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Abstract: Many ecological and evolutionary processes in animals depend upon microbial
symbioses. In spiders, the role of the microbiome in these processes remains mostly unknown. We
compared the microbiome between populations, individuals, and tissue types of a range-expanding
spider, using 165 rRNA gene sequencing. Our study is one of the first to go beyond targeting known
endosymbionts in spiders, and characterizes the total microbiome across different body
compartments (leg, prosoma, hemolymph, book lungs, ovaries, silk glands, midgut, and fecal
pellets). Overall, the microbiome differs significantly between populations and individuals, but not
between tissue types. The microbiome of the wasp spider Argiope bruennichi features a novel
dominant bacterial symbiont, which is abundant in every tissue type in spiders from geographically
distinct populations, and present in offspring. The novel symbiont is affiliated with the Tenericutes,
but has low sequence identity (<85%) to all previously named taxa, suggesting that the novel
symbiont represents a new bacterial clade. Its presence in offspring implies that it is vertically
transmitted. Our results shed light on the processes which shape microbiome differentiation in this
species, and raise several questions about the implications of the novel dominant bacterial symbiont
on the biology and evolution of its host.
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1. Introduction

All multicellular life evolved from and with microbes. Consequently, the interactions between
animals and microbes are not rare occurrences but rather fundamentally important aspects of animal
biology, from development to systems ecology [1]. The holobiont, defined as a host and all of its
symbionts, is considered as a unit of biological organization, upon which selection can act [2-5]. The
nature of the relationships between host and symbionts has been of intense interest in recent years;
while some form obligatory, coevolutionary symbioses [6-10], others are environmentally derived,
and/or unstable and temporary [11,12]. The collective of microbial symbionts and their environment
within a certain host or tissue can also be referred to as a microbiome [13]. For example, the intensive
research on the human microbiome of the last decade has shed light on many roles of the microbiome
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47  of different tissues in health and disease [14]. In addition, correlations have been found between the
48  microbiome and a number of traits, across different levels of biological organization and states (from
49 population-level [15] down to the level of tissue-specific microbiomes [14,16], as well as across
50 different age and disease states [17]).

o1 A striking feature of the microbiomes of some hosts is the presence of microbial endosymbionts.
52  Endosymbionts, which typically reside within the cells of their hosts, can play a major role in
53  speciation in many organisms, through mechanisms such as assortative mating and reproductive
54 isolation [18]. Wolbachia endosymbiont infections are highly prevalent in invertebrates [19,20], where
95 they can induce parthenogenesis, cause cytoplasmic incompatibility between uninfected and infected
56 individuals, as well as affect host fecundity, fertility, and longevity [21,22], and can affect the sex ratio
57  of host species via feminization of males and male killing [23-25]. Non-Wolbachia (endo)symbiotic
58  bacteria can also manipulate host physiology and behavior in diverse ways, from increasing heat
59  tolerance in aphids [26] to determining egg-laying site preference in Drosophila melanogaster [27]. If
60  microbial symbionts are vertically transmitted, these modifications of behavior and/or physiology
61  can result in changing selection pressures, and eventually coevolution of the symbionts and their
62  hosts [4,6,28-30].

63 The function of a symbiont within its host is often predictive of its location within tissues.
64  Wolbachia infections are often specifically located in reproductive tissues, but can also be distributed
65  widely throughout somatic cells, depending on the host species [31,32]. Beyond Wolbachia, many
66  studies on bacterial symbionts have focused on blood- and sap-feeding insects; these specialist
67  feeders require symbionts within their digestive tissues to assist in utilization of their nutrient-poor
68  diets [6,33-40]. Therefore, endosymbiont, and thus microbiome composition, can vary widely
69 between tissue types and organ systems.

