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Summary

Detection of statistical irregularities, measured as a prediction error response, is fundamental to the
perceptual monitoring of the environment. We studied whether prediction error response is generated
by neural oscillations or asynchronous neuronal firing. Electrocorticography (ECoG) was carried out
in three monkeys, who passively listened to the auditory roving oddball stimuli. Local field potentials
(LFP) recorded over the auditory cortex underwent spectral principal component analysis, which
decoupled broadband and rhythmic components of LFP signal. We found that broadband component
generated prediction error response, whereas none of the rhythmic components encoded statistical
irregularities of sounds. The broadband component displayed more stochastic, asymmetrical
multifractal properties than the rhythmic components, which revealed more self-similar dynamics. We
thus conclude that the prediction error response is encoded by asynchronous neuronal populations,
defined by irregular dynamical states which, unlike oscillatory rhythms, appear to enable the neural

representation of auditory prediction error response.
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Introduction

Detection of novel sensory information enables adaptive interaction with the surrounding environment
(Clark, 2013; Whitmire and Stanley, 2016). In the predictive coding framework of brain functioning,
this interaction is characterized by a reciprocal loop between sensory predictions and prediction error
signals (Bastos et al., 2012; Friston and Kiebel, 2009). Neural mechanisms of prediction error are
typically studied by presenting a series of “standard” stimuli with intermittently occurring deviant
stimuli, also called “oddballs”, and by contrasting brain responses between these stimuli categories
(Chennu et al., 2013; Lumaca et al., 2019; Parras et al., 2017). This way, event-related potentials
(ERP) and a range of neural oscillations have been identified as neural markers of prediction error.
The most widely studied deviance ERP is the auditory mismatch negativity (MMN) — a negative
deflection of electrical event-related potential recorded on the scalp or using intracranial electrodes
(Halgren et al., 1995; Naatanen et al., 1978; 2007). MMN originates from the primary auditory cortex
(Alain et al., 1998; Alho, 1995; Edwards et al., 2005), and it peaks around 150-200 ms in humans,
whilst the peak latencies below 100 ms are typically reported in monkeys (Javitt et al., 1992; Komatsu
et al., 2015). In addition to MMN, prediction error responses are observed in neural oscillations in a
variety of frequency ranges including theta (3-8 Hz) (Choi et al., 2013; Fuentemilla et al., 2008; Hsiao
et al., 2009; Ko et al., 2012; MacLean et al., 2014), alpha (8-12 Hz) (Ko et al., 2012; MacLean et al.,
2014), beta (14-30 Hz) (Haenschel et al., 2000; MacLean et al., 2014) and gamma (>30 Hz) (Edwards
et al., 2005; Eliades et al., 2014; Haenschel et al., 2000; MacLean et al., 2014; Marshall et al., 1996)

ranges.

Several interpretations could be formulated aiming to explain the abundance of prediction error
responses in the frequency dimension. First of all, there could be multiple independent neural
mechanisms sensitive to stimulus deviance. This suggestion, however, does not explain why there
would be so many distinct mechanisms with an identical functional role. Alternatively, frequency-
specific detectors of prediction error might be only partially independent, forming hierarchical cross-
frequency interactions. For instance, rhythms of different frequency bands could drive each other, e.g.
delta phase could modulate theta amplitude and theta phase could modulate gamma amplitude in the
auditory cortex (Lakatos et al., 2005). Yet another possibility — which we pursue in the present study
— is that a broad frequency range of deviance responses, including theta, alpha, beta and gamma
bands, points to a broadband prediction error response, which is not restricted to a particular
frequency band, but instead is driven by an arrhythmic or asynchronous neural signal. In fact, a large
number of studies reported deviance effects to run across several frequency bands (Chao et al., 2018;
Haenschel et al., 2000; Hsiao et al., 2009; Ko et al., 2012; MacLean et al., 2014), arguably alluding

to arrhythmic processing of unexpected stimuli.


https://doi.org/10.1101/821942
http://creativecommons.org/licenses/by-nd/4.0/

119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154

bioRxiv preprint doi: https://doi.org/10.1101/821942; this version posted October 29, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

The electrophysiological signal recorded by scalp EEG or local field potentials (LFP) is a summed
activity of both postsynaptic and action potentials. Post-synaptic potentials contribute to the rhythmic
oscillations of different frequency bands (Buzsaki et al., 2012), reflecting neural synchrony at specific
timescales. Contrary to this, empirical data analysis and modelling suggest that the average input
firing rate produces asynchronous, broadband changes across a wide frequency range (Miller et al.,
2009a, 2009b; Manning et al., 2009). Such rhythmic and broadband components of LFP signal can
be decomposed using spectral principal component analysis (spectral PCA) (Miller et al., 2009a,
2009b, 2017), this way separating synchronous and asynchronous neural activity. Broadband
component of the LFP power spectrum is commonly characterized by a power-law function (Freeman
and Zhai, 2009; He, 2014; Hermes et al., 2019), which reflects the lack of any specific temporal beat
(e.g. 10 Hz) in the signal. Contrary to this, rhythmic components produce frequency-specific spectral
peaks that deviate from the power law. In fact, the electrocorticography power is characterized by at
least three different power-law regions of which the transitions vary across individuals and recordings
in human (Chaudhuri et al., 2017; He et al., 2010) and non-human primates. The functional relevance
of this heterogeneous scaling is discernible as, for instance, levels of arousal across a gradual
progression from awake to grades of anaesthesia (Gifani et al., 2007) or to deep sleep (Ma et al.,
2006; Weiss et al., 2009) can manifest selectively within power-law changes at different timescales.
Such complex dynamics across different LFP timescales can be characterized by multiscale
multifractal analysis (MMA; Gierattowski et al., 2012), developed to analyse signal fluctuations on a

wide range of timescales like those observed in LFP signals.

In the present study, we aimed to assess whether such broadband neural dynamics rather than
frequency-specific rhythms underlie prediction error in the auditory cortex in the primate brain. We
hypothesized that the broadband component of LFP has a multiscale scaling dynamics, distinct from
that of the rhythmic LFP components.

