

1 Broadband Signal Rather than Frequency-Specific Rhythms Underlies

2 Prediction Error in the Primate Auditory Cortex

5 Andrés Canales-Johnson^{1,2,3,*,#}, Ana Filipa Teixeira Borges^{4,#}, Misako Komatsu⁵, Naotaka Fujii⁵,
6 Johannes Jacobus Fahrenfort^{6,7}, Kai Joshua Miller⁸, Valdas Noreika^{1,N,*}

8
9 ¹ Department of Psychology, University of Cambridge, Cambridge, United Kingdom.

10
11 ² Center for Social and Cognitive Neuroscience (CSCN), Universidad Adolfo Ibáñez, Santiago, Chile

12
13 ³ The Neuropsychology and Cognitive Neurosciences Research Center (CINPSI Neurocog),
14 Universidad Católica del Maule, Talca, Chile

15
16 ⁴ Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research,
17 VU University Amsterdam, Amsterdam, The Netherlands

18
19 ⁵ Laboratory for Adaptive Intelligence, RIKEN Brain Science Institute, Wako, Saitama, Japan

20
21 ⁶ Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands

22
23 ⁷ Department of Experimental and Applied Psychology, Vrije Universiteit, Amsterdam, The
24 Netherlands

25
26 ⁸ Department of Neurosurgery, Mayo Clinic, Rochester, United States of America.

27
28 ^N Lead Contact

29
30 [#] These authors contributed equally to this work

31
32 * Correspondence: afc37@cam.ac.uk (A.C.-J.), vn261@cam.ac.uk (V.N.)

45 **Summary**

46

47 Detection of statistical irregularities, measured as a prediction error response, is fundamental to the
48 perceptual monitoring of the environment. We studied whether prediction error response is generated
49 by neural oscillations or asynchronous neuronal firing. Electrocorticography (ECoG) was carried out
50 in three monkeys, who passively listened to the auditory roving oddball stimuli. Local field potentials
51 (LFP) recorded over the auditory cortex underwent spectral principal component analysis, which
52 decoupled broadband and rhythmic components of LFP signal. We found that broadband component
53 generated prediction error response, whereas none of the rhythmic components encoded statistical
54 irregularities of sounds. The broadband component displayed more stochastic, asymmetrical
55 multifractal properties than the rhythmic components, which revealed more self-similar dynamics. We
56 thus conclude that the prediction error response is encoded by asynchronous neuronal populations,
57 defined by irregular dynamical states which, unlike oscillatory rhythms, appear to enable the neural
58 representation of auditory prediction error response.

59

60

61 **Keywords**

62 Auditory cortex; Broadband component; Local field potentials; Mismatch negativity; Multiscale
63 multifractal analysis; Prediction error; Rhythmic components; Scaling behaviour; Scale-free
64 dynamics; Spectral principal component analysis

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82 **Introduction**

83

84 Detection of novel sensory information enables adaptive interaction with the surrounding environment
85 (Clark, 2013; Whitmire and Stanley, 2016). In the predictive coding framework of brain functioning,
86 this interaction is characterized by a reciprocal loop between sensory predictions and prediction error
87 signals (Bastos et al., 2012; Friston and Kiebel, 2009). Neural mechanisms of prediction error are
88 typically studied by presenting a series of “standard” stimuli with intermittently occurring deviant
89 stimuli, also called “oddballs”, and by contrasting brain responses between these stimuli categories
90 (Chennu et al., 2013; Lumaca et al., 2019; Parras et al., 2017). This way, event-related potentials
91 (ERP) and a range of neural oscillations have been identified as neural markers of prediction error.
92 The most widely studied deviance ERP is the auditory mismatch negativity (MMN) – a negative
93 deflection of electrical event-related potential recorded on the scalp or using intracranial electrodes
94 (Halgren et al., 1995; Näätänen et al., 1978; 2007). MMN originates from the primary auditory cortex
95 (Alain et al., 1998; Alho, 1995; Edwards et al., 2005), and it peaks around 150-200 ms in humans,
96 whilst the peak latencies below 100 ms are typically reported in monkeys (Javitt et al., 1992; Komatsu
97 et al., 2015). In addition to MMN, prediction error responses are observed in neural oscillations in a
98 variety of frequency ranges including theta (3-8 Hz) (Choi et al., 2013; Fuentemilla et al., 2008; Hsiao
99 et al., 2009; Ko et al., 2012; MacLean et al., 2014), alpha (8-12 Hz) (Ko et al., 2012; MacLean et al.,
100 2014), beta (14-30 Hz) (Haenschel et al., 2000; MacLean et al., 2014) and gamma (>30 Hz) (Edwards
101 et al., 2005; Eliades et al., 2014; Haenschel et al., 2000; MacLean et al., 2014; Marshall et al., 1996)
102 ranges.

103

104 Several interpretations could be formulated aiming to explain the abundance of prediction error
105 responses in the frequency dimension. First of all, there could be multiple independent neural
106 mechanisms sensitive to stimulus deviance. This suggestion, however, does not explain why there
107 would be so many distinct mechanisms with an identical functional role. Alternatively, frequency-
108 specific detectors of prediction error might be only partially independent, forming hierarchical cross-
109 frequency interactions. For instance, rhythms of different frequency bands could drive each other, e.g.
110 delta phase could modulate theta amplitude and theta phase could modulate gamma amplitude in the
111 auditory cortex (Lakatos et al., 2005). Yet another possibility – which we pursue in the present study
112 – is that a broad frequency range of deviance responses, including theta, alpha, beta and gamma
113 bands, points to a *broadband* prediction error response, which is not restricted to a particular
114 frequency band, but instead is driven by an arrhythmic or asynchronous neural signal. In fact, a large
115 number of studies reported deviance effects to run across several frequency bands (Chao et al., 2018;
116 Haenschel et al., 2000; Hsiao et al., 2009; Ko et al., 2012; MacLean et al., 2014), arguably alluding
117 to arrhythmic processing of unexpected stimuli.

118

119 The electrophysiological signal recorded by scalp EEG or local field potentials (LFP) is a summed
120 activity of both postsynaptic and action potentials. Post-synaptic potentials contribute to the rhythmic
121 oscillations of different frequency bands (Buzsaki et al., 2012), reflecting neural synchrony at specific
122 timescales. Contrary to this, empirical data analysis and modelling suggest that the average input
123 firing rate produces asynchronous, broadband changes across a wide frequency range (Miller et al.,
124 2009a, 2009b; Manning et al., 2009). Such rhythmic and broadband components of LFP signal can
125 be decomposed using spectral principal component analysis (spectral PCA) (Miller et al., 2009a,
126 2009b, 2017), this way separating synchronous and asynchronous neural activity. Broadband
127 component of the LFP power spectrum is commonly characterized by a power-law function (Freeman
128 and Zhai, 2009; He, 2014; Hermes et al., 2019), which reflects the lack of any specific temporal beat
129 (e.g. 10 Hz) in the signal. Contrary to this, rhythmic components produce frequency-specific spectral
130 peaks that deviate from the power law. In fact, the electrocorticography power is characterized by at
131 least three different power-law regions of which the transitions vary across individuals and recordings
132 in human (Chaudhuri et al., 2017; He et al., 2010) and non-human primates. The functional relevance
133 of this heterogeneous scaling is discernible as, for instance, levels of arousal across a gradual
134 progression from awake to grades of anaesthesia (Gifani et al., 2007) or to deep sleep (Ma et al.,
135 2006; Weiss et al., 2009) can manifest selectively within power-law changes at different timescales.
136 Such complex dynamics across different LFP timescales can be characterized by multiscale
137 multifractal analysis (MMA; Gieraltowski et al., 2012), developed to analyse signal fluctuations on a
138 wide range of timescales like those observed in LFP signals.

139
140 In the present study, we aimed to assess whether such broadband neural dynamics rather than
141 frequency-specific rhythms underlie prediction error in the auditory cortex in the primate brain. We
142 hypothesized that the broadband component of LFP has a multiscale scaling dynamics, distinct from
143 that of the rhythmic LFP components.

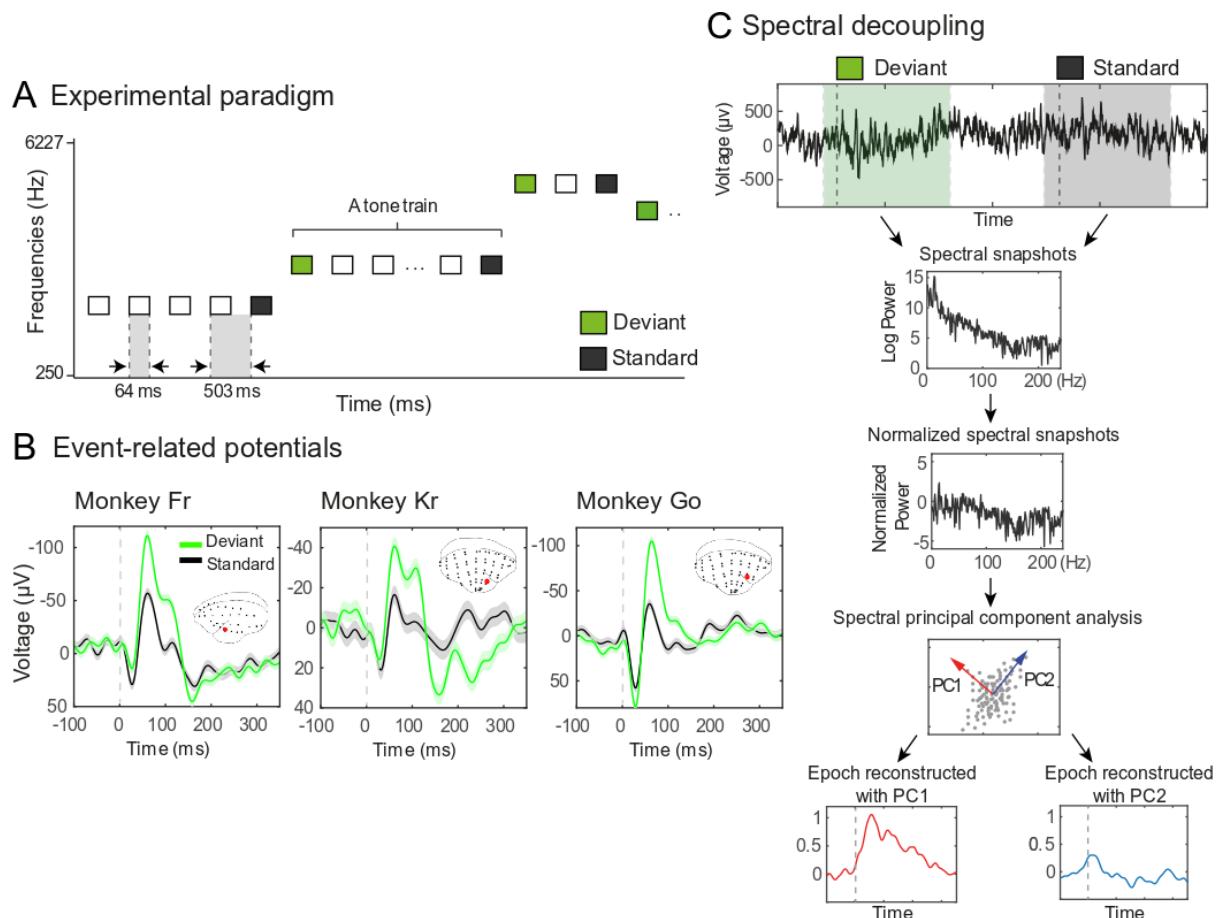
144

145 **Results**

146

147 Using epidurally implanted electrodes, we recorded electrocorticograms (ECoGs) from three awake
148 common marmosets, who passively listened to the stream of varying tones (see Fig 1A and Suppl.
149 Fig 1A-D). By contrasting neural responses to standard and deviant tones, which were physically
150 matched across expectancy conditions, we first identified MMN deviance response from the auditory
151 cortex (see Fig 1B). Afterwards, we decomposed the raw LFP signal into broadband and rhythmic
152 spectral components (following Miller et al., 2009a, 2009b, 2017; see Fig 1C). Spectral decomposition
153 allowed us to assess whether MMN is driven by the broadband rather than oscillatory components of
154 the LFP signal. In the following, we report a single-trial analysis that was carried out separately for

155 each monkey (referred to as Fr, Go and Kr), using electrodes located in the auditory cortex (see Fig
156 1B and Suppl. Fig 1E-H).
157



158

159 **Figure 1 | Experimental design, classical ERP and spectral decoupling analysis. (A)** Using a
160 roving oddball paradigm, 20 different single-tones were presented in the trains of 3, 5 or 11 identical
161 stimuli. Any two subsequent trains consisted of different tones. This way, while the adjacent standard
162 (depicted in black) and deviant (depicted in green) tones deviated in the frequency due to the transition
163 between the trains, the two expectancy conditions were physically matched, as the first and the last
164 tones of the same train were treated as deviant and standard tones in the analysis of the adjacent
165 stimuli pairs. **(B)** Time courses of ERP waveforms of the standard (black) and deviant (green) stimuli
166 conditions. 0 ms time point indicates the onset of a given tone. Error shades represent the standard
167 error of the mean (SEM), calculated across all trials at each time point. Data in this and other subplots
168 were recorded by the electrode marked in red in the ECoG montage insets. Each subplot represents
169 a different monkey. **(C)** Spectral decoupling. Temporally adjacent raw LFP segments of the standard
170 tone (i.e. the last stimulus of the previous train) and the deviant tone (i.e. the first stimulus of the
171 subsequent train) were extracted for the spectral PCA. First, Fast Fourier transform was used to
172 calculate log power (1-250 Hz) of the raw LFP signal, which was afterwards normalized across all
173 trials within a given expectancy condition. Normalized spectral snapshots were input into spectral
174 PCA, which separated broadband and rhythmic components. Principal spectral components were
175 reconstructed back to the time-series for the subsequent contrast between the expected and
176 unexpected stimuli conditions.