70 Among arthropods, insects have been the primary focus of microbiome studies. In comparison,
71  investigations into the microbiome of spiders are scarce but suggest that spiders host diverse
72 assemblages of bacteria, some of which alter their physiology and behavior. In a survey of eight
73 spider species from 6 different families, in which DNA (deoxyribonucleic acid) was extracted from
74 the whole body, putative endosymbionts dominated the microbiome of all species [41]. The
75  endosymbionts discovered (assumed by the authors to be endosymbionts of the spiders, not
76  endosymbionts of their insect prey) were largely reproductive parasites, including Wolbachia,
77 Cardinium, Rickettsia, Spiroplasma, and Rickettsiella, which corresponds to the findings on other spider
78  species across families [42-44]. The non-endosymbiont bacterial taxa were typical insect gut
79  microbes, which could be nutritional symbionts of the spiders or represent the microbiome of prey
80  the spiders consumed. As to the effect of endosymbionts on spider hosts, relatively little is known.
81  Wolbachia has been shown to bias the sex ratio in the dwarf spider Oedothorax gibbosus [45], and
82  Rickettsia infection changed the dispersal probability of another dwarf spider species, Erigone atra
83  [46]. The abundance of Rhabdochlamydia was found to vary with population and with sex (higher
84  infection rate in females than males) in Oedothorax gibbosus [44]. The studies mentioned above have
85  focused on endosymbionts alone, within a single family of spiders. It has not yet been investigated
86  whether there are intraspecific differences in the total (endosymbiont and non-endosymbiont)
87  microbial community between different spider populations, the composition of the microbiome in
88  certain tissue types or whether there is vertical transmission of the microbiome in spiders.

89 Argiope bruennichi (Scopoli, 1772), an orb-weaving spider with a Palearctic distribution [47], is an
90  ideal candidate for a pioneering microbiome study, given the wealth of knowledge that exists on the
91  biology of the species and the genus Argiope [48]. It has been the subject of many studies due to a
92 number of interesting traits, such as sexual dimorphism and sexual cannibalism (i.e. [49-51]), and its
93  recent and rapid range expansion within Europe [47,52-55]. Since spider dispersal behavior can also
94  be affected by endosymbiont infection [46], and dispersal behavior influences the rate of range
95  expansion, the microbiome might play a role in the rapid range expansion of A. bruennichi. Although
96  some studies on A. bruennichi have used targeted approaches to look for specific reproductive
97  parasites, finding none [43,56], a holistic approach to investigating the microbiome of A. bruennichi
98  has not been carried out to date. In the present study, we investigate the total bacterial community of
99 A bruennichi from geographically distant but genetically similar populations in Germany and
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100  Estonia, asking the following questions: (1) does A. bruennichi possess a multi-species microbiome?
101 (2) If so, are there population-level differences in the microbiome? (3) Are specific microbes localized
102  in certain tissues? And (4) is the microbiome vertically transmitted?

103 2. Materials and Methods

104 2.1. Sample collection

105 For this study, mature female Argiope bruennichi were collected for two purposes: first, for
106  dissection into different tissue types, and second, to produce offspring. The females used for dissection
107 came from two sites: one in Germany (Greifswald: 54.11 N, 13.48 E; n=3), and one site in Estonia (Parnu:
108 5830 N, 24.60 E; n = 3). The females which produced offspring came from two sites (Plech, Germany:
109  49.65N, 11.47 E; n = 1; Parnu, Estonia: 58.30 N, 24.60 E; n = 1) and were maintained in the lab until they
110  produced an egg sac. It is important to note that A. bruennichi females lay their eggs into a simple egg
111  sac, which is then wrapped in a silk casing consisting of two layers: one “fluffy” silk layer, and one
112 tough outer layer [57]. Eggs hatch within the first weeks, but the juvenile spiders, “spiderlings,” remain
113  in the egg sac for several months over winter [57]. The spiderlings which hatched from the egg sacs
114 produced in the lab, were preserved in the silk casing in the freezer until the day of DNA extraction for
115  microbiome analysis.

