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Abstract: Many ecological and evolutionary processes in animals depend upon microbial 19 
symbioses. In spiders, the role of the microbiome in these processes remains mostly unknown. We 20 
compared the microbiome between populations, individuals, and tissue types of a range-expanding 21 
spider, using 16S rRNA gene sequencing. Our study is one of the first to go beyond targeting known 22 
endosymbionts in spiders, and characterizes the total microbiome across different body 23 
compartments (leg, prosoma, hemolymph, book lungs, ovaries, silk glands, midgut, and fecal 24 
pellets). Overall, the microbiome differs significantly between populations and individuals, but not 25 
between tissue types. The microbiome of the wasp spider Argiope bruennichi features a novel 26 
dominant bacterial symbiont, which is abundant in every tissue type in spiders from geographically 27 
distinct populations, and present in offspring. The novel symbiont is affiliated with the Tenericutes, 28 
but has low sequence identity (<85%) to all previously named taxa, suggesting that the novel 29 
symbiont represents a new bacterial clade. Its presence in offspring implies that it is vertically 30 
transmitted. Our results shed light on the processes which shape microbiome differentiation in this 31 
species, and raise several questions about the implications of the novel dominant bacterial symbiont 32 
on the biology and evolution of its host. 33 

Keywords: Microbiome; Symbiosis; Endosymbiont; Transmission; Range expansion; Araneae; 34 

Spiders; Argiope bruennichi; Invertebrate host; Tenericutes 35 
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1. Introduction 37 

All multicellular life evolved from and with microbes. Consequently, the interactions between 38 
animals and microbes are not rare occurrences but rather fundamentally important aspects of animal 39 
biology, from development to systems ecology [1]. The holobiont, defined as a host and all of its 40 
symbionts, is considered as a unit of biological organization, upon which selection can act [2–5]. The 41 
nature of the relationships between host and symbionts has been of intense interest in recent years; 42 
while some form obligatory, coevolutionary symbioses [6–10], others are environmentally derived, 43 
and/or unstable and temporary [11,12]. The collective of microbial symbionts and their environment 44 
within a certain host or tissue can also be referred to as a microbiome [13]. For example, the intensive 45 
research on the human microbiome of the last decade has shed light on many roles of the microbiome 46 
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of different tissues in health and disease [14]. In addition, correlations have been found between the 47 
microbiome and a number of traits, across different levels of biological organization and states (from 48 
population-level [15] down to the level of tissue-specific microbiomes [14,16], as well as across 49 
different age and disease states [17]). 50 

A striking feature of the microbiomes of some hosts is the presence of microbial endosymbionts. 51 
Endosymbionts, which typically reside within the cells of their hosts, can play a major role in 52 
speciation in many organisms, through mechanisms such as assortative mating and reproductive 53 
isolation [18]. Wolbachia endosymbiont infections are highly prevalent in invertebrates [19,20], where 54 
they can induce parthenogenesis, cause cytoplasmic incompatibility between uninfected and infected 55 
individuals, as well as affect host fecundity, fertility, and longevity [21,22], and can affect the sex ratio 56 
of host species via feminization of males and male killing [23–25]. Non-Wolbachia (endo)symbiotic 57 
bacteria can also manipulate host physiology and behavior in diverse ways, from increasing heat 58 
tolerance in aphids [26] to determining egg-laying site preference in Drosophila melanogaster [27]. If 59 
microbial symbionts are vertically transmitted, these modifications of behavior and/or physiology 60 
can result in changing selection pressures, and eventually coevolution of the symbionts and their 61 
hosts [4,6,28–30]. 62 

The function of a symbiont within its host is often predictive of its location within tissues. 63 
Wolbachia infections are often specifically located in reproductive tissues, but can also be distributed 64 
widely throughout somatic cells, depending on the host species [31,32]. Beyond Wolbachia, many 65 
studies on bacterial symbionts have focused on blood- and sap-feeding insects; these specialist 66 
feeders require symbionts within their digestive tissues to assist in utilization of their nutrient-poor 67 
diets [6,33–40]. Therefore, endosymbiont, and thus microbiome composition, can vary widely 68 
between tissue types and organ systems. 69 