Results

Using epidurally implanted electrodes, we recorded electrocorticograms (ECoGs) from three awake
common marmosets, who passively listened to the stream of varying tones (see Fig 1A and Suppl.
Fig 1A-D). By contrasting neural responses to standard and deviant tones, which were physically
matched across expectancy conditions, we first identified MMN deviance response from the auditory
cortex (see Fig 1B). Afterwards, we decomposed the raw LFP signal into broadband and rhythmic
spectral components (following Miller et al., 2009a, 2009b, 2017; see Fig 1C). Spectral decomposition
allowed us to assess whether MMN is driven by the broadband rather than oscillatory components of

the LFP signal. In the following, we report a single-trial analysis that was carried out separately for
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each monkey (referred to as Fr, Go and Kr), using electrodes located in the auditory cortex (see Fig
1B and Suppl. Fig 1E-H).
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Figure 1 | Experimental design, classical ERP and spectral decoupling analysis. (A) Using a
roving oddball paradigm, 20 different single-tones were presented in the trains of 3, 5 or 11 identical
stimuli. Any two subsequent trains consisted of different tones. This way, while the adjacent standard
(depicted in black) and deviant (depicted in green) tones deviated in the frequency due to the transition
between the trains, the two expectancy conditions were physically matched, as the first and the last
tones of the same train were treated as deviant and standard tones in the analysis of the adjacent
stimuli pairs. (B) Time courses of ERP waveforms of the standard (black) and deviant (green) stimuli
conditions. 0 ms time point indicates the onset of a given tone. Error shades represent the standard
error of the mean (SEM), calculated across all trials at each time point. Data in this and other subplots
were recorded by the electrode marked in red in the ECoG montage insets. Each subplot represents
a different monkey. (C) Spectral decoupling. Temporally adjacent raw LFP segments of the standard
tone (i.e. the last stimulus of the previous train) and the deviant tone (i.e. the first stimulus of the
subsequent train) were extracted for the spectral PCA. First, Fast Fourier transform was used to
calculate log power (1-250 Hz) of the raw LFP signal, which was afterwards normalized across all
trials within a given expectancy condition. Normalized spectral snapshots were input into spectral
PCA, which separated broadband and rhythmic components. Principal spectral components were
reconstructed back to the time-series for the subsequent contrast between the expected and
unexpected stimuli conditions.
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Auditory ERP in the raw LFP signal

First, we confirmed that perturbation of auditory cortex with a deviant tone compared to a preceding
standard tone increased the amplitude of auditory evoked potentials in the MMN time window (Fr:
t(1,719) = -7.37, p < 0.001, Cohen’s d = 0.275; Go: t(1,1439) = -4.60, p < 0.001, Cohen’s d = 0.121;
Kr: 1(1,1439) = -9.27, p < 0.001, Cohen’s d = 0.244; see Fig 1B). Latency of ERP peaks (58-66 ms)
was consistent with the previous MMN studies of non-human primates (Javitt et al., 1992; Komatsu
et al., 2015).

Auditory evoked responses reconstructed with broadband and rhythmic components

Aiming to differentiate broadband component of LFP signal from rhythmic sources, we carried out
spectral principal component analysis that decouples the power spectrum density (PSD) into
components reflecting different underlying neural dynamics (see Fig 1C and Methods). Using this
technique, a broadband component can be identified by a uniform power increase, i.e. a component
without clear peaks in the PSD, across a wide range of frequencies (see Fig 2A, H, O, red lines). In
addition to broadband spectral changes, the technique also reveals a diverse set of narrow-band

oscillatory components, revealed by peaks in the PSD (see Fig 2A, H, O, blue and black lines).

This way, three major principal spectral components (PSCs), one representing a broadband
component and two representing rhythmic components, were identified from the auditory LFP signal.
PSCs were highly consistent across three monkeys (see Fig 2A, H, O), matching tightly with the
original depiction of spectral principal component analysis (PCA) (see Fig 1A in Miller et al., 2009b).
In order to assess which of these three major PSCs encode auditory prediction error response,

components were back-projected to the time dimension.

We found that the Broadband PSC carried a characteristic auditory event-related broadband (ERBB)
response, reminiscent of auditory ERP, compared to largely flat responses derived from the rhythmic
PSCs with alpha (Rhythmic 1) and delta (Rhythmic 2) peaks. The ERBB response was evident in the
average of individual - standard and deviant - responses (see Fig 2B, I, P) as well as along the whole
sequence of 11 identical tones as compared to the tone sequences reconstructed from the Rhythmic
components (see Fig 2C-E,J-L,Q-S). Repeated measures ANOVA between the PSC (Broadband,
Rhythmic 1, Rhythmic 2) and the stimulus expectancy (standards, deviants) factors revealed the main
effects for the PSC and the stimulus expectancy, and the interaction between the PSC and the
stimulus expectancy factors (see Fig 2F,M,T). Post-hoc comparisons showed that the ERBB response
locked to the deviant tones had a larger amplitude compared to the ERBB response locked to the
standard tones in the Broadband PSC contrast, but not in the Rhythmic 1 PSC nor the Rhythmic 2
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217  PSC contrasts (see Fig 2G,N,U). We thus conclude that MMN response recorded by the ECoG of the

218 auditory cortex is driven by broadband rather than rhythmic components of LFP signal.
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Figure 2 | Event-related broadband response of stimulus expectancy. (A,H,0) Element
magnitude of the major principal spectral components (PSCs) in the frequency domain (1-240 Hz). In
this and other subplots, the Broadband PSC is depicted in red, the Rhythmic 1 PSC (alpha) in blue,
and the Rhythmic 2 PSC (delta/theta) in black. (B,I,P) A narrow window of back-reconstructed time
series of the broadband and rhythmic PSCs, locked to the onset of tones (0 ms). Standard and deviant
stimuli are averaged together. (C-E,J-L,Q-S) Back-reconstructed time series of the Broadband and
Rhythmic PSCs along a sequence of 11 identical tones. 0 ms indicates the onset of the deviant tone.
(F,M,T) ANOVA results of the stimulus expectancy (standard, deviant) and the spectral component
(Broadband, Rhythmic 1, Rhythmic 2) contrast. Significant main effects were observed for the PSC
(Fr: F(2,1438)=341.70, p<0.001, eta-squared = 0.322; Kr: F(2,2878)=113.00, p<0.001, eta-squared =
0.073; Go: F(2,2878)=78.60, p<0.001, eta-squared = 0.052) and the stimulus expectancy (Fr:
F(1,719)=14.1, p<0.001, eta-squared = 0.01; Kr: F(1,1439)=23.60, p<0.001, eta-squared = 0.016; Go:
F(1,1439)=4.81, p<0.029, eta-squared = 0.003) factors, and the interaction between the PSC and the
stimulus expectancy (Fr: F(2,1438)=17.20, p<0.001, eta-squared = 0.02; Kr: F(2,2878)=20.80,
p<0.001, eta-squared = 0.014; Go: F(2,2878)=15.49, p<0.001, eta-squared = 0.011). Error bars
indicate the standard error of the mean (SEM). ‘=’ refers to the main effects, ‘X’ refers to the interaction.
(G,N,U) Stimuli locked waveforms show post-hoc comparisons between the standard and deviant
stimuli in the broadband and rhythmic PSCs, which revealed larger amplitude for the deviant stimuli
in the Broadband PSC contrast (Fr: t=6.96, pgc.<0.001; Kr: t=7.84, psc<0.001; Go: t=5.48, pg:<0.001),
but not in the Rhythmic 1 (Fr: t=0.378, pe.=1.00; Kr: t=0.612, ps.=1.00; Go: t=0.397, pe:=0.99) nor the
Rhythmic 2 (Fr: t=0.812, psc=1.00; Kr: t=-0.033, ps.=1.00; Go: t=-1.567, pg:=1.00) PSC contrasts.