116 2.2. Sample preparation

117 Three adult specimens each from Greifswald and Parnu were dissected within two days of
118  collection, and the spiders were not fed between the point of collection and dissection. Before dissection,
119  the spiders were anaesthetized using CO», after which the prosoma and opisthosoma were separated
120  using sterilized scissors. A 10 pl sample of hemolymph was immediately taken from the aorta at the
121  point of separation with a sterile pipette. Next, the legs were removed and a single leg was taken as a
122  sample and stored separately from the whole prosoma. Sterilized forceps were used for dissection of
123  the opisthosoma. The cuticle was removed dorsally, and a sample of the midgut was taken from the
124 dorsal side and stored. The cuticle was then cut ventrally, between the epigynum (genital opening) and
125  the spinnerets. The two cuticular flaps were pulled to loosen the internal organs, and the digestive
126  tubules were teased apart to reveal the rest of the organs. The major ampullate silk glands, which
127  produce structural and dragline silk and are the largest and easiest to remove of all the silk glands [58—
128 61], were removed and stored. Then, a sample of the ovaries was removed and stored. Removal of the
129  ovaries revealed the cloaca, and existing fecal pellets and the surrounding fluid in the cloaca were
130  sampled using a sterile pipette. Finally, the book lungs were removed and stored. All tissue samples
131  were stored in sterile tubes and frozen until the time of DNA extraction.

132 For the spiderling samples, one egg sac each from Plech and Parnu was opened with sterilized
133 forceps, and 5 spiderlings from each egg sac were placed directly into phenol-chloroform for DNA
134  extraction.

135  2.3. DNA extraction and Illumina amplicon sequencing

136 DNA was extracted from tissue samples using a phenol-chloroform extraction protocol, as
137  described in [62]. Mechanical lysis was performed via bead beating in a FastPrep 24 5G (MP
138  Biomedicals) with FastPrep Lysing Matrix E. A fragment of the 165 rRNA gene was amplified from the
139  extracted DNA with a primer pair recommended by the Earth Microbiome Project, targeting the V4
140  region of the 16S rRNA gene [515f: 50-GTGYCAGCMGCCGCGGTAA-30, 806r: 50-
141 GGACTACNVGGGTWTCTAAT-30 [63]] coupled to custom adaptor-barcode constructs. PCR
142  amplification and Illumina MiSeq library preparation and sequencing (V3 chemistry) was carried out
143 by LGC Genomics in Berlin. Sequences have been submitted to the NCBI short read archive, and can
144  be found under the BioProject number PRJNA577547, accession numbers SAMN13028533-
145  SAMN13028590.

146 In addition, PacBio long-read SMRT (single molecule real-time) sequencing of almost full-length
147  16S rRNA gene amplicons was performed for two of the samples (a prosoma extract from a German
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148  spider and a spiderling extract from Estonian spiderlings). For this, ~1500 bp amplicons were amplified
149  using the primers Ba27f (AGAGTTTGATCMTGGCTCAG), and Bal492r
150 (CGGYTACCTTGTTACGACTT) tailed with PacBio universal sequencing adapters (universal tags) in
151  afirst round of PCR with 25 cycles. After PCR product purification, a second round of PCR was done
152  with distinct barcoded universal F/R primers as provided by the manufacturer (PacBio, Menlo Park,
153  CA). SMRTbell Library preparation and SMRT sequencing on a PacBio Sequel System was also done
154  according to manufacturer instructions. Approximately 20 barcoded amplicons were multiplexed per
155  SMRT cell. Initial processing of SMRT reads and exporting of CCS (circular consensus sequencing) data
156  was done with the SMRT Link analysis software as recommended by the manufacturer. Raw reads are
157 available on the NCBI short read archive, and can be found under the BioProject number PRINA577547,
158  accession number SAMN13046638.

159 The resulting sequences were clustered and consensus sequences derived using IsoCon [64]. The
160  DUSA sequence was identified by comparing the short V4 amplicon with the SMRT IsoCon consensus
161  sequences and choosing the sequence with the highest match.