Among arthropods, insects have been the primary focus of microbiome studies. In comparison, 70 
investigations into the microbiome of spiders are scarce but suggest that spiders host diverse 71 
assemblages of bacteria, some of which alter their physiology and behavior. In a survey of eight 72 
spider species from 6 different families, in which DNA (deoxyribonucleic acid) was extracted from 73 
the whole body, putative endosymbionts dominated the microbiome of all species [41]. The 74 
endosymbionts discovered (assumed by the authors to be endosymbionts of the spiders, not 75 
endosymbionts of their insect prey) were largely reproductive parasites, including Wolbachia, 76 
Cardinium, Rickettsia, Spiroplasma, and Rickettsiella, which corresponds to the findings on other spider 77 
species across families [42–44]. The non-endosymbiont bacterial taxa were typical insect gut 78 
microbes, which could be nutritional symbionts of the spiders or represent the microbiome of prey 79 
the spiders consumed. As to the effect of endosymbionts on spider hosts, relatively little is known. 80 
Wolbachia has been shown to bias the sex ratio in the dwarf spider Oedothorax gibbosus [45], and 81 
Rickettsia infection changed the dispersal probability of another dwarf spider species, Erigone atra 82 
[46]. The abundance of Rhabdochlamydia was found to vary with population and with sex (higher 83 
infection rate in females than males) in Oedothorax gibbosus [44]. The studies mentioned above have 84 
focused on endosymbionts alone, within a single family of spiders. It has not yet been investigated 85 
whether there are intraspecific differences in the total (endosymbiont and non-endosymbiont) 86 
microbial community between different spider populations, the composition of the microbiome in 87 
certain tissue types or whether there is vertical transmission of the microbiome in spiders. 88 

Argiope bruennichi (Scopoli, 1772), an orb-weaving spider with a Palearctic distribution [47], is an 89 
ideal candidate for a pioneering microbiome study, given the wealth of knowledge that exists on the 90 
biology of the species and the genus Argiope [48]. It has been the subject of many studies due to a 91 
number of interesting traits, such as sexual dimorphism and sexual cannibalism (i.e. [49–51]), and its 92 
recent and rapid range expansion within Europe [47,52–55]. Since spider dispersal behavior can also 93 
be affected by endosymbiont infection [46], and dispersal behavior influences the rate of range 94 
expansion, the microbiome might play a role in the rapid range expansion of A. bruennichi. Although 95 
some studies on A. bruennichi have used targeted approaches to look for specific reproductive 96 
parasites, finding none [43,56], a holistic approach to investigating the microbiome of A. bruennichi 97 
has not been carried out to date. In the present study, we investigate the total bacterial community of 98 
A. bruennichi from geographically distant but genetically similar populations in Germany and 99 
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Estonia, asking the following questions: (1) does A. bruennichi possess a multi-species microbiome? 100 
(2) If so, are there population-level differences in the microbiome? (3) Are specific microbes localized 101 
in certain tissues? And (4) is the microbiome vertically transmitted?  102 

2. Materials and Methods  103 

2.1. Sample collection 104 

For this study, mature female Argiope bruennichi were collected for two purposes: first, for 105 
dissection into different tissue types, and second, to produce offspring. The females used for dissection 106 
came from two sites: one in Germany (Greifswald: 54.11 N, 13.48 E; n = 3), and one site in Estonia (Pärnu: 107 
58.30 N, 24.60 E; n = 3). The females which produced offspring came from two sites (Plech, Germany: 108 
49.65 N, 11.47 E; n = 1; Pärnu, Estonia: 58.30 N, 24.60 E; n = 1) and were maintained in the lab until they 109 
produced an egg sac. It is important to note that A. bruennichi females lay their eggs into a simple egg 110 
sac, which is then wrapped in a silk casing consisting of two layers: one “fluffy” silk layer, and one 111 
tough outer layer [57]. Eggs hatch within the first weeks, but the juvenile spiders, “spiderlings,” remain 112 
in the egg sac for several months over winter [57]. The spiderlings which hatched from the egg sacs 113 
produced in the lab, were preserved in the silk casing in the freezer until the day of DNA extraction for 114 
microbiome analysis. 115 