Cross-individual decoding of stimulus expectancy with broadband and rhythmic components

While the single-subject results of ERBB response were highly consistent across all three monkeys
(see Fig 2), we wanted to establish whether the broadband prediction-error response of an individual
monkey can be extrapolated to other individuals of the same species. This would indicate that the
prediction error information generated in the auditory cortex is implemented similarly across monkeys.
We thus assessed the cross-individual generalizability of the ERBB response by decoding the stimuli
expectancy using the Broadband and Rhythmic PSCs. Using all trials of a respective PSC of one
monkey, we trained a linear discriminant (LDA) classifier to learn stimuli categories (standard vs.
deviant) in the auditory cortex electrode (see Fig 1B and S1). Afterwards, we decoded stimuli
categories using the same PSC in a different monkey. Using Broadband PCS, we obtained significant
decodability in all six pairs of comparisons, i.e. cross-individual decoding between 3 monkeys (see
Fig 3A). The time windows of significant decoding above chance level (50% AUC) were consistent
with MMN and BRBB responses (see Fig 1B and Fig 2G, N, U). Contrary to this, no significant cross-
individual decodability was observed using Rhythmic 1 and 2 PCSs (see Fig 3B, C). These findings

confirm the cross-individual generalizability of the broadband PSC encoding of stimulus expectancy.
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261  Figure 3 | Decoding of stimulus expectancy across monkeys with broadband and rhythmic
262 components. Classification of stimulus expectancy conditions (standard, deviant) was carried out in
263  one of the monkeys (plotted in green). Afterwards, the classifier was tested on the other two monkeys
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(plotted in purple). Time points of significant decoding of stimulus categories above chance level (50%
of AUC), estimated with a cluster-based permutation test, are depicted in red. (A) Decoding was
successful in all six pairs using Broadband PSC. (B) Decoding did not exceed chance level using the
Rhythmic 1 PSC. (C) Decoding did not exceed chance level using the Rhythmic 2 PSC.

Multiscale multifractal analysis of broadband and rhythmic neural components

We hypothesized that the Broadband component has a distinct multiscale temporal organization
within the milliseconds of the evoked response than the one from the rhythmic components. In
particular, we sought to characterize the scale-free temporal properties of the segregated neural
components. These properties relate to the functional state of neural systems (Papo, 2014; He, 2014;
Werner, 2010). We further hypothesized that the broadband component—the neural signal subserving
oddball detection—has a more stochastic multiscale temporal organization which allows greater
dynamical flexibility. The scale-free nature of the neuronal population firing rate, manifested in the
broadband PSC (Miller, 2009; Manning et al., 2010), is usually estimated by determining the slope of
the log-log function of PSD (power vs. frequency), also referred to as 1/f (fractal) scaling. However,
often the PSD is not characterized by a single exponent and may show a scale-dependence (Miller,
2009; Chaudhuri et al, 2017) and/or different scaling depending on the statistical moment and hence
exhibit multifractality (Nagy et al. 2017). Indeed, the single-trial auditory responses, standards and
deviants, revealed a piecewise linear decay of power with frequency in each marmoset (Fig 4A),
suggesting that the dynamics of the underlying processes may have scale-free properties but also a
heterogeneous scaling dependent on frequency (timescale). This is noticeable by the different slopes
which characterize the 1/f-like PSD depending on the frequency range (Fig. 4A), precluding the fitting
of a unique line to estimate the slope across the whole spectrum. Thus, to fully characterize the scale-
free properties of the three components, we sought to test for the presence of scale-dependent

multifractality in the series of increments of neural activity in the marmoset auditory cortex.

Multifractality requires the presence of different scaling exponents (h) of different moments of the
fluctuations (q) over a wide range of timescales (s) (Kantelhardt et al., 2002). Using multiscale
multifractal analysis (MMA; Gierattowski et al., 2012) (Fig 4B), which is particularly suited to analyze
complex systems which exhibit fluctuations of activity on a wide range of timescales and a broad
distribution of values, we found that all the three PSCs show considerable variability in the values of

the generalized g and s-dependent scaling exponents (h(q,s) — Hurst surface) (Fig 4D). The Rhythmic

components displayed similar surfaces, distinct from the nonlinear profile of h across q < [—5,5] of
the Broadband PSC activity. These results were consistent across monkeys (see Fig S5). The
average tendency across scales revealed a nearly linear dependence of h with g for both Rhythmic
components suggesting their underlying dynamics appears multifractal. Conversely, although the

dynamics of the Broadband PSC is also multifractal (in the sense that its fractal properties depend on
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q), the profile is nonlinear and distinct for small (q < 0) and large (q > 0) fluctuations (Fig 4E). We note
that the conventional Hurst scaling analysis (g = 2 results) did not provide a clear distinction between
the Broadband and Rhythmic 2 components. Furthermore, averaged surface values of h suggest the
Broadband fluctuations can be quasi-stochastic (h ~ 0.5) or persistent without obeying strictly a power-
law (h ~ 1.1), depending on if large (g >0) or small fluctuations (q < 0) are considered (Fig 4F).
Conversely, Rhythmic 1 and Rhythmic 2 fluctuations ranged from being close to Brownian motion
(integrated white noise, h ~ 1.5) to scale-free. There was a qualitative agreement on the values across
monkeys (Fig 4E, F). Thus, while all three PSC components showed scale-free properties, there were
significant differences in the apparent stochasticity, expressed as h(q), between the components (Go:
RANOVA F(2,20)=103, p<0.001, eta-squared=0.339; Kr: RANOVA F(2,20)=134, p<0.001, eta-
squared=0.404; Fr. RANOVA F(2,20)=40.2, p<0.001, eta-squared=0.228). For all three monkeys, the
Broadband component exhibited lower h(q) values compared to the Rhythmic 1 (Go: t=-14.05,
p<0.001; Kr: t=-13.39, p<0.001; Fr: t=-8.54, p<0.001) and Rhythmic 2 (Go: t=-9.54, p<0.001; Kr: t=-
14.88, p<0.001; Fr: t=-6.64, p<0.001) components.