162  2.4. Sequence processing

163 Sequences clipped from adaptor and primer sequence remains were received from the LGC
164  Genomics sequencing facility, and then processed using the DADA2 (Divisive Amplicon Denoising
165  Algorithm 2) package in R [Version 1.6.0 [65]] [66]. The R script used for sequence processing can be
166  found in Supplementary File S1. Forward and reverse Illumina reads were simultaneously filtered and
167  truncated to 200 bp. Error rates were estimated using the maximum possible error estimate from the
168  data as a first guess. Sample sequences were de-multiplexed and unique sequences were inferred using
169  the core denoising algorithm in the DADA?2 R package. Following sample inference, paired forward
170  and reverse reads were merged. Chimeric sequences accounted for less than 0.5% of the total sequence
171  reads and were removed using the removeBimeraDenovo function. Taxonomic classification was
172 performed using the DADA2 package’s implementation of the RDP’s naive Bayesian classifier [67],
173 with a minimum bootstrap confidence of 50, drawing from the Silva database [68]. The resulting unique
174  amplicon sequence variants (ASVs) with taxonomic classification were used to build a table containing
175  relative abundances of ASVs across all samples.

176  2.5. Data analysis and visualization

177 To control for possible contamination during the process of extraction and sequencing, given low
178  DNA yield from some tissue types, a control extraction using sterile water was performed alongside
179  each extraction. These negative controls were included in the sequencing run. A series of cutoffs were
180  employed as quality control on the relative abundance table. First, samples with low sequencing depth
181  (less than 4000 reads) were removed. Then, the data was strictly filtered to remove any ASVs found in
182  extraction blanks (with an abundance of 50 reads or more). After the removal of those possible
183  contaminants, another sequencing depth cutoff was enforced, removing samples with less than 400
184  reads.

185 ASVs were aggregated by bacterial class to obtain an overview of the microbiome. Low-abundance
186  classes (less than 1000 reads total, meaning less than 0.1% of filtered reads) were aggregated into a
187  category called “Other.” The relative abundance of each class was then visualized in the form of pie
188  charts using the ggplot2 package [69] in R.

189 To test for and visualize dissimilarity in ASV composition between tissue types, sampling sites
190  and individuals, non-metric multidimensional scaling was performed on Hellinger-transformed
191  sequence variant counts using Bray-Curtis distance, implemented in the vegan package (vegan function
192 ‘metaMDS’) [version 2.5-1 [70]] in R. Explanatory power of tissue type, sampling site, and individual
193  was calculated using a PERMANOVA test (vegan function ‘adonis’). This analysis was done on filtered
194  reads, once with the most dominant ASV (DUSA) excluded due to its overwhelming influence on the
195  data, which might mask the patterns of the rest of the bacterial community, and once with DUSA
196  included. The R script used for filtering, statistical analysis, and data visualization of the 16S amplicon
197  sequences can be found in Supplementary File S2.
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198 The almost-full length 16S rRNA gene sequence of DUSA generated by SMRT amplicon
199  sequencing was compared to that of well-known endosymbiotic bacterial taxa retrieved from Silva and
200  GenBank, along with two archaeal sequences as an outgroup. The sequences were aligned using
201 ClustalW implemented in MEGA [71,72], and a consensus tree was calculated using IQ-TREE [73] with
202 5000 bootstrap iterations. The consensus tree was visualized using FigTree [74]. For clarity of
203  visualization, branches were collapsed by phylum for distant taxa and by genus for Tenericutes; for an
204 un-collapsed tree of the Tenericutes and all accession numbers see Supplementary Table S2 and
205  Supplementary Figure S1.

206  3.Results

207 [lumina amplicon sequencing of the V4 region of the 16S SSU rRNA (small subunit ribosomal
208  ribonucleic acid) gene of six adult spiders (eight tissue types each) and two spiderling samples from
209  two locations resulted in 5.2 million reads with an arithmetic mean of 90,377 reads per sample (min
210 =711 max=981,405). 86.8% of total raw reads passed quality filtering and chimera removal. Chimeras
211  counted for less than 0.5% of all reads. After removing samples with low sequencing depth (less than
212 4,000 reads), and then sequences with high abundance in negative controls (more than 50 reads in
213  control samples), and then again samples with low sequencing depth (less than 400 reads), 1.77
214 million reads remained, with an average of 41,182 reads per sample (min = 477 max = 629,137). In
215  total, post-filtering, 574 amplicon sequence variants (ASVs) were detected in the tissues and spider
216  populations.