2.2. Sample preparation 116 

Three adult specimens each from Greifswald and Pärnu were dissected within two days of 117 
collection, and the spiders were not fed between the point of collection and dissection. Before dissection, 118 
the spiders were anaesthetized using CO2, after which the prosoma and opisthosoma were separated 119 
using sterilized scissors. A 10 μl sample of hemolymph was immediately taken from the aorta at the 120 
point of separation with a sterile pipette. Next, the legs were removed and a single leg was taken as a 121 
sample and stored separately from the whole prosoma. Sterilized forceps were used for dissection of 122 
the opisthosoma. The cuticle was removed dorsally, and a sample of the midgut was taken from the 123 
dorsal side and stored. The cuticle was then cut ventrally, between the epigynum (genital opening) and 124 
the spinnerets. The two cuticular flaps were pulled to loosen the internal organs, and the digestive 125 
tubules were teased apart to reveal the rest of the organs. The major ampullate silk glands, which 126 
produce structural and dragline silk and are the largest and easiest to remove of all the silk glands [58–127 
61], were removed and stored. Then, a sample of the ovaries was removed and stored. Removal of the 128 
ovaries revealed the cloaca, and existing fecal pellets and the surrounding fluid in the cloaca were 129 
sampled using a sterile pipette. Finally, the book lungs were removed and stored. All tissue samples 130 
were stored in sterile tubes and frozen until the time of DNA extraction.  131 

 For the spiderling samples, one egg sac each from Plech and Pärnu was opened with sterilized 132 
forceps, and 5 spiderlings from each egg sac were placed directly into phenol-chloroform for DNA 133 
extraction. 134 

2.3. DNA extraction and Illumina amplicon sequencing 135 

DNA was extracted from tissue samples using a phenol-chloroform extraction protocol, as 136 
described in [62]. Mechanical lysis was performed via bead beating in a FastPrep 24 5G (MP 137 
Biomedicals) with FastPrep Lysing Matrix E. A fragment of the 16S rRNA gene was amplified from the 138 
extracted DNA with a primer pair recommended by the Earth Microbiome Project, targeting the V4 139 
region of the 16S rRNA gene [515f: 50-GTGYCAGCMGCCGCGGTAA-30, 806r: 50-140 
GGACTACNVGGGTWTCTAAT-30 [63]] coupled to custom adaptor-barcode constructs. PCR 141 
amplification and Illumina MiSeq library preparation and sequencing (V3 chemistry) was carried out 142 
by LGC Genomics in Berlin. Sequences have been submitted to the NCBI short read archive, and can 143 
be found under the BioProject number PRJNA577547, accession numbers SAMN13028533- 144 
SAMN13028590.  145 

In addition, PacBio long-read SMRT (single molecule real-time) sequencing of almost full-length 146 
16S rRNA gene amplicons was performed for two of the samples (a prosoma extract from a German 147 
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spider and a spiderling extract from Estonian spiderlings). For this, ~1500 bp amplicons were amplified 148 
using the primers Ba27f (AGAGTTTGATCMTGGCTCAG), and Ba1492r 149 
(CGGYTACCTTGTTACGACTT) tailed with PacBio universal sequencing adapters (universal tags) in 150 
a first round of PCR with 25 cycles. After PCR product purification, a second round of PCR was done 151 
with distinct barcoded universal F/R primers as provided by the manufacturer (PacBio, Menlo Park, 152 
CA). SMRTbell Library preparation and SMRT sequencing on a PacBio Sequel System was also done 153 
according to manufacturer instructions. Approximately 20 barcoded amplicons were multiplexed per 154 
SMRT cell. Initial processing of SMRT reads and exporting of CCS (circular consensus sequencing) data 155 
was done with the SMRT Link analysis software as recommended by the manufacturer. Raw reads are 156 
available on the NCBI short read archive, and can be found under the BioProject number PRJNA577547, 157 
accession number SAMN13046638.  158 