177

178

179

180 ***Auditory ERP in the raw LFP signal***

181

182 First, we confirmed that perturbation of auditory cortex with a deviant tone compared to a preceding
183 standard tone increased the amplitude of auditory evoked potentials in the MMN time window (Fr:
184 $t(1,719) = -7.37$, $p < 0.001$, Cohen's $d = 0.275$; Go: $t(1,1439) = -4.60$, $p < 0.001$, Cohen's $d = 0.121$;
185 Kr: $t(1,1439) = -9.27$, $p < 0.001$, Cohen's $d = 0.244$; see Fig 1B). Latency of ERP peaks (58-66 ms)
186 was consistent with the previous MMN studies of non-human primates (Javitt et al., 1992; Komatsu
187 et al., 2015).

188

189 ***Auditory evoked responses reconstructed with broadband and rhythmic components***

190

191 Aiming to differentiate broadband component of LFP signal from rhythmic sources, we carried out
192 spectral principal component analysis that decouples the power spectrum density (PSD) into
193 components reflecting different underlying neural dynamics (see Fig 1C and Methods). Using this
194 technique, a broadband component can be identified by a uniform power increase, i.e. a component
195 without clear peaks in the PSD, across a wide range of frequencies (see Fig 2A, H, O, red lines). In
196 addition to broadband spectral changes, the technique also reveals a diverse set of narrow-band
197 oscillatory components, revealed by peaks in the PSD (see Fig 2A, H, O, blue and black lines).

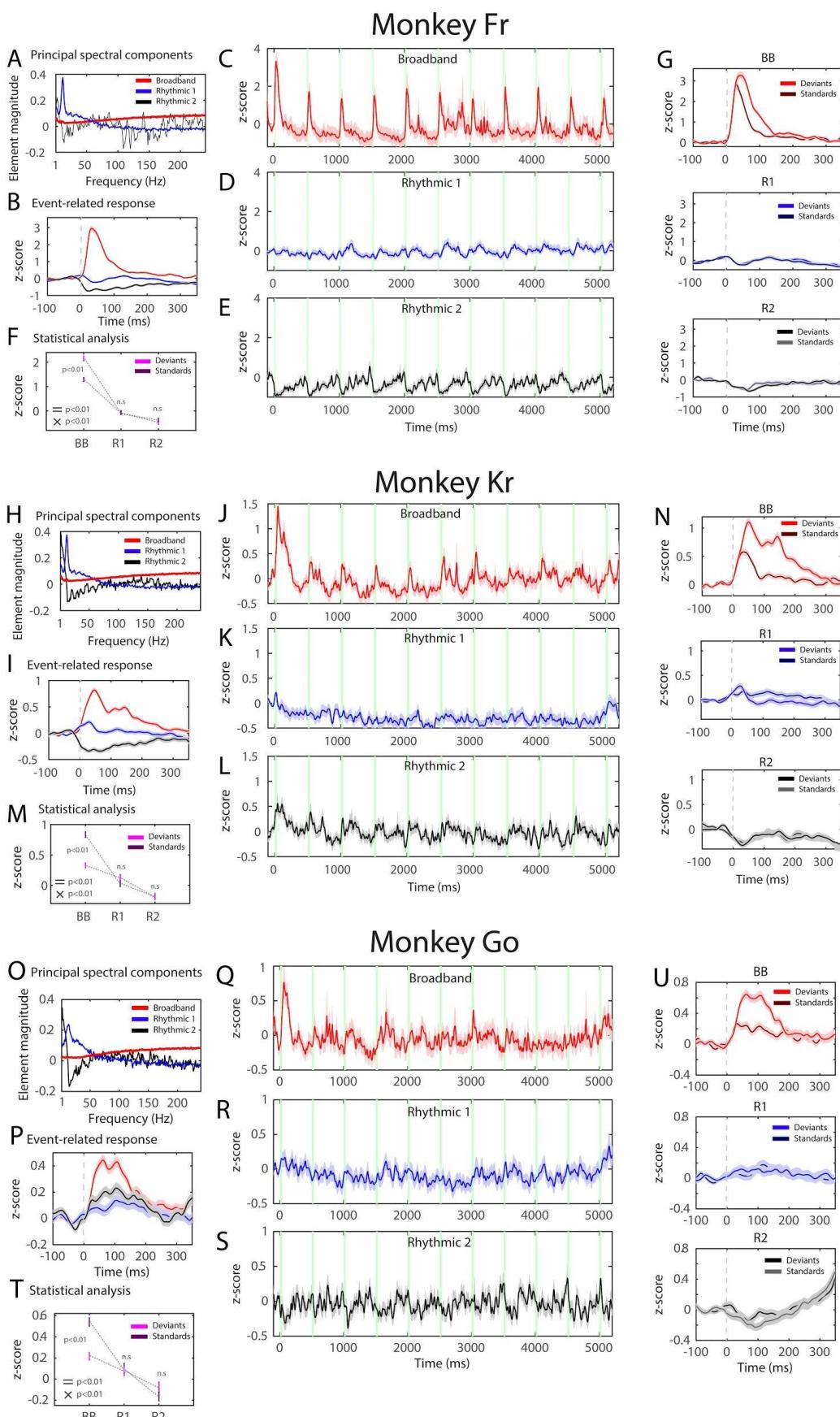
198

199 This way, three major principal spectral components (PSCs), one representing a broadband
200 component and two representing rhythmic components, were identified from the auditory LFP signal.
201 PSCs were highly consistent across three monkeys (see Fig 2A, H, O), matching tightly with the
202 original depiction of spectral principal component analysis (PCA) (see Fig 1A in Miller et al., 2009b).
203 In order to assess which of these three major PSCs encode auditory prediction error response,
204 components were back-projected to the time dimension.

205

206 We found that the Broadband PSC carried a characteristic auditory event-related broadband (ERBB)
207 response, reminiscent of auditory ERP, compared to largely flat responses derived from the rhythmic
208 PSCs with alpha (Rhythmic 1) and delta (Rhythmic 2) peaks. The ERBB response was evident in the
209 average of individual - standard and deviant - responses (see Fig 2B, I, P) as well as along the whole
210 sequence of 11 identical tones as compared to the tone sequences reconstructed from the Rhythmic
211 components (see Fig 2C-E,J-L,Q-S). Repeated measures ANOVA between the PSC (Broadband,
212 Rhythmic 1, Rhythmic 2) and the stimulus expectancy (standards, deviants) factors revealed the main
213 effects for the PSC and the stimulus expectancy, and the interaction between the PSC and the
214 stimulus expectancy factors (see Fig 2F,M,T). Post-hoc comparisons showed that the ERBB response
215 locked to the deviant tones had a larger amplitude compared to the ERBB response locked to the
216 standard tones in the Broadband PSC contrast, but not in the Rhythmic 1 PSC nor the Rhythmic 2

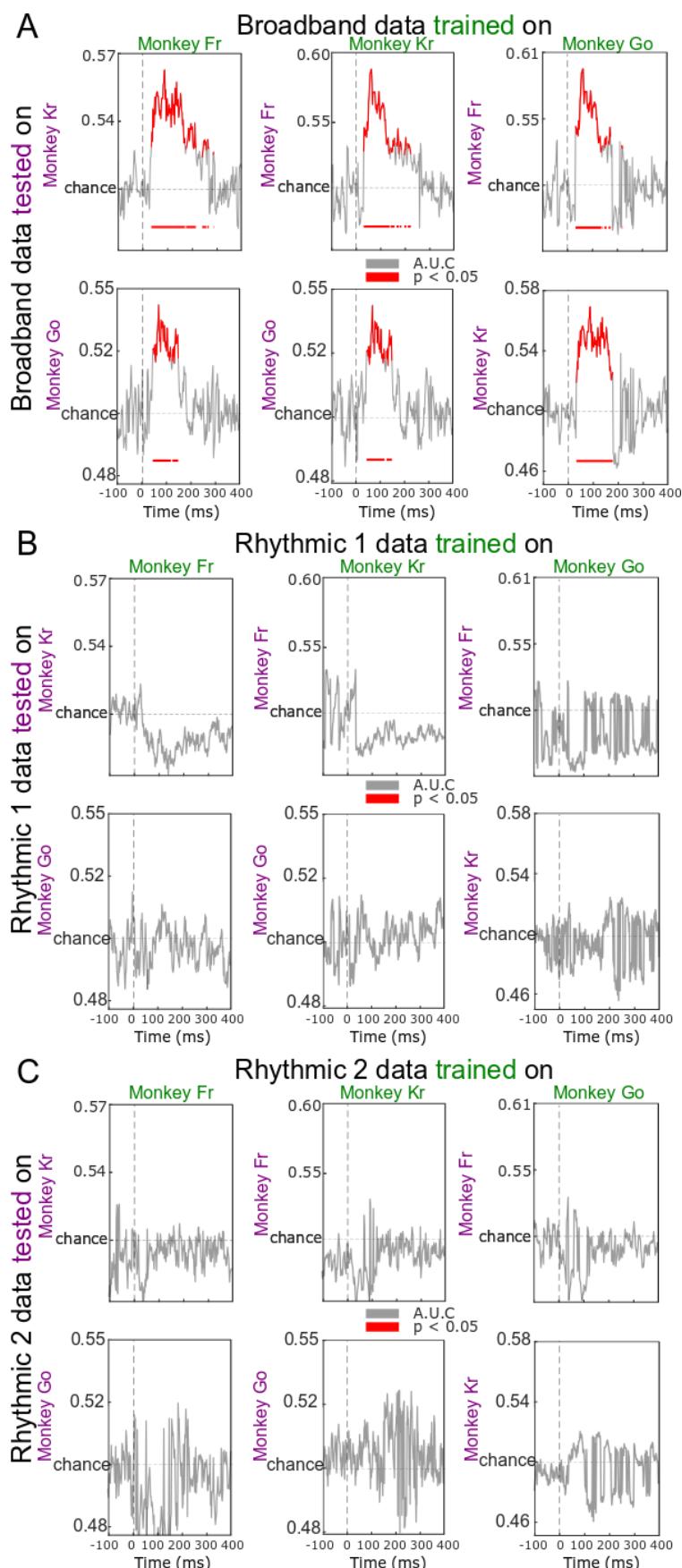
217 PSC contrasts (see Fig 2G,N,U). We thus conclude that MMN response recorded by the ECoG of the
 218 auditory cortex is driven by broadband rather than rhythmic components of LFP signal.