217 3.1. A bacterial symbiont in Argiope bruennichi

218 The microbiome of A. bruennichi was dominated by a single ASV, making up 84.56% of all
219  filtered reads (Figure 1). This ASV had less than 85% identity to any sequence in the NCBI (National
220  Center for Biotechnology Information) database. Long read sequencing of two samples generated a
221  near full length 16S rRNA gene amplicon sequence corresponding to the dominant ASV which
222  allowed us to further investigate the identity of this dominant symbiont (Table 1). All low-similarity
223  matches originated from environmental samples and uncultured microbes. There was no match to a
224  named taxon, making it difficult to classify the sequence taxonomically. An exploratory gene tree
225  (Figure 2) placed the sequence within the Tenericutes, which are gram negative, cell-associated
226  bacteria, which have lost their cell walls [75]. We refer to this dominant unknown symbiont as DUSA
227  (Dominant Unknown Symbiont of Argiope bruennichi) henceforth.

228 After filtering, 573 additional ASVs were detected in the samples, the majority of which were
229  assigned to seven bacterial classes: Actinobacteria (75 ASVs), Alphaproteobacteria (96 ASVs), Bacilli (60
230  ASVs), Bacteroidea (49 ASVs), Clostridia (84 ASVs), Gammaproteobacteria (115 ASVs), and Mollicutes (3
231 ASVs). Details of the ASVs in these most abundant classes can be found in Supplementary Table S1.
232 ASVs with the highest abundance (more than 500 reads post-filtering), other than DUSA, were
233  identified as the genera Mesoplasma (Mollicutes: Entomoplasmatales: Entomoplasmataceae), Acinetobacter
234 (Gammaproteobacteria: Pseudomonadales; Moraxellaceae), Micrococcus (Actinobacteria: Micrococcales:
235  Micrococcaceae), Frigoribacterium (Actinobacteria: Micrococcales: Microbacteriaceae), and Alcaligenes
236 (Gammaproteobacteria: Betaproteobacteriales: Burkholderiaceae). Archaea were not detected.

237
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239 Figure 1: Microbiome composition of spider tissue types and spiderlings from Germany and Estonia. Tissue
240 types are represented in a schematic drawing of Argiope bruennichi internal anatomy. 165 rRNA gene sequences
241  were pooled by class; classes with low abundance were combined into an “Other” category. The Dominant
242 Unknown Symbiont (DUSA) is separated from other unknown sequences, which were of low abundance.
243 Asterisks (*) denote tissue types which had sample size lower than 2 (Estonia Ovaries: n=1, Estonia Hemolymph:
244 n=1) due to problems with extraction.

