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Abstract

Cortical volumetric analysisis widely used to study the anatomic basis of neurological deficitsin
patients with traumatic brain injury (TBI). However, patients with TBI-related lesions are often
excluded from analysis, because cortical lesions may compromise the accuracy of reconstructed
surfaces upon which volumetric measurements are based. Here, we propose a novel FreeSurfer-
based lesion correction method and illustrate itsimpact on cortical volume measures in patients
with chronic moderate-to-severe TBI. We performed MRI in 87 patients at mean+/-SD 10.9+/-
9.1 years post-injury using a T1-weighted multi-echo MPRAGE sequence at 1 mm resolution.
Following surface reconstruction, we parcellated the cerebral cortex into seven functional
networks using FreeSurfer’s standard pipeline. Next, we manually labeled vertices on the cortical
surface where lesions caused inaccuracies and removed them from network-based cortical
volumetric measures. After performing this lesion correction procedure, we measured the surface
area of lesion overlap with each network and the percent volume of each network affected by
lesions. We identified 120 lesions that caused inaccuracies in the cortical surface in 46 patients.
In these 46 patients, the most commonly lesioned networks were the limbic and default mode
networks (95.7% each), followed by the executive control (78.3%), and salience (71.7%)
networks. The limbic network had the largest average surface area of lesion overlap (4.4+/-3.7%)
and the largest percent volume affected by lesions (12.7+/-9.7%). The lesion correction method
has the potential to improve the accuracy of cortical volumetric measurements and permit
inclusion of patients with lesioned brainsin quantitative analyses, providing new opportunitiesto

elucidate network-based mechanisms of neurological deficitsin patients with TBI.
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Introduction

Cortical volumetric analysis with FreeSurfer™ 2 is widely used to study the neuroanatomic
basis of cognitive, behavioral, and motor deficitsin patients with traumatic brain injury (TBI).*®
However, cortical lesions caused by TBI pose major challenges to FreeSurfer’s standard
automated magnetic resonance imaging (MRI) processing pipeline. Lesions often compromise
the accuracy of the cortical surfaces that are reconstructed and used by FreeSurfer to generate
volumetric measurements.* ® ” As aresult, TBI imaging studies have historically excluded
patients with large focal lesions.> ® Development of atool that accounts for lesions in cortical
volumetric analysis is needed to prevent the systematic exclusion of patients with large cortical
lesions and to ensure that TBI imaging studies are generalizable across the full spectrum of
cortical pathology. Moreover, integration of such atool into the FreeSurfer software platform
would create new opportunities to study network-based mechanisms of disease™ *° using
canonical atlases.™

Here, we propose a novel FreeSurfer-based lesion correction method and illustrate its
impact on cortical volumetric measures in patients with chronic TBI. The lesion correction
method differs in several ways from the standard FreeSurfer approach to editing reconstructed
cortical surfaces. Standard cortical segmentation using FreeSurfer relies on the assumption that
the brain has normal anatomy and that any surface inaccuracies are related to the FreeSurfer
processing pipeline. However, in patients with cortical lesions caused by TBI, FreeSurfer's
reconstruction of the cortical surface can be grossly inaccurate due to focal encephalomalacia
and distorted anatomy. This methodological limitation of the standard FreeSurfer editing

approach is the main motivation for the lesion correction method proposed here. The new
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method makes no assumptions about lesioned cortical surface anatomy, and it minimizes bias by
requiring the manual rater ssmply to identify inaccuracies without changing the surfaces. In this
study, we use the lesion correction method to assess the topology of lesion overlap with
functional brain networks and to characterize inter-network differences in lesion burden. We
also distribute the lesion correction method to the academic community to facilitate future

studies of network-based mechanisms of neurological deficitsin patients with TBI.

Methods

Patients

Between May, 2014 and January, 2019, we prospectively enrolled 141 patients with a history of
TBI at two academic medical centers as part of the Late Effects of TBI (LETBI) study.** Patients
were included if they had sustained a moderate-to-severe TBI at |east one year prior to
enrollment. We characterized TBI severity based on the United States Department of Defense
classification system,*® as detailed in the Supplementary Material. Of the 141 enrolled

participants, 98 completed an MRI scan (see CONSORT diagram in Supplementary Fig. S1).