220 **Figure 2 | Event-related broadband response of stimulus expectancy. (A,H,O)** Element
221 magnitude of the major principal spectral components (PSCs) in the frequency domain (1-240 Hz). In
222 this and other subplots, the Broadband PSC is depicted in red, the Rhythmic 1 PSC (alpha) in blue,
223 and the Rhythmic 2 PSC (delta/theta) in black. **(B,I,P)** A narrow window of back-reconstructed time
224 series of the broadband and rhythmic PSCs, locked to the onset of tones (0 ms). Standard and deviant
225 stimuli are averaged together. **(C-E,J-L,Q-S)** Back-reconstructed time series of the Broadband and
226 Rhythmic PSCs along a sequence of 11 identical tones. 0 ms indicates the onset of the deviant tone.
227 **(F,M,T)** ANOVA results of the stimulus expectancy (standard, deviant) and the spectral component
228 (Broadband, Rhythmic 1, Rhythmic 2) contrast. Significant main effects were observed for the PSC
229 (Fr: $F(2,1438)=341.70$, $p<0.001$, eta-squared = 0.322; Kr: $F(2,2878)=113.00$, $p<0.001$, eta-squared =
230 0.073; Go: $F(2,2878)=78.60$, $p<0.001$, eta-squared = 0.052) and the stimulus expectancy (Fr:
231 $F(1,719)=14.1$, $p<0.001$, eta-squared = 0.01; Kr: $F(1,1439)=23.60$, $p<0.001$, eta-squared = 0.016; Go:
232 $F(1,1439)=4.81$, $p<0.029$, eta-squared = 0.003) factors, and the interaction between the PSC and the
233 stimulus expectancy (Fr: $F(2,1438)=17.20$, $p<0.001$, eta-squared = 0.02; Kr: $F(2,2878)=20.80$,
234 $p<0.001$, eta-squared = 0.014; Go: $F(2,2878)=15.49$, $p<0.001$, eta-squared = 0.011). Error bars
235 indicate the standard error of the mean (SEM). '=' refers to the main effects, 'x' refers to the interaction.
236 **(G,N,U)** Stimuli locked waveforms show post-hoc comparisons between the standard and deviant
237 stimuli in the broadband and rhythmic PSCs, which revealed larger amplitude for the deviant stimuli
238 in the Broadband PSC contrast (Fr: $t=6.96$, $p_{Bc}<0.001$; Kr: $t=7.84$, $p_{Bc}<0.001$; Go: $t=5.48$, $p_{Bc}<0.001$),
239 but not in the Rhythmic 1 (Fr: $t=0.378$, $p_{Bc}=1.00$; Kr: $t=0.612$, $p_{Bc}=1.00$; Go: $t=0.397$, $p_{Bc}=0.99$) nor the
240 Rhythmic 2 (Fr: $t=0.812$, $p_{Bc}=1.00$; Kr: $t=-0.033$, $p_{Bc}=1.00$; Go: $t=-1.567$, $p_{Bc}=1.00$) PSC contrasts.
241
242
243

244 ***Cross-individual decoding of stimulus expectancy with broadband and rhythmic components***

245
246 While the single-subject results of ERBB response were highly consistent across all three monkeys
247 (see Fig 2), we wanted to establish whether the broadband prediction-error response of an individual
248 monkey can be extrapolated to other individuals of the same species. This would indicate that the
249 prediction error information generated in the auditory cortex is implemented similarly across monkeys.
250 We thus assessed the cross-individual generalizability of the ERBB response by decoding the stimuli
251 expectancy using the Broadband and Rhythmic PSCs. Using all trials of a respective PSC of one
252 monkey, we trained a linear discriminant (LDA) classifier to learn stimuli categories (standard vs.
253 deviant) in the auditory cortex electrode (see Fig 1B and S1). Afterwards, we decoded stimuli
254 categories using the same PSC in a different monkey. Using Broadband PSCs, we obtained significant
255 decodability in all six pairs of comparisons, i.e. cross-individual decoding between 3 monkeys (see
256 Fig 3A). The time windows of significant decoding above chance level (50% AUC) were consistent
257 with MMN and BRBB responses (see Fig 1B and Fig 2G, N, U). Contrary to this, no significant cross-
258 individual decodability was observed using Rhythmic 1 and 2 PSCs (see Fig 3B, C). These findings
259 confirm the cross-individual generalizability of the broadband PSC encoding of stimulus expectancy.



264 (plotted in purple). Time points of significant decoding of stimulus categories above chance level (50%
265 of AUC), estimated with a cluster-based permutation test, are depicted in red. **(A)** Decoding was
266 successful in all six pairs using Broadband PSC. **(B)** Decoding did not exceed chance level using the
267 Rhythmic 1 PSC. **(C)** Decoding did not exceed chance level using the Rhythmic 2 PSC.
268

269 ***Multiscale multifractal analysis of broadband and rhythmic neural components***

270

271 We hypothesized that the Broadband component has a distinct multiscale temporal organization
272 within the milliseconds of the evoked response than the one from the rhythmic components. In
273 particular, we sought to characterize the scale-free temporal properties of the segregated neural
274 components. These properties relate to the functional state of neural systems (Papo, 2014; He, 2014;
275 Werner, 2010). We further hypothesized that the broadband component—the neural signal subserving
276 oddball detection—has a more stochastic multiscale temporal organization which allows greater
277 dynamical flexibility. The scale-free nature of the neuronal population firing rate, manifested in the
278 broadband PSC (Miller, 2009; Manning et al., 2010), is usually estimated by determining the slope of
279 the log-log function of PSD (power vs. frequency), also referred to as 1/f (fractal) scaling. However,
280 often the PSD is not characterized by a single exponent and may show a scale-dependence (Miller,
281 2009; Chaudhuri et al, 2017) and/or different scaling depending on the statistical moment and hence
282 exhibit multifractality (Nagy et al. 2017). Indeed, the single-trial auditory responses, standards and
283 deviants, revealed a piecewise linear decay of power with frequency in each marmoset (Fig 4A),
284 suggesting that the dynamics of the underlying processes may have scale-free properties but also a
285 heterogeneous scaling dependent on frequency (timescale). This is noticeable by the different slopes
286 which characterize the 1/f-like PSD depending on the frequency range (Fig. 4A), precluding the fitting
287 of a unique line to estimate the slope across the whole spectrum. Thus, to fully characterize the scale-
288 free properties of the three components, we sought to test for the presence of scale-dependent
289 multifractality in the series of increments of neural activity in the marmoset auditory cortex.
290

291

292 Multifractality requires the presence of different scaling exponents (h) of different moments of the
293 fluctuations (q) over a wide range of timescales (s) (Kantelhardt et al., 2002). Using multiscale
294 multifractal analysis (MMA; Gierałtowski et al., 2012) (Fig 4B), which is particularly suited to analyze
295 complex systems which exhibit fluctuations of activity on a wide range of timescales and a broad
296 distribution of values, we found that all the three PSCs show considerable variability in the values of
297 the generalized q and s -dependent scaling exponents ($h(q,s)$ —Hurst surface) (Fig 4D). The Rhythmic
298 components displayed similar surfaces, distinct from the nonlinear profile of h across $q \in [-5, 5]$ of
299 the Broadband PSC activity. These results were consistent across monkeys (see Fig S5). The
300 average tendency across scales revealed a nearly linear dependence of h with q for both Rhythmic
301 components suggesting their underlying dynamics appears multifractal. Conversely, although the
dynamics of the Broadband PSC is also multifractal (in the sense that its fractal properties depend on

302 q), the profile is nonlinear and distinct for small ($q < 0$) and large ($q > 0$) fluctuations (Fig 4E). We note
303 that the conventional Hurst scaling analysis ($q = 2$ results) did not provide a clear distinction between
304 the Broadband and Rhythmic 2 components. Furthermore, averaged surface values of h suggest the
305 Broadband fluctuations can be quasi-stochastic ($h \sim 0.5$) or persistent without obeying strictly a power-
306 law ($h \sim 1.1$), depending on if large ($q > 0$) or small fluctuations ($q < 0$) are considered (Fig 4F).
307 Conversely, Rhythmic 1 and Rhythmic 2 fluctuations ranged from being close to Brownian motion
308 (integrated white noise, $h \sim 1.5$) to scale-free. There was a qualitative agreement on the values across
309 monkeys (Fig 4E, F). Thus, while all three PSC components showed scale-free properties, there were
310 significant differences in the apparent stochasticity, expressed as $h(q)$, between the components (Go:
311 RANOVA $F(2,20)=103$, $p<0.001$, eta-squared=0.339; Kr: RANOVA $F(2,20)=134$, $p<0.001$, eta-
312 squared=0.404; Fr: RANOVA $F(2,20)=40.2$, $p<0.001$, eta-squared=0.228). For all three monkeys, the
313 Broadband component exhibited lower $h(q)$ values compared to the Rhythmic 1 (Go: $t=-14.05$,
314 $p<0.001$; Kr: $t=-13.39$, $p<0.001$; Fr: $t=-8.54$, $p<0.001$) and Rhythmic 2 (Go: $t=-9.54$, $p<0.001$; Kr: $t=-$
315 14.88, $p<0.001$; Fr: $t=-6.64$, $p<0.001$) components.

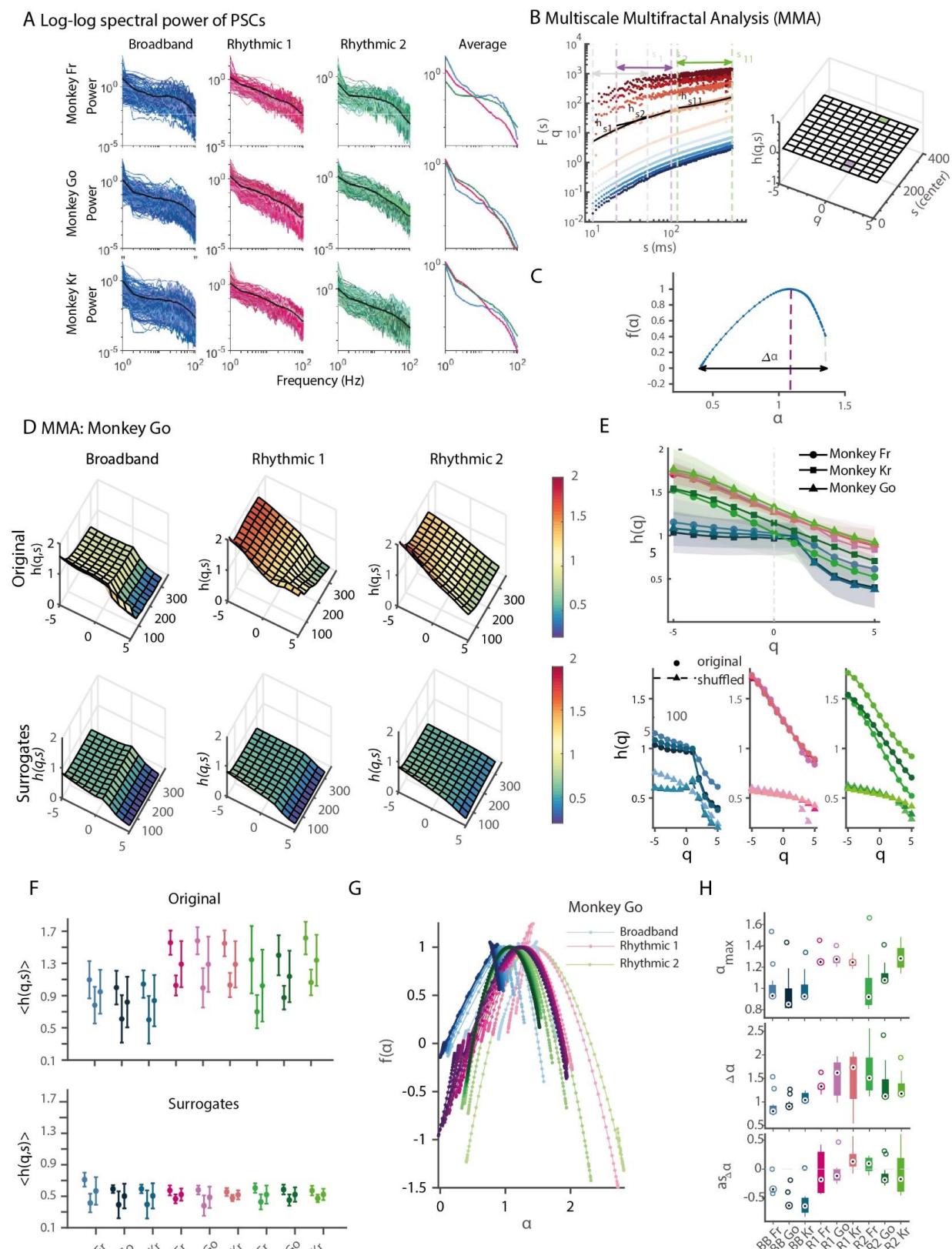
316

317 In order to determine whether the multifractality, depicted in the Hurst surfaces (Fig 4D), is caused by
318 the temporal correlations of the signal distribution, we created a distribution of shuffled surrogates,
319 i.e. copies of the original data with identical mean, variance and histogram distribution but no temporal
320 structure. While the mean Hurst surfaces of the surrogates distribution showed for all monkeys a
321 decrease in multifractality ($p<0.001$) (Fig 4D; Suppl. Figure 5), the averaged Hurst exponent values
322 indicated that the neural dynamics approached randomness ($h = 0.5$) for all monkeys (Fig 4H).
323 Therefore, the multifractality is caused mostly by the temporal correlations but also by a fat-tailed
324 probability distribution. We subsequently computed the multifractal spectrum $f(\alpha)$. Analogously to a
325 Fourier analysis, i.e. the decomposition of a signal into a sum of components with fixed frequencies,
326 $f(\alpha)$ can be understood as decomposition of a signal into a set of exponents α (Mandelbrot, 2003).
327 Their relative presence in the signal is weighted by the $f(\alpha)$ function. The Broadband activity
328 interweaved more densely sets of singularities that are less self-similar than those of the Rhythmic
329 components and displayed a lower degree of multifractality and a more asymmetrical $f(\alpha)$ (Fig 4G
330 ,H), suggesting its dynamics differs from simple multiplicative cascades. The shape of the multifractal
331 spectra for the Broadband activity also displayed a right-truncation (Fig 4C,G and Suppl. Figure 5),
332 which is expected due to the leveling of $h(q,s)$ for $q < 0$ (Ilhen, 2012).

