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Summary 45 

 46 

Detection of statistical irregularities, measured as a prediction error response, is fundamental to the 47 

perceptual monitoring of the environment. We studied whether prediction error response is generated 48 

by neural oscillations or asynchronous neuronal firing. Electrocorticography (ECoG) was carried out 49 

in three monkeys, who passively listened to the auditory roving oddball stimuli. Local field potentials 50 

(LFP) recorded over the auditory cortex underwent spectral principal component analysis, which 51 

decoupled broadband and rhythmic components of LFP signal. We found that broadband component 52 

generated prediction error response, whereas none of the rhythmic components encoded statistical 53 

irregularities of sounds. The broadband component displayed more stochastic, asymmetrical 54 

multifractal properties than the rhythmic components, which revealed more self-similar dynamics. We 55 

thus conclude that the prediction error response is encoded by asynchronous neuronal populations, 56 

defined by irregular dynamical states which, unlike oscillatory rhythms, appear to enable the neural 57 

representation of auditory prediction error response.  58 

 59 
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Introduction 82 

  83 

Detection of novel sensory information enables adaptive interaction with the surrounding environment 84 

(Clark, 2013; Whitmire and Stanley, 2016). In the predictive coding framework of brain functioning, 85 

this interaction is characterized by a reciprocal loop between sensory predictions and prediction error 86 

signals (Bastos et al., 2012; Friston and Kiebel, 2009). Neural mechanisms of prediction error are 87 

typically studied by presenting a series of “standard” stimuli with intermittently occurring deviant 88 

stimuli, also called “oddballs”, and by contrasting brain responses between these stimuli categories 89 

(Chennu et al., 2013; Lumaca et al., 2019; Parras et al., 2017). This way, event-related potentials 90 

(ERP) and a range of neural oscillations have been identified as neural markers of prediction error. 91 

The most widely studied deviance ERP is the auditory mismatch negativity (MMN) – a negative 92 

deflection of electrical event-related potential recorded on the scalp or using intracranial electrodes 93 

(Halgren et al., 1995; Näätänen et al., 1978; 2007). MMN originates from the primary auditory cortex 94 

(Alain et al., 1998; Alho, 1995; Edwards et al., 2005), and it peaks around 150-200 ms in humans, 95 

whilst the peak latencies below 100 ms are typically reported in monkeys (Javitt et al., 1992; Komatsu 96 

et al., 2015). In addition to MMN, prediction error responses are observed in neural oscillations in a 97 

variety of frequency ranges including theta (3-8 Hz) (Choi et al., 2013; Fuentemilla et al., 2008; Hsiao 98 

et al., 2009; Ko et al., 2012; MacLean et al., 2014), alpha (8-12 Hz) (Ko et al., 2012; MacLean et al., 99 

2014), beta (14-30 Hz) (Haenschel et al., 2000; MacLean et al., 2014) and gamma (>30 Hz) (Edwards 100 

et al., 2005; Eliades et al., 2014; Haenschel et al., 2000; MacLean et al., 2014; Marshall et al., 1996) 101 

ranges.  102 

 103 

Several interpretations could be formulated aiming to explain the abundance of prediction error 104 

responses in the frequency dimension. First of all, there could be multiple independent neural 105 

mechanisms sensitive to stimulus deviance. This suggestion, however, does not explain why there 106 

would be so many distinct mechanisms with an identical functional role. Alternatively, frequency-107 

specific detectors of prediction error might be only partially independent, forming hierarchical cross-108 

frequency interactions. For instance, rhythms of different frequency bands could drive each other, e.g. 109 

delta phase could modulate theta amplitude and theta phase could modulate gamma amplitude in the 110 

auditory cortex (Lakatos et al., 2005). Yet another possibility – which we pursue in the present study 111 

– is that a broad frequency range of deviance responses, including theta, alpha, beta and gamma 112 

bands, points to a broadband prediction error response, which is not restricted to a particular 113 

frequency band, but instead is driven by an arrhythmic or asynchronous neural signal. In fact, a large 114 

number of studies reported deviance effects to run across several frequency bands (Chao et al., 2018; 115 

Haenschel et al., 2000; Hsiao et al., 2009; Ko et al., 2012; MacLean et al., 2014), arguably alluding 116 

to arrhythmic processing of unexpected stimuli. 117 

 118 
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The electrophysiological signal recorded by scalp EEG or local field potentials (LFP) is a summed 119 

activity of both postsynaptic and action potentials. Post-synaptic potentials contribute to the rhythmic 120 

oscillations of different frequency bands (Buzsaki et al., 2012), reflecting neural synchrony at specific 121 

timescales. Contrary to this, empirical data analysis and modelling suggest that the average input 122 

firing rate produces asynchronous, broadband changes across a wide frequency range (Miller et al., 123 

2009a, 2009b; Manning et al., 2009). Such rhythmic and broadband components of LFP signal can 124 

be decomposed using spectral principal component analysis (spectral PCA) (Miller et al., 2009a, 125 

2009b, 2017), this way separating synchronous and asynchronous neural activity. Broadband 126 

component of the LFP power spectrum is commonly characterized by a power-law function (Freeman 127 

and Zhai, 2009; He, 2014; Hermes et al., 2019), which reflects the lack of any specific temporal beat 128 

(e.g. 10 Hz) in the signal. Contrary to this, rhythmic components produce frequency-specific spectral 129 

peaks that deviate from the power law. In fact, the electrocorticography power is characterized by at 130 

least three different power-law regions of which the transitions vary across individuals and recordings 131 

in human (Chaudhuri et al., 2017; He et al., 2010) and non-human primates. The functional relevance 132 

of this heterogeneous scaling is discernible as, for instance, levels of arousal across a gradual 133 

progression from awake to grades of anaesthesia (Gifani et al., 2007) or to deep sleep (Ma et al., 134 

2006; Weiss et al., 2009) can manifest selectively within power-law changes at different timescales. 135 

Such complex dynamics across different LFP timescales can be characterized by multiscale 136 

multifractal analysis (MMA; Gierałtowski et al.,  2012), developed to analyse signal fluctuations on a 137 

wide range of timescales like those observed in LFP signals.  138 

 139 

In the present study, we aimed to assess whether such broadband neural dynamics rather than 140 

frequency-specific rhythms underlie prediction error in the auditory cortex in the primate brain. We 141 

hypothesized that the broadband component of LFP has a multiscale scaling dynamics, distinct from 142 

that of the rhythmic LFP components. 143 

 144 

Results 145 

 146 

Using epidurally implanted electrodes, we recorded electrocorticograms (ECoGs) from three awake 147 

common marmosets, who passively listened to the stream of varying tones (see Fig 1A and Suppl. 148 

Fig 1A-D). By contrasting neural responses to standard and deviant tones, which were physically 149 

matched across expectancy conditions, we first identified MMN deviance response from the auditory 150 

cortex (see Fig 1B). Afterwards, we decomposed the raw LFP signal into broadband and rhythmic 151 

spectral components (following Miller et al., 2009a, 2009b, 2017; see Fig 1C). Spectral decomposition 152 

allowed us to assess whether MMN is driven by the broadband rather than oscillatory components of 153 

the LFP signal. In the following, we report a single-trial analysis that was carried out separately for 154 
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each monkey (referred to as Fr, Go and Kr), using electrodes located in the auditory cortex (see Fig 155 