MRI data acquisition

Patients at Mount Sinai were scanned using a Siemens Skyra (Siemens Medical Solutions,
Erlangen, Germany) 3 Tesla (T) MRI scanner with a 32-channel head coil for signal reception,
and patients at University of Washington were scanned using a Philips Achieva 3T MRI scanner
with a 32-channel head coil.* Patients underwent standardized MRI using a T1-weighted multi-

echo MPRAGE (MEMPRAGE)" sequence with 1mm isotropic voxels. All LETBI sequences
5
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115  were designed to maximize consistency with the National Institutes of Health Common Data
116  Elementsfor TBI Neuroimaging.®

117

118 MR processing

119  Wefirst processed all MEMPRAGE data using the standard FreeSurfer pipeline (version 6.0) for
120  cortical surface reconstruction and cortical volume estimation. We used the “big ventricles’

121 function to optimize automatic segmentation for a patient population with enlarged ventricles. In
122 accordance with FreeSurfer recommended best practices

123 (https://surfer.nmr.mgh.harvard.edu/fswiki/FsTutorial/TroubleshootingDataV 6.0), we visually

124  ingpected output files, made manual edits to the white matter segmentation, and added control
125  points. To ensure that the lesion correction method would be tested in an unbiased manner, we
126  did not manually edit regions bordering cortical lesions. We then resampled the Yeo 7-Network
127  resting-state functional connectivity atlas™ onto each patient’s reconstructed cortical surface
128  using FreeSurfer’s surface-based registration tool

129  (https://surfer.nmr.mgh.harvard.edu/fswiki/mri surf2surf).*®

130

131  Quality Assessments

132 We performed visual quality assessment for all 98 scans based upon delineation of grey-white
133  matter boundaries and the accuracy of the FreeSurfer-generated surfaces. We defined scan

134  quality using an integer scale: 0 = scan excluded because FreeSurfer failed to complete the

135  processing pipeling; 1 = scan excluded because surface inaccuracies would have required major

136  manual edits; 2 = scan included because only minor manual edits required; 3 = scan included
6
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without requiring manual edits. For any scan that received a score of 1 by the primary rater
(B.R.D.), asecond rater (B.L.E.) reviewed the scan to achieve consensus. Our primary method
for determining scan inclusion was qualitative visual assessment because inaccurate FreeSurfer-
based segmentations can confound quantitative measurements. Nevertheless, we performed
guantitative assessments of signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) and
tested for correlations with visual assessments of scan quality, as detailed in the Supplementary

Materials.

Lesion identification and classification

We next assessed each MRI scan for focal lesions causing encephalomalacia of the cerebral
cortex (Fig. 1, top row).™ All such lesions were considered for subsequent lesion correction
analysis and classified according to the cortical network(s) with which they overlapped. To
ensure robust and reproducible methods for lesion identification, we performed an inter-rater
reliability analysis among three investigators who identified lesions in arandomly selected group
of 20 MRI scans and calculated lesion volumes using the standard ABC/2 method.*” Two
investigators were board-certified neurologists with fellowship training in Neurocritical Care

(B.L.E. and S.B.S.) and one was aresearch technician (B.R.D.).

| mplementation of the lesion correction procedure
A detailed description of the methodological principles of the lesion correction procedureis
provided in the Supplementary Material. To implement the procedure, we visually identified

sites where FreeSurfer’s modeled surface mesh erroneously passed through subcortical tissue
7
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159  (Fig. 1, top row). Next, we manually labeled these surface-pointsto produce lesion-induced

160  inaccuracy labels (Fig. 1, middle row). Finaly, we applied these labels as exclusion masksto

161  remove affected surface regions and calculate corrected cortical volumes (Fig. 1, bottom row).
162 After performing this lesion correction procedure, we used standard FreeSurfer tools to
163  measure the average surface area overlap of lesion-induced inaccuracies with each network of
164  theYeo 7-Network atlas and the average percent volume change of each network caused by the
165 lesion correction procedure (Fig. 2). There was no need to correct cortical volume measurements
166 by total intracranial volumein this study because all network-based measures (i.e. % change in
167  volume) were calculated at the single-subject level.