333

334 To sum up, MMA analysis revealed that the generalized scale-dependent Hurst exponent $h(q,s)$ and
335 the derived $f(\alpha)$ curves of the dynamics of Broadband and Rhythmic components show multifractality
336 as well as marked differences of this property. Importantly, the Broadband component more closely
337 approached a stochastic asymmetrical multifractal distribution.

338



339

340 **Figure 4 | Multifractal characterization of the Broadband and Rhythmic dynamics.** (A) Double
 341 logarithmic plots of the power spectral densities of the Broadband (blue), Rhythmic 1 (pink) and
 342 Rhythmic 2 (green) components during all trials of the auditory MMN paradigm reveal a piecewise
 343 approximately linear decay of power with frequency. The average scaling (fractal) properties of the
 344 power spectral densities (last column) are distinct across frequencies, spectral components and

345 marmosets. **(B)** Multiscale Multifractal Analysis (MMA) method. *Left.* Log-log plots of the fluctuation
346 functions $F_q(s)$ for each $q \in [-5, 5]$, color-coded from dark blue ($q = -5$) to dark red ($q = 5$) and scale
347 s (in ms) of the time series correspondent to the Broadband activity of monkey Go. The Hurst (scaling)
348 exponent ($h_{1,2,\dots,11}$) is obtained by determining the slope of a linear fit within a window lasting the
349 period ($s_{1,2,\dots,11}$) marked with vertical dashed lines. Three example scales are displayed: $s_1 \in [10, 50]$,
350 $s_2 \in [20, 100]$ and $s_{11} \in [120, 600]$. *Right.* Computed Hurst exponents $h(q, s)$ are displayed in a (Hurst)
351 surface plot grid. As an example, the cells corresponding to $h_{1,2,\dots,11}$ ($q = 2$; $s = 1, 2$ or 11) are
352 highlighted with their respective colors (light grey, lilac, green). **(C)** The Hurst surface can also be
353 converted into a multifractal spectrum, $f(\alpha)$, which describes how densely the singularities (i.e. scaling
354 exponents, α) are distributed in a signal. The parabolic vertex shows the central tendency, a measure
355 of the regularity present, and the width, the degree of multifractality ($\Delta\alpha$). **(D)** Hurst surfaces ($h(q, s)$)
356 of the component activities (each column) and the $\langle h(q, s) \rangle$ of a distribution of 50 shuffled
357 surrogates. Monkey Go is shown here; for the other monkeys, see Figure Suppl. 5. **(E)** Scaling
358 properties averaged for all scales. The Hurst exponent h dependency on q is evident for all
359 components, suggesting their multifractality. **(F)** Mean (+/-SD) of the Hurst surfaces ($\langle h(q, s) \rangle$)
360 suggests that the Broadband activity has an overall more random profile. Each group of 3 dots with
361 error bars refers respectively to $\langle h(q, s) \rangle$ across all scales (s) for negative, positive and all values
362 of q . Individual results for the Broadband (BB), Rhythmic 1 (R1) and Rhythmic 2 (R2) PSCs are
363 displayed in variations of blue, pink and green colors, respectively. Bottom row shows the values
364 obtained for the distribution of surrogates. **(G)** Multifractal spectrum of the three PSCs of Monkey Go,
365 the lightness of the colors represents the results for different scales (s) (light \rightarrow dark with increasing
366 scales $s_{1,2,\dots,11}$). **(H)** Central tendency of the multifractal spectrum (α_{max}), degree of multifractality ($\Delta\alpha$)
367 and asymmetry of the spectrum ($as_{\Delta\alpha}$) for the three types of activity ((Broadband (BB): blue;
368 Rhythmic 1 (R1): pink; Rhythmic 2 (R2): green)). Each monkey is displayed in a different shade of the
369 colors.

370

371

372 Discussion

373

374 In the present study, we compared two alternative views of prediction error processing, namely
375 whether LFP oscillatory vs. broadband components of neural activity encode deviant sensory stimuli.
376 We found that auditory MMN response, a classical marker of prediction error, is primarily driven by
377 the broadband component of LFP signal. Given that broadband PSC reflects the mean firing rate of
378 neuronal populations (Hermes et al., 2014, 2017; Manning et al, 2009; Miller, 2010), and that neuronal
379 spiking correlates tightly with the high-frequency LFP in the auditory cortex (Mukamel et al., 2005),
380 our findings indicate that prediction error response depends on the asynchronous neuronal firing rate
381 rather than oscillatory neuronal encoding of incoming stimuli.

382

383 We first replicated previous research by showing that auditory MMN is generated in the auditory
384 cortex. Afterwards, we separated the LFP signal into Broadband and Rhythmic components and
385 repeated MMN analyses separately for each component. While the main two rhythmic components
386 present in the data were not able to distinguish between the standard and deviant tones, the
387 broadband component indexed the stimuli difference in the auditory cortex. The findings were highly
388 consistent across all three marmosets, and the cross-individual decoding successfully classified

389 stimuli category (standard or deviant) when data were trained on one monkey and tested on a different
390 one. Importantly, significant decoding was observed only with the Broadband PSC, as the decoding
391 was unsuccessful with the Rhythmic PSCs.

392

393 Our study challenges the generality of low-frequency neural oscillations as an instrument for
394 enhancing (Schroeder and Lakatos, 2009) and gating information in the auditory cortex (Lakatos et
395 al., 2013). In particular, it has been argued that a phase reset of slow frequencies in the range of delta
396 and theta oscillations may underlie prediction error response (Arnal et al, 2015; Fuentemilla et al.,
397 2008; Ko et al., 2012). However, we show that the Rhythmic 2 component with a distinctive delta peak
398 and a considerable contribution from theta range activity (Fig 2A, H, O) does not discriminate between
399 standard and deviant tones. Likewise, the Rhythmic 1 component representing alpha range activity
400 did not encode prediction error response, challenging previous studies that linked MMN to alpha band
401 power (Ko et al., 2012; MacLean et al., 2014). This contrast is striking given that these ideas were
402 deemed most relevant in the context of rhythmic as opposed to continuous stimulation (Schroeder
403 and Lakatos, 2009), and rhythmicity is prevalent in the current oddball paradigm. However, it is
404 important to emphasize that we do not claim that low-frequency neuronal counterparts of neural
405 activity do not contribute to predictive coding: long-term dependencies are relevant in sensory
406 prediction in the auditory cortex (Rubin et al., 2016). Rather, we suggest they enable information
407 processing through more flexible, dynamical unstable codes than an oscillatory code.

408 Our results demonstrate that prediction error processing is subsumed by an asynchronous broadband
409 activity with dynamical properties very distinct from that of the rhythmic components. Importantly, this
410 difference is unveiled when a multiscale approach is used to characterize fluctuations with several
411 degrees of resolution (multiple fractal hierarchies) and it is patent in the surfaces and multifractal
412 spectrum; the difference is equivocal by simply observing the power spectral densities or doing a
413 classical Hurst analysis. The broadband component is distinctive from the other components by its
414 lower level of self-similarity and multifractality and also by its asymmetric multifractal spectrum. The
415 presence of multifractality in the broadband and rhythmic electrocorticographic activity suggests it
416 may be a generic feature of neuronal networks and cognition may operate by modulations of this
417 property (Papo, 2014). Arguably, spike trains represent information with a multifractal temporal coding
418 (Fetterhoff et al., 2015) and the integrated multifractal spectrum permit to infer the tuning curve of
419 spiking activity in primates (Fayyaz et al, 2019). This could be a more effective mechanism of how
420 information is encoded in neuronal assemblies than the one provided by oscillatory rhythms. This
421 hypothesis is bolstered by ideas that synchronization *per se* only arises in collective states where no
422 new information can be created. In contrast, adaptive behaviour emerges from more subtle forms of
423 coordination, e.g. through the metastability or asynchronous coupling of spatiotemporal patterns of
424 neural activity (Friston, 2000; Tognoli and Kelso, 2014). The multifractality present in the recordings

425 reveals how the macroscopic neural dynamics is intermittent, its spectral density changes with time,
426 which has been hypothesized as a facet of temporal metastability (Friston, 1997; Tognoli and Kelso,
427 2014); at the core of metastability is the broken symmetry of spatiotemporal patterns (Kelso and Kelso,
428 1995) which was only present in the broadband activity. In fact, the more asymmetrical multifractal
429 spectra of the broadband activity suggest this feature may be a proxy of a dynamical regime which
430 allows the breakdown of symmetry, characteristic of systems that can perceptibly or meaningfully
431 react to afferent inputs (Freeman and Vitiello, 2006).

432 Furthermore, the prediction error processing by neural assemblies in the auditory cortex is sustained
433 by an irregular broadband component with small fluctuations lying in a tight range of the non-ergodic
434 dynamical regime $h > 1$, which has been proposed as an explanation for the $1/f$ noise of cognitive
435 processes (Grigolini et al., 2009), and large fluctuations with stochastic-like properties. Altogether,
436 this result emphasizes the importance of asynchronous chaotic irregular states for optimal
437 responsiveness to external stimuli (Beaman et al., 2017; Renart et al., 2010; Zerlaut and Destexhe,
438 2017).

439

440 Our findings were enabled by a novel approach to quantify these complex dynamics of neural
441 systems, the so-called brain's "stochastic chaos" (Freeman et al., 2001). Future studies are
442 anticipated to extend MMA analysis of MMN to wider frequency ranges (>100 Hz), with a fine-grained
443 resolution to arguably uncover the spike tuning underlying sensory-state discrimination (Fayyaz et al.,
444 2019). The broadband prediction error response should be further studied using hierarchical auditory
445 prediction paradigms that can discriminate sensory and top-down prediction error responses
446 (Bekinschtein et al., 2009; Chennu et al., 2013, 2016). Developed in human studies, such paradigms
447 have been recently successfully applied in the common marmosets (Chao et al., 2018). Furthermore,
448 while the marmoset model of MMN deemed successful and very stable, as indicated by cross-
449 individual decoding, the current study should be replicated using LFP recordings in humans.

