

Two strategies underlying the trade-off of hepatitis C virus proliferation: stay-at-home or leaving-home?

Authors:

Shoya Iwanami^{1,†}, Kosaku Kitagawa^{1,†}, Yusuke Asai², Hirofumi Ohashi^{3,4}, Kazane Nishioka^{3,4}, Hisashi Inaba⁵, Shinji Nakaoka^{6,7}, Takaji Wakita³, Odo Diekmann⁸, Shingo Iwami^{9,10,11,‡,*}, & Koichi Watashi^{3,