) Schematic representation of the network configuration. (B) Example of sampled PC 171 
voltage trajectories in the network. (C) Example of population rates in the network. (D) The 172 
power spectrum of population rates of the network at different cellular rates and firing 173 
irregularity (CV of ISIs). (E) Averaged normalized cross-correlations at different cellular rates. 174 

The potential effect of rate-caused variations of cellular response properties on population 175 
synchrony has been largely ignored in previous studies (Bartos et al., 2002; Brunel and Hakim, 176 
1999; de Solages et al., 2008; Heck et al., 2007; Shin and De Schutter, 2006). Here, we examine 177 
whether rate correlates with synchrony in the presence of high-frequency oscillations that have 178 
been observed in the cerebellar cortex (Cheron et al., 2004; de Solages et al., 2008). We built 179 
a biophysically realistic network model composed of 100 PCs with passive dendrites 180 
distributed on the parasagittal plane (Witter et al., 2016). Each PC connects to the somas of its 181 
5 nearest neighboring PCs through inhibitory axon collaterals on each side (Bishop and 182 
O'Donoghue, 1986; de Solages et al., 2008; Witter et al., 2016). Rates of each PC are 183 
independently driven by parallel fiber synapses, stellate cell synapses, and basket cell synapses 184 
(Fig. 4A). More details are in Methods. 185 

When the average cellular rate is 116 Hz, PCs in the network tend to fire within interspaced 186 
clusters with time intervals of ~ 6 ms (Fig. 4B). However, individual PCs do not fire within 187 
every cluster. Therefore, spikes in the network show intermittent pairwise synchrony on the 188 
population level rather than spike-to-spike synchrony (Fig. 4B). Each peak in Fig. 4C 189 
corresponds to a ‘cluster’. Based on the power spectrum, the network oscillates at a frequency 190 
of ~ 175 Hz (inverse of the cluster interval, ~ 6 ms), independent of cellular rates (116 Hz in 191 
red and 70 Hz in blue, Fig. 4D) because oscillation frequency is mainly determined by synaptic 192 
properties (Brunel and Hakim, 1999; de Solages et al., 2008). When cellular rates increase from 193 
70 Hz to 116 Hz, the power of high-frequency oscillations significantly increases and the peak 194 
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becomes sharper. When individual PCs fire at low rates (10 Hz), the network fails to generate 195 
high-frequency oscillations and each PC fires independently, as evidenced by the flat power 196 
spectrum (Fig. 4D). High-frequency oscillations and their rate-dependent changes are also 197 
reflected in the average normalized cross-correlograms (CCGs) between PC pairs (Fig. 4E). 198 
When PCs fire at 70 Hz and 116 Hz, in addition to positive central peaks, two significant side 199 
peaks can be observed in the CCGs, suggesting correlated spikes with 0 ms time lag and ~ 6 200 
ms time lag. Amplitudes of the peaks increase with cellular rates and disappear when the rate 201 
is low (10 Hz). Notice that the computed CCG shows ‘excess’ correlation, which is computed 202 
by the raw correlation minus the shift predictor (Heck et al., 2007; Smith and Kohn, 2008). 203 

Effect of Cell and Network Properties on Oscillations 204 

In the previous section, the variation of cellular rates was driven by synaptic input to 205 
demonstrate the rate-adaptation of high-frequency oscillations. However, it is difficult to 206 
differentiate the relative contribution of PRC shapes and firing irregularity (measured by the 207 
CV of ISIs) since they covary with rate (Fig. 4D). Therefore, cellular rates were systematically 208 
varied by dynamic current injections, which were approximated by the Ornstein–Uhlenbeck 209 
(OU) process (Destexhe et al., 2001). This simulation protocol also causes the formation of 210 
high-frequency oscillations (Fig. S2). When PCs fire with low to moderate CV of ISIs, they 211 
show loose spike-to-spike synchrony at high rates, but not at low rates. With high CV of ISIs, 212 
spikes are jittered and spike-to-spike synchrony is disrupted. High-frequency oscillations were 213 
never observed under the condition of low cellular rates. 214 