450

451 Importantly, our findings provide a unifying framework for the micro- to macro-level neural
452 mechanisms of prediction error response. While most of the auditory MMN studies are carried out at
453 the macro-level using scalp EEG recordings or meso-level LFP, auditory prediction error responses
454 have also been identified using single-neuron recordings (Nieto-Diego and Malmierca, 2016; Parras
455 et al., 2017; Pérez- González et al., 2005; Solomon and Kohn, 2014; Ulanovsky et al., 2003, 2004).
456 In particular, individual neurons located in the primary auditory cortex increase spiking rate following
457 presentation of oddball stimuli, which has been observed in different mammal species, including cat
458 (Ulanovsky et al., 2003, 2004), rat and mouse (Nieto-Diego and Malmierca, 2016; Parras et al., 2017).
459 Similar responses have also been identified in sub-cortical neurons (Parras et al., 2017; Pérez-
460 González et al., 2005). In particular, a subclass of neurons located in the dorsal and external cortices

461 of the inferior colliculus of the rat respond selectively to novel auditory stimuli, while muting their
462 response to repetitive stimuli (Pérez- González et al., 2005). A recent study of single-neuron activity
463 recorded from different auditory centers in rats and mice suggests that prediction error response is
464 organized hierarchically along the non-lemniscal auditory pathway comprising of inferior colliculi,
465 medial geniculate bodies and the primary auditory cortex with sensitivity to the deviant tones
466 increasing along the pathway (Parras et al., 2017). MMN-like deviance sensitivity of firing rate
467 increases further in the non-primary regions of auditory cortex (Nieto-Diego and Malmierca, 2016).
468 How do such micro-level single-neuron responses relate to the MMN potentials recorded with ECoG
469 and/or EEG? Are different neuronal mechanisms at different levels of measurement, such as single
470 neuron spiking rate vs. neuronal oscillations recorded using ECog/EEG?
471
472 Our study indicates that increased neuronal firing rate underlies prediction error responses not only
473 at the micro-level of single-neuron recordings, but also at the higher meso-level LFP measurements.
474 In particular, we show that MMN prediction error response is driven by the Broadband component of
475 the meso-level LFP signal. Given that the Broadband PSC reflects largely stochastic neuronal firing
476 rate, as suggested by previous modeling studies (Miller et al., 2007; Miller et al., 2009a), our findings
477 indicate that auditory prediction error response is indeed encoded at a single action potential level
478 within neuronal populations, which generate broadband signal at the meso- and most likely macro-
479 level electrophysiology. Broadband LFP activity provides indirect access to the total spiking output of
480 neurons, as shown by a growing number of experiments and simulations (Crone et al., 2011;
481 Freeman, 2004; Rash et al., 2008). Thus, the reported Broadband activity in this study provides a
482 ‘proxy’ for investigating the neuronal mechanisms underlying auditory prediction error. As such, the
483 mesoscopic information of the Broadband LFP component represents a crucial link between
484 macroscopic-level EEG and the microscopic-level spiking activity of neural populations (Buzsaki et
485 al., 2012).
486
487 How could our LFP-based broadband results be reconciled with an abundant literature on frequency-
488 specific MMN results, mostly derived from EEG experiments that do not find broadband MMN
489 response across all frequencies? Miller (2010) argues that low-frequency range of broadband effects
490 can be obscured by coincident changes in specific rhythmic phenomena. We further suggest that
491 EEG artefacts may decrease signal-to-noise ratio in frequency-specific segments of the broadband
492 signal, in which case only relatively clean segments would survive as significant detectors of
493 prediction error response. For instance, blink artifacts may distort neural signal in the delta and theta
494 frequency range (Gasser et al., 1992), whereas muscular artifacts are likely to interfere with the beta
495 and gamma range activity (van de Velde et al., 1998). Similarly, spontaneous fluctuation of alertness
496 level, which is likely to occur during passive “oddball” paradigms, would interfere with neural
497 processing in the theta and alpha frequency range (Noreika et al., 2019a, 2019b). Thus, depending

498 on the experimental demands, the selection and training of participants, and the data preprocessing
499 steps, certain segments of the broadband signal may be occluded by artifactual or irrelevant signals
500 when contrasting standard and novel stimuli, yielding frequency-specific deviance responses that in
501 fact originate from scale-free broadband component of neuronal signal. The suggested role of EEG
502 artifacts in the preclusion of broadband response could be tested using simultaneous EEG and LFP
503 recordings. Alternatively, too often classical frequency bands are loosely equated to specific rhythms
504 (Lopes da Silva, 2013) and the views of collective neural network activity as oscillations lend too much
505 emphasis on “rhythmicity” (Cole and Voytek, 2017) when in reality, in those narrow-band analyses
506 perhaps no characteristic frequency oscillation was present and/or may even be spurious and caused
507 by filtering (de Cheveigné and Nelken, 2017).

508 To conclude, we show that in a well-studied paradigm of auditory prediction error, oscillations do not
509 constitute a means to temporally constrain information processing. They are perhaps the tips of the
510 iceberg, the latter being an arrhythmic broadband component with asymmetric multifractal stochastic
511 properties at several timescales. Our paper establishes the relevance of the broadband activity to
512 encode relatively low-level auditory patterns and provides a theoretical background and empirical
513 tools to probe which predictive values lie under the “noisy” surface in other paradigms and sensory
514 modalities.

515

516 **Methods**

517

518 **Subjects**

519

520 We used three adult male common marmosets (*Callithrix jacchus*) that weighed 320–380 g. Monkeys
521 were implanted with ECoG electrode array under general anaesthesia, and all efforts were made to
522 minimize suffering. All surgical and experimental procedures were performed in accordance with the
523 National Institutes of Health Guidelines for the Care and Use of Laboratory Animals and approved by
524 the RIKEN Ethical Committee (No. H26-2-202). ERP data of one monkey (Fr) was reported previously
525 (Komatsu et al., 2015), whereas datasets of monkeys Go and Kr are new.

526

527 **Implantation of ECoG arrays**

528

529 Chronically implanted, customized multichannel ECoG electrode arrays (Fig. S1) (Cir-Tech Inc.,
530 Japan) were used for neural recordings (Komatsu et al., 2015; 2017). We implanted 32 (the left
531 hemisphere of monkey Fr), 64 (the right hemisphere of monkey Go), and 62 (the right hemisphere of
532 monkey Kr) electrodes in the epidural space. For 32 electrode array, each electrode contact was 1mm

533 in diameter and had an inter-electrode distance of 2.5–5.0 mm (Komatsu et al., 2015). For 64
534 electrode array, each electrode contact was 0.6mm in diameter and had an inter-electrode distance
535 of 1.4mm in a bipolar pair (Komatsu et al., 2017). The electrode-array covered the frontal, parietal,
536 temporal, and occipital lobes. The additional 4 electrodes of monkey Fr covered part of the right frontal
537 lobe. The animals were initially sedated with butorphanol (0.2 mg/kg i.m.), and surgical anaesthesia
538 was achieved with ketamine (30 mg/kg i.m.) and medetomidine (350 µg/kg i.m.). The animals were
539 then positioned in a stereotaxic frame (Narishige, Japan) and placed on a heating pad during surgery.
540 Vital signs were monitored throughout surgery. Implantation of the electrode-arrays involved the
541 removal of a bone flap (~2 cm along the anterior-posterior axis and ~1 cm along the mediolateral axis)
542 over the parietal cortex. The array was advanced into the epidural space. After positioning the
543 electrode-array, connectors were attached to the bone using dental acrylic and titanium (size 1.0 x
544 0.1mm) or PEEK (size 1.4 x 2.5 mm) screws. The reference electrodes were placed in the epidural
545 space and the ground electrodes in the episkull space. The anti-inflammatory corticosteroid
546 dexamethasone (1.25mg/kg, i.m.) was administered after surgery to prevent brain swelling. The
547 animals were given antibiotics and analgesics daily for 5 days after surgery. Following the animals'
548 recovery, the position of each electrode in the arrays was identified based on computer tomography,
549 and then co-registered to a template T1-weighted anatomical magnetic resonance image (MRI)
550 (<http://brainatlas.brain.riken.jp/marmoset/>; Hikishima et al., 2011) (monkey Fr) or pre-acquired MRI
551 (monkeys Go and Kr) using MRIcron software (<http://www.mricro.com>; Rorden et al., 2007). In all
552 monkeys, the electrode-array covered the frontal, parietal, occipital, and temporal cortices, including
553 the primary auditory area (Fig. 2A-C and S2).

554

555 ***Stimuli and task***

556

557 We adopted a roving oddball paradigm (Cowan et al., 1993; Haenschel et al., 2005; Garrido et al.,
558 2008). The trains of 3, 5, or 11 repetitive single-tones of 20 different frequencies (250–6727 Hz with
559 intervals of 1/4 octave) were pseudo-randomly presented. Tones were identical within each tone-train,
560 but differed between tone-trains. Because tone-trains followed on from one another continuously, the
561 first tone of a train was considered to be an unexpected deviant tone, because it was of a different
562 frequency from that of the preceding train. The final tone was considered to be an expected standard
563 tone, because it was preceded by several repetitions of this same tone. To avoid analytical artefacts
564 stemming from differences in the number of standard and deviant stimuli, we considered only the last
565 tone of a train as standard. Standards and deviants were presented 240 times in a single recording
566 session. Pure sinusoidal tones lasted 64 ms (7 ms rise/fall), and stimulus onset asynchrony was 503
567 ms. Stimulus presentation was controlled by MATLAB (MathWorks Inc., Natick, MA, USA) using the
568 Psychophysics Toolbox extensions (Pelli, 1997; Brainard and Vision, 1997). Tones were presented

569 through two audio speakers (Fostex, Japan) with an average intensity of 60 dB SPL around the
570 animal's ear.

571

572 ***ECoG recording and preprocessing***

573

574 ECoG recordings were taken in the passive listening condition while monkeys were awake. In each
575 recording session, the monkey Fr was held in a drawstring pouch, which was stabilized in a dark
576 room, and the monkeys Go and Kr sat on a primate chair in a dimly lit room. The length of a single
577 session was about 15 min: the first 3 min of data were used for many standard stimuli (data are not
578 shown in this paper) and the remaining 12 min of data were used for the roving oddball sequences.
579 For monkey Fr, data from 3 sessions were used for analysis, which resulted in 720 (=240 × 3) standard
580 and deviant presentations. For monkeys Go and Kr, data from 6 sessions were used for analysis,
581 which resulted in 1440 (=240 × 6) standard and deviant presentations.

582

583 ECoG signals were recorded at a sampling rate of 1 kHz per channel. In the signal preprocessing,
584 those signals were re-referenced using an average reference montage, and high-pass filtered above
585 1 Hz. We segmented datasets from -903 to 400 ms relative to the onset of the unexpected tone, so
586 that each segment would include a pair of a deviant and a standard immediately preceding the
587 deviant, as well as a baseline of 400 ms preceding the standard tone. The segments were then divided
588 into standard epochs and deviant epochs (-400 ms to 400 ms). Parts of the dataset are shared in the
589 public server Neurotycho.org (<http://neurotycho.org/>; Nagasaka et al., 2011).

590

591 ECoG electrode-of-interest was identified functionally by contrasting time-frequency charts
592 between standard and deviant stimuli (0-350 ms), separately for each electrode (see Suppl. Fig. 2-4).
593 The Hilbert transform was applied every 10 Hz and z-scored with respect to the baseline period (-100
594 ms to 0 ms). One electrode with the largest high-gamma difference between the standard and deviant
595 tones (Edwards et al., 2005; Eliades et al., 2014; Haenschel et al., 2000; MacLean et al., 2014;
596 Marshall et al., 1996) was selected for each monkey for further analyses. In all three monkeys, the
597 selected electrode-of-interest was located in the auditory cortex (see Suppl. Fig. 1E-H).

598

599 ***Event-related potentials***

600

601 For ERP analysis of the raw signal, a low-pass filter of 40 Hz was used. ECoG recordings were re-
602 referenced with respect to the common average reference across all electrodes. Data were then
603 epoched around the onset of tones (-100 ms to 350 ms), and baseline correction was applied by
604 subtracting the mean of the 100 ms period before the stimulus onset. MMN was assessed by
605 comparing the standard ERP and deviant ERP.

606 **Decoupling the cortical spectrum to isolate Broadband and Rhythmic spectral components**

607

608 To extract the course of broadband spectral activity, we carried out the spectral decoupling of raw
609 LFP signal (Miller et al. 2009a, 2009b, 2017). As for the ERP analysis, ECoG potentials were re-
610 referenced with respect to the common average reference across all electrodes. For the selected
611 electrodes-of-interest (see above), discrete samples of power spectral density (PSD) were calculated
612 using -200 to 400 ms epochs centered at the stimuli onset. With trials from both conditions (standards
613 and deviants) grouped together, individual PSDs were normalized with an element-wise division by
614 the average power at each frequency, and the obtained values were log-transformed. An inner
615 product matrix of these normalized PSDs was diagonalized with a singular value decomposition, and
616 was then applied to identify components of stimulus-related changes in the PSD. The eigenvectors
617 (Principal Spectral Components or PSCs) from this decomposition revealed distinct components of
618 cortical processing. Continuous time-frequency power charts were calculated using complex Morlet
619 wavelets. These power charts were then normalized in the same way as the discrete spectra and
620 projected onto the first PSC (broadband), second PSC (alpha rhythm, ~ 10 Hz), and third PSC (delta
621 rhythm, ~2 Hz), separately. The raw time series were smoothed with an 80-ms Gaussian envelope
622 (SD 80 ms), z-scored per trial, using a pre-stimulus period between -100 to 0 ms, and exponentiated,
623 and then a value of 1 was subtracted (setting the mean at 0). The first PSC allowed to obtain the
624 “broadband time course” which has been shown to reflect a power law in the cortical PSD (Miller et
625 al., 2009a), and the second and third PSCs uncovered the “rhythmic time courses” with distinct
626 frequency peaks.