In order to determine whether the multifractality, depicted in the Hurst surfaces (Fig 4D), is caused by
the temporal correlations of the signal distribution, we created a distribution of shuffled surrogates,
i.e. copies of the original data with identical mean, variance and histogram distribution but no temporal
structure. While the mean Hurst surfaces of the surrogates distribution showed for all monkeys a
decrease in multifractality (p<0.001) (Fig 4D; Suppl. Figure 5), the averaged Hurst exponent values
indicated that the neural dynamics approached randomness (i = 0.5) for all monkeys (Fig 4H).
Therefore, the multifractality is caused mostly by the temporal correlations but also by a fat-tailed
probability distribution. We subsequently computed the multifractal spectrum f(a). Analogously to a
Fourier analysis, i.e. the decomposition of a signal into a sum of components with fixed frequencies,
f(a) can be understood as decomposition of a signal into a set of exponents a (Mandelbrot, 2003).
Their relative presence in the signal is weighted by the f(a) function. The Broadband activity
interweaved more densely sets of singularities that are less self-similar than those of the Rhythmic
components and displayed a lower degree of multifractality and a more asymmetrical fla) (Fig 4G
,H), suggesting its dynamics differs from simple multiplicative cascades. The shape of the multifractal
spectra for the Broadband activity also displayed a right-truncation (Fig 4C,G and Suppl. Figure 5),
which is expected due to the leveling of h(qg,s) for g <0 (llhen, 2012).

To sum up, MMA analysis revealed that the generalized scale-dependent Hurst exponent h(qg,s) and
the derived f(a) curves of the dynamics of Broadband and Rhythmic components show multifractality
as well as marked differences of this property. Importantly, the Broadband component more closely

approached a stochastic asymmetrical multifractal distribution.
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Figure 4 | Multifractal characterization of the Broadband and Rhythmic dynamics. (A) Double
logarithmic plots of the power spectral densities of the Broadband (blue), Rhythmic 1 (pink) and
Rhythmic 2 (green) components during all trials of the auditory MMN paradigm reveal a piecewise
approximately linear decay of power with frequency. The average scaling (fractal) properties of the
power spectral densities (last column) are distinct across frequencies, spectral components and


https://doi.org/10.1101/821942
http://creativecommons.org/licenses/by-nd/4.0/

345
346
347
348
349
350
351
352

353
354

355

356
357
358

359
360

361
362
363
364
365
366
367
368
369
370

371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388

bioRxiv preprint doi: https://doi.org/10.1101/821942; this version posted October 29, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

marmosets. (B) Multiscale Multifractal Analysis (MMA) method. Left. Log-log plots of the fluctuation
functions F4(5) for each ¢ € [—5. 5], color-coded from dark blue (g = -5) to dark red (g = 5) and scale
s (in ms) of the time series correspondent to the Broadband activity of monkey Go. The Hurst (scaling)
exponent (hl,z,_,_,n) is obtained by determining the slope of a linear fit within a window lasting the
period (51.2...11) marked with vertical dashed lines. Three example scales are displayed: 51 € [10, 50],
so € [20,100] and s1 € [120,600]. Right. Computed Hurst exponents (¢, $) are displayed in a (Hurst)
surface plot grid. As an example, the cells corresponding to hia..u (g=2;s=1,2or 11) are
highlighted with their respective colors (light grey, lilac, green). (C) The Hurst surface can also be

converted into a multifractal spectrum, f (), which describes how densely the singularities (i.e. scaling
exponents,) are distributed in a signal. The parabolic vertex shows the central tendency, a measure

of the regularity present, and the width, the degree of multifractality (A«). (D) Hurst surfaces (h(f}, s)

) of the component activities (each column) and the < h(g,s) > of a distribution of 50 shuffled
surrogates. Monkey Go is shown here; for the other monkeys, see Figure Suppl. 5. (E) Scaling
properties averaged for all scales. The Hurst exponent s dependency on ¢ is evident for all

components, suggesting their multifractality. (F) Mean (+/-SD) of the Hurst surfaces (< h(q. s) =)
suggests that the Broadband activity has an overall more random profile. Each group of 3 dots with
error bars refers respectively to < h(g.s) > across all scales (s) for negative, positive and all values
of 4. Individual results for the Broadband (BB), Rhythmic 1 (R1) and Rhythmic 2 (R2) PSCs are
displayed in variations of blue, pink and green colors, respectively. Bottom row shows the values
obtained for the distribution of surrogates. (G) Multifractal spectrum of the three PSCs of Monkey Go,
the lightness of the colors represents the results for different scales (s) (light — dark with increasing
scales %1,2,..11), (H) Central tendency of the multifractal spectrum (cv.q2), degree of multifractality (A«
) and asymmetry of the spectrum (¢sa.) for the three types of activity ((Broadband (BB): blue;
Rhythmic 1 (R1): pink; Rhythmic 2 (R2): green)). Each monkey is displayed in a different shade of the
colors.

Discussion

In the present study, we compared two alternative views of prediction error processing, namely
whether LFP oscillatory vs. broadband components of neural activity encode deviant sensory stimuli.
We found that auditory MMN response, a classical marker of prediction error, is primarily driven by
the broadband component of LFP signal. Given that broadband PSC reflects the mean firing rate of
neuronal populations (Hermes et al., 2014, 2017; Manning et al, 2009; Miller, 2010), and that neuronal
spiking correlates tightly with the high-frequency LFP in the auditory cortex (Mukamel et al., 2005),
our findings indicate that prediction error response depends on the asynchronous neuronal firing rate

rather than oscillatory neuronal encoding of incoming stimuli.

We first replicated previous research by showing that auditory MMN is generated in the auditory
cortex. Afterwards, we separated the LFP signal into Broadband and Rhythmic components and
repeated MMN analyses separately for each component. While the main two rhythmic components
present in the data were not able to distinguish between the standard and deviant tones, the
broadband component indexed the stimuli difference in the auditory cortex. The findings were highly

consistent across all three marmosets, and the cross-individual decoding successfully classified
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stimuli category (standard or deviant) when data were trained on one monkey and tested on a different
one. Importantly, significant decoding was observed only with the Broadband PSC, as the decoding

was unsuccessful with the Rhythmic PSCs.

Our study challenges the generality of low-frequency neural oscillations as an instrument for
enhancing (Schroeder and Lakatos, 2009) and gating information in the auditory cortex (Lakatos et
al., 2013). In particular, it has been argued that a phase reset of slow frequencies in the range of delta
and theta oscillations may underlie prediction error response (Arnal et al, 2015; Fuentemilla et al.,
2008; Ko et al., 2012). However, we show that the Rhythmic 2 component with a distinctive delta peak
and a considerable contribution from theta range activity (Fig 2A, H, O) does not discriminate between
standard and deviant tones. Likewise, the Rhythmic 1 component representing alpha range activity
did not encode prediction error response, challenging previous studies that linked MMN to alpha band
power (Ko et al., 2012; MacLean et al., 2014). This contrast is striking given that these ideas were
deemed most relevant in the context of rhythmic as opposed to continuous stimulation (Schroeder
and Lakatos, 2009), and rhythmicity is prevalent in the current oddball paradigm. However, it is
important to emphasize that we do not claim that low-frequency neuronal counterparts of neural
activity do not contribute to predictive coding: long-term dependencies are relevant in sensory
prediction in the auditory cortex (Rubin et al., 2016). Rather, we suggest they enable information

processing through more flexible, dynamical unstable codes than an oscillatory code.