 215 
Figure 5. Effect of Cell and Network Properties on High-frequency Oscillations. 216 
Both irregular spiking (high CV of ISIs) in A or low cellular rates in B decorrelate network 217 
output in the forms of reduced peaks of power spectrums (left) and CCGs (right). In A, the 218 
cellular rate is ~ 141 Hz. In B, the CV ISI is ~ 0.45. Both small conductance (cond) of inhibitory 219 
synapses in C and a short connection radius (D) decorrelate network output in the forms of 220 
reduced peaks of power spectrums (left) and CCGs (right). In A&B, the cond is 1 nS and radius 221 
is 5. In C&D, the cellular rate is ~ 151 Hz and the CV ISI is ~ 0.45.  222 

Both spiking irregularity and rates of PCs covary with cerebellum-associated behaviors 223 
(Chen et al., 2016). Our results show that small spiking irregularity supports high-frequency 224 
oscillations. However, further increasing spiking irregularity reduces the power of high-225 
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frequency oscillations and makes the power spectrum flatter when rates are the same (141 Hz) 226 
(Fig. 5A). In average normalized CCGs, both central and side peaks decrease with increased 227 
firing irregularity. Both results suggest reduced correlation when PCs fire very irregularly. 228 
Next, we explore how rate-dependent PRCs regulate network output. The power of high-229 
frequency oscillations increases and the power peak becomes sharper with large, broad PRCs 230 
at high rates (Fig. 5B). Peaks in the average CCGs also increase, suggesting more correlated 231 
spike outputs at high rates. In Fig. S3, we demonstrate that the PRC peak amplitude at high 232 
cellular rates controls the oscillation power. 233 

At the circuit level, the strength of inhibitory synapses and connection radius are difficult to 234 
determine accurately, but their values are critical for the function of axon collaterals. Within 235 
the ranges of experimentally reported synaptic conductance and connection radius (de Solages 236 
et al., 2008; Fisyunov et al., 2006; Orduz and Llano, 2007; Watt et al., 2009; Witter et al., 237 
2016), the network generates robust high frequency oscillations (Fig. 5C, D). In addition, we 238 
find that increasing the conductance of inhibitory synapses or their connection radius increases 239 
the power of high-frequency oscillations and make the power spectrum sharper. The increased 240 
oscillation power due to connectivity properties is also captured by the larger peaks in CCGs. 241 
Both effects can be explained by larger phase responses due to larger inputs (synaptic 242 
connections, Fig. S1C). Together, our simulation data suggest that the correlation between PC 243 
spikes is strong under conditions of low to moderate spiking irregularity, high cellular rate, 244 
high synaptic conductance, and large connection radius. 245 

Transient Correlations Are Robust to Heterogeneous Spike rates 246 

Although inhibitory connections loosely synchronize spike output and cause oscillations, 247 
their functional role will depend on the following answers: When do they occur? How fast can 248 
they be achieved? Are they robust to heterogeneous cellular spike rates? We have previously 249 
simulated networks with a range of homogeneous stable cellular rates. Here, we first test 250 
whether rate-dependent synchrony still holds when population rates change dynamically. 251 
Population rates of the network approximate the half-positive cycle of a 1 Hz sine wave (peak 252 
~ 140 Hz) with the duration of each trial being 1 sec (Fig. 6A). We computed shuffle-corrected, 253 
normalized joint peristimulus time histograms (JPSTHs) to reflect the dynamic synchrony 254 
(Aertsen et al., 1989) (Fig. S4A). The main and the third diagonal of the JPSTH matrix, 255 
corresponding to 0 ms time lag correlation and 6 ms time lag correlation respectively, are 256 
plotted to show the dynamic synchrony at transiently increased rates (bin size is 2 ms, Fig. 6B). 257 
At low basal rates, there are no correlations between spikes. Both correlations start to increase 258 
~ 250 ms after the onset of simulations and decrease again when the cellular rates drop, closely 259 
following rate changes. It demonstrates that axon collateral-caused spike correlations can be 260 
achieved transiently to transmit a timing signal conjunctive with temporal cellular rate 261 
increases. 262 