245
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246 Table 1: Best matches of the Dominant Unknown Symbiont of Argiope bruennichi (DUSA) short and long
247 amplicons in different databases. Results from BLASTN searches against GenBank and from SILVA ACT
248 analysis, as of October 2019.
Query GenBank NR Best GenBank Bacteria & Silva SSU 138 NR: Phylum;
sequence match: Taxonomy Archaea Best match: Class; Order; Family: sequence
(Accession number): Taxonomy (Accession identity %
sequence identity % number): sequence
identity %
ASV V4 Uncultured prokaryote = Holdemania filiformis Firmicutes; Erysipelotrichia;
region clone Otu01661 strain J1-31B-1 Erysipelotrichales;
(248bp) (MG853790.1): 84.3% (NR_029335.1): 79.92% Erysipelotrichaceae : 78.7%
Near full- Spiroplasma eriocheiris . .
M 1 . T tes; Mollicutes;
g 165 gy CCTCCM20M st
gene i CRAB (NR_125517.1): . -
(1492bp) (CP013128.1): 82.3% 80.79% Spiroplasmataceae: 79.2%
249
Phylogenetic Placement of DUSA
Bacteria: Tenericutes: Candidatus Phytoplasma
Dominant Unk Symbiont of Argiope bruennichi
Bacteria: Tenericutes: Spiroplasma cluster 1
Bacteria: Tenericutes: Spiropiasma cluster 2
__97 | Bacteria: Tenericutes: Spiroplasma cluster 3
Bacteria: Tenericutes: Entomoplasma
Bacleria: Tenericules: Ureaplasma
= ¢< Bacteria: Firmicules
100 ‘ Bacteria: Bacteroidetes
Bacterfa: Chlamydiae
T Bacteria: Profeobacteria: Alphaprotechacteria
Bacferfa: Protao) ia: Gammaprols
00 I Archaea: Euryarchaeota
l_ Archaea: Euryarchaeota
250 "
251 Figure 2: Gene tree placing DUSA relative to endosymbiotic taxa, based on alignment of 165 rRNA gene
252 sequences obtained from Silva and GenBank. Branch labels represent bootstrap support; branches were
253 collapsed by phylum for taxa distantly related to DUSA and by genus for taxa within the Tenericutes. For all
254 accession numbers see Supplementary Table S2, and for an un-collapsed tree of the Tenericutes, see
255 Supplementary Figure S1.
256 3.2 Tissue localization and population differentiation
257 With DUSA excluded from the analysis, tissue types did not differ significantly in microbiome
258  community composition (PERMANOVA, R2 = 0.180, p = 0.366). However, microbiome community
259  composition varied significantly between populations (PERMANOVA, R2 = 0.045, p < 0.01) and
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260  individuals (PERMANOVA, R2=0.059, p <0.001). The interaction between individual and population
261  was also significant (PERMANOVA, R2 = 0.044, p < 0.01) (Figure 3).

262 With DUSA included in the analysis, the results were similar but p- and R?-values were slightly
263  different: tissue type: PERMANOVA R? = 0.231, p = 0.131; population: PERMANOVA R2 = 0.039, p <
264  0.1; individual: PERMANOVA R2? = 0.040, p < 0.1; interaction of individual and population:
265 PERMANOVA R?=0.057, p <0.05.

nMDS visualization of Bray-Curtis distance
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267 Figure 3: nMDS ordination based on 165 rRNA gene sequence variant relative abundance (excluding DUSA)
268 reveals the slight, but significant, differentiation of the Argiope bruennichi bacterial community composition
269 according to population (Estonia or Germany in the legend) and individual (denoted by number in the legend),
270 as well as the interaction between the two. Single points represent sequenced tissue samples, and the shape of
271 the point represents the tissue type; shared color denotes tissue samples taken from a single individual spider.
272 Shades of yellow represent spiders collected from Estonia, while shades of blue represent spiders collected from
273 Germany. Ellipses represent the 99% confidence interval, based on standard error.

274  3.3. Vertical transmission

275 Juvenile spider (spiderling) samples were dominated by DUSA (Figure 1). Other bacterial classes
276  made up less than 6% of the filtered reads in spiderlings from Germany, and less than 0.001% of reads
277  in spiderlings from Estonia.

278 4. Discussion

279  4.1. An unknown symbiont dominates the Argiope bruennichi microbiome
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280 We have demonstrated that A. bruennichi spiders contain a multi-species microbiome, answering
281  the first of our research questions. However, the A. bruennichi microbiome is dominated by an
282  unknown symbiont sequence (DUSA). DUSA likely represents a novel bacterial clade, due to the low
283  sequence identity to known taxa [76]. A robust evolutionary placement is not possible without further
284  genomic analysis; however, our gene tree suggests that it is likely a close relative or member of the
285  Tenericutes. Due to this placement within the Tenericutes, DUSA may have similar attributes to other
286  arthropod-associated symbionts in the phylum. The Mollicutes, a class within Tenericutes, contain a
287  number of species known to be associated with arthropods. These mollicute species are generally
288  endosymbiotic, and are vertically transmitted [77,78]. Their effects on hosts are diverse: some are
289  pathogenic [79], while others increase host fitness under parasitism [80], or form nutritional
290  mutualisms via nutrient recycling [78]. In such close symbioses, the endosymbiont genomes usually
291  evolve much faster than free-living species [81-85]. This tendency toward rapid evolution of
292  endosymbionts may explain the low 16S rRNA sequence similarity to other bacteria in the database
293  and would suggest that DUSA forms a close relationship, such as endosymbiosis, with the spider
294 host.