Our results demonstrate that prediction error processing is subsumed by an asynchronous broadband
activity with dynamical properties very distinct from that of the rhythmic components. Importantly, this
difference is unveiled when a multiscale approach is used to characterize fluctuations with several
degrees of resolution (multiple fractal hierarchies) and it is patent in the surfaces and multifractal
spectrum; the difference is equivocal by simply observing the power spectral densities or doing a
classical Hurst analysis. The broadband component is distinctive from the other components by its
lower level of self-similarity and multifractality and also by its asymmetric multifractal spectrum. The
presence of multifractality in the broadband and rhythmic electrocorticographic activity suggests it
may be a generic feature of neuronal networks and cognition may operate by modulations of this
property (Papo, 2014). Arguably, spike trains represent information with a multifractal temporal coding
(Fetterhoff et al., 2015) and the integrated multifractal spectrum permit to infer the tuning curve of
spiking activity in primates (Fayyaz et al, 2019). This could be a more effective mechanism of how
information is encoded in neuronal assemblies than the one provided by oscillatory rhythms. This
hypothesis is bolstered by ideas that synchronization per se only arises in collective states where no
new information can be created. In contrast, adaptive behaviour emerges from more subtle forms of
coordination, e.g. through the metastability or asynchronous coupling of spatiotemporal patterns of

neural activity (Friston, 2000; Tognoli and Kelso, 2014). The multifractality present in the recordings
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reveals how the macroscopic neural dynamics is intermittent, its spectral density changes with time,
which has been hypothesized as a facet of temporal metastability (Friston, 1997; Tognoli and Kelso,
2014); at the core of metastability is the broken symmetry of spatiotemporal patterns (Kelso and Kelso,
1995) which was only present in the broadband activity. In fact, the more asymmetrical multifractal
spectra of the broadband activity suggest this feature may be a proxy of a dynamical regime which
allows the breakdown of symmetry, characteristic of systems that can perceptibly or meaningfully
react to afferent inputs (Freeman and Vitiello, 2006).

Furthermore, the prediction error processing by neural assemblies in the auditory cortex is sustained
by an irregular broadband component with small fluctuations lying in a tight range of the non-ergodic
dynamical regime h > 1, which has been proposed as an explanation for the 1/f noise of cognitive
processes (Grigolini et al., 2009), and large fluctuations with stochastic-like properties. Altogether,
this result emphasizes the importance of asynchronous chaotic irregular states for optimal
responsiveness to external stimuli (Beaman et al., 2017; Renart et al., 2010; Zerlaut and Destexhe,
2017).

Our findings were enabled by a novel approach to quantify these complex dynamics of neural
systems, the so-called brain’s “stochastic chaos” (Freeman et al., 2001). Future studies are
anticipated to extend MMA analysis of MMN to wider frequency ranges (>100 Hz), with a fine-grained
resolution to arguably uncover the spike tuning underlying sensory-state discrimination (Fayyaz et al.,
2019). The broadband prediction error response should be further studied using hierarchical auditory
prediction paradigms that can discriminate sensory and top-down prediction error responses
(Bekinschtein et al., 2009; Chennu et al., 2013, 2016). Developed in human studies, such paradigms
have been recently successfully applied in the common marmosets (Chao et al., 2018). Furthermore,
while the marmoset model of MMN deemed successful and very stable, as indicated by cross-

individual decoding, the current study should be replicated using LFP recordings in humans.

Importantly, our findings provide a unifying framework for the micro- to macro-level neural
mechanisms of prediction error response. While most of the auditory MMN studies are carried out at
the macro-level using scalp EEG recordings or meso-level LFP, auditory prediction error responses
have also been identified using single-neuron recordings (Nieto-Diego and Malmierca, 2016; Parras
et al., 2017; Pérez- Gonzélez et al., 2005; Solomon and Kohn, 2014; Ulanovsky et al., 2003, 2004).
In particular, individual neurons located in the primary auditory cortex increase spiking rate following
presentation of oddball stimuli, which has been observed in different mammal species, including cat
(Ulanovsky et al., 2003, 2004), rat and mouse (Nieto-Diego and Malmierca, 2016; Parras et al., 2017).
Similar responses have also been identified in sub-cortical neurons (Parras et al., 2017; Pérez-

Gonzalez et al., 2005). In particular, a subclass of neurons located in the dorsal and external cortices
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of the inferior colliculus of the rat respond selectively to novel auditory stimuli, while muting their
response to repetitive stimuli (Pérez- Gonzélez et al., 2005). A recent study of single-neuron activity
recorded from different auditory centers in rats and mice suggests that prediction error response is
organized hierarchically along the non-lemniscal auditory pathway comprising of inferior colliculi,
medial geniculate bodies and the primary auditory cortex with sensitivity to the deviant tones
increasing along the pathway (Parras et al., 2017). MMN-like deviance sensitivity of firing rate
increases further in the non-primary regions of auditory cortex (Nieto-Diego and Malmierca, 2016).
How do such micro-level single-neuron responses relate to the MMN potentials recorded with ECoG
and/or EEG? Are different neuronal mechanisms at different levels of measurement, such as single
neuron spiking rate vs. neuronal oscillations recorded using ECog/EEG?

Our study indicates that increased neuronal firing rate underlies prediction error responses not only
at the micro-level of single-neuron recordings, but also at the higher meso-level LFP measurements.
In particular, we show that MMN prediction error response is driven by the Broadband component of
the meso-level LFP signal. Given that the Broadband PSC reflects largely stochastic neuronal firing
rate, as suggested by previous modeling studies (Miller et al., 2007; Miller et al., 2009a), our findings
indicate that auditory prediction error response is indeed encoded at a single action potential level
within neuronal populations, which generate broadband signal at the meso- and most likely macro-
level electrophysiology. Broadband LFP activity provides indirect access to the total spiking output of
neurons, as shown by a growing number of experiments and simulations (Crone et al.,, 2011;
Freeman, 2004; Rash et al., 2008). Thus, the reported Broadband activity in this study provides a
‘proxy’ for investigating the neuronal mechanisms underlying auditory prediction error. As such, the
mesoscopic information of the Broadband LFP component represents a crucial link between
macroscopic-level EEG and the microscopic-level spiking activity of neural populations (Buzsaki et
al., 2012).