627

628 **Cross-individual decoding**

629

630 To assess cross-individual generalizability of our findings, a univariate temporal decoding model was
631 applied on each individual PSC time-courses on the selected auditory cortex electrodes, aiming to
632 decode the stimuli expectancy categories, i.e. standards vs deviants. (Figure 3). The ADAM-toolbox
633 was used on the Broadband and Rhythmic PSC time-courses with epochs from -100 ms to 400 ms
634 (Fahrenfort et al., 2018). Crucially, and for each individual component, we trained a linear discriminant
635 (LDA) classifier in one monkey and tested in a separate monkey for obtaining cross-individual
636 decodability of stimuli expectancy category, i.e. standard vs deviant trials. As decoding algorithms are
637 known to be time-consuming, data were downsampled to 250 Hz. Next, a backward decoding
638 algorithm, using either stimulus expectancy category was applied according to a tenfold cross-
639 validation scheme. A linear discriminant analysis (LDA) was used to discriminate between stimulus
640 classes (e.g. deviant versus standard trials) after which classification accuracy was computed as the
641 area under the curve (AUC), a measure derived from the Signal Detection Theory. AUC scores were
642 tested per time-point with double-sided t-tests per subjects against a 50% chance-level. These t-tests

643 were corrected for multiple comparisons over time, using cluster-based permutation tests ($p < 0.05$,
644 1000 iterations). This procedure yields time clusters of significantly above-chance classifier accuracy.

645

646 **Dynamical characterization of the scaling behaviour**

647

648 To characterize the scaling properties of the neural activities of all PSCs of all monkeys, we combined
649 all individual trials for each PSC after removing their baseline – the resulting series had a length of
650 1327920 (Monkey Fr) and 2655840 samples (Monkeys Kr and Go) – and quantified the relationship
651 between $\ln(\text{power})$ and $\ln(\text{frequency})$.

652

653 *Continuous power spectral densities.* The power spectral density (band: 1–100 Hz) of each combined
654 time series for the principal components studied was computed by applying the modified Welch
655 periodogram method as implemented in Matlab's *pwelch()* function. We used 50% overlapping Hann
656 windows of 1.024 s.

657

658 *Multiscale Multifractal Analysis (MMA).* The nonstationarity of neural dynamics (Paluš, 1996) and, in
659 particular, the existence of changing points (crossovers) in the scaling laws in the marmoset
660 electrocorticographic data, which vary across individual and PSCs, precluded a pre-defined selection
661 of the scales of interest and called for a data-driven scaling analysis robust to nonstationarity. Thus,
662 to characterize the scaling behaviour, we used a method designated Multiscale Multifractal Analysis
663 (MMA) (Gieraltowski et al., 2012). MMA is an extension of the Detrended Fluctuation Analysis (DFA)
664 (Peng et al., 1995), an established method to quantify the monofractal scaling behaviour of
665 nonstationary signals, robust to some extrinsic trends (Hu et al., 2001). DFA is essentially a modified
666 root mean square (RMS) analysis of a random walk (Peng et al., 1995). Briefly, for a given time series
667 x_k of length N , the profile $y(k)$ is determined by integrating the time series, then $y(k)$ is split into non-
668 overlapping segments with length s which are detrended by subtracting the local least-squares line fit,
669 $y_s(k)$. Since N/s is often not an integer, to avoid discarding data samples, a second splitting is
670 performed starting from the end of the time series; a total of $2N$ segments are considered. The root-
671 mean-square fluctuation of integrated and detrended time series is given by:

672

$$F(s) = \sqrt{\frac{1}{2N} \sum_{k=1}^{2N} [y(k) - y_s(k)]^2}$$

673

674

675 A generalized version of this method—the Multifractal Detrended Fluctuation Analysis (MF-DFA)
676 (Kantelhardt et al., 2002)—permits to further characterize the fluctuations by inspecting
677 simultaneously small and large fluctuations q dependent on the multifractal parameter :

678

$$F_q(s) \equiv \left\{ \frac{1}{2N_s} \sum_{k=1}^{2N} [y(k) - y_s(k)]^{\frac{q}{2}} \right\}^{\frac{1}{q}}$$

679

680 The conventional DFA corresponds to the situation in which $q = 2$, and it is for stationary random
681 processes equivalent to the Hurst exponent (Hurst, 1951). The process is repeated for several lengths
682 of s ; typically, $F_q(s)$ increases with s and displays the asymptotic behaviour $F(s) \sim n^{h(q)}$. The
683 generalized Hurst exponent ($h(q)$) is estimated by extracting the slope of a linear least-square
684 regression of $F_q(s)$ on a log-log plot for a given set of s values. The MMA algorithm's advantage is that
685 instead of prefixing a unique range of scales to estimate the scaling behaviour, it allows to scan for
686 several scale-ranges yielding a quasi-continuous characterization of the scaling behaviour ($h(q)$),
687 which may vary along scales (frequencies of the power spectrum): the result is a scaling exponent
688 depending on both q and s — $h(q, s)$. It can be visualized in a grid, the Hurst surface, each cell of which
689 corresponds to a value of q and a given range of scales s .

690

691 We applied MMA to the PSCs of the 3 marmosets within a range of $q \in [-5, 5]$ and fixed the lower
692 scale limit to 10 samples and the upper to 600, the first being the minimum required to avoid arithmetic
693 underflow (Gieraltowski et al., 2012), and the second to not include scales above the length of a single
694 continuous trial. We computed MMA along 12 scales, comprising the range $s \in [10, 600]$ ms which is
695 equivalent to ~ 1.67 -100 Hz. The first scale integrated the scales $s_1 \in [10, 50]$ (20-100 Hz) and for
696 $s_{2,3,\dots,12}$ this window was progressively slid 10 ms and expanded ($s_2 \in [20, 100]$, $s_3 \in [30, 150]$ and so
697 forth). This permitted a nearly continuous coverage of the whole spectrum, allowing to identify any
698 crossover areas. For the detrending, we used a polynomial of order 2.

699

700 The values of $h(q, s)$ are interpreted in the following way (Gieraltowski et al., 2012): if $h(q, s) = 0.5$
701 the signal is constituted by uncorrelated randomness (white noise), $h(q, s) \in]0.5, 1]$ indicates
702 persistent long-range correlations and scale-free properties, if $h(q, s) \in [0, 0.5[$ the signal has anti-
703 correlations, $h(q, s) = 1.5$ indicates Brownian motion (integrated white noise) and, finally,
704 $h(q, s) > 2$ indicates black noise. Further, monofractal signals will have identical h for all q values
705 while multifractal time series display different exponent values depending on whether q is negative
706 (short fluctuations) or positive (large fluctuations) (Kantelhardt et al., 2002). Within the regime of
707 persistent long-range correlations, there is also a straightforward correspondence between h and the

708 spectral exponent β obtained from the slope of the power spectral density ($S(f) \sim \frac{1}{f^\beta}$, where f is the
709 frequency); according to the Wiener-Khintchine theorem: $\beta = 2h - 1$. A full description of MMA is
710 available at (Gieraltowski et al., 2012) and we used the original code available at Physionet,
711 (<https://physionet.org/physiotools/mma/>; (Goldberger et al., 2000))

712

713 *Multifractal spectrum.* A complementary way of identifying the scaling properties of the different PCSSs
714 is to consider their singularities characterized by the parameters α (Lipschitz-Hölder exponent) and
715 $f(\alpha)$, respectively associated with the strength of the singularities and how densely they are distributed
716 (Halsey et al., 1986). Thus, the multifractal (or singularity) spectrum is described by the possible range
717 of α values and the function $f(\alpha)$. There is an established connection between these latter measures
718 and the exponents obtained with MMA through the known relationship between MF-DFA and the
719 general multifractal formalism (Kantelhardt et al., 2002; Kantelhardt, 2011). Using fractal geometry
720 and specifically the box-counting method, one can obtain an estimate of dimension by relating a linear
721 distance (s) to the mass of a given object. If in an E -dimensional space of the observations is
722 partitioned into (hyper-)cubes with side s , and one counts the number $N(s)$ of cubes that contain at
723 least one point of a set S , one obtains a very crude measure of this set (Feder, 1988) without any
724 information from its structure. A better estimate applies a weighted sum that takes into consideration
725 the number of points in each hyper-cube. For a set S consisting of N points, N_i will be the number of

726 points in each partition i and the mass or probability $\mu_i = \frac{N_i}{N}$. It follows that the weighted number of
727 boxes, $N(q, s)$ is defined by:

728

$$729 \quad N(q, s) = \sum i(\mu_i)^q \sim s^{-\tau(q)}$$

730

731 Where q is the moment order and $\tau(q)$ is the mass exponent and $\tau(0) = D_0$ is the fractal dimension
732 of the set. If there is a linear dependency of $\tau(q)$ with q then, a set is monofractal, otherwise, it is
733 multifractal. In (Kantelhardt et al., 2002), it was derived how the mass exponent relates to the $h(q)$ of
734 the method used in this report:

735

$$736 \quad \tau(q) = qh(q) - 1$$

737

738 It follows that $f(\alpha)$ is derived from $\tau(q)$ via a Legendre transform (Halsey et al., 1986):

739

740

$$741 \quad \alpha = \frac{d\tau(q)}{dq}$$

742

$$743 \quad f(\alpha) = q\alpha - \tau(q)$$

744

745

746 Then by simply replacing Eq. 4 and 5 in Eq. 6, one obtains the singularities strength (α) and the
747 dimensions of the subset of the time series that is characterized by those singularities ($f(\alpha)$):

748

$$749 \quad \alpha = h(q) - qh'(q) \text{ and } f(\alpha) = q[\alpha - h(q)] + 1$$

750 The function $f(\alpha)$ is always convex upward and its left-hand branch corresponds to $q > 0$ and the
751 right-hand branch to $q < 0$ (Theiler, 1990). Furthermore, the central tendency (peak α_0) of the
752 multifractal spectrum is closely related to the Hurst exponent derived from the monofractal ($q = 2$)
753 DFA, thus representing the average fractal structure in the signal. The multifractal spectrum width ($\Delta(\alpha)$)
754 indicates the deviation from monofractality, or conversely, the degree of multifractality (Ihlen,
755 2012). The ($\Delta(\alpha)$) is defined as the difference between the maximum (α_{max}) and minimum (α_{min})
756 values of the Lipschitz-Hölder exponent:

757

758
$$\Delta\alpha = \alpha_{max} - \alpha_{min}$$

759

760 Of note, $f(\alpha)$ is not forcefully a symmetric function and can differ from the shape like the symbol \cap
761 characteristic of the most trivial multifractals, which are not strictly self-similar (scale-free), but have a
762 multiplicative rescaling structure, i.e. a scale-dependent self-similarity (Riedi, 1999). Therefore, we
763 also computed a rough estimate of the degree of asymmetry:

764

765
$$as_{\Delta\alpha} = \frac{\alpha_{max} - \alpha_0}{\alpha_0 - \alpha_{min}}$$

766

767 We computed these parameters of the multifractal spectrum for all scales (s) analyzed with MMA and
768 for all PCS activities of the marmosets.

769

770 *Surrogate data.* We created 50 shuffled surrogates by randomly permuting in temporal order the
771 samples of the original time series of each marmoset's PSCs. If the shuffling procedure yields time
772 series exhibiting simple random behaviour ($h = 0.5$), one can conclude that the multifractality present
773 is due to different long-range correlations of small and large fluctuations (Kantelhardt et al., 2002). On
774 the contrary, if shuffling does not affect the values of $h(q, s)$, the multifractality originates in a broad
775 probability density function (PDF) of the values in the time series. If the multifractality originates both
776 from correlations and broad PDF, the shuffling version will display weaker multifractality than the
777 original one. All analyses were carried out in Matlab[®] (v. 2018a, The MathWorks).

778

779 **Statistics**

780

781 For ERP MMN (Fig 1) pairwise comparisons were used by comparing a pair of adjacent standard (i.e.
782 the last tone of the N train) and deviant (i.e. the first tone of the N+1 train) stimuli. Similarly, for the
783 spectrally-decoupled time series (Fig 2F,M,T), we performed separate repeated-measures ANOVA
784 (RANOVA) for each individual monkey between PSC (Broadband, Rhythmic 1, Rhythmic 2) and
785 stimulus (standards, deviants), *using* Bonferroni correction for *post hoc* comparisons. Similarly, in the
786 case of the MMA analyses (Fig 4F), Hurst exponents were compared using RANOVA for each monkey

787 between PSC (Broadband, Rhythmic 1 and Rhythmic 2) and *post hoc* comparisons were Bonferroni
788 corrected. Statistical analyses were performed using open-source statistical software *jamovi* (Version
789 0.9; Jamovi project, 2019).