1B and Suppl. Fig 1E-H).  156 

 157 

 158 

Figure 1 | Experimental design, classical ERP and spectral decoupling analysis. (A) Using a 159 
roving oddball paradigm, 20 different single-tones were presented in the trains of 3, 5 or 11 identical 160 
stimuli. Any two subsequent trains consisted of different tones. This way, while the adjacent standard 161 
(depicted in black) and deviant (depicted in green) tones deviated in the frequency due to the transition 162 
between the trains, the two expectancy conditions were physically matched, as the first and the last 163 
tones of the same train were treated as deviant and standard tones in the analysis of the adjacent 164 
stimuli pairs. (B) Time courses of ERP waveforms of the standard (black) and deviant (green) stimuli 165 
conditions. 0 ms time point indicates the onset of a given tone. Error shades represent the standard 166 
error of the mean (SEM), calculated across all trials at each time point. Data in this and other subplots 167 
were recorded by the electrode marked in red in the ECoG montage insets. Each subplot represents 168 
a different monkey. (C) Spectral decoupling. Temporally adjacent raw LFP segments of the standard 169 
tone (i.e. the last stimulus of the previous train) and the deviant tone (i.e. the first stimulus of the 170 
subsequent train) were extracted for the spectral PCA. First, Fast Fourier transform was used to 171 
calculate log power (1-250 Hz) of the raw LFP signal, which was afterwards normalized across all 172 
trials within a given expectancy condition. Normalized spectral snapshots were input into spectral 173 
PCA, which separated broadband and rhythmic components. Principal spectral components were 174 
reconstructed back to the time-series for the subsequent contrast between the expected and 175 
unexpected stimuli conditions. 176 
 177 

 178 

 179 
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Auditory ERP in the raw LFP signal 180 

 181 

First, we confirmed that perturbation of auditory cortex with a deviant tone compared to a preceding 182 

standard tone increased the amplitude of auditory evoked potentials in the MMN time window (Fr: 183 

t(1,719) = -7.37, p < 0.001, Cohen’s d = 0.275; Go: t(1,1439) = -4.60, p < 0.001, Cohen’s d = 0.121; 184 

Kr: t(1,1439) = -9.27, p < 0.001, Cohen’s d = 0.244; see Fig 1B). Latency of ERP peaks (58-66 ms) 185 

was consistent with the previous MMN studies of non-human primates (Javitt et al., 1992; Komatsu 186 

et al., 2015).  187 

 188 

Auditory evoked responses reconstructed with broadband and rhythmic components  189 

 190 

Aiming to differentiate broadband component of LFP signal from rhythmic sources, we carried out 191 

spectral principal component analysis that decouples the power spectrum density (PSD) into 192 

components reflecting different underlying neural dynamics (see Fig 1C and Methods). Using this 193 

technique, a broadband component can be identified by a uniform power increase, i.e. a component 194 

without clear peaks in the PSD, across a wide range of frequencies (see Fig 2A, H, O, red lines). In 195 

addition to broadband spectral changes, the technique also reveals a diverse set of narrow-band 196 

oscillatory components, revealed by peaks in the PSD (see Fig 2A, H, O, blue and black lines).  197 

 198 

This way, three major principal spectral components (PSCs), one representing a broadband 199 

component and two representing rhythmic components, were identified from the auditory LFP signal. 200 

PSCs were highly consistent across three monkeys (see Fig 2A, H, O), matching tightly with the 201 

original depiction of spectral principal component analysis (PCA) (see Fig 1A in Miller et al., 2009b). 202 

In order to assess which of these three major PSCs encode auditory prediction error response, 203 

components were back-projected to the time dimension. 204 

 205 

We found that the Broadband PSC carried a characteristic auditory event-related broadband (ERBB) 206 

response, reminiscent of auditory ERP, compared to largely flat responses derived from the rhythmic 207 

PSCs with alpha (Rhythmic 1) and delta (Rhythmic 2) peaks. The ERBB response was evident in the 208 

average of individual - standard and deviant - responses (see Fig 2B, I, P) as well as along the whole 209 

sequence of 11 identical tones as compared to the tone sequences reconstructed from the Rhythmic 210 

components (see Fig 2C-E,J-L,Q-S). Repeated measures ANOVA between the PSC (Broadband, 211 

Rhythmic 1, Rhythmic 2) and the stimulus expectancy (standards, deviants) factors revealed the main 212 

effects for the PSC and the stimulus expectancy, and the interaction between the PSC and the 213 

stimulus expectancy factors (see Fig 2F,M,T). Post-hoc comparisons showed that the ERBB response 214 

locked to the deviant tones had a larger amplitude compared to the ERBB response locked to the 215 

standard tones in the Broadband PSC contrast, but not in the Rhythmic 1 PSC nor the Rhythmic 2 216 
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PSC contrasts (see Fig 2G,N,U). We thus conclude that MMN response recorded by the ECoG of the 217 

auditory cortex is driven by broadband rather than rhythmic components of LFP signal. 218 

 219 
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Figure 2 | Event-related broadband response of stimulus expectancy. (A,H,O) Element 220 
magnitude of the major principal spectral components (PSCs) in the frequency domain (1-240 Hz). In 221 
this and other subplots, the Broadband PSC is depicted in red, the Rhythmic 1 PSC (alpha) in blue, 222 
and the Rhythmic 2 PSC (delta/theta) in black.  (B,I,P) A narrow window of back-reconstructed time 223 
series of the broadband and rhythmic PSCs, locked to the onset of tones (0 ms). Standard and deviant 224 
stimuli are averaged together.  (C-E,J-L,Q-S) Back-reconstructed time series of the Broadband and 225 
Rhythmic PSCs along a sequence of 11 identical tones. 0 ms indicates the onset of the deviant tone. 226 
(F,M,T) ANOVA results of the stimulus expectancy (standard, deviant) and the spectral component 227 
(Broadband, Rhythmic 1, Rhythmic 2) contrast. Significant main effects were observed for the PSC 228 
(Fr: F(2,1438)=341.70, p<0.001, eta-squared = 0.322; Kr: F(2,2878)=113.00, p<0.001, eta-squared = 229 
0.073; Go: F(2,2878)=78.60, p<0.001, eta-squared = 0.052) and the stimulus expectancy (Fr: 230 
F(1,719)=14.1, p<0.001, eta-squared = 0.01; Kr: F(1,1439)=23.60, p<0.001, eta-squared = 0.016; Go: 231 
F(1,1439)=4.81, p<0.029, eta-squared = 0.003) factors, and the interaction between the PSC and the 232 
stimulus expectancy (Fr: F(2,1438)=17.20, p<0.001, eta-squared = 0.02; Kr: F(2,2878)=20.80, 233 
p<0.001, eta-squared = 0.014; Go: F(2,2878)=15.49, p<0.001, eta-squared = 0.011). Error bars 234 
indicate the standard error of the mean (SEM). ‘=’ refers to the main effects, ‘x’ refers to the interaction. 235 
(G,N,U) Stimuli locked waveforms show post-hoc comparisons between the standard and deviant 236 
stimuli in the broadband and rhythmic PSCs, which revealed larger amplitude for the deviant stimuli 237 
in the Broadband PSC contrast (Fr: t=6.96, pBc<0.001; Kr:  t=7.84, pBc<0.001; Go: t=5.48, pBc<0.001), 238 
but not in the Rhythmic 1 (Fr: t=0.378, pBc=1.00; Kr: t=0.612, pBc=1.00; Go: t=0.397, pBc=0.99) nor the 239 
Rhythmic 2 (Fr: t=0.812, pBc=1.00; Kr: t=-0.033, pBc=1.00; Go: t=-1.567, pBc=1.00) PSC contrasts. 240 
 241 
 242 
 243 
Cross-individual decoding of stimulus expectancy with broadband and rhythmic components  244 