168 An overview of the lesion correction procedure is shown in Video 1, and additional

169  methodological details are provided in the Supplementary Material. We also release all code used

170  inthelesion correction procedure on https:.//github.com/ComaRecoverylL ab/Lesion_Correction.

171

172  Satigtical analysis

173 We used the intraclass correlation coefficient to test interrater reliability for lesion volume

174  measurements. We report descriptive statistics for the average percent cortical surface area and
175 theaverage percent cortical volume affected by lesions for each network.

176

177  Results

178  Patient demographicsand clinical characteristics

179  Dueto the presence of severe anatomic distortions, two of the 98 patients’ scans did not complete

180  FreeSurfer’s standard processing pipeline (visual assessment scores=0). Of the remaining 96
8
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scans, nine received a visual assessment score of 1 by the two raters and were excluded, yielding
afinal sample size of 87 patients. The 87-patient cohort was comprised of 60.9% men, with a
mean +/- SD age of 56.7 +/- 12.0 years. Injury severity was classified as mild (n=3), moderate
(n=42), and severe (n=32); in 10 participants duration of LOC was unknown and records were
not available. The duration from most recent TBI to MRI was 10.9 +/- 9.1 years. Additional
clinical and demographic data, aswell as SNR and CNR data, are provided in Supplementary

Tables 1 and 2.

Interrater Reliability

The intraclass coefficient between the two physician raters across 20 datasets was 0.99 [95%
Confidence Interval 0.98, 0.99]. The intraclass coefficients between the physician raters and the
technician rater for these same datasets were 0.95 [0.91, 0.97] and 0.96 [0.93, 0.98], respectively.
Because sufficient inter-rater reliability was established in thistest set (n=20; intraclass
correlation coefficient > 0.9), all subsequent lesion identification was performed by the

technician rater, B.R.D.

Lesion characteristics and anatomic distribution

Forty-six of the 87 patients had at |east one lesion that affected the accuracy of the FreeSurfer-
modeled cortical surface. There were 120 total lesions, with a median of 2 lesions per patient
(range 1 to 10). On average, lesions overlapped with 4.6 +/- 1.6 of the 7 networks. A group-level
lesion topology map demonstrated an orbitofrontal and anterior temporal predominance of the

lesions (Fig. 2, Videos 2 and 3).
9
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Network-based cortical surface area measures

The limbic and default mode networks were lesioned in the largest proportion of patients (44/46
scans, 95.7% incidence for both networks), followed by the executive control (78.3%), and
salience (71.7%) networks. This large limbic lesion burden was observed despite the limbic
network having the smallest average surface area of the seven functional networks across all
patients (Supplementary Fig. S2). The largest mean percentage of lesion-network surface area
overlap occurred within the limbic network (4.4 +/- 3.7% of total network surface areg;

Supplementary Table 3).

Network-based cortical volume measures

When considering networks impacted by the lesion correction method in the 46 patients with
cortical lesions, we observed a median decrease in network-based cortical volume of 3.4%
(range <1.0% to 47.0%). The limbic network had the largest lesion-induced mean +/- SD

percentage decrease in cortical volume (12.7 +/- 9.7%; Supplementary Table 4).

Discussion

We introduce a new FreeSurfer-based method for cortical volumetric analysisin patients with
lesions caused by TBI. We apply this method in a cohort of 87 patients with chronic moderate-to-
severe TBI and show that lesion-induced cortical inaccuracies are not equally distributed within
the brain’s functional networks. Rather, inaccuracies preferentially affected the limbic network,

an observation consistent with prior pathology*® *° and MRI? studies showing that traumatic
10
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contusions commonly affect the orbitofrontal and temporal nodes of the limbic network.
Implementation of the proposed lesion correction method will prevent the systematic exclusion
of patientswith cortical lesions from MRI volumetric studies and improve the generalizability of
MRI studies across the full spectrum of cortical pathology.