Although it remains unclear whether the population of PCs converging onto a same 263 
cerebellar nuclei neuron are homogeneous or heterogeneous, simultaneous bidirectional PC 264 
rate changes have been observed during cerebellum-related behaviors (Chen et al., 2016; 265 
Herzfeld et al., 2015). It is very likely that neighboring PCs show heterogeneous spike rate 266 
changes, which may reduce spike correlations (Markowitz et al., 2008). Therefore, we 267 
distributed 10-30 extra cells with decreased spike rates in the network to test the effect of 268 
heterogeneous neighboring rate changes on the transient correlations (The population firing 269 
rates of increased-rate cells and decreased-rate cells are shown in Fig. S4B). They were 270 
randomly scattered among the cells with increasing rates. Spike correlations still become larger 271 
for the subgroup of PCs showing increased cellular rates, despite a slight decrease of the 272 
correlation amplitude when more cells decrease their spike rates (Figs. 6C-E). The results 273 
suggest that a population of PCs with increased spike rates can form subgroups to propagate 274 
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synchrony information even when they are surrounded by non-correlated neighboring PCs with 275 
decreased spike rates. 276 

 277 
Figure 6. Correlations can be transient and robust to heterogeneous spike rates 278 
(A) Population spike rates of PCs. (B) The 0 ms- and 6 ms-time lag correlations increase with 279 
population rates. (C-E) The rate-dependent correlation is robust to heterogeneous cellular rate 280 
changes. From C to E, the number of decreased rate cells increases from 10 to 30. 281 

Discussion 282 

    In this work, we dissected biophysical mechanisms shaping PRC profiles and explored their 283 
role in synchronizing spikes in cerebellar PCs. We started by reproducing the rate adaptation 284 
of PRCs in PCs and then identified rate-modulated interspike potentials as the underlying 285 
mechanism. We further demonstrated rate-dependent phase responses can link spike rate with 286 
spike timing to regulate neuronal output. 287 

Biophysical Mechanisms Underlying Rate-dependent PRCs 288 

The profiles of neuronal PRCs are rate-dependent (Couto et al., 2015; Ermentrout et al., 289 
2001; Gutkin et al., 2005; Phoka et al., 2010; Tsubo et al., 2007). In cortical neurons, slow 290 
voltage-dependent K+ and Ca2+-activated K+ currents were proposed to mediate rate adaptation 291 
of their PRCs and emergent synchrony between excitatory coupled neurons (Ermentrout et al., 292 
2001; Gutkin et al., 2005). These studies presumed that the decrease of PRC peaks with 293 
increasing spike rates would be general for type-I PRCs (always advancing). However, this 294 
prediction has not been confirmed in later experiments (Couto et al., 2015; Phoka et al., 2010; 295 
Tsubo et al., 2007). In Layer 2/3 pyramidal neurons, PRCs tend to transit from type-I to type-296 
II with increasing rate (advanced or delayed depending on phase) (Tsubo et al., 2007). Even in 297 
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neurons preserving type-I PRCs (mainly Layer 5), peaks tend to increase with rate (see Figs. 298 
3E&4 of Tsubo et al. (2007)). Cerebellar PCs exhibit a transition from small, phase-299 
independent responses to large, phase-dependent type-I responses with increasing rate (Couto 300 
et al., 2015; Phoka et al., 2010), but the mechanism was unknown (Akemann and Knopfel, 301 
2006; Couto et al., 2015; De Schutter and Bower, 1994; Khaliq et al., 2003; Phoka et al., 2010). 302 
This work reproduces and explains the experimentally observed rate adaptation of PRCs. Note 303 
that the slight increase of PRCs in the very narrow late phase in our model (low rate, Fig. 1B) 304 
may be annihilated by noise in spontaneously firing neurons (Couto et al., 2015; Phoka et al., 305 
2010). Compared with previous work emphasizing the slow deactivation of K+ currents in 306 
cortical neurons (Ermentrout et al., 2001; Gutkin et al., 2005), here we unveil the general role 307 
of rate-dependent subthreshold membrane potentials and their corresponding activation of Na+ 308 
currents. In both pyramidal neurons and PCs, spike rates cause significant variation of the 309 
subthreshold membrane potential during the ISI (Rancz and Hausser, 2010; Tsubo et al., 2007). 310 
In response to a stimulus, both Na+ and K+ currents are activated. In PCs, the main K+ current 311 
is high-threshold activated (Martina et al., 2003; Zang et al., 2018); therefore, depolarization-312 
facilitated Na+ currents dominate, causing larger PRCs at high rates (Fig. 2). However, previous 313 
PC models (Akemann and Knopfel, 2006; Couto et al., 2015; De Schutter and Bower, 1994; 314 
Khaliq et al., 2003; Phoka et al., 2010) possess low-threshold-activated K+ currents, which 315 
counteract facilitated Na+ currents, explaining an absence of increased PRCs at high rates. In 316 
the Traub model, slow deactivation of K+ currents and consequent hyperpolarization 317 
synergistically reduce the PRC peaks at high rates (Ermentrout et al., 2001; Gutkin et al., 2005). 318 
By minimally modifying the Traub model, elevated subthreshold interspike potentials generate 319 
larger PRCs peaks at high rates (Fig. 3) as in experiments (Tsubo et al., 2007). To the best of 320 
our knowledge, decreased neuronal PRCs at high firing rates haven’t been experimentally 321 
observed yet. 322 