The resulting sequences were clustered and consensus sequences derived using IsoCon [64]. The 159 
DUSA sequence was identified by comparing the short V4 amplicon with the SMRT IsoCon consensus 160 
sequences and choosing the sequence with the highest match. 161 

2.4. Sequence processing 162 

Sequences clipped from adaptor and primer sequence remains were received from the LGC 163 
Genomics sequencing facility, and then processed using the DADA2 (Divisive Amplicon Denoising 164 
Algorithm 2) package in R [Version 1.6.0 [65]] [66]. The R script used for sequence processing can be 165 
found in Supplementary File S1. Forward and reverse Illumina reads were simultaneously filtered and 166 
truncated to 200 bp. Error rates were estimated using the maximum possible error estimate from the 167 
data as a first guess. Sample sequences were de-multiplexed and unique sequences were inferred using 168 
the core denoising algorithm in the DADA2 R package. Following sample inference, paired forward 169 
and reverse reads were merged. Chimeric sequences accounted for less than 0.5% of the total sequence 170 
reads and were removed using the removeBimeraDenovo function. Taxonomic classification was 171 
performed using the DADA2 package’s implementation of the RDP’s naïve Bayesian classifier [67], 172 
with a minimum bootstrap confidence of 50, drawing from the Silva database [68]. The resulting unique 173 
amplicon sequence variants (ASVs) with taxonomic classification were used to build a table containing 174 
relative abundances of ASVs across all samples.  175 

2.5. Data analysis and visualization 176 

To control for possible contamination during the process of extraction and sequencing, given low 177 
DNA yield from some tissue types, a control extraction using sterile water was performed alongside 178 
each extraction. These negative controls were included in the sequencing run. A series of cutoffs were 179 
employed as quality control on the relative abundance table. First, samples with low sequencing depth 180 
(less than 4000 reads) were removed. Then, the data was strictly filtered to remove any ASVs found in 181 
extraction blanks (with an abundance of 50 reads or more). After the removal of those possible 182 
contaminants, another sequencing depth cutoff was enforced, removing samples with less than 400 183 
reads. 184 

ASVs were aggregated by bacterial class to obtain an overview of the microbiome. Low-abundance 185 
classes (less than 1000 reads total, meaning less than 0.1% of filtered reads) were aggregated into a 186 
category called “Other.” The relative abundance of each class was then visualized in the form of pie 187 
charts using the ggplot2 package [69] in R.  188 

To test for and visualize dissimilarity in ASV composition between tissue types, sampling sites 189 
and individuals, non-metric multidimensional scaling was performed on Hellinger-transformed 190 
sequence variant counts using Bray-Curtis distance, implemented in the vegan package (vegan function 191 
‘metaMDS’) [version 2.5-1 [70]] in R. Explanatory power of tissue type, sampling site, and individual 192 
was calculated using a PERMANOVA test (vegan function ‘adonis’). This analysis was done on filtered 193 
reads, once with the most dominant ASV (DUSA) excluded due to its overwhelming influence on the 194 
data, which might mask the patterns of the rest of the bacterial community, and once with DUSA 195 
included. The R script used for filtering, statistical analysis, and data visualization of the 16S amplicon 196 
sequences can be found in Supplementary File S2. 197 
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The almost-full length 16S rRNA gene sequence of DUSA generated by SMRT amplicon 198 
sequencing was compared to that of well-known endosymbiotic bacterial taxa retrieved from Silva and 199 
GenBank, along with two archaeal sequences as an outgroup. The sequences were aligned using 200 
ClustalW implemented in MEGA [71,72], and a consensus tree was calculated using IQ-TREE [73] with 201 
5000 bootstrap iterations. The consensus tree was visualized using FigTree [74]. For clarity of 202 
visualization, branches were collapsed by phylum for distant taxa and by genus for Tenericutes; for an 203 
un-collapsed tree of the Tenericutes and all accession numbers see Supplementary Table S2 and 204 
Supplementary Figure S1.   205 