 245 

While the single-subject results of ERBB response were highly consistent across all three monkeys 246 

(see Fig 2), we wanted to establish whether the broadband prediction-error response of an individual 247 

monkey can be extrapolated to other individuals of the same species. This would indicate that the 248 

prediction error information generated in the auditory cortex is implemented similarly across monkeys. 249 

We thus assessed the cross-individual generalizability of the ERBB response by decoding the stimuli 250 

expectancy using the Broadband and Rhythmic PSCs. Using all trials of a respective PSC of one 251 

monkey, we trained a linear discriminant (LDA) classifier to learn stimuli categories (standard vs. 252 

deviant) in the auditory cortex electrode (see Fig 1B and S1). Afterwards, we decoded stimuli 253 

categories using the same PSC in a different monkey. Using Broadband PCS, we obtained significant 254 

decodability in all six pairs of comparisons, i.e. cross-individual decoding between 3 monkeys (see 255 

Fig 3A). The time windows of significant decoding above chance level (50% AUC) were consistent 256 

with MMN and BRBB responses (see Fig 1B and Fig 2G, N, U). Contrary to this, no significant cross-257 

individual decodability was observed using Rhythmic 1 and 2 PCSs (see Fig 3B, C). These findings 258 

confirm the cross-individual generalizability of the broadband PSC encoding of stimulus expectancy. 259 
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 260 

Figure 3 | Decoding of stimulus expectancy across monkeys with broadband and rhythmic 261 
components. Classification of stimulus expectancy conditions (standard, deviant) was carried out in 262 
one of the monkeys (plotted in green). Afterwards, the classifier was tested on the other two monkeys 263 
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(plotted in purple). Time points of significant decoding of stimulus categories above chance level (50% 264 
of AUC), estimated with a cluster-based permutation test, are depicted in red.  (A) Decoding was 265 
successful in all six pairs using Broadband PSC.  (B) Decoding did not exceed chance level using the 266 
Rhythmic 1 PSC. (C) Decoding did not exceed chance level using the Rhythmic 2 PSC. 267 
 268 

Multiscale multifractal analysis of broadband and rhythmic neural components 269 

 270 

We hypothesized that the Broadband component has a distinct multiscale temporal organization 271 

within the milliseconds of the evoked response than the one from the rhythmic components. In 272 

particular, we sought to characterize the scale-free temporal properties of the segregated neural 273 

components. These properties relate to the functional state of neural systems  (Papo, 2014; He, 2014; 274 

Werner, 2010). We further hypothesized that the broadband component–-the neural signal subserving 275 

oddball detection–-has a more stochastic multiscale temporal organization which allows greater 276 

dynamical flexibility. The scale-free nature of the neuronal population firing rate, manifested in the 277 

broadband PSC (Miller, 2009; Manning et al., 2010), is usually estimated by determining the slope of 278 

the log-log function of PSD (power vs. frequency), also referred to as 1/f (fractal) scaling. However, 279 

often the PSD is not characterized by a single exponent and may show a scale-dependence (Miller, 280 

2009; Chaudhuri et al, 2017) and/or different scaling depending on the statistical moment and hence 281 

exhibit multifractality (Nagy et al. 2017). Indeed, the single-trial auditory responses, standards and 282 

deviants, revealed a piecewise linear decay of power with frequency in each marmoset (Fig 4A), 283 

suggesting that the dynamics of the underlying processes may have scale-free properties but also a 284 

heterogeneous scaling dependent on frequency (timescale). This is noticeable by the different slopes 285 

which characterize the 1/f-like PSD depending on the frequency range (Fig. 4A), precluding the fitting 286 

of a unique line to estimate the slope across the whole spectrum. Thus, to fully characterize the scale-287 

free properties of the three components, we sought to test for the presence of scale-dependent 288 

multifractality in the series of increments of neural activity in the marmoset auditory cortex. 289 

 290 

Multifractality requires the presence of different scaling exponents (h) of different moments of the 291 

fluctuations (q) over a wide range of timescales (s) (Kantelhardt et al., 2002). Using multiscale 292 

multifractal analysis (MMA; Gierałtowski et al., 2012) (Fig 4B), which is particularly suited to analyze 293 

complex systems which exhibit fluctuations of activity on a wide range of timescales and a broad 294 

distribution of values, we found that all the three PSCs show considerable variability in the values of 295 

the generalized q and s-dependent scaling exponents (h(q,s) – Hurst surface) (Fig 4D). The Rhythmic 296 

components displayed similar surfaces, distinct from the nonlinear profile of h across q  of 297 

the Broadband PSC activity. These results were consistent across monkeys (see Fig S5). The 298 

average tendency across scales revealed a nearly linear dependence of h with q for both Rhythmic 299 

components suggesting their underlying dynamics appears multifractal. Conversely, although the 300 

dynamics of the Broadband PSC is also multifractal (in the sense that its fractal properties depend on 301 
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q), the profile is nonlinear and distinct for small (q < 0) and large (q > 0) fluctuations (Fig 4E). We note 302 

that the conventional Hurst scaling analysis (q = 2 results) did not provide a clear distinction between 303 

the Broadband and Rhythmic 2 components. Furthermore, averaged surface values of h suggest the 304 

Broadband fluctuations can be quasi-stochastic (h ~ 0.5) or persistent without obeying strictly a power-305 

law (h ~ 1.1), depending on if large (q >0) or small fluctuations (q < 0) are considered (Fig 4F). 306 

Conversely, Rhythmic 1 and Rhythmic 2 fluctuations ranged from being close to Brownian motion 307 

(integrated white noise, h ~ 1.5) to scale-free. There was a qualitative agreement on the values across 308 

monkeys (Fig 4E, F). Thus, while all three PSC components showed scale-free properties, there were 309 

significant differences in the apparent stochasticity, expressed as h(q), between the components (Go: 310 

RANOVA F(2,20)=103, p<0.001, eta-squared=0.339; Kr: RANOVA F(2,20)=134, p<0.001, eta-311 

squared=0.404; Fr: RANOVA F(2,20)=40.2, p<0.001, eta-squared=0.228). For all three monkeys, the 312 

Broadband component exhibited lower h(q) values compared to the Rhythmic 1 (Go: t=-14.05, 313 

p<0.001; Kr: t=-13.39, p<0.001; Fr: t=-8.54, p<0.001) and Rhythmic 2 (Go: t=-9.54, p<0.001; Kr: t=-314 

14.88, p<0.001; Fr: t=-6.64, p<0.001) components. 315 

 316 

In order to determine whether the multifractality, depicted in the Hurst surfaces (Fig 4D), is caused by 317 

the temporal correlations of the signal distribution, we created a distribution of shuffled surrogates, 318 

i.e. copies of the original data with identical mean, variance and histogram distribution but no temporal 319 

structure. While the mean Hurst surfaces of the surrogates distribution showed for all monkeys a 320 

decrease in multifractality (p<0.001) (Fig 4D; Suppl. Figure 5), the averaged Hurst exponent values 321 

indicated that the neural dynamics approached randomness ( ) for all monkeys (Fig 4H). 322 

Therefore, the multifractality is caused mostly by the temporal correlations but also by a fat-tailed 323 

probability distribution. We subsequently computed the multifractal spectrum f(α). Analogously to a 324 

Fourier analysis, i.e. the decomposition of a signal into a sum of components with fixed frequencies, 325 

f(α) can be understood as decomposition of a signal into a set of exponents α (Mandelbrot, 2003). 326 