790

791

792 **Acknowledgments**

793

794 We thank Robin Ince, Laura Imperatori and Daniel Bor for contributing to valuable discussion. This
795 manuscript is dedicated to the memory of Prof. Walter J. Freeman (1927 - 2016) whose pioneering
796 work on Neurodynamics has inspired countless meaningful insights during the execution of this
797 project.

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824 **References**

825

826 Alain, C., Woods, D. L., and Knight, R. T. (1998). A distributed cortical network for auditory sensory
827 memory in humans. *Brain Research* 812, 23-37.

828

829 Alho, K. (1995). Cerebral generators of mismatch negativity (MMN) and its magnetic counterpart
830 (MMNm) elicited by sound changes. *Ear and Hearing* 16, 38-51.

831

832 Arnal, L.H., Doelling, K.B., and Poeppel, D. (2015). Delta-beta coupled oscillations underlie
833 temporal prediction accuracy. *Cerebral Cortex* 25, 3077–3085.

834

835 Bastos, A. M., Usrey, W. M., Adams, R. A., Mangun, G. R., Fries, P., and Friston, K. J. (2012).
836 Canonical microcircuits for predictive coding. *Neuron* 76, 695-711.

837

838 Beaman, C. B., Eagleman, S. L., and Dragoi, V. (2017). Sensory coding accuracy and perceptual
839 performance are improved during the desynchronized cortical state. *Nature Communications* 8:
840 1308. doi: 10.1038/s41467-017-01030-4

841

842 Bekinschtein, T. A., Dehaene, S., Rohaut, B., Tadel, F., Cohen, L., and Naccache, L. (2009). Neural
843 signature of the conscious processing of auditory regularities. *Proceedings of the National Academy
844 of Sciences* 106, 1672-1677.

845

846 Brainard, D. H., and Vision, S. (1997). The psychophysics toolbox. *Spatial Vision* 10, 433-436.

847

848 Buzsaki, G., Anastassiou, C.A., and Koch, C. (2012). The origin of extracellular fields and
849 currents—EEG, ECoG, LFP and spikes. *Nature Reviews Neuroscience* 13, 407–420.

850

851 Chao, Z. C., Takaura, K., Wang, L., Fujii, N., and Dehaene, S. (2018). Large-scale cortical networks
852 for hierarchical prediction and prediction error in the primate brain. *Neuron* 100, 1252-1266.

853

854 Chaudhuri, R., He, B. J., and Wang, X.-J. (2017). Random recurrent networks near criticality
855 capture the broadband power distribution of human ECoG dynamics. *Cerebral Cortex* 28, 3610–
856 3622.

857

858 Chennu, S., Noreika, V., Gueorguiev, D., Blenkmann, A., Kochen, S., Ibáñez, A., Owen, A. M., and
859 Bekinschtein, T. A. (2013). Expectation and attention in hierarchical auditory prediction. *Journal of
860 Neuroscience* 33, 11194-11205.

861 Chennu, S., Noreika, V., Gueorguiev, D., Shtyrov, Y., Bekinschtein, T. A., and Henson, R. (2016).
862 Silent expectations: dynamic causal modeling of cortical prediction and attention to sounds that
863 weren't. *Journal of Neuroscience* 36, 8305-8316.

864

865 Choi, J. W., Lee, J. K., Ko, D., Lee, G. T., Jung, K. Y., and Kim, K. H. (2013). Fronto-temporal
866 interactions in the theta-band during auditory deviant processing. *Neuroscience Letters* 548, 120-
867 125.

868

869 Clark, A. (2013). Whatever next? Predictive brains, situated agents, and the future of cognitive
870 science. *Behavioral and Brain Sciences* 36, 181-204.

871

872 Cole, S.R., and Voytek, B. (2017). Brain oscillations and the importance of waveform shape. *Trends*
873 in *Cognitive Sciences* 21, 137–149.

874

875 Cowan, N., Winkler, I., Teder, W., and Näätänen, R. (1993). Memory prerequisites of mismatch
876 negativity in the auditory event-related potential (ERP). *Journal of Experimental Psychology: Learning, Memory, and Cognition* 19, 909-921.

877

878

879 Crone, N. E., Korzeniewska, A., and Franaszczuk, P. J. (2011). Cortical gamma responses:
880 searching high and low. *Int. J. Psychophysiol.* 79, 9–15.

881

882 de Cheveigné, A., Nelken, I. (2017). Filters: When, Why, and How (Not) to Use Them. *Neuron* 102,
883 280-293.

884

885 Edwards, E., Soltani, M., Deouell, L. Y., Berger, M. S., and Knight, R. T. (2005). High gamma
886 activity in response to deviant auditory stimuli recorded directly from human cortex. *Journal of*
887 *Neurophysiology* 94, 4269-4280.

888

889 Eliades, S. J., Crone, N. E., Anderson, W. S., Ramadoss, D., Lenz, F. A., and Boatman-Reich, D.
890 (2014). Adaptation of high-gamma responses in human auditory association cortex. *Journal of*
891 *Neurophysiology* 112, 2147-2163.

892

893 Fahrenfort, J. J., Van Driel, J., Van Gaal, S., and Olivers, C. N. (2018). From ERPs to MVPA using
894 the Amsterdam decoding and modeling toolbox (ADAM). *Frontiers in Neuroscience* 12: 368. doi:
895 10.3389/fnins.2018.00368

896

897 Fayyaz, Z., Bahadorian, M., Doostmohammadi, J., Davoodnia, V., Khodadadian, S., and Lashgari,
898 R. (2019). Multifractal detrended fluctuation analysis of continuous neural time series in primate
899 visual cortex. *Journal of Neuroscience Methods* 312, 84-92.

900

901 Feder, J. (1988). *Fractals*. 4th edn. New York: Springer Science & Business Media.

902

903 Fetterhoff, D., Opris, I., Simpson, S.L., Deadwyler, S.A., Hampson, R.E., and Kraft, R.A. (2015).
904 Multifractal analysis of information processing in hippocampal neural ensembles during working
905 memory under Δ_9 -tetrahydrocannabinol administration. *Journal of Neuroscience Methods* 244, 136–
906 153.

907

908 Freeman, W. J. (2004). Origin, structure, and role of background EEG activity. Part 1. Analytic
909 amplitude. *Clin. Neurophysiol.* 115, 2077–2088.

910

911 Freeman, W. J., Kozma, R., and Werbos, P. J. (2001). Biocomplexity: adaptive behavior in complex
912 stochastic dynamical systems. *Biosystems* 59, 109–123.

913

914 Freeman, W. J. and Vitiello, G. (2006). Nonlinear brain dynamics as macroscopic manifestation of
915 underlying many-body field dynamics. *Physics of Life Reviews* 3, 93–118.

916

917 Freeman, W. J., and Zhai, J. (2009). Simulated power spectral density (PSD) of background
918 electrocorticogram (ECoG). *Cognitive Neurodynamics* 3, 97-103.

919

920 Friston, K.J. (1997). Transients, metastability, and neuronal dynamics. *Neuroimage* 5, 164–171.

921

922 Friston, K. J. (2000). The labile brain. I. Neuronal transients and nonlinear coupling. *Philosophical
923 Transactions of the Royal Society of London. Series B: Biological Sciences* 355, 215-236.

924

925 Friston, K., and Kiebel, S. (2009). Predictive coding under the free-energy principle. *Philosophical
926 Transactions of the Royal Society B: Biological Sciences* 364, 1211-1221.

927

928 Fuentemilla, L. L., Marco-Pallarés, J., Münte, T. F., and Grau, C. (2008). Theta EEG oscillatory
929 activity and auditory change detection. *Brain Research* 1220, 93-101.

930

931 Garrido, M. I., Friston, K. J., Kiebel, S. J., Stephan, K. E., Baldeweg, T., and Kilner, J. M. (2008).
932 The functional anatomy of the MMN: a DCM study of the roving paradigm. *Neuroimage* 42, 936-944.

933

934 Gasser, T., Ziegler, P., and Gattaz, W. F. (1992). The deleterious effect of ocular artefacts on the
935 quantitative EEG, and a remedy. European Archives of Psychiatry and Clinical Neuroscience 241,
936 352-356.

937

938 Gierałtowski, J., Żebrowski, J. J., and Baranowski, R. (2012). Multiscale multifractal analysis of
939 heart rate variability recordings with a large number of occurrences of arrhythmia. Physical Review
940 E 85: 021915. doi: 10.1103/physreve.85.021915

941

942 Gifani, P., Rabiee, H. R., Hashemi, M. H., Taslimi, P., and Ghanbari, M. (2007). Optimal fractal-
943 scaling analysis of human EEG dynamic for depth of anesthesia quantification. Journal of the
944 Franklin Institute 344, 212-229.

945

946 Goldberger, A. L., Amaral, L. A., Glass, L., Hausdorff, J. M., Ivanov, P. C., Mark, R. G., Mietus, J.E.,
947 Moody, G.B., Peng, C.-K., and Stanley, H. E. (2000). PhysioBank, PhysioToolkit, and PhysioNet:
948 components of a new research resource for complex physiologic signals. *Circulation* 101, e215-
949 e220.

950

951 Grigolini, P., Aquino, G., Bologna, M., Luković, M., and West, B. J. (2009). A theory of 1/f noise in
952 human cognition. *Physica A: Statistical Mechanics and its Applications* 388, 4192-4204.

953

954 Haenschel, C., Baldeweg, T., Croft, R. J., Whittington, M., and Gruzelier, J. (2000). Gamma and
955 beta frequency oscillations in response to novel auditory stimuli: a comparison of human
956 electroencephalogram (EEG) data with in vitro models. *Proceedings of the National Academy of
957 Sciences* 97, 7645-7650.

958

959 Haenschel, C., Vernon, D. J., Dwivedi, P., Gruzelier, J. H., and Baldeweg, T. (2005). Event-related
960 brain potential correlates of human auditory sensory memory-trace formation. *Journal of
961 Neuroscience* 25, 10494-10501.

962

963 Halgren, E., Baudena, P., Clarke, J. M., Heit, G., Liégeois, C., Chauvel, P., and Musolino, A. (1995).
964 Intracerebral potentials to rare target and distractor auditory and visual stimuli. I. Superior temporal
965 plane and parietal lobe. *Electroencephalography and Clinical Neurophysiology* 94, 191-220.

966

967 Halsey, T. C., Jensen, M. H., Kadanoff, L. P., Procaccia, I., and Shraiman, B. I. (1986). Fractal
968 measures and their singularities: The characterization of strange sets. *Physical Review A* 33: 1141.

969 doi: 10.1103/PhysRevA.33.1141.

970

971 He, B. J., Zempel, J. M., Snyder, A. Z., and Raichle, M. E. (2010). The temporal structures and

972 functional significance of scale-free brain activity. *Neuron* 66, 353-369.

973

974 He, B. J. (2014). Scale-free brain activity: past, present, and future. *Trends in Cognitive Sciences*

975 18, 480-487.

976

977 Hermes, D., Miller, K. J., Wandell, B. A., and Winawer, J. (2014). Stimulus dependence of gamma

978 oscillations in human visual cortex. *Cerebral Cortex* 25, 2951-2959.

979

980 Hermes, D., Nguyen, M., and Winawer, J. (2017). Neuronal synchrony and the relation between the

981 blood-oxygen-level dependent response and the local field potential. *PLoS Biology* 15: e2001461.

982 doi: 10.1371/journal.pbio.2001461

983

984 Hermes, D., Petridou, N., Kay, K., and Winawer, J. (2019). An image-computable model for the

985 stimulus selectivity of gamma oscillations. *bioRxiv* 583567. doi: 10.1101/583567

986

987 Hikishima, K., Quallo, M. M., Komaki, Y., Yamada, M., Kawai, K., Momoshima, S., Okano, H.J.,

988 Sasaki, E., Tamaoki, N., Lemon, R.N., Iriki, A., and Okano, H. (2011). Population-averaged

989 standard template brain atlas for the common marmoset (*Callithrix jacchus*). *Neuroimage* 54, 2741-

990 2749.

991

992 Hsiao, F. J., Wu, Z. A., Ho, L. T., and Lin, Y. Y. (2009). Theta oscillation during auditory change

993 detection: an MEG study. *Biological Psychology* 81, 58-66.

994

995 Hu, K., Ivanov, P. C., Chen, Z., Carpena, P., and Stanley, H. E. (2001). Effect of trends on

996 detrended fluctuation analysis. *Physical Review E* 64, 011114. doi: 10.1103/PhysRevE.64.011114

997

998 Hurst, H. E. (1951). Long-term storage capacity of reservoirs. *Transactions of the American Society*

999 of Civil Engineers

1000 116, 770-799.