How could our LFP-based broadband results be reconciled with an abundant literature on frequency-
specific MMN results, mostly derived from EEG experiments that do not find broadband MMN
response across all frequencies? Miller (2010) argues that low-frequency range of broadband effects
can be obscured by coincident changes in specific rhythmic phenomena. We further suggest that
EEG artefacts may decrease signal-to-noise ratio in frequency-specific segments of the broadband
signal, in which case only relatively clean segments would survive as significant detectors of
prediction error response. For instance, blink artifacts may distort neural signal in the delta and theta
frequency range (Gasser et al., 1992), whereas muscular artifacts are likely to interfere with the beta
and gamma range activity (van de Velde et al., 1998). Similarly, spontaneous fluctuation of alertness
level, which is likely to occur during passive “oddball” paradigms, would interfere with neural

processing in the theta and alpha frequency range (Noreika et al., 2019a, 2019b). Thus, depending
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on the experimental demands, the selection and training of participants, and the data preprocessing
steps, certain segments of the broadband signal may be occluded by artifactual or irrelevant signals
when contrasting standard and novel stimuli, yielding frequency-specific deviance responses that in
fact originate from scale-free broadband component of neuronal signal. The suggested role of EEG
artifacts in the preclusion of broadband response could be tested using simultaneous EEG and LFP
recordings. Alternatively, too often classical frequency bands are loosely equated to specific rhythms
(Lopes da Silva, 2013) and the views of collective neural network activity as oscillations lend too much
emphasis on “rhythmicity” (Cole and Voytek, 2017) when in reality, in those narrow-band analyses
perhaps no characteristic frequency oscillation was present and/or may even be spurious and caused
by filtering (de Cheveigné and Nelken, 2017).

To conclude, we show that in a well-studied paradigm of auditory prediction error, oscillations do not
constitute a means to temporally constrain information processing. They are perhaps the tips of the
iceberg, the latter being an arrhythmic broadband component with asymmetric multifractal stochastic
properties at several timescales. Our paper establishes the relevance of the broadband activity to
encode relatively low-level auditory patterns and provides a theoretical background and empirical
tools to probe which predictive values lie under the “noisy” surface in other paradigms and sensory

modalities.

Methods

Subjects

We used three adult male common marmosets (Callithrix jacchus) that weighed 320-380 g. Monkeys
were implanted with ECoG electrode array under general anaesthesia, and all efforts were made to
minimize suffering. All surgical and experimental procedures were performed in accordance with the
National Institutes of Health Guidelines for the Care and Use of Laboratory Animals and approved by
the RIKEN Ethical Committee (No. H26-2-202). ERP data of one monkey (Fr) was reported previously

(Komatsu et al., 2015), whereas datasets of monkeys Go and Kr are new.

Implantation of ECoG arrays

Chronically implanted, customized multichannel ECoG electrode arrays (Fig. S1) (Cir-Tech Inc.,
Japan) were used for neural recordings (Komatsu et al., 2015; 2017). We implanted 32 (the left
hemisphere of monkey Fr), 64 (the right hemisphere of monkey Go), and 62 (the right hemisphere of

monkey Kr) electrodes in the epidural space. For 32 electrode array, each electrode contact was 1mm
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in diameter and had an inter-electrode distance of 2.5-5.0 mm (Komatsu et al., 2015). For 64
electrode array, each electrode contact was 0.6mm in diameter and had an inter-electrode distance
of 1.4mm in a bipolar pair (Komatsu et al., 2017). The electrode-array covered the frontal, parietal,
temporal, and occipital lobes. The additional 4 electrodes of monkey Fr covered part of the right frontal
lobe. The animals were initially sedated with butorphanol (0.2 mg/kg i.m.), and surgical anaesthesia
was achieved with ketamine (30 mg/kg i.m.) and medetomidine (350 pg/kg i.m.). The animals were
then positioned in a stereotaxic frame (Narishige, Japan) and placed on a heating pad during surgery.
Vital signs were monitored throughout surgery. Implantation of the electrode-arrays involved the
removal of a bone flap (~2 cm along the anterior-posterior axis and ~1 cm along the mediolateral axis)
over the parietal cortex. The array was advanced into the epidural space. After positioning the
electrode-array, connectors were attached to the bone using dental acrylic and titanium (size 1.0 x
0.1mm) or PEEK (size 1.4 x 2.5 mm) screws. The reference electrodes were placed in the epidural
space and the ground electrodes in the episkull space. The anti-inflammatory corticosteroid
dexamethasone (1.25mg/kg, i.m.) was administered after surgery to prevent brain swelling. The
animals were given antibiotics and analgesics daily for 5 days after surgery. Following the animals’
recovery, the position of each electrode in the arrays was identified based on computer tomography,
and then co-registered to a template T1-weighted anatomical magnetic resonance image (MRI)
(http://brainatlas.brain.riken.jp/marmoset/; Hikishima et al., 2011) (monkey Fr) or pre-acquired MRI

(monkeys Go and Kr) using MRIcron software (http://www.mricro.com; Rorden et al., 2007). In all

monkeys, the electrode-array covered the frontal, parietal, occipital, and temporal cortices, including

the primary auditory area (Fig. 2A-C and S2).

Stimuli and task

We adopted a roving oddball paradigm (Cowan et al., 1993; Haenschel et al., 2005; Garrido et al.,
2008). The trains of 3, 5, or 11 repetitive single-tones of 20 different frequencies (250—-6727 Hz with
intervals of 1/4 octave) were pseudo-randomly presented. Tones were identical within each tone-train,
but differed between tone-trains. Because tone-trains followed on from one another continuously, the
first tone of a train was considered to be an unexpected deviant tone, because it was of a different
frequency from that of the preceding train. The final tone was considered to be an expected standard
tone, because it was preceded by several repetitions of this same tone. To avoid analytical artefacts
stemming from differences in the number of standard and deviant stimuli, we considered only the last
tone of a train as standard. Standards and deviants were presented 240 times in a single recording
session. Pure sinusoidal tones lasted 64 ms (7 ms rise/fall), and stimulus onset asynchrony was 503
ms. Stimulus presentation was controlled by MATLAB (MathWorks Inc., Natick, MA, USA) using the

Psychophysics Toolbox extensions (Pelli, 1997; Brainard and Vision, 1997). Tones were presented
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through two audio speakers (Fostex, Japan) with an average intensity of 60 dB SPL around the

animal’s ear.

ECoG recording and preprocessing

ECoG recordings were taken in the passive listening condition while monkeys were awake. In each
recording session, the monkey Fr was held in a drawstring pouch, which was stabilized in a dark
room, and the monkeys Go and Kr sat on a primate chair in a dimly lit room. The length of a single
session was about 15 min: the first 3 min of data were used for many standard stimuli (data are not
shown in this paper) and the remaining 12 min of data were used for the roving oddball sequences.
For monkey Fr, data from 3 sessions were used for analysis, which resulted in 720 (=240 x 3) standard
and deviant presentations. For monkeys Go and Kr, data from 6 sessions were used for analysis,
which resulted in 1440 (=240 x 6) standard and deviant presentations.

ECoG signals were recorded at a sampling rate of 1 kHz per channel. In the signal preprocessing,
those signals were re-referenced using an average reference montage, and high-pass filtered above
1 Hz. We segmented datasets from —903 to 400 ms relative to the onset of the unexpected tone, so
that each segment would include a pair of a deviant and a standard immediately preceding the
deviant, as well as a baseline of 400 ms preceding the standard tone. The segments were then divided
into standard epochs and deviant epochs (-400 ms to 400 ms). Parts of the dataset are shared in the

public server Neurotycho.org (http://neurotycho.org/; Nagasaka et al., 2011).