Their relative presence in the signal is weighted by the f(α) function. The Broadband activity 327 

interweaved more densely sets of singularities that are less self-similar than those of the Rhythmic 328 

components and displayed a lower degree of multifractality and a more asymmetrical   (Fig 4G 329 

,H), suggesting its dynamics differs from simple multiplicative cascades. The shape of the multifractal 330 

spectra for the Broadband activity also displayed a right-truncation (Fig 4C,G and Suppl. Figure 5), 331 

which is expected due to the leveling of h(q,s) for q < 0  (Ilhen, 2012). 332 

 333 

To sum up, MMA analysis revealed that the generalized scale-dependent Hurst exponent h(q,s) and 334 

the derived f(α) curves of the dynamics of Broadband and Rhythmic components show multifractality 335 

as well as marked differences of this property. Importantly, the Broadband component more closely 336 

approached a stochastic asymmetrical multifractal distribution. 337 

 338 
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 339 

Figure 4 | Multifractal characterization of the Broadband and Rhythmic dynamics. (A) Double 340 
logarithmic plots of the power spectral densities of the Broadband (blue), Rhythmic 1 (pink) and 341 
Rhythmic 2 (green) components during all trials of the auditory MMN paradigm reveal a piecewise 342 
approximately linear decay of power with frequency. The average scaling (fractal) properties of the 343 
power spectral densities (last column) are distinct across frequencies, spectral components and 344 
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marmosets. (B) Multiscale Multifractal Analysis (MMA) method. Left. Log-log plots of the fluctuation 345 

functions  for each , color-coded from dark blue (q = -5) to dark red (q = 5) and scale 346 
s (in ms) of the time series correspondent to the Broadband activity of monkey Go. The Hurst (scaling) 347 

exponent ( ) is obtained by determining the slope of a linear fit within a window lasting the 348 

period ( ) marked with vertical dashed lines. Three example scales are displayed: , 349 

 and . Right. Computed Hurst exponents  are displayed in a (Hurst) 350 

surface plot grid. As an example, the cells corresponding to  (q = 2; s = 1, 2 or 11) are 351 
highlighted with their respective colors (light grey, lilac, green). (C) The Hurst surface can also be 352 

converted into a multifractal spectrum, , which describes how densely the singularities (i.e. scaling 353 
exponents, ) are distributed in a signal. The parabolic vertex shows the central tendency, a measure 354 

of the regularity present, and the width, the degree of multifractality ( ). (D) Hurst surfaces (355 

) of the component activities (each column) and the   of a distribution of 50 shuffled 356 
surrogates. Monkey Go is shown here; for the other monkeys, see Figure Suppl. 5. (E) Scaling 357 
properties averaged for all scales. The Hurst exponent  dependency on  is evident for all 358 

components, suggesting their multifractality. (F) Mean (+/-SD) of the Hurst surfaces ( ) 359 
suggests that the Broadband activity has an overall more random profile. Each group of 3 dots with 360 

error bars refers respectively to  across all scales ( ) for negative, positive and all values 361 
of . Individual results for the Broadband (BB), Rhythmic 1 (R1) and Rhythmic 2 (R2) PSCs are 362 
displayed in variations of blue, pink and green colors, respectively. Bottom row shows the values 363 
obtained for the distribution of surrogates. (G) Multifractal spectrum of the three PSCs of Monkey Go, 364 
the lightness of the colors represents the results for different scales ( )  (light → dark with increasing 365 
scales ). (H) Central tendency of the multifractal spectrum ( ), degree of multifractality (366 
) and asymmetry of the spectrum ( ) for the three types of activity ((Broadband (BB): blue; 367 
Rhythmic 1 (R1): pink; Rhythmic 2 (R2): green)). Each monkey is displayed in a different shade of the 368 
colors. 369 
 370 

 371 

Discussion 372 

  373 

In the present study, we compared two alternative views of prediction error processing, namely 374 

whether LFP oscillatory vs. broadband components of neural activity encode deviant sensory stimuli. 375 

We found that auditory MMN response, a classical marker of prediction error, is primarily driven by 376 

the broadband component of LFP signal. Given that broadband PSC reflects the mean firing rate of 377 

neuronal populations (Hermes et al., 2014, 2017; Manning et al, 2009; Miller, 2010), and that neuronal 378 

spiking correlates tightly with the high-frequency LFP in the auditory cortex (Mukamel et al., 2005), 379 

our findings indicate that prediction error response depends on the asynchronous neuronal firing rate 380 

rather than oscillatory neuronal encoding of incoming stimuli.  381 

 382 

We first replicated previous research by showing that auditory MMN is generated in the auditory 383 

cortex. Afterwards, we separated the LFP signal into Broadband and Rhythmic components and 384 

repeated MMN analyses separately for each component. While the main two rhythmic components 385 

present in the data were not able to distinguish between the standard and deviant tones, the 386 

broadband component indexed the stimuli difference in the auditory cortex. The findings were highly 387 

consistent across all three marmosets, and the cross-individual decoding successfully classified 388 
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stimuli category (standard or deviant) when data were trained on one monkey and tested on a different 389 

one. Importantly, significant decoding was observed only with the Broadband PSC, as the decoding 390 

was unsuccessful with the Rhythmic PSCs.  391 

 392 

Our study challenges the generality of low-frequency neural oscillations as an instrument for 393 

enhancing (Schroeder and Lakatos, 2009) and gating information in the auditory cortex (Lakatos et 394 

al., 2013). In particular, it has been argued that a phase reset of slow frequencies in the range of delta 395 

and theta oscillations may underlie prediction error response (Arnal et al, 2015; Fuentemilla et al., 396 

2008; Ko et al., 2012). However, we show that the Rhythmic 2 component with a distinctive delta peak 397 

and a considerable contribution from theta range activity (Fig 2A, H, O) does not discriminate between 398 

standard and deviant tones. Likewise, the Rhythmic 1 component representing alpha range activity 399 

did not encode prediction error response, challenging previous studies that linked MMN to alpha band 400 

power (Ko et al., 2012; MacLean et al., 2014). This contrast is striking given that these ideas were 401 

deemed most relevant in the context of rhythmic as opposed to continuous stimulation (Schroeder 402 

and Lakatos, 2009), and rhythmicity is prevalent in the current oddball paradigm. However, it is 403 

important to emphasize that we do not claim that low-frequency neuronal counterparts of neural 404 

activity do not contribute to predictive coding: long-term dependencies are relevant in sensory 405 

prediction in the auditory cortex (Rubin et al., 2016). Rather, we suggest they enable information 406 

processing through more flexible, dynamical unstable codes than an oscillatory code. 407 

Our results demonstrate that prediction error processing is subsumed by an asynchronous broadband 408 

activity with dynamical properties very distinct from that of the rhythmic components. Importantly, this 409 

difference is unveiled when a multiscale approach is used to characterize fluctuations with several 410 

degrees of resolution (multiple fractal hierarchies) and it is patent in the surfaces and multifractal 411 

spectrum; the difference is equivocal by simply observing the power spectral densities or doing a 412 

classical Hurst analysis. The broadband component is distinctive from the other components by its 413 

lower level of self-similarity and multifractality and also by its asymmetric multifractal spectrum. The 414 

presence of multifractality in the broadband and rhythmic electrocorticographic activity suggests it 415 

may be a generic feature of neuronal networks and cognition may operate by modulations of this 416 

property (Papo, 2014). Arguably, spike trains represent information with a multifractal temporal coding 417 