Spike Synchronization Mechanisms 323 

    Whether spike timing carries critical information for cerebellar function is still controversial. 324 
For smooth pursuit eye movement in monkeys, the movement was reported to be coded just by 325 
PC spike rates (Payne et al., 2019). However, during saccades, the spike timing of some PCs 326 
provides a temporally reliable signal for the onset of eye movement (Hong et al., 2016). In 327 
mice, well-timed spiking in PCs and cerebellar nuclei neurons is critical in cerebellum-related 328 
locomotion and whisking (Brown and Raman, 2018; Sarnaik and Raman, 2018). Therefore, 329 
spike timing is important for at least some, if not all, cerebellum-related behaviors. Both 330 
synchronized complex spikes (De Gruijl et al., 2014; Tang et al., 2019) and simple spikes (de 331 
Solages et al., 2008; Heck et al., 2007; Shin and De Schutter, 2006) have been observed in vivo. 332 
Among all observations, the high-frequency oscillations (Cheron et al., 2004; de Solages et al., 333 
2008; Groth and Sahin, 2015) do not rely on synchronized afferent input and were proposed to 334 
be caused by recurrent inhibitory axon collaterals (de Solages et al., 2008). Recent work has 335 
confirmed the presence of recurrent axon collaterals in adult mice by direct imaging and 336 
reconstruction (Witter et al., 2016), while they were previously thought to exist in young mice 337 
only (Watt et al., 2009). For high-frequency oscillations, rate-dependent phase responses 338 
increase the oscillation level at high rates, with no need to increase afferent input correlation. 339 
Note that rate-related synchrony can also be achieved via common synaptic inputs (Heck et al., 340 
2007), gap junctions (Middleton et al., 2008), and ephaptic coupling (Han et al., 2018), when 341 
the inputs or connections are weak. To achieve synchrony, neuronal PRCs are required to be 342 
none-zero, regardless of the driving mechanism. For larger PRC values, advanced spikes, or 343 
those delayed by inhibition, will be more clustered relative to the stimuli (Ermentrout et al., 344 
2008). Since synchronization mechanisms are not mutually exclusive, they may work 345 
synergistically to achieve the required synchrony level. However, rate-dependent PRCs will 346 
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not help synchronize complex spikes triggered by common or correlated climbing fiber inputs 347 
(De Gruijl et al., 2014; Tang et al., 2019), because the inputs are powerful enough to evoke 348 
spikes immediately. 349 