3. Results 206 

Illumina amplicon sequencing of the V4 region of the 16S SSU rRNA (small subunit ribosomal 207 
ribonucleic acid) gene of six adult spiders (eight tissue types each) and two spiderling samples from 208 
two locations resulted in 5.2 million reads with an arithmetic mean of 90,377 reads per sample (min 209 
= 711 max = 981,405).  86.8% of total raw reads passed quality filtering and chimera removal. Chimeras 210 
counted for less than 0.5% of all reads. After removing samples with low sequencing depth (less than 211 
4,000 reads), and then sequences with high abundance in negative controls (more than 50 reads in 212 
control samples), and then again samples with low sequencing depth (less than 400 reads), 1.77 213 
million reads remained, with an average of 41,182 reads per sample (min = 477 max = 629,137). In 214 
total, post-filtering, 574 amplicon sequence variants (ASVs) were detected in the tissues and spider 215 
populations.  216 

3.1. A bacterial symbiont in Argiope bruennichi 217 

The microbiome of A. bruennichi was dominated by a single ASV, making up 84.56% of all 218 
filtered reads (Figure 1). This ASV had less than 85% identity to any sequence in the NCBI (National 219 
Center for Biotechnology Information) database. Long read sequencing of two samples generated a 220 
near full length 16S rRNA gene amplicon sequence corresponding to the dominant ASV which 221 
allowed us to further investigate the identity of this dominant symbiont (Table 1). All low-similarity 222 
matches originated from environmental samples and uncultured microbes. There was no match to a 223 
named taxon, making it difficult to classify the sequence taxonomically. An exploratory gene tree 224 
(Figure 2) placed the sequence within the Tenericutes, which are gram negative, cell-associated 225 
bacteria, which have lost their cell walls [75]. We refer to this dominant unknown symbiont as DUSA 226 
(Dominant Unknown Symbiont of Argiope bruennichi) henceforth.  227 

After filtering, 573 additional ASVs were detected in the samples, the majority of which were 228 
assigned to seven bacterial classes: Actinobacteria (75 ASVs), Alphaproteobacteria (96 ASVs), Bacilli (60 229 
ASVs), Bacteroidea (49 ASVs), Clostridia (84 ASVs), Gammaproteobacteria (115 ASVs), and Mollicutes (3 230 
ASVs). Details of the ASVs in these most abundant classes can be found in Supplementary Table S1. 231 
ASVs with the highest abundance (more than 500 reads post-filtering), other than DUSA, were 232 
identified as the genera Mesoplasma (Mollicutes: Entomoplasmatales: Entomoplasmataceae), Acinetobacter 233 
(Gammaproteobacteria: Pseudomonadales; Moraxellaceae), Micrococcus (Actinobacteria: Micrococcales: 234 
Micrococcaceae), Frigoribacterium (Actinobacteria: Micrococcales: Microbacteriaceae), and Alcaligenes 235 
(Gammaproteobacteria: Betaproteobacteriales: Burkholderiaceae). Archaea were not detected.  236 

 237 
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 238 

Figure 1: Microbiome composition of spider tissue types and spiderlings from Germany and Estonia. Tissue 239 
types are represented in a schematic drawing of Argiope bruennichi internal anatomy. 16S rRNA gene sequences 240 
were pooled by class; classes with low abundance were combined into an “Other” category. The Dominant 241 
Unknown Symbiont (DUSA) is separated from other unknown sequences, which were of low abundance. 242 
Asterisks (*) denote tissue types which had sample size lower than 2 (Estonia Ovaries: n = 1, Estonia Hemolymph: 243 
n=1) due to problems with extraction. 244 

  245 
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Table 1: Best matches of the Dominant Unknown Symbiont of Argiope bruennichi (DUSA) short and long 246 

amplicons in different databases. Results from BLASTN searches against GenBank and from SILVA ACT 247 

analysis, as of October 2019. 248 

Query 

sequence 

GenBank NR Best 

match: Taxonomy 

(Accession number): 

sequence identity % 

GenBank Bacteria & 

Archaea Best match: 

Taxonomy (Accession 

number): sequence 

identity % 

Silva SSU 138 NR: Phylum; 

Class; Order; Family: sequence 

identity % 

ASV V4 

region 

(248bp) 