(Fetterhoff et al., 2015) and the integrated multifractal spectrum permit to infer the tuning curve of 418 

spiking activity in primates (Fayyaz et al, 2019). This could be a more effective mechanism of how 419 

information is encoded in neuronal assemblies than the one provided by oscillatory rhythms. This 420 

hypothesis is bolstered by ideas that synchronization per se only arises in collective states where no 421 

new information can be created. In contrast, adaptive behaviour emerges from more subtle forms of 422 

coordination,  e.g. through the metastability or asynchronous coupling of spatiotemporal patterns of 423 

neural activity (Friston, 2000; Tognoli and Kelso, 2014). The multifractality present in the recordings 424 
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reveals how the macroscopic neural dynamics is intermittent, its spectral density changes with time, 425 

which has been hypothesized as a facet of temporal metastability (Friston, 1997; Tognoli and Kelso, 426 

2014); at the core of metastability is the broken symmetry of spatiotemporal patterns (Kelso and Kelso, 427 

1995) which was only present in the broadband activity. In fact, the more asymmetrical multifractal 428 

spectra of the broadband activity suggest this feature may be a proxy of a dynamical regime which 429 

allows the breakdown of symmetry, characteristic of systems that can perceptibly or meaningfully 430 

react to afferent inputs (Freeman and Vitiello, 2006).  431 

Furthermore, the prediction error processing by neural assemblies in the auditory cortex is sustained 432 

by an irregular broadband component with small fluctuations lying in a tight range of the non-ergodic 433 

dynamical regime h > 1, which has been proposed as an explanation for the 1/f noise of cognitive 434 

processes (Grigolini et al., 2009), and large fluctuations with stochastic-like properties. Altogether, 435 

this result emphasizes the importance of asynchronous chaotic irregular states for optimal 436 

responsiveness to external stimuli (Beaman et al., 2017; Renart et al., 2010; Zerlaut and Destexhe, 437 

2017).  438 

 439 

Our findings were enabled by a novel approach to quantify these complex dynamics of neural 440 

systems, the so-called brain’s “stochastic chaos”  (Freeman et al., 2001). Future studies are 441 

anticipated to extend MMA analysis of MMN to wider frequency ranges (>100 Hz), with a fine-grained 442 

resolution to arguably uncover the spike tuning underlying sensory-state discrimination (Fayyaz et al., 443 

2019). The broadband prediction error response should be further studied using hierarchical auditory 444 

prediction paradigms that can discriminate sensory and top-down prediction error responses 445 

(Bekinschtein et al., 2009; Chennu et al., 2013, 2016). Developed in human studies, such paradigms 446 

have been recently successfully applied in the common marmosets (Chao et al., 2018). Furthermore, 447 

while the marmoset model of MMN deemed successful and very stable, as indicated by cross-448 

individual decoding, the current study should be replicated using LFP recordings in humans. 449 

 450 

Importantly, our findings provide a unifying framework for the micro- to macro-level neural 451 

mechanisms of prediction error response. While most of the auditory MMN studies are carried out at 452 

the macro-level using scalp EEG recordings or meso-level LFP, auditory prediction error responses 453 

have also been identified using single-neuron recordings (Nieto-Diego and Malmierca, 2016; Parras 454 

et al., 2017; Pérez‐ González et al., 2005; Solomon and Kohn, 2014; Ulanovsky et al., 2003, 2004). 455 

In particular, individual neurons located in the primary auditory cortex increase spiking rate following 456 

presentation of oddball stimuli, which has been observed in different mammal species, including cat 457 

(Ulanovsky et al., 2003, 2004), rat and mouse (Nieto-Diego and Malmierca, 2016; Parras et al., 2017). 458 

Similar responses have also been identified in sub-cortical neurons (Parras et al., 2017; Pérez‐459 

González et al., 2005). In particular, a subclass of neurons located in the dorsal and external cortices 460 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 29, 2019. ; https://doi.org/10.1101/821942doi: bioRxiv preprint 

https://www.wizdom.ai/cite-in-google-docs/v2?cid=f207539a913d7ad;;;;;&cid=f20f400dbd02ff5;;;;;
https://www.wizdom.ai/cite-in-google-docs/v2?cid=f207539a913d7ad;;;;;&cid=f20f400dbd02ff5;;;;;
https://www.wizdom.ai/cite-in-google-docs/v2?cid=f20f9e97e1415a2;;;;;
https://www.wizdom.ai/cite-in-google-docs/v2?cid=f20f9e97e1415a2;;;;;
https://www.wizdom.ai/cite-in-google-docs/v2?cid=f20753995c90dc6;;;;;
https://www.wizdom.ai/cite-in-google-docs/v2?cid=f20f566d75b4a16;;;;;
https://www.wizdom.ai/cite-in-google-docs/v2?cid=f20fd449515bc60;;;;;&cid=f20fe7828beb750;;;;;&cid=f20f2ce5d72c162;;;;;
https://www.wizdom.ai/cite-in-google-docs/v2?cid=f20fd449515bc60;;;;;&cid=f20fe7828beb750;;;;;&cid=f20f2ce5d72c162;;;;;
https://www.wizdom.ai/cite-in-google-docs/v2?cid=f207539b7b1c5a0;;;;;
https://doi.org/10.1101/821942
http://creativecommons.org/licenses/by-nd/4.0/


of the inferior colliculus of the rat respond selectively to novel auditory stimuli, while muting their 461 

response to repetitive stimuli (Pérez‐ González et al., 2005). A recent study of single-neuron activity 462 

recorded from different auditory centers in rats and mice suggests that prediction error response is 463 

organized hierarchically along the non-lemniscal auditory pathway comprising of inferior colliculi, 464 

medial geniculate bodies and the primary auditory cortex with sensitivity to the deviant tones 465 

increasing along the pathway (Parras et al., 2017). MMN-like deviance sensitivity of firing rate 466 

increases further in the non-primary regions of auditory cortex (Nieto-Diego and Malmierca, 2016). 467 

How do such micro-level single-neuron responses relate to the MMN potentials recorded with ECoG 468 

and/or EEG? Are different neuronal mechanisms at different levels of measurement, such as single 469 

neuron spiking rate vs. neuronal oscillations recorded using ECog/EEG? 470 

 471 

Our study indicates that increased neuronal firing rate underlies prediction error responses not only 472 

at the micro-level of single-neuron recordings, but also at the higher meso-level LFP measurements. 473 

In particular, we show that MMN prediction error response is driven by the Broadband component of 474 

the meso-level LFP signal. Given that the Broadband PSC reflects largely stochastic neuronal firing 475 

rate, as suggested by previous modeling studies (Miller et al., 2007; Miller et al., 2009a), our findings 476 

indicate that auditory prediction error response is indeed encoded at a single action potential level 477 

within neuronal populations, which generate broadband signal at the meso- and most likely macro-478 

level electrophysiology. Broadband LFP activity provides indirect access to the total spiking output of 479 

neurons, as shown by a growing number of experiments and simulations (Crone et al., 2011; 480 

Freeman, 2004; Rash et al., 2008). Thus, the reported Broadband activity in this study provides a 481 

‘proxy’ for investigating the neuronal mechanisms underlying auditory prediction error. As such, the 482 

mesoscopic information of the Broadband LFP component represents a crucial link between 483 

macroscopic-level EEG and the microscopic-level spiking activity of neural populations (Buzsaki et 484 

al., 2012).  485 

 486 

How could our LFP-based broadband results be reconciled with an abundant literature on frequency-487 

specific MMN results, mostly derived from EEG experiments that do not find broadband MMN 488 

response across all frequencies? Miller (2010) argues that low-frequency range of broadband effects 489 

can be obscured by coincident changes in specific rhythmic phenomena. We further suggest that 490 