The Evidence Supporting Rate-dependent Correlations 350 

    There is no direct experimental data supporting rate-dependent synchrony in the cerebellum. 351 
However, careful analysis of previous experimental data in the cerebellum provides some 352 
evidence to support our findings. In the work of de Solages et al. (2008), units with lower 353 
average rates (<10 Hz) did not exhibit significant correlations between neighboring PCs, for 354 
unknown reasons. This can be explained by the small flat PRCs at low rates. Under extreme 355 
conditions, when the PRC is constantly 0 (equivalent to disconnection), no correlations can be 356 
achieved  (Figs. 4-6). Additionally, the oscillation power increased by the application of WIN 357 
55,212-2, which was intended to suppress background excitatory and inhibitory synapses (de 358 
Solages et al., 2008). The increased power could be due to more regular spiking after inhibiting 359 
the activity of background synapses (Fig. 5A). However, it could also be caused by increased 360 
spike rates (Fig. 5B), because this agent also blocks P/Q type Ca2+ channels and consequently 361 
P/Q type Ca2+-activated K+ currents, to increase spike rates (Fisyunov et al., 2006). Similarly, 362 
enhanced oscillations have also been observed in calcium-binding protein gene KO mice, 363 
which accompany significantly higher simple spike rates (Cheron et al., 2004). 364 

Spatio-temporal Correlated Spiking 365 

We built a link between oscillation level and firing irregularity (Fig. 5A). Given that 366 
increased firing irregularity is usually linked to cerebellar dysfunction (Peter et al., 2016; 367 
Walter et al., 2006), our results imply that irregularity-disrupted temporal population firing 368 
patterns can be the ultimate reason. Although temporal synchrony may carry important timing 369 
information for the onset of some movements (Brown and Raman, 2018; Hong et al., 2016; 370 
Sarnaik and Raman, 2018), optimal cerebellar function seems to occur between excessive 371 
asynchrony and synchrony (Shakkottai, 2014). It has been shown that synchronized simple 372 
spikes are time-locked to reaching-grasping movements in rats (Heck et al., 2007). Before and 373 
after such movements, synchronized simple spikes were not observed. High-frequency 374 
oscillations time-locked to lever-pressing in rats have been reported (Groth and Sahin, 2015). 375 
Additionally, in humans high-gamma oscillations in the cerebellar cortex significantly increase 376 
during a reaching task (Carver et al., 2019). Nonetheless, global and rhythmic increased 377 
synchrony (Cheron et al., 2004) may abrogate normal separation of timing signals to different 378 
muscle groups (for example agonist and antagonist muscles), causing impaired motor 379 
coordination, such as dystonia (Shakkottai, 2014). In our model, PRCs are quantitatively close 380 
to experimental data (Fig. 1). When cell and network parameters fall within physiological 381 
ranges (Figs. 5,6), the network shows very weak oscillations at low basal cellular rates, but the 382 
PC ensemble can dynamically increase the correlation level within a subgroup of PCs with 383 
increased rates (Person and Raman, 2011) (Fig. 6). Local gamma oscillations have been shown 384 
to selectively route input information in a cortical circuit model (Palmigiano et al., 2017). 385 
Similarly, in the cerebellum, temporal information can be transiently separated and directed to 386 
different subgroups of PCs to efficiently coordinate muscle movements. Thus, the spatial range 387 
of axon collaterals (~ 210 µm, each connecting 7 to 10 neighboring PCs (Bishop and 388 
O'Donoghue, 1986; Watt et al., 2009; Witter et al., 2016)), the strength of their synapses (on 389 
the order of 1 ns (de Solages et al., 2008; Orduz and Llano, 2007; Witter et al., 2016)), and 390 
rate-dependent PRCs (Couto et al., 2015; Phoka et al., 2010) may well be configured to support 391 
spatio-temporal synchrony at high rates. Furthermore, when PCs fire at high rates, the strong 392 
facilitation of inhibitory axon collateral synapses may be a complementary mechanism to 393 
strengthen this dynamic synchrony (Orduz and Llano, 2007). 394 
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Possible Rate-dependent Oscillations in Hippocampus 395 