Uncultured prokaryote 

clone Otu01661 

(MG853790.1): 84.3% 

Holdemania filiformis 

strain J1-31B-1 

(NR_029335.1): 79.92% 

Firmicutes;Erysipelotrichia; 

Erysipelotrichales; 

Erysipelotrichaceae : 78.7% 

Near full-

length 16S 

gene 

(1492bp) 

Mycoplasma sp. (ex 

Biomphalaria glabrata) 

(CP013128.1): 82.3% 

Spiroplasma eriocheiris 

CCTCC M 207170 strain 

CRAB (NR_125517.1): 

80.79% 

Tenericutes; Mollicutes; 

Entomoplasmatales; 

Spiroplasmataceae: 79.2% 

 249 

 250 

Figure 2: Gene tree placing DUSA relative to endosymbiotic taxa, based on alignment of 16S rRNA gene 251 
sequences obtained from Silva and GenBank. Branch labels represent bootstrap support; branches were 252 
collapsed by phylum for taxa distantly related to DUSA and by genus for taxa within the Tenericutes. For all 253 
accession numbers see Supplementary Table S2, and for an un-collapsed tree of the Tenericutes, see 254 
Supplementary Figure S1. 255 

3.2. Tissue localization and population differentiation 256 

With DUSA excluded from the analysis, tissue types did not differ significantly in microbiome 257 
community composition (PERMANOVA, R2 = 0.180, p = 0.366). However, microbiome community 258 
composition varied significantly between populations (PERMANOVA, R2 = 0.045, p < 0.01) and 259 
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individuals (PERMANOVA, R2 = 0.059, p < 0.001). The interaction between individual and population 260 
was also significant (PERMANOVA, R2 = 0.044, p < 0.01) (Figure 3). 261 

With DUSA included in the analysis, the results were similar but p- and R2-values were slightly 262 
different: tissue type: PERMANOVA R2 = 0.231, p = 0.131; population: PERMANOVA R2 = 0.039, p < 263 
0.1; individual: PERMANOVA R2 = 0.040, p < 0.1; interaction of individual and population: 264 
PERMANOVA R2 = 0.057, p < 0.05.  265 

 266 
Figure 3: nMDS ordination based on 16S rRNA gene sequence variant relative abundance (excluding DUSA) 267 
reveals the slight, but significant, differentiation of the Argiope bruennichi bacterial community composition 268 
according to population (Estonia or Germany in the legend) and individual (denoted by number in the legend), 269 
as well as the interaction between the two. Single points represent sequenced tissue samples, and the shape of 270 
the point represents the tissue type; shared color denotes tissue samples taken from a single individual spider. 271 
Shades of yellow represent spiders collected from Estonia, while shades of blue represent spiders collected from 272 
Germany. Ellipses represent the 99% confidence interval, based on standard error. 273 

3.3. Vertical transmission 274 

Juvenile spider (spiderling) samples were dominated by DUSA (Figure 1). Other bacterial classes 275 
made up less than 6% of the filtered reads in spiderlings from Germany, and less than 0.001% of reads 276 
in spiderlings from Estonia. 277 

4. Discussion 278 

4.1. An unknown symbiont dominates the Argiope bruennichi microbiome 279 
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We have demonstrated that A. bruennichi spiders contain a multi-species microbiome, answering 280 
the first of our research questions. However, the A. bruennichi microbiome is dominated by an 281 
unknown symbiont sequence (DUSA). DUSA likely represents a novel bacterial clade, due to the low 282 
sequence identity to known taxa [76]. A robust evolutionary placement is not possible without further 283 
genomic analysis; however, our gene tree suggests that it is likely a close relative or member of the 284 
Tenericutes. Due to this placement within the Tenericutes, DUSA may have similar attributes to other 285 
arthropod-associated symbionts in the phylum. The Mollicutes, a class within Tenericutes, contain a 286 
number of species known to be associated with arthropods. These mollicute species are generally 287 
endosymbiotic, and are vertically transmitted [77,78]. Their effects on hosts are diverse: some are 288 
pathogenic [79], while others increase host fitness under parasitism [80], or form nutritional 289 
mutualisms via nutrient recycling [78]. In such close symbioses, the endosymbiont genomes usually 290 
evolve much faster than free-living species [81–85]. This tendency toward rapid evolution of 291 
endosymbionts may explain the low 16S rRNA sequence similarity to other bacteria in the database 292 
and would suggest that DUSA forms a close relationship, such as endosymbiosis, with the spider 293 
host.  294 