ECoG electrode-of-interested was identified functionally by contrasting time-frequency charts
between standard and deviant stimuli (0-350 ms), separately for each electrode (see Suppl. Fig. 2-4).
The Hilbert transform was applied every 10 Hz and z-scored with respect to the baseline period (-100
ms to 0 ms). One electrode with the largest high-gamma difference between the standard and deviant
tones (Edwards et al., 2005; Eliades et al., 2014; Haenschel et al., 2000; MacLean et al., 2014;
Marshall et al., 1996) was selected for each monkey for further analyses. In all three monkeys, the
selected electrode-of-interest was located in the auditory cortex (see Suppl. Fig. 1E-H).

Event-related potentials

For ERP analysis of the raw signal, a low-pass filter of 40 Hz was used. ECoG recordings were re-
referenced with respect to the common average reference across all electrodes. Data were then
epoched around the onset of tones (-100 ms to 350 ms), and baseline correction was applied by
subtracting the mean of the 100 ms period before the stimulus onset. MMN was assessed by

comparing the standard ERP and deviant ERP.
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Decoupling the cortical spectrum to isolate Broadband and Rhythmic spectral components

To extract the course of broadband spectral activity, we carried out the spectral decoupling of raw
LFP signal (Miller et al. 2009a, 2009b, 2017). As for the ERP analysis, ECoG potentials were re-
referenced with respect to the common average reference across all electrodes. For the selected
electrodes-of-interest (see above), discrete samples of power spectral density (PSD) were calculated
using -200 to 400 ms epochs centered at the stimuli onset. With trials from both conditions (standards
and deviants) grouped together, individual PSDs were normalized with an element-wise division by
the average power at each frequency, and the obtained values were log-transformed. An inner
product matrix of these normalized PSDs was diagonalized with a singular value decomposition, and
was then applied to identify components of stimulus-related changes in the PSD. The eigenvectors
(Principal Spectral Components or PSCs) from this decomposition revealed distinct components of
cortical processing. Continuous time-frequency power charts were calculated using complex Morlet
wavelets. These power charts were then normalized in the same way as the discrete spectra and
projected onto the first PSC (broadband), second PSC (alpha rhythm, ~ 10 Hz), and third PSC (delta
rhythm, ~2 Hz), separately. The raw time series were smoothed with an 80-ms Gaussian envelope
(SD 80 ms), z-scored per trial, using a pre-stimulus period between -100 to 0 ms, and exponentiated,
and then a value of 1 was subtracted (setting the mean at 0). The first PSC allowed to obtain the
“broadband time course” which has been shown to reflect a power law in the cortical PSD (Miller et
al., 2009a), and the second and third PSCs uncovered the “rhythmic time courses” with distinct

frequency peaks.

Cross-individual decoding

To assess cross-individual generalizability of our findings, a univariate temporal decoding model was
applied on each individual PSC time-courses on the selected auditory cortex electrodes, aiming to
decode the stimuli expectancy categories, i.e. standards vs deviants. (Figure 3). The ADAM-toolbox
was used on the Broadband and Rhythmic PSC time-courses with epochs from -100 ms to 400 ms
(Fahrenfort et al., 2018). Crucially, and for each individual component, we trained a linear discriminant
(LDA) classifier in one monkey and tested in a separate monkey for obtaining cross-individual
decodability of stimuli expectancy category, i.e. standard vs deviant trials. As decoding algorithms are
known to be time-consuming, data were downsampled to 250 Hz. Next, a backward decoding
algorithm, using either stimulus expectancy category was applied according to a tenfold cross-
validation scheme. A linear discriminant analysis (LDA) was used to discriminate between stimulus
classes (e.g. deviant versus standard trials) after which classification accuracy was computed as the
area under the curve (AUC), a measure derived from the Signal Detection Theory. AUC scores were

tested per time-point with double-sided t-tests per subjects against a 50% chance-level. These t-tests
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were corrected for multiple comparisons over time, using cluster-based permutation tests (p<0.05,

1000 iterations). This procedure yields time clusters of significantly above-chance classifier accuracy.

Dynamical characterization of the scaling behaviour

To characterize the scaling properties of the neural activities of all PSCs of all monkeys, we combined
all individual trials for each PSC after removing their baseline — the resulting series had a length of
1327920 (Monkey Fr) and 2655840 samples (Monkeys Kr and Go) — and quantified the relationship

between In(power) and In(frequency).

Continuous power spectral densities. The power spectral density (band: 1-100 Hz) of each combined
time series for the principal components studied was computed by applying the modified Welch
periodogram method as implemented in Matlab’s pwelch() function. We used 50% overlapping Hann
windows of 1.024 s.

Multiscale Multifractal Analysis (MMA). The nonstationarity of neural dynamics (Palus, 1996) and, in
particular, the existence of changing points (crossovers) in the scaling laws in the marmoset
electrocorticographic data, which vary across individual and PSCs, precluded a pre-defined selection
of the scales of interest and called for a data-driven scaling analysis robust to nonstationarity. Thus,
to characterize the scaling behaviour, we used a method designated Multiscale Multifractal Analysis
(MMA) (Gierattowski et al., 2012). MMA is an extension of the Detrended Fluctuation Analysis (DFA)
(Peng et al.,, 1995), an established method to quantify the monofractal scaling behaviour of
nonstationary signals, robust to some extrinsic trends (Hu et al., 2001). DFA is essentially a modified
root mean square (RMS) analysis of a random walk (Peng et al., 1995). Briefly, for a given time series
z;, of length N, the profile ¥(¥) is determined by integrating the time series, then ¥(¥) is split into non-
overlapping segments with length s which are detrended by subtracting the local least-squares line fit,
us(k). Since N/$ is often not an integer, to avoid discarding data samples, a second splitting is
performed starting from the end of the time series; a total of 2 segments are considered. The root-

mean-square fluctuation of integrated and detrended time series is given by:

F(s) =

o7 2 I0h) — w0

A generalized version of this method—the Multifractal Detrended Fluctuation Analysis (MF-DFA)
(Kantelhardt et al., 2002)—permits to further characterize the fluctuations by inspecting

simultaneously small and large fluctuations ¢« dependent on the multifractal parameter :
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() = 4 oo Sk — ()F b
2N,

k=1

The conventional DFA corresponds to the situation in which ¢ = 2, and it is for stationary random
processes equivalent to the Hurst exponent (Hurst, 1951). The process is repeated for several lengths
of s typically, F4(5) increases with s and displays the asymptotic behaviour ¥(s) ~n"” The
generalized Hurst exponent (h(q)) is estimated by extracting the slope of a linear least-square
regression of £4(5) on a log-log plot for a given set of s values. The MMA algorithm’s advantage is that
instead of prefixing a unique range of scales to estimate the scaling behaviour, it allows to scan for
several scale-ranges yielding a quasi-continuous characterization of the scaling behaviour ((a)),
which may vary along scales (frequencies of the power spectrum): the result is a scaling exponent
depending on both g and s—{4, 3). It can be visualized in a grid, the Hurst surface, each cell of which

corresponds to a value of g and a given range of scales s.