These findings demonstrate the potential utility of the new lesion correction method for
studying network-based mechanisms of cognitive, behavioral, and motor deficitsin patients with
TBI. For example, lesion-induced cortical volume changes within the limbic, default mode, and
frontoparietal networks (the three most frequently lesioned networks) can be tested for
correlations with symptoms that are putatively attributable to their dysfunction, such as
behavioral dysregulation, altered self-awareness, and executive dysfunction, respectively. From a
phenomenological standpoint, the application of the new lesion correction tool to large clinical-
radiol ogical-pathological databases being acquired by the LETBI,*? Transforming Research and
Clinical Knowledgein TBI (TRACK-TBI),% Collaborative European NeuroTrauma
Effectiveness Research in Traumatic Brain Injury (CENTER-TBI),? and other studies, has
potential to elucidate pathological signatures of TBI phenotypic classification, with implications
for clinical trial selection?® and prognostication.™

Several limitations should be considered when interpreting the results of this study. The
lesion correction method relies upon an assumption whose validity is difficult to test: we assume
that at sites of tissue distortion and encephalomalacia, the cortex is non-functional and therefore
should be masked, or removed, from subsequent cortical volume measurements. This assumption
is made with the recognition that definitive determination of the functional status of lesioned

cortex is not possible solely with T1-weighted MEMPRAGE data. Nevertheless, the assumption
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247  that lesioned cortex is non-functional in the population studied here is strongly supported by
248  visual ingpection of the data, which reveals complete or near complete absence of cerebral
249  cortex, asshown in Figure 1. In future multimodal experiments, the lesion correction method can
250 berefined by analyzing the functional properties of lesioned cortex (e.g. with functional MRI or
251  EEG). In future work, it may also be possible to integrate the lesion correction method with
252  software programs that offer automated lesion detection, such as the ABC module extension of
253 3D Slicer.?* Moreover, the method can be used to measure point-wise and region-wise estimates
254  of cortical thicknessin unlesioned cortex by masking inaccurate regions of cortex.

255

256  Conclusions

257  We demonstrate the impact of a new FreeSurfer-based lesion correction tool on cortical

258  volumetric measuresin 7 atlas-based functional networks, and we distribute this lesion

259  correction tool to the academic community. We show that cortical lesions are not evenly

260  distributed across networks, but rather preferentially affect the frontotemporal nodes of the

261 limbic network. This lesion correction method can facilitate inclusive, unbiased investigation

262 into the anatomic basis of neurologica deficitsin patients with TBI and other neuropsychiatric

263  diseases associated with focal lesions.

12
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373  FigurelLegends

374  Figurel. Overview of Lesion Correction Method

375 Row 1: Axial, coronal, and sagittal T1-weighted images of arepresentative patient with traumatic
376 braininjury. FreeSurfer reconstructions of the cortical surface (blue line) and grey-white surface
377  (yellow line) are used to visually identify regions where a cortical lesion (red arrows) caused

378  surfaceinaccuracies. Row 2: We manually outlined lesions by labeling inaccurate vertices on the
379  cortical surface (Ieft image). This surface inaccuracy (labeled in red) is shown in the coronal

380 planein the middle image and the right, zoomed image. The red label passes through lesioned,
381  encephalomalacic tissue. Row 3: To correct for the inaccuracy in the surface label at the site of
382 thelesion, we remove the volume of cortex within the lesion label and perform cortical

383  volumetric measures that exclude the lesioned tissue.

384

385 Figure2. Lesion Topology and Networ k-based L esion Effects on Cortical Volume

386 Intheleft panel, we show a heat map of cortical lesions for all 46 patients who had at |east one
387 lesion. The anatomic regions most commonly affected by cortical lesions were the frontal and
388  temporal lobes, particularly the frontal poles, temporal poles and orbitofrontal regions. In the top
389  right panel, we show the 7 functional networks from the Yeo atlas™ that were used to investigate
390 network-specific lesion effects. In the bottom right panel, we show aviolin plot demonstrating
391  thechangesin average cortical volume for each network after applying the lesion correction

392  method. Lesion effects on average cortical volume varied between networks, with the limbic

393  network showing the largest magnitude of decline in average cortical volume after application of

394 thelesion correction method.
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