Of the three mollicute ASVs detected in our samples, two were assigned to the genus 295 
Spiroplasma, but were detected in very low abundance. The third was assigned to the genus 296 
Mesoplasma, and was the second-most abundant ASV in our study. It was only found to be abundant 297 
in German spiders, and primarily in midgut and fecal pellet samples from a single individual. If this 298 
Mesoplasma ASV would be a facultative nutritional symbiont of the spider (i.e. [77,78] for Mesoplasma 299 
in insects), we would expect it to be present in most investigated members of a species or population. 300 
Alternatively, it could be a symbiont of the spider prey, which is more likely since Mesoplasma and 301 
its relatives are very common symbionts of insects [42,77,78,86,87]. Considering that Mesoplasma was 302 
found only in the midgut and fecal pellets, it can be assumed that it is prey-derived and its presence 303 
within the host is transient. 304 

4.2. The Argiope bruennichi microbiome varies between individuals and populations, but not between tissues 305 

Our analysis of the microbial community composition of tissue types, individuals, and 306 
populations shows that there is high variability between all samples. Because the A. bruennichi 307 
microbiome is dominated by DUSA, the other ASVs had lower sequencing coverage, which could 308 
contribute to the variability. Despite this, we found significant differences between individuals and 309 
between populations, thereby answering our second research question. It could be that the 310 
microbiome (excluding DUSA) of these spiders is transient and taken up from the environment, and 311 
especially from their diet, as is the case in some insects [11]. For instance, across many butterfly 312 
species, the larval microbiome largely reflects the microbiome of the food plant’s leaves [12]. To test 313 
the hypothesis of a partly prey derived microbiome for A. bruennichi, future studies could sequence 314 
both the microbial and prey communities, by combining the methods used in our study with gut 315 
content sequencing, as described in [88]. Different prey communities between populations and 316 
individuals (at the time of sampling) could lead to the differences observed in our study. 317 

We found no significant differences in the microbial community between tissue types, with or 318 
without DUSA included in the analysis, addressing our third research question. Although 319 
endosymbiont infections are often localized within reproductive tissues, which could lead to tissue 320 
differentiation [31,32], infection of somatic tissues may facilitate horizontal transfer of a symbiont: 321 
through feces, as in the Triatomid bug vectors of Chagas’ disease [89], or to parasites, as in the case 322 
of a Nasonia wasp and its fly host [90]. There are also cases of symbionts that live primarily in insect 323 
hemolymph and are thus found in all tissues [91,92]. Tissue differentiation could also arise in the 324 
presence of nutritional symbionts in the gut of a host, but no study has explicitly tested this in spiders. 325 
Additionally, there are no reported cases of nutritional symbionts in spiders. If there are differences 326 
between organ systems in A. bruennichi, they are too subtle be detected with the current sample size. 327 