EEG artefacts may decrease signal-to-noise ratio in frequency-specific segments of the broadband 491 

signal, in which case only relatively clean segments would survive as significant detectors of 492 

prediction error response. For instance, blink artifacts may distort neural signal in the delta and theta 493 

frequency range (Gasser et al., 1992), whereas muscular artifacts are likely to interfere with the beta 494 

and gamma range activity (van de Velde et al., 1998). Similarly, spontaneous fluctuation of alertness 495 

level, which is likely to occur during passive “oddball” paradigms, would interfere with neural 496 

processing in the theta and alpha frequency range (Noreika et al., 2019a, 2019b). Thus, depending 497 
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on the experimental demands, the selection and training of participants, and the data preprocessing 498 

steps, certain segments of the broadband signal may be occluded by artifactual or irrelevant signals 499 

when contrasting standard and novel stimuli, yielding frequency-specific deviance responses that in 500 

fact originate from scale-free broadband component of neuronal signal. The suggested role of EEG 501 

artifacts in the preclusion of broadband response could be tested using simultaneous EEG and LFP 502 

recordings. Alternatively, too often classical frequency bands are loosely equated to specific rhythms  503 

(Lopes da Silva, 2013) and the views of collective neural network activity as oscillations lend too much 504 

emphasis on “rhythmicity” (Cole and Voytek, 2017) when in reality, in those narrow-band analyses 505 

perhaps no characteristic frequency oscillation was present and/or may even be spurious and caused 506 

by filtering (de Cheveigné and Nelken, 2017). 507 

To conclude, we show that in a well-studied paradigm of auditory prediction error, oscillations do not 508 

constitute a means to temporally constrain information processing. They are perhaps the tips of the 509 

iceberg, the latter being an arrhythmic broadband component with asymmetric multifractal stochastic 510 

properties at several timescales. Our paper establishes the relevance of the broadband activity to 511 

encode relatively low-level auditory patterns and provides a theoretical background and empirical 512 

tools to probe which predictive values lie under the “noisy” surface in other paradigms and sensory 513 

modalities.   514 

 515 

Methods 516 

 517 

Subjects  518 

 519 

We used three adult male common marmosets (Callithrix jacchus) that weighed 320–380 g. Monkeys 520 

were implanted with ECoG electrode array under general anaesthesia, and all efforts were made to 521 

minimize suffering. All surgical and experimental procedures were performed in accordance with the 522 

National Institutes of Health Guidelines for the Care and Use of Laboratory Animals and approved by 523 

the RIKEN Ethical Committee (No. H26-2-202). ERP data of one monkey (Fr) was reported previously 524 

(Komatsu et al., 2015), whereas datasets of monkeys Go and Kr are new. 525 

 526 

Implantation of ECoG arrays 527 

 528 

Chronically implanted, customized multichannel ECoG electrode arrays (Fig. S1) (Cir-Tech Inc., 529 

Japan) were used for neural recordings (Komatsu et al., 2015; 2017). We implanted 32 (the left 530 

hemisphere of monkey Fr), 64 (the right hemisphere of monkey Go), and 62 (the right hemisphere of 531 

monkey Kr) electrodes in the epidural space. For 32 electrode array, each electrode contact was 1mm 532 
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in diameter and had an inter-electrode distance of 2.5–5.0 mm (Komatsu et al., 2015). For 64 533 

electrode array, each electrode contact was 0.6mm in diameter and had an inter-electrode distance 534 

of 1.4mm in a bipolar pair (Komatsu et al., 2017). The electrode-array covered the frontal, parietal, 535 

temporal, and occipital lobes. The additional 4 electrodes of monkey Fr covered part of the right frontal 536 

lobe. The animals were initially sedated with butorphanol (0.2 mg/kg i.m.), and surgical anaesthesia 537 

was achieved with ketamine (30 mg/kg i.m.) and medetomidine (350 μg/kg i.m.). The animals were 538 

then positioned in a stereotaxic frame (Narishige, Japan) and placed on a heating pad during surgery. 539 

Vital signs were monitored throughout surgery. Implantation of the electrode-arrays involved the 540 

removal of a bone flap (~2 cm along the anterior-posterior axis and ~1 cm along the mediolateral axis) 541 

over the parietal cortex. The array was advanced into the epidural space. After positioning the 542 

electrode-array, connectors were attached to the bone using dental acrylic and titanium (size 1.0 x 543 

0.1mm) or PEEK (size 1.4 x 2.5 mm) screws. The reference electrodes were placed in the epidural 544 

space and the ground electrodes in the episkull space. The anti-inflammatory corticosteroid 545 

dexamethasone (1.25mg/kg, i.m.) was administered after surgery to prevent brain swelling. The 546 

animals were given antibiotics and analgesics daily for 5 days after surgery. Following the animals’ 547 

recovery, the position of each electrode in the arrays was identified based on  computer tomography, 548 

and then co-registered to a template T1-weighted anatomical magnetic resonance image (MRI) 549 

(http://brainatlas.brain.riken.jp/marmoset/; Hikishima et al., 2011) (monkey Fr) or pre-acquired MRI 550 

(monkeys Go and Kr) using MRIcron software (http://www.mricro.com; Rorden et al., 2007). In all 551 

monkeys, the electrode-array covered the frontal, parietal, occipital, and temporal cortices, including 552 

the primary auditory area (Fig. 2A-C and S2). 553 

 554 

Stimuli and task 555 

 556 

We adopted a roving oddball paradigm (Cowan et al., 1993; Haenschel et al., 2005; Garrido et al., 557 

2008). The trains of 3, 5, or 11 repetitive single-tones of 20 different frequencies (250–6727 Hz with 558 

intervals of 1/4 octave) were pseudo-randomly presented. Tones were identical within each tone-train, 559 

but differed between tone-trains. Because tone-trains followed on from one another continuously, the 560 

first tone of a train was considered to be an unexpected deviant tone, because it was of a different 561 

frequency from that of the preceding train. The final tone was considered to be an expected standard 562 

tone, because it was preceded by several repetitions of this same tone. To avoid analytical artefacts 563 

stemming from differences in the number of standard and deviant stimuli, we considered only the last 564 

tone of a train as standard. Standards and deviants were presented 240 times in a single recording 565 

session. Pure sinusoidal tones lasted 64 ms (7 ms rise/fall), and stimulus onset asynchrony was 503 566 

ms. Stimulus presentation was controlled by MATLAB (MathWorks Inc., Natick, MA, USA) using the 567 

Psychophysics Toolbox extensions (Pelli, 1997; Brainard and Vision, 1997). Tones were presented 568 
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through two audio speakers (Fostex, Japan) with an average intensity of 60 dB SPL around the 569 

animal’s ear. 570 

 571 

ECoG recording and preprocessing  572 

 573 

ECoG recordings were taken in the passive listening condition while monkeys were awake. In each 574 

recording session, the monkey Fr was held in a drawstring pouch, which was stabilized in a dark 575 

room, and the monkeys Go and Kr sat on a primate chair in a dimly lit room. The length of a single 576 

session was about 15 min: the first 3 min of data were used for many standard stimuli (data are not 577 

shown in this paper) and the remaining 12 min of data were used for the roving oddball sequences. 578 