The high-frequency oscillations in the cerebellum are reminiscent of hippocampal ripple 396 
oscillations involved in memory consolidation. Ripple oscillations are thought to originate 397 
from parvalbumin-expressing GABAergic neuron networks (Bartos et al., 2002). PCs and 398 
hippocampal GABAergic neurons both are fast-spiking inhibitory neurons. They have similar 399 
f-I curve slopes and their principal repolarization currents both are Kv3 currents (Hu et al., 400 
2018). Thus, it will be interesting to explore whether PRCs of GABAergic neurons and the 401 
power of ripple oscillations exhibit similar rate adaptations. 402 

Conclusion 403 

We have identified the subthreshold membrane potential as a general mechanism shaping 404 
neuronal PRC profiles. It will help experimentalists and theorists to understand and reproduce 405 
measured PRCs, and further explore their function in encoding temporal information in 406 
different circuits. Rate-dependent phase responses couple spike rate with spike timing, which 407 
may be a significant neuronal property to spatio-temporally regulate their outputs. 408 
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Methods 414 

    The detailed PC model and the interconnected network model were implemented in 415 
NEURON 7.5 (Carnevale and Hines, 2006). The Traub model was implemented in MATLAB. 416 
The code used in this work will be available from ModelDB. 417 

PRC computations 418 

    Our recently developed compartment-based PC model was used (Zang et al., 2018). To 419 
compute the PRCs in Fig. 1, brief current pulses with a duration of 0.5 ms and an amplitude of 420 
50 pA were administered at the soma at different phases of interspike intervals. The resulting 421 
perturbed periods were then used to calculate phase advances by the formulation 422 
𝑃𝑅𝐶 = (< 𝐼𝑆𝐼 > −	𝐼𝑆𝐼,-./0.1)	 < 𝐼𝑆𝐼 >⁄ . Different cellular rates were achieved by somatic 423 
holding currents (Couto et al., 2015; Phoka et al., 2010). To compute PRCs in response to 424 
negative stimuli, the amplitudes of the pulses were changed to - 50 pA. To compute PRCs of 425 
our PC model with passive dendrites, only H current and leak current were distributed on the 426 
dendrites with the same parameters as in the active model (Zang et al., 2018). The Traub model 427 
(Traub et al., 1999) was implemented according to the work of Ermentrout et al (Ermentrout 428 
et al., 2001; Gutkin et al., 2005). In the modified version of this model, the conductance of the 429 
kdr current was reduced from 80 to 40. Activation and deactivation rates of this current were 430 
shifted to the right by 30 mV, αn(v) = 0.032*(v+22)/(1-exp(-(v+22)/5)); βn(v) = 0.5*exp(-431 
(v+27)/40); the conductance of AHP current was increased from 0 to 0.1. 432 