295 Of the three mollicute ASVs detected in our samples, two were assigned to the genus
296  Spiroplasma, but were detected in very low abundance. The third was assigned to the genus
297  Mesoplasma, and was the second-most abundant ASV in our study. It was only found to be abundant
298 in German spiders, and primarily in midgut and fecal pellet samples from a single individual. If this
299  Mesoplasma ASV would be a facultative nutritional symbiont of the spider (i.e. [77,78] for Mesoplasma
300 ininsects), we would expect it to be present in most investigated members of a species or population.
301  Alternatively, it could be a symbiont of the spider prey, which is more likely since Mesoplasma and
302 its relatives are very common symbionts of insects [42,77,78,86,87]. Considering that Mesoplasma was
303  found only in the midgut and fecal pellets, it can be assumed that it is prey-derived and its presence
304  within the host is transient.

305  4.2. The Argiope bruennichi microbiome varies between individuals and populations, but not between tissues

306 Our analysis of the microbial community composition of tissue types, individuals, and
307  populations shows that there is high variability between all samples. Because the A. bruennichi
308  microbiome is dominated by DUSA, the other ASVs had lower sequencing coverage, which could
309  contribute to the variability. Despite this, we found significant differences between individuals and
310  between populations, thereby answering our second research question. It could be that the
311  microbiome (excluding DUSA) of these spiders is transient and taken up from the environment, and
312  especially from their diet, as is the case in some insects [11]. For instance, across many butterfly
313  species, the larval microbiome largely reflects the microbiome of the food plant’s leaves [12]. To test
314  the hypothesis of a partly prey derived microbiome for A. bruennichi, future studies could sequence
315  both the microbial and prey communities, by combining the methods used in our study with gut
316  content sequencing, as described in [88]. Different prey communities between populations and
317  individuals (at the time of sampling) could lead to the differences observed in our study.

318 We found no significant differences in the microbial community between tissue types, with or
319  without DUSA included in the analysis, addressing our third research question. Although
320  endosymbiont infections are often localized within reproductive tissues, which could lead to tissue
321  differentiation [31,32], infection of somatic tissues may facilitate horizontal transfer of a symbiont:
322  through feces, as in the Triatomid bug vectors of Chagas’ disease [89], or to parasites, as in the case
323 of a Nasonia wasp and its fly host [90]. There are also cases of symbionts that live primarily in insect
324  hemolymph and are thus found in all tissues [91,92]. Tissue differentiation could also arise in the
325  presence of nutritional symbionts in the gut of a host, but no study has explicitly tested this in spiders.
326  Additionally, there are no reported cases of nutritional symbionts in spiders. If there are differences
327  between organ systems in A. bruennichi, they are too subtle be detected with the current sample size.

328  4.3. Evidence of vertical transmission of DUSA?