For monkey Fr, data from 3 sessions were used for analysis, which resulted in 720 (=240 × 3) standard 579 

and deviant presentations. For monkeys Go and Kr, data from 6 sessions were used for analysis, 580 

which resulted in 1440 (=240 × 6) standard and deviant presentations. 581 

 582 

ECoG signals were recorded at a sampling rate of 1 kHz per channel. In the signal preprocessing, 583 

those signals were re-referenced using an average reference montage, and high-pass filtered above 584 

1 Hz. We segmented datasets from −903 to 400 ms relative to the onset of the unexpected tone, so 585 

that each segment would include a pair of a deviant and a standard immediately preceding the 586 

deviant, as well as a baseline of 400 ms preceding the standard tone. The segments were then divided 587 

into standard epochs and deviant epochs (-400 ms to 400 ms). Parts of the dataset are shared in the 588 

public server Neurotycho.org (http://neurotycho.org/; Nagasaka et al., 2011). 589 

 590 

ECoG electrode-of-interested was identified functionally by contrasting time-frequency charts 591 

between standard and deviant stimuli (0-350 ms), separately for each electrode (see Suppl. Fig. 2-4). 592 

The Hilbert transform was applied every 10 Hz and z-scored with respect to the baseline period (-100 593 

ms to 0 ms). One electrode with the largest high-gamma difference between the standard and deviant 594 

tones (Edwards et al., 2005; Eliades et al., 2014; Haenschel et al., 2000; MacLean et al., 2014; 595 

Marshall et al., 1996) was selected for each monkey for further analyses. In all three monkeys, the 596 

selected electrode-of-interest was located in the auditory cortex (see Suppl. Fig. 1E-H). 597 

 598 

Event-related potentials 599 

 600 

For ERP analysis of the raw signal, a low-pass filter of 40 Hz was used. ECoG recordings were re-601 

referenced with respect to the common average reference across all electrodes. Data were then 602 

epoched around the onset of tones (-100 ms to 350 ms), and baseline correction was applied by 603 

subtracting the mean of the 100 ms period before the stimulus onset. MMN was assessed by 604 

comparing the standard ERP and deviant ERP.  605 
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Decoupling the cortical spectrum to isolate Broadband and Rhythmic spectral components 606 

 607 

To extract the course of broadband spectral activity, we carried out the spectral decoupling of raw 608 

LFP signal (Miller et al. 2009a, 2009b, 2017). As for the ERP analysis, ECoG potentials were re-609 

referenced with respect to the common average reference across all electrodes. For the selected 610 

electrodes-of-interest (see above), discrete samples of power spectral density (PSD) were calculated 611 

using -200 to 400 ms epochs centered at the stimuli onset. With trials from both conditions (standards 612 

and deviants) grouped together, individual PSDs were normalized with an element-wise division by 613 

the average power at each frequency, and the obtained values were log-transformed. An inner 614 

product matrix of these normalized PSDs was diagonalized with a singular value decomposition, and 615 

was then applied to identify components of stimulus-related changes in the PSD. The eigenvectors 616 

(Principal Spectral Components or PSCs) from this decomposition revealed distinct components of 617 

cortical processing. Continuous time-frequency power charts were calculated using complex Morlet 618 

wavelets. These power charts were then normalized in the same way as the discrete spectra and 619 

projected onto the first PSC (broadband), second PSC (alpha rhythm, ~ 10 Hz), and third PSC (delta 620 

rhythm, ~2 Hz), separately. The raw time series were smoothed with an 80-ms Gaussian envelope 621 

(SD 80 ms), z-scored per trial, using a pre-stimulus period between -100 to 0 ms, and exponentiated, 622 

and then a value of 1 was subtracted (setting the mean at 0). The first PSC allowed to obtain the 623 

“broadband time course” which has been shown to reflect a power law in the cortical PSD (Miller et 624 

al., 2009a), and the second and third PSCs uncovered the “rhythmic time courses” with distinct 625 

frequency peaks.  626 

 627 

Cross-individual decoding  628 

 629 

To assess cross-individual generalizability of our findings, a univariate temporal decoding model was 630 

applied on each individual PSC time-courses on the selected auditory cortex electrodes, aiming to 631 

decode the stimuli expectancy categories, i.e. standards vs deviants. (Figure 3). The ADAM-toolbox 632 

was used on the Broadband and Rhythmic PSC time-courses with epochs from -100 ms to 400 ms 633 

(Fahrenfort et al., 2018). Crucially, and for each individual component, we trained a linear discriminant 634 

(LDA) classifier in one monkey and tested in a separate monkey for obtaining cross-individual 635 

decodability of stimuli expectancy category, i.e. standard vs deviant trials. As decoding algorithms are 636 

known to be time-consuming, data were downsampled to 250 Hz. Next, a backward decoding 637 

algorithm, using either stimulus expectancy category was applied according to a tenfold cross-638 

validation scheme. A linear discriminant analysis (LDA) was used to discriminate between stimulus 639 

classes (e.g. deviant versus standard trials) after which classification accuracy was computed as the 640 

area under the curve (AUC), a measure derived from the Signal Detection Theory. AUC scores were 641 

tested per time-point with double-sided t-tests per subjects against a 50% chance-level. These t-tests 642 
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were corrected for multiple comparisons over time, using cluster-based permutation tests (p<0.05, 643 

1000 iterations). This procedure yields time clusters of significantly above-chance classifier accuracy. 644 

 645 

Dynamical characterization of the scaling behaviour  646 

 647 

To characterize the scaling properties of the neural activities of all PSCs of all monkeys, we combined 648 

all individual trials for each PSC after removing their baseline – the resulting series had a length of 649 

1327920 (Monkey Fr) and 2655840 samples (Monkeys Kr and Go) – and quantified the relationship 650 

between ln(power) and ln(frequency). 651 

 652 

Continuous power spectral densities. The power spectral density (band: 1–100 Hz) of each combined 653 

time series for the principal components studied was computed by applying the modified Welch 654 

periodogram method as implemented in Matlab’s pwelch() function. We used 50% overlapping Hann 655 

windows of 1.024 s.  656 

 657 

Multiscale Multifractal Analysis (MMA). The nonstationarity of neural dynamics (Paluš, 1996) and, in 658 

particular, the existence of changing points (crossovers) in the scaling laws in the marmoset 659 

electrocorticographic data, which vary across individual and PSCs, precluded a pre-defined selection 660 

of the scales of interest and called for a data-driven scaling analysis robust to nonstationarity. Thus, 661 

to characterize the scaling behaviour, we used a method designated Multiscale Multifractal Analysis 662 

(MMA) (Gierałtowski et al., 2012).  MMA is an extension of the Detrended Fluctuation Analysis (DFA) 663 

(Peng et al., 1995), an established method to quantify the monofractal scaling behaviour of 664 

nonstationary signals, robust to some extrinsic trends (Hu et al., 2001). DFA is essentially a modified 665 

root mean square (RMS) analysis of a random walk  (Peng et al., 1995). Briefly, for a given time series 666 

 of length , the profile  is determined by integrating the time series, then  is split into non-667 

overlapping segments with length  which are detrended by subtracting the local least-squares line fit,  668 

. Since  is often not an integer, to avoid discarding data samples, a second splitting is 669 

performed starting from the end of the time series; a total of  segments are considered. The root-670 

mean-square fluctuation of integrated and detrended time series is given by:   671 

 672 

 673 

 674 

A generalized version of this method—the Multifractal Detrended Fluctuation Analysis (MF-DFA) 675 