1001 Lakatos, P., Musacchia, G., O'Connel, M.N., Falchier, A.Y., Javitt, D.C., and Schroeder, C.E.

1002 (2013). The spectrot temporal filter mechanism of auditory selective attention. *Neuron* 77, 750-761.

1003

1004 Lopes da Silva, F. (2013). EEG and MEG: relevance to neuroscience. *Neuron* 80, 1112-1128.

1005 Ihlen, E. A. F. (2012). Introduction to multifractal detrended fluctuation analysis in Matlab. *Frontiers*
1006 in Physiology 3, 141. doi: 10.3389/fphys.2012.00141

1007

1008 Jamovi project (2019). *jamovi* (Version 0.9) [Computer Software]. Retrieved from
1009 <https://www.jamovi.org>

1010

1011 Javitt, D. C., Schroeder, C. E., Steinschneider, M., Arezzo, J. C., and Vaughan Jr, H. G. (1992).
1012 Demonstration of mismatch negativity in the monkey. *Electroencephalography and Clinical*
1013 *Neurophysiology* 83, 87-90.

1014

1015 Kantelhardt, J. W., Zschiegner, S. A., Koscielny-Bunde, E., Havlin, S., Bunde, A., and Stanley, H. E.
1016 (2002). Multifractal detrended fluctuation analysis of nonstationary time series. *Physica A: Statistical*
1017 *Mechanics and its Applications* 316, 87-114.

1018

1019 Kantelhardt, J. W. (2011). Fractal and multifractal time series. In *Mathematics of Complexity and*
1020 *Dynamical Systems* (ed. R.A. Meyers), pp. 463–487. New York, NY: Springer.

1021

1022 Kelso, J.A.S. (1995). *Dynamic patterns: the self-organization of brain and behavior*. MIT Press,
1023 Cambridge, Mass.

1024

1025 Ko, D., Kwon, S., Lee, G. T., Im, C. H., Kim, K. H., and Jung, K. Y. (2012). Theta oscillation related
1026 to the auditory discrimination process in mismatch negativity: oddball versus control paradigm.
1027 *Journal of Clinical Neurology* 8, 35-42.

1028

1029 Komatsu, M., Takaura, K., and Fujii, N. (2015). Mismatch negativity in common marmosets: Whole-
1030 cortical recordings with multi-channel electrocorticograms. *Nature Scientific Reports* 5, 15006. doi:
1031 10.1038/srep15006

1032

1033 Komatsu, M., Sugano, E., Tomita, H., and Fujii, N. (2017). A chronically implantable bidirectional
1034 neural interface for non-human primates. *Frontiers in Neuroscience* 11, 514. doi:
1035 10.3389/fnins.2017.00514

1036

1037 Lakatos, P., Shah, A. S., Knuth, K. H., Ulbert, I., Karmos, G., and Schroeder, C. E. (2005). An
1038 oscillatory hierarchy controlling neuronal excitability and stimulus processing in the auditory cortex.
1039 *Journal of Neurophysiology* 94, 1904-1911.

1040

1041 Lumaca, M., Trusbak Haumann, N., Brattico, E., Grube, M., and Vuust, P. (2019). Weighting of
1042 neural prediction error by rhythmic complexity: A predictive coding account using mismatch
1043 negativity. *European Journal of Neuroscience* 49, 1597-1609.

1044

1045 Ma, Q., Ning, X., Wang, J., and Bian, C. (2006). A new measure to characterize multifractality of
1046 sleep electroencephalogram. *Chinese Science Bulletin* 51, 3059-3064.

1047

1048 MacLean, S. E., and Ward, L. M. (2014). Temporo-frontal phase synchronization supports
1049 hierarchical network for mismatch negativity. *Clinical Neurophysiology* 125, 1604-1617.

1050

1051 Mandelbrot, B. B. (2003). Multifractal power law distributions: Negative and critical dimensions and
1052 other “anomalies,” explained by a simple example. *Journal of Statistical Physics* 110, 739-774.

1053

1054 Manning, J. R., Jacobs, J., Fried, I., and Kahana, M. J. (2009). Broadband shifts in local field
1055 potential power spectra are correlated with single-neuron spiking in humans. *Journal of*
1056 *Neuroscience* 29, 13613-13620.

1057

1058 Marshall, L., Mölle, M., and Bartsch, P. (1996). Event-related gamma band activity during passive
1059 and active oddball tasks. *Neuroreport* 7, 1517-1520.

1060

1061 Miller, K. J., Leuthardt, E. C., Schalk, G., Rao, R. P., Anderson, N. R., Moran, D. W., Miller, J.W.,
1062 and Ojemann, J. G. (2007). Spectral changes in cortical surface potentials during motor movement.
1063 *Journal of Neuroscience* 27, 2424-2432.

1064

1065 Miller, K. J., Sorensen, L. B., Ojemann, J. G., and Den Nijs, M. (2009a). Power-law scaling in the
1066 brain surface electric potential. *PloS Computational Biology* 5, e1000609. doi:
1067 10.1371/journal.pcbi.1000609

1068

1069 Miller, K. J., Zanos, S., Fetz, E. E., Den Nijs, M., and Ojemann, J. G. (2009b). Decoupling the
1070 cortical power spectrum reveals real-time representation of individual finger movements in humans.
1071 *Journal of Neuroscience* 29, 3132-3137.

1072

1073 Miller, K. J. (2010). Broadband spectral change: evidence for a macroscale correlate of population
1074 firing rate? *Journal of Neuroscience* 30, 6477-6479.

1075

1076 Miller, K. J., Hermes, D., Pestilli, F., Wig, G. S., and Ojemann, J. G. (2017). Face percept formation
1077 in human ventral temporal cortex. *Journal of Neurophysiology* 118, 2614-2627.

1078 Mukamel, R., Gelbard, H., Arieli, A., Hasson, U., Fried, I., and Malach, R. (2005). Coupling between
1079 neuronal firing, field potentials, and fMRI in human auditory cortex. *Science* 309, 951-954.

1080

1081 Nagasaka, Y., Shimoda, K., and Fujii, N. (2011). Multidimensional recording (MDR) and data
1082 sharing: an ecological open research and educational platform for neuroscience. *PLoS One*, 6,
1083 e22561. doi: 10.1371/journal.pone.0022561

1084

1085 Nagy, Z., Mukli, P., Herman, P., and Eke, A. (2017). Decomposing multifractal crossovers. *Frontiers*
1086 in Physiology 8, 533. doi: 10.3389/fphys.2017.00533

1087

1088 Näätänen, R., Gaillard, A. W., and Mäntysalo, S. (1978). Early selective-attention effect on evoked
1089 potential reinterpreted. *Acta Psychologica* 42, 313-329.

1090

1091 Näätänen, R., Paavilainen, P., Rinne, T., and Alho, K. (2007). The mismatch negativity (MMN) in
1092 basic research of central auditory processing: a review. *Clinical Neurophysiology* 118, 2544-2590.

1093

1094 Nieto-Diego, J., and Malmierca, M. S. (2016). Topographic distribution of stimulus-specific
1095 adaptation across auditory cortical fields in the anesthetized rat. *PLoS Biology* 14, e1002397. doi:
1096 10.1371/journal.pbio.1002397

1097

1098 Noreika, V., Canales-Johnson, A., Johnson, A., Arnatkevičiūtė, A., Koh, J., Chennu, S., and
1099 Bekinschtein, T. A. (2019a). Wakefulness state modulates conscious access: Suppression of
1100 auditory detection in the transition to sleep. *bioRxiv* 155705. doi: 10.1101/155705

1101

1102 Noreika, V., Kamke, M. R., Canales-Johnson, A., Chennu, S., Bekinschtein, T. A., and Mattingley, J.
1103 B. (2019b). Alertness fluctuations during task performance modulate cortical evoked responses to
1104 transcranial magnetic stimulation. *bioRxiv* 155754. doi: 10.1101/155754

1105

1106 Paluš, M. (1996). Nonlinearity in normal human EEG: cycles, temporal asymmetry, nonstationarity
1107 and randomness, not chaos. *Biological Cybernetics* 75, 389-396.

1108

1109 Papo, D. (2014). Functional significance of complex fluctuations in brain activity: from resting state
1110 to cognitive neuroscience. *Frontiers in Systems Neuroscience* 8, 112. doi:
1111 10.3389/fnsys.2014.00112

1112

1113 Parras, G. G., Nieto-Diego, J., Carbajal, G. V., Valdés-Baizabal, C., Escera, C., and Malmierca, M.
1114 S. (2017). Neurons along the auditory pathway exhibit a hierarchical organization of prediction error.
1115 *Nature Communications* 8, 2148. doi: 10.1038/s41467-017-02038-6

1116

1117 Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: Transforming numbers into
1118 movies. *Spatial Vision* 10, 437-442.

1119

1120 Peng, C. K., Havlin, S., Stanley, H. E., and Goldberger, A. L. (1995). Quantification of scaling
1121 exponents and crossover phenomena in nonstationary heartbeat time series. *Chaos: An
1122 Interdisciplinary Journal of Nonlinear Science* 5, 82-87.

1123

1124 Pérez- González, D., Malmierca, M. S., and Covey, E. (2005). Novelty detector neurons in the
1125 mammalian auditory midbrain. *European Journal of Neuroscience* 22, 2879-2885.

1126

1127 Rasch, M. J., Gretton, A., Murayama, Y., Maass, W., and Logothetis, N. K. (2008). Inferring spike
1128 trains from local field potentials. *Journal of Neurophysiology* 99, 1461-1476.

1129

1130 Renart, A., De La Rocha, J., Bartho, P., Hollender, L., Parga, N., Reyes, A., and Harris, K. D.
1131 (2010). The asynchronous state in cortical circuits. *Science* 327, 587-590.

1132

1133 Riedi, R. H. (1999) Multifractal processes. In *Long Range Dependence: Theory and Applications*
1134 (Eds. P. Doukhan, M. S. Taqqu, and G. Oppenheim), pp 625-715. Birkhäuser.

1135

1136 Rorden, C., Karnath, H. O., and Bonilha, L. (2007). Improving lesion-symptom mapping. *Journal of
1137 Cognitive Neuroscience* 19, 1081-1088.

1138

1139 Rubin, J., Ulanovsky, N., Nelken, I., and Tishby, N. (2016). The representation of prediction error in
1140 auditory cortex. *PLoS Computational Biology* 12, e1005058. doi: 10.1371/journal.pcbi.1005058

1141

1142 Schroeder, C. E., and Lakatos, P. (2009). The gamma oscillation: master or slave? *Brain
1143 Topography* 22, 24-26.

1144

1145 Schroeder, C.E., and Lakatos, P. (2009). Low-frequency neuronal oscillations as instruments of
1146 sensory selection. *Trends in Neurosciences* 32, 9–18.

1147

1148 Solomon, S. G., and Kohn, A. (2014). Moving sensory adaptation beyond suppressive effects in
1149 single neurons. *Current Biology* 24, R1012-R1022.

1150

1151 Theiler, J. (1990). Estimating fractal dimension. *Journal of the Optical Society of America A* 7, 1055-
1152 1073.

1153

1154 Tognoli, E., and Kelso, J.A.S. (2014). The metastable brain. *Neuron* 81, 35–48.

1155

1156 Ulanovsky, N., Las, L., and Nelken, I. (2003). Processing of low-probability sounds by cortical
1157 neurons. *Nature Neuroscience* 6, 391-398.

1158

1159 Ulanovsky, N., Las, L., Farkas, D., and Nelken, I. (2004). Multiple time scales of adaptation in
1160 auditory cortex neurons. *Journal of Neuroscience* 24, 10440-10453.

1161

1162 van de Velde, M., van Erp, G., and Cluitmans, P. J. (1998). Detection of muscle artefact in the
1163 normal human awake EEG. *Electroencephalography and Clinical Neurophysiology* 107, 149-158.

1164

1165 Weiss, B., Clemens, Z., Bódizs, R., Vágó, Z., and Halász, P. (2009). Spatio-temporal analysis of
1166 monofractal and multifractal properties of the human sleep EEG. *Journal of Neuroscience Methods*
1167 185, 116-124.

1168

1169 Whitmire, C. J. and Stanley, G. B. (2016). Rapid sensory adaptation redux: A circuit perspective.
1170 *Neuron* 92, 298–315.

1171

1172 Zerlaut, Y. and Destexhe, A. (2017). Enhanced responsiveness and low-level awareness in
1173 stochastic network states. *Neuron* 94, 1002–1009.