We applied MMA to the PSCs of the 3 marmosets within a range of ¢ € [—5,5] and fixed the lower
scale limit to 10 samples and the upper to 600, the first being the minimum required to avoid arithmetic
underflow (Gierattowski et al., 2012), and the second to not include scales above the length of a single
continuous trial. We computed MMA along 12 scales, comprising the range s € [10,600] ms which is
equivalent to ~1.67-100 Hz. The first scale integrated the scales 51 € [10,50] (20-100 Hz) and for
$2.3,...,12 this window was progressively slid 10 ms and expanded (52 € [20,100] s3 € [30,150] and so
forth). This permitted a nearly continuous coverage of the whole spectrum, allowing to identify any

crossover areas. For the detrending, we used a polynomial of order 2.

The values of (¢, ) are interpreted in the following way (Gierattowski et al., 2012): if 2(q, s) = 0.5
the signal is constituted by uncorrelated randomness (white noise), h(g,s) €]0.5,1] indicates
persistent long-range correlations and scale-free properties, if h(gq,s) € [0,0.5] the signal has anti-
correlations, h(q,s) = 1.5 indicates Brownian motion (integrated white noise) and, finally,

h(q,5) > 2 indicates black noise. Further, monofractal signals will have identical / for all 4 values
while multifractal time series display different exponent values depending on whether ¢ is negative
(short fluctuations) or positive (large fluctuations) (Kantelhardt et al., 2002). Within the regime of

persistent long-range correlations, there is also a straightforward correspondence between h and the
()~
spectral exponent & obtained from the slope of the power spectral density ( 3, where f is the

frequency); according to the Wiener-Khintchine theorem: 5 = 2h — 1, A full description of MMA is
available at (Gierattowski et al., 2012) and we used the original code available at Physionet,

(https://physionet.ora/physiotools/mma/; (Goldberger et al., 2000)).
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Multifractal spectrum. A complementary way of identifying the scaling properties of the different PCSs
is to consider their singularities characterized by the parameters « (Lipschitz-Holder exponent) and
fla), respectively associated with the strength of the singularities and how densely they are distributed
(Halsey et al., 1986). Thus, the multifractal (or singularity) spectrum is described by the possible range
of o values and the function /(). There is an established connection between these latter measures
and the exponents obtained with MMA through the known relationship between MF-DFA and the
general multifractal formalism (Kantelhardt et al., 2002; Kantelhardt, 2011). Using fractal geometry
and specifically the box-counting method, one can obtain an estimate of dimension by relating a linear
distance (s) to the mass of a given object. If in an E-dimensional space of the observations is
partitioned into (hyper-)cubes with side s, and one counts the number N(s) of cubes that contain at
least one point of a set S, one obtains a very crude measure of this set (Feder, 1988) without any
information from its structure. A better estimate applies a weighted sum that takes into consideration

the number of points in each hyper-cube. For a set S consisting of N points, Vi will be the number of
— N?

points in each partition i and the mass or probability i = N It follows that the weighted number of

boxes, N (q,s) is defined by:

N(g,s) =3 i) ~ s~

Where q is the moment order and 7(4) is the mass exponent and 7(0) = Do s the fractal dimension

of the set. If there is a linear dependency of 7(q) with g then, a set is monofractal, otherwise, it is
multifractal. In (Kantelhardt et al., 2002), it was derived how the mass exponent relates to the h(q) of

the method used in this report:

7(q) = qh(q) — 1

It follows that /(<) is derived from 7(¢) via a Legendre transform (Halsey et al., 1986):

dr(q)
dg

fla) = ga —7(q)

Then by simply replacing Eg. 4 and 5 in Eqg. 6, one obtains the singularities strength (») and the

dimensions of the subset of the time series that is characterized by those singularities (f(ﬂ‘)):

a=h(q) — qh'(q) and f(a@) = gla — h(q)] + 1
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The function f(e)is always convex upward and its left-hand branch corresponds to g > 0 and the
right-hand branch to g <0 (Theiler, 1990). Furthermore, the central tendency (peak @) of the
multifractal spectrum is closely related to the Hurst exponent derived from the monofractal (g = 2)
DFA, thus representing the average fractal structure in the signal. The multifractal spectrum width (
/—\(0-')) indicates the deviation from monofractality, or conversely, the degree of multifractality (lhlen,

2012). The (A((-*-‘)) is defined as the difference between the maximum (%maz) and minimum (¥min)

values of the Lipschitz-Holder exponent:

A”‘f = Qmaz — Ymin

Of note,f(@) is not forcefully a symmetric function and can differ from the shape like the symbol N
characteristic of the most trivial multifractals, which are not strictly self-similar (scale-free), but have a
multiplicative rescaling structure, i.e. a scale-dependent self-similarity (Riedi, 1999). Therefore, we
also computed a rough estimate of the degree of asymmetry:
Qmar — Qg
ASpq = ————

Qp — Qipin
We computed these parameters of the multifractal spectrum for all scales (s) analyzed with MMA and
for all PCS activities of the marmosets.

Surrogate data. We created 50 shuffled surrogates by randomly permuting in temporal order the
samples of the original time series of each marmoset’s PSCs. If the shuffling procedure yields time
series exhibiting simple random behaviour (» = 0.5), one can conclude that the multifractality present
is due to different long-range correlations of small and large fluctuations (Kantelhardt et al., 2002). On
the contrary, if shuffling does not affect the values of h{q, 5), the multifractality originates in a broad
probability density function (PDF) of the values in the time series. If the multifractality originates both
from correlations and broad PDF, the shuffling version will display weaker multifractality than the

original one. All analyses were carried out in Matlab® (v. 2018a, The MathWorks).
Statistics

For ERP MMN (Fig 1) pairwise comparisons were used by comparing a pair of adjacent standard (i.e.
the last tone of the N train) and deviant (i.e. the first tone of the N+1 train) stimuli. Similarly, for the
spectrally-decoupled time series (Fig 2F,M,T), we performed separate repeated-measures ANOVA
(RANOVA) for each individual monkey between PSC (Broadband, Rhythmic 1, Rhythmic 2) and
stimulus (standards, deviants), using Bonferroni correction for post hoc comparisons. Similarly, in the

case of the MMA analyses (Fig 4F), Hurst exponents were compared using RANOVA for each monkey
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between PSC (Broadband, Rhythmic 1 and Rhythmic 2) and post hoc comparisons were Bonferroni
corrected. Statistical analyses were performed using open-source statistical software jamovi (Version

0.9; Jamovi project, 2019).
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