4.3. Evidence of vertical transmission of DUSA? 328 

We analyzed the microbiome of spiderlings to address our fourth research question, whether 329 
the microbiome of A. bruennichi is vertically transmitted. Our data suggest that at least DUSA is 330 
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indeed vertically transmitted. Spiderling samples contained a high abundance of DUSA reads, and 331 
few other ASVs. Spiderlings could recruit bacteria from the environment or from their mothers via 332 
different avenues. Environmental colonization could possibly occur before or after the closing of the 333 
silken egg sac, in the moments between oviposition and encasement in silk, or by passing through 334 
the tough outer case (refer to the Methods section for a description of A. bruennichi egg sac 335 
components). We consider these environmental avenues to be unlikely, given the extremely short 336 
amount of time that the eggs are exposed to the environment before encasement (M.M. Sheffer, G. 337 
Uhl, personal observation), and because A. bruennichi egg sac silk is extremely dense and egg sac silk 338 
of other spider species has been shown to inhibit growth of bacteria [93]. Vertical transmission of 339 
bacteria from mother to offspring could occur while the eggs are in the ovaries, or by deposition 340 
during the egg-laying process. We consider vertical transmission to be the most likely avenue for 341 
bacterial presence within spiderling tissue, supported by the low diversity of bacteria found in 342 
spiderling samples, and the presence of DUSA in female ovaries. Whether transmission occurs before 343 
or after egg laying could be tested using fluorescence in situ hybridization to visualize DUSA in or 344 
on eggs. Taken together, the high divergence of DUSA from other bacterial taxa and its evident 345 
vertical mode of transmission suggest the potential for a tight coevolutionary relationship between 346 
DUSA and A. bruennichi. 347 

4.4. Implications for future studies of Argiope bruennichi and beyond 348 

The presence of an endosymbiont might explain the incongruence between mitochondrial and 349 
nuclear DNA markers found by a study investigating the phylogeographic history of A. bruennichi 350 
[47]. The authors offered three possible explanations for this result: male-biased dispersal, selection 351 
on mitochondria, or reproductive parasites (e.g. Wolbachia spp.). The authors considered the last 352 
explanation the least likely, as no previous study had identified Wolbachia spp. or other reproductive 353 
parasites in A. bruennichi [42,47,56]. However, these studies targeted a handful of known 354 
reproductive parasites using specific primers and PCR (polymerase chain reaction) assays [42,56], 355 
which excluded the possibility of discovering any novel symbionts. Given our discovery of DUSA, 356 
the hypothesis that infection with reproductive parasites caused incongruence between molecular 357 
markers in A. bruennichi should be revisited. To that end, future efforts should focus on characterizing 358 
DUSA, for example by in-depth genomic analysis to determine its phylogenetic placement, as well 359 
as by exploring its distribution across the host species’ range and its localization and functions inside 360 
the host. Further investigation could illuminate whether the relationship between A. bruennichi and 361 
DUSA is pathogenic, commensal, or mutualistic. Importantly, the presence and/or absence of DUSA 362 
in other spider or insect species should be explored, perhaps thereby providing clues into the origin 363 
of this novel symbiosis. 364 

Our study adds to a growing body of literature suggesting that bacterial symbionts, especially 365 
endosymbionts, play an important role in spider biology. Two other recent studies that surveyed the 366 
microbiomes of several spider species found putative endosymbiotic taxa to be both prevalent (70% 367 
of surveyed individuals [94]) and dominant within certain hosts (>90% of bacterial reads [41,95]). We 368 
demonstrate in addition that spiders are a source of novel symbiont taxa, which make them 369 
interesting targets for discoveries of new types of symbiotic interactions that may impact host biology 370 
in yet unimaginable ways. Several unique aspects of spider biology make them particularly exciting 371 
for studying symbiosis. For example, their predatory lifestyle offers ample opportunities for 372 
symbiont taxa from their prey to enter the spider host, in some cases giving rise to new stable 373 
associations. In addition, spiders employ external digestion by secreting digestive fluids into their 374 
prey, which sets them apart from the internal digestive systems of most insect hosts that have until 375 
now been the subject of (endo)symbiosis research. For now, the implications of these peculiarities for 376 
symbiotic interactions between spiders and bacteria is unchartered territory, opening up promising 377 
new research avenues on symbiosis. 378 

5. Conclusions 379 
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Our study is the first to look into the localization of microbial symbionts in spider tissues. The 380 
principle discovery is that of a novel symbiont, which was found to dominate the microbiome of all 381 
individuals and tissue types investigated. Its characteristics, such as low sequence identity to other 382 
bacteria and possible vertical transmission, suggest that it may belong to a novel clade of bacterial 383 
endosymbionts, with a tight association to its host. Although inference is limited by sample size, our 384 
findings highlight the need for more holistic microbiome studies across many organisms, which will 385 
increase our knowledge of the diversity and evolution of symbiotic relationships. 386 
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