(Kantelhardt et al., 2002)—permits to further characterize the fluctuations by inspecting 676 

simultaneously small and large fluctuations  dependent on the multifractal parameter : 677 
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 678 

 679 

The conventional DFA corresponds to the situation in which , and it is for stationary random 680 

processes equivalent to the Hurst exponent (Hurst, 1951). The process is repeated for several lengths 681 

of ; typically,  increases with  and displays the asymptotic behaviour . The 682 

generalized Hurst exponent ( ) is estimated by extracting the slope of a linear least-square 683 

regression of  on a log-log plot for a given set of  values. The MMA algorithm’s advantage is that 684 

instead of prefixing a unique range of scales to estimate the scaling behaviour, it allows to scan for 685 

several scale-ranges yielding a quasi-continuous characterization of the scaling behaviour ( ), 686 

which may vary along scales (frequencies of the power spectrum): the result is a scaling exponent 687 

depending on both q and s— . It can be visualized in a grid, the Hurst surface, each cell of which 688 

corresponds to a value of q and a given range of scales s. 689 

 690 

We applied MMA to the PSCs of the 3 marmosets within a range of  and fixed the lower 691 

scale limit to 10 samples and the upper to 600, the first being the minimum required to avoid arithmetic 692 

underflow (Gierałtowski et al., 2012), and the second to not include scales above the length of a single 693 

continuous trial. We computed MMA along 12 scales, comprising the range  ms which is 694 

equivalent to ~1.67-100 Hz. The first scale integrated the scales  (20-100 Hz) and for 695 

 this window was progressively slid 10 ms and expanded ( ,  and so 696 

forth). This permitted a nearly continuous coverage of the whole spectrum, allowing to identify any 697 

crossover areas. For the detrending, we used a polynomial of order 2. 698 

 699 

The values of  are interpreted in the following way (Gierałtowski et al., 2012): if  700 

the signal is constituted by uncorrelated randomness (white noise),   indicates 701 

persistent long-range correlations and scale-free properties, if    the signal has anti-702 

correlations,   indicates Brownian motion (integrated white noise) and, finally, 703 

 indicates black noise. Further, monofractal signals will have identical  for all  values 704 

while multifractal time series display different exponent values depending on whether  is negative 705 

(short fluctuations) or positive (large fluctuations) (Kantelhardt et al., 2002). Within the regime of 706 

persistent long-range correlations, there is also a straightforward correspondence between h and the 707 

spectral exponent  obtained from the slope of the power spectral density ( , where f  is the 708 

frequency); according to the Wiener-Khintchine theorem: . A full description of MMA is 709 

available at (Gierałtowski et al., 2012) and we used the original code available at Physionet, 710 

(https://physionet.org/physiotools/mma/; (Goldberger et al., 2000)).  711 
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 712 

Multifractal spectrum. A complementary way of identifying the scaling properties of the different PCSs 713 

is to consider their singularities characterized by the parameters  (Lipschitz-Hölder exponent) and 714 

, respectively associated with the strength of the singularities and how densely they are distributed 715 

(Halsey et al., 1986). Thus, the multifractal (or singularity) spectrum is described by the possible range 716 

of  values and the function . There is an established connection between these latter measures 717 

and the exponents obtained with MMA through the known relationship between MF-DFA and the 718 

general multifractal formalism (Kantelhardt et al., 2002; Kantelhardt, 2011). Using fractal geometry 719 

and specifically the box-counting method, one can obtain an estimate of dimension by relating a linear 720 

distance (s) to the mass of a given object. If in an E-dimensional space of the observations is 721 

partitioned into (hyper-)cubes with side s, and one counts the number N(s) of cubes that contain at 722 

least one point of a set S, one obtains a very crude measure of this set (Feder, 1988) without any 723 

information from its structure. A better estimate applies a weighted sum that takes into consideration 724 

the number of points in each hyper-cube. For a set S consisting of N points,  will be the number of 725 

points in each partition i and the mass or probability . It follows that the weighted number of 726 

boxes, N (q,s) is defined by: 727 

 728 

 729 
 730 

Where q is the moment order and  is the mass exponent and  is the fractal dimension 731 

of the set. If there is a linear dependency of  with q then, a set is monofractal, otherwise, it is 732 

multifractal. In (Kantelhardt et al., 2002), it was derived how the mass exponent relates to the h(q) of 733 

the method used in this report:  734 

 735 

 736 
 737 

It follows that  is derived from  via a Legendre transform (Halsey et al., 1986):  738 

 739 

 740 

 741 
 742 

 743 
 744 

 745 

Then by simply replacing Eq. 4 and 5 in Eq. 6, one obtains the singularities strength ( ) and the 746 

dimensions of the subset of the time series that is characterized by those singularities ( ): 747 

 748 

  and  749 
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The function   is always convex upward and its left-hand branch corresponds to q > 0 and the 750 

right-hand branch to q <0 (Theiler, 1990). Furthermore, the central tendency (peak ) of the 751 

multifractal spectrum is closely related to the Hurst exponent derived from the monofractal (q = 2) 752 

DFA, thus representing the average fractal structure in the signal. The multifractal spectrum width (753 

) indicates the deviation from monofractality, or conversely, the degree of multifractality (Ihlen, 754 

2012). The ( )  is defined as the difference between the maximum ( ) and minimum ( ) 755 

values of the Lipschitz-Hölder exponent: 756 

 757 

 758 
 759 

Of note,  is not forcefully a symmetric function and can differ from the shape like the symbol  760 

characteristic of the most trivial multifractals, which are not strictly self-similar (scale-free), but have a 761 

multiplicative rescaling structure, i.e. a scale-dependent self-similarity (Riedi, 1999). Therefore, we 762 

also computed a rough estimate of the degree of asymmetry:  763 

 764 

 765 
 766 

We computed these parameters of the multifractal spectrum for all scales (s) analyzed with MMA and 767 

for all PCS activities of the marmosets. 768 

 769 

Surrogate data. We created 50 shuffled surrogates by randomly permuting in temporal order the 770 

samples of the original time series of each marmoset’s PSCs. If the shuffling procedure yields time 771 

series exhibiting simple random behaviour ( ), one can conclude that the multifractality present 772 

is due to different long-range correlations of small and large fluctuations (Kantelhardt et al., 2002). On 773 

the contrary, if shuffling does not affect the values of  , the multifractality originates in a broad 774 

probability density function (PDF) of the values in the time series. If the multifractality originates both 775 

from correlations and broad PDF, the shuffling version will display weaker multifractality than the 776 

original one. All analyses were carried out in Matlab® (v. 2018a, The MathWorks).  777 

 778 

Statistics 779 

 780 

For ERP MMN (Fig 1) pairwise comparisons were used by comparing a pair of adjacent standard (i.e. 781 

the last tone of the N train) and deviant (i.e. the first tone of the N+1 train) stimuli. Similarly, for the 782 

spectrally-decoupled time series (Fig 2F,M,T), we performed separate repeated-measures ANOVA 783 

(RANOVA) for each individual monkey between PSC (Broadband, Rhythmic 1, Rhythmic 2) and 784 

stimulus (standards, deviants), using Bonferroni correction for post hoc comparisons. Similarly, in the 785 

case of the MMA analyses (Fig 4F), Hurst exponents were compared using RANOVA for each monkey 786 
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between PSC (Broadband, Rhythmic 1 and Rhythmic 2) and post hoc comparisons were Bonferroni 787 

corrected. Statistical analyses were performed using open-source statistical software jamovi (Version 788 

0.9; Jamovi project, 2019).  789 

 790 
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