Network simulations 433 

We implemented our recurrent inhibitory PC layer network using the Watts-Strogatz model 434 
(Watts and Strogatz, 1998) to avoid boundary effects. To reduce simulation time, we used the 435 
PC model with passive dendrites, which exhibits similar rate-dependent PRCs as the PC model 436 
with active dendrites (Fig. S1B). In the baseline version of the network, 100 PCs were 437 
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distributed on the parasagittal plane (Witter et al., 2016), corresponding to 2 mm of folium with 438 
a distance of 20 μm between neighboring PC soma centers. 100 PCs are within the estimated 439 
range of PCs converging to a same cerebellar nuclei neuron (Person and Raman, 2011). Each 440 
PC was connected to its nearest 2*radius neighboring PC somas and connections had 0 rewiring 441 
probability. The PCs were interconnected, according to anatomical data showing collaterals 442 
present toward both the apex and the base of the lobule with only slight directional biases 443 
(Witter et al., 2016). The baseline value of radius was 5 within the range of experimental 444 
estimates (de Solages et al., 2008; Watt et al., 2009; Witter et al., 2016). The inhibitory 445 
postsynaptic current (IPSC) was implemented using the NEURON built-in point process, 446 
Exp2Syn. G = weight * (exp(-t/τ2) - exp(-t/τ1)), with τ1 = 0.5 ms (rise time) and τ2 = 3 ms (decay 447 
time). The reversal potential of the IPSC was set at -85 mV (Watt et al., 2009). The conductance 448 
was 1 nS (de Solages et al., 2008; Orduz and Llano, 2007; Witter et al., 2016). The delay 449 
between onset of an IPSC and its presynaptic spike timing was 1.5 ms (de Solages et al., 2008; 450 
Orduz and Llano, 2007; Witter et al., 2016). To test the effect of rate-dependent PRCs on high-451 
frequency oscillations, we varied the cellular rates in two paradigms. In the first (Fig. 4), each 452 
PC is contacted by 4,000 excitatory parallel fiber synapses (PF, on spiny dendrites), 18 453 
inhibitory stellate cells (STs, on spiny dendrites) and 4 inhibitory basket cells (BSs, on the 454 
soma). Activation of excitatory and inhibitory synapses in each PC was approximated as an 455 
independent Poisson process with different rates. We simulated 3 conditions: PC rate = 10 Hz 456 
when PF rate = 0.27 Hz, ST rate = 14.4 Hz, BS rate = 14.4 Hz; PC rate = 70 Hz when PF rate 457 
= 2.16 Hz, ST rate = 28.8 Hz, BS rate = 28.8 Hz; PC rate = 116 Hz when PF rate = 3.24 Hz, 458 
ST rate = 28.8 Hz, BS rate = 28.8 Hz. To more systematically explore different factors 459 
regulating network outputs, after Fig.4, we used a second paradigm. Cellular rates of each PC 460 
were manipulated by injecting stochastic currents on the soma. The stochastic current was 461 
approximated by the commonly used Ornstein-Uhlenbeck random process (Destexhe et al., 462 
2001), τ 56

5/
= −𝐼 + 𝜎√𝜏𝜂<(𝑡) . 𝜎 represents the amplitude of the fluctuation; 𝜂<  represents 463 

uncorrelated white noise with unit variance; τ = 5	ms. In this paradigm, we systematically 464 
varied the rates and firing irregularities of PCs (CV of ISIs) to explore their importance for 465 
network output. Phase response is a result of input current and response gain of the cell. No 466 
existing data support decreased PRC at high cellular rates. In our model, in a physiological 467 
range, it is not available either. We therefore reduce the phase response by halving the input 468 
current (synaptic conductance) to achieve a smaller response at high firing rates (Fig. S3). We 469 
also explored the effect of connection radius with the values of 3, 5, 7 and10 in Fig. 5D. The 470 
conductance of inhibitory synapses was tested with the values of 0.75, 1.0, 1.25 and 1.5 ns in 471 
Fig. 5C. To test the spatio-temporally increased correlation, we randomly distributed extra 10 472 
- 30 PCs with decreased cellular rates into the original network (Fig. 6), including 100 473 
increased-rate cells. Their mean population firing rates are shown in Fig. S4B. 474 

Data analysis 475 

The power spectrum of the spike trains of the network was estimated by Welch’s method, 476 
which calculates the average of the spectra of windowed segments (window size 128 points). 477 
In each trial under each specific stimulus condition, the length of the signal was 2 sec, with a 478 
time resolution of 1 msec. The final result was the average of 14 trials. 479 