329 We analyzed the microbiome of spiderlings to address our fourth research question, whether
330  the microbiome of A. bruennichi is vertically transmitted. Our data suggest that at least DUSA is
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331  indeed vertically transmitted. Spiderling samples contained a high abundance of DUSA reads, and
332  few other ASVs. Spiderlings could recruit bacteria from the environment or from their mothers via
333  different avenues. Environmental colonization could possibly occur before or after the closing of the
334  silken egg sac, in the moments between oviposition and encasement in silk, or by passing through
335  the tough outer case (refer to the Methods section for a description of A. bruennichi egg sac
336  components). We consider these environmental avenues to be unlikely, given the extremely short
337  amount of time that the eggs are exposed to the environment before encasement (M.M. Sheffer, G.
338  Uhl, personal observation), and because A. bruennichi egg sac silk is extremely dense and egg sac silk
339  of other spider species has been shown to inhibit growth of bacteria [93]. Vertical transmission of
340  bacteria from mother to offspring could occur while the eggs are in the ovaries, or by deposition
341  during the egg-laying process. We consider vertical transmission to be the most likely avenue for
342  bacterial presence within spiderling tissue, supported by the low diversity of bacteria found in
343  spiderling samples, and the presence of DUSA in female ovaries. Whether transmission occurs before
344  or after egg laying could be tested using fluorescence in situ hybridization to visualize DUSA in or
345  on eggs. Taken together, the high divergence of DUSA from other bacterial taxa and its evident
346  vertical mode of transmission suggest the potential for a tight coevolutionary relationship between
347  DUSA and A. bruennichi.

348  4.4. Implications for future studies of Argiope bruennichi and beyond

349 The presence of an endosymbiont might explain the incongruence between mitochondrial and
350  nuclear DNA markers found by a study investigating the phylogeographic history of A. bruennichi
351  [47]. The authors offered three possible explanations for this result: male-biased dispersal, selection
352  on mitochondria, or reproductive parasites (e.g. Wolbachia spp.). The authors considered the last
353  explanation the least likely, as no previous study had identified Wolbachia spp. or other reproductive
354 parasites in A. bruennichi [42,47,56]. However, these studies targeted a handful of known
355  reproductive parasites using specific primers and PCR (polymerase chain reaction) assays [42,56],
356  which excluded the possibility of discovering any novel symbionts. Given our discovery of DUSA,
357  the hypothesis that infection with reproductive parasites caused incongruence between molecular
358 markers in A. bruennichi should be revisited. To that end, future efforts should focus on characterizing
359  DUSA, for example by in-depth genomic analysis to determine its phylogenetic placement, as well
360  asby exploring its distribution across the host species’ range and its localization and functions inside
361  the host. Further investigation could illuminate whether the relationship between A. bruennichi and
362  DUSA is pathogenic, commensal, or mutualistic. Importantly, the presence and/or absence of DUSA
363  in other spider or insect species should be explored, perhaps thereby providing clues into the origin
364 of this novel symbiosis.

365 Our study adds to a growing body of literature suggesting that bacterial symbionts, especially
366  endosymbionts, play an important role in spider biology. Two other recent studies that surveyed the
367  microbiomes of several spider species found putative endosymbiotic taxa to be both prevalent (70%
368  of surveyed individuals [94]) and dominant within certain hosts (>90% of bacterial reads [41,95]). We
369  demonstrate in addition that spiders are a source of novel symbiont taxa, which make them
370  interesting targets for discoveries of new types of symbiotic interactions that may impact host biology
371  inyet unimaginable ways. Several unique aspects of spider biology make them particularly exciting
372  for studying symbiosis. For example, their predatory lifestyle offers ample opportunities for
373  symbiont taxa from their prey to enter the spider host, in some cases giving rise to new stable
374 associations. In addition, spiders employ external digestion by secreting digestive fluids into their
375  prey, which sets them apart from the internal digestive systems of most insect hosts that have until
376 now been the subject of (endo)symbiosis research. For now, the implications of these peculiarities for
377  symbiotic interactions between spiders and bacteria is unchartered territory, opening up promising
378  new research avenues on symbiosis.

379 5. Conclusions


https://doi.org/10.1101/822437
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/822437; this version posted November 26, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

380 Our study is the first to look into the localization of microbial symbionts in spider tissues. The
381  principle discovery is that of a novel symbiont, which was found to dominate the microbiome of all
382  individuals and tissue types investigated. Its characteristics, such as low sequence identity to other
383  bacteria and possible vertical transmission, suggest that it may belong to a novel clade of bacterial
384  endosymbionts, with a tight association to its host. Although inference is limited by sample size, our
385  findings highlight the need for more holistic microbiome studies across many organisms, which will
386  increase our knowledge of the diversity and evolution of symbiotic relationships.
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