To compute the cross-correlogram (CCG) under each specific stimulus condition, we first 480 
computed pairwise correlations between the spike trains of two neurons and then corrected 481 
them by shift predictors, which removed the ‘chance correlations’ due to rate changes. Then 482 
correlations were divided by the triangular function Θ(𝜏) = 𝑇 − |𝜏| and D𝜆<𝜆F . T was the 483 
duration of each trial and 𝜏 was the time lag. Θ(𝜏) corrects for the degree of overlap between 484 
two spike trains for each time lag 𝜏. 𝜆< was the mean firing rate of neuron i (Kohn and Smith, 485 
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2005). Finally, the CCGs between all pairs in the network were averaged to reflect the 486 
population level spike correlations. Thus, similar with previous work (Heck et al., 2007), the 487 
computed CCGs reflect the ‘excess’ correlation caused by axon collaterals in our work. To 488 
measure the dynamic correlation over the time course of the stimulus, we computed JPSTHs. 489 
Here we used a 2-ms time bins due to the narrow central peak and side peaks. Larger time bins 490 
annihilated the positive peaks due to the significant negative correlations in paired spikes. 491 
Therefore, we simulated 1992 trials to compute the raw JPSTH between PC pairs. Similar with 492 
CCGs, the raw JPSTH was corrected by subtracting the shift predictor (cross-product matrix 493 
of individual peri-event time histograms) to remove the coincident spikes due to rate changes 494 
and co-stimulus. The corrected JPSTH was then normalized by the squared root of product of 495 
each neuron's PSTH standard deviations (Aertsen et al., 1989). The corrected matrix values 496 
become correlation coefficients, with values between -1 and +1. Finally, all pair-wise JPSTHs 497 
were averaged to reflect the population level dynamic correlations. 498 
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 627 
 628 

Supplementary figures 629 
 630 
 631 
 632 
Figure S1. Rate-dependent PRCs.633 

 634 
(A) Negative stimulus-triggered responses (phase delay) parallel positive stimuli (see Fig .1). 635 
Onset-phases of phase-dependent responses shift left at high rates with gradually larger 636 
amplitudes. (B) The PC model with passive dendrites shows similar rate adaptation as in PC 637 
models with active dendrites (Fig. 1). (C) Larger stimulus amplitudes increase the peak of the 638 
phase-dependent PRCs and shift their onset phases to the left. Simulation results at rates of 12-, 639 
27- and 42-Hz are shown with increased stimulus amplitudes from 0.05 nA to 0.25 nA. 640 
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 641 
Figure S2. Formation of High-frequency Oscillations at High Rates.  642 
(A&B) Raster plots of random PC spikes when they fire regularly (CV ISI ~ 0.07) and 643 
irregularly (CV ISI ~ 0.4) at low rates (here, ~ 2 Hz in the network, but 12 Hz in isolated cells). 644 
In the right plot of B, average CCG is shown. (C) PCs show spike-to-spike synchrony when 645 
they fire regularly (CV ISI ~ 0.02) at high rates (154 Hz). (D) PC spikes show high-frequency 646 
oscillations when they fire irregularly (CV ISI ~ 0.44) at high rates (153 Hz). The right plot of 647 
D shows the average CCG with a significant central peak and side peaks. 648 
 649 
 650 
 651 
 652 

 653 
Figure S3. Decreased PRC at High Firing Rates Can Weaken Oscillations. 654 
A. PRCs for negative stimulus (Fig. 1A) when PCs fire at 95 Hz (blue) and 106 Hz (purple) 655 
with basal values of synaptic conductance. Reduced PRC at 106 Hz was achieved by 50% of 656 
basal synaptic conductance (black). B. The power spectrum of spike trains with the cellular 657 
rate of 95 Hz (blue, basal conductance), 106 Hz (purple, basal conductance) and 113 Hz (black, 658 
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50% of basal conductance, firing rate increased to 113 Hz due to the reduced inhibition, with 659 
other conditions the same as 106 Hz with basal conductance). In all cases, the CV of ISI is 0.45. 660 
The power spectrum at high firing rates gets flatter with lower amplitude when the PRC 661 
amplitude is reduced (black trace). C. The CCGs of spike trains with the same condition as in 662 
B. Central and side peaks reduce at high firing rates when phase response is smaller. 663 
 664 
 665 
 666 
 667 

 668 
Figure S4. Dynamic Correlations of the PC Network Outputs (Correspond to Fig. 6).  669 
A. the JPSTH used to produce Fig. 6B. B, Population Firing rates of Increased-rate Cells and 670 
Decreased-rate Cells for Fig. 6C-E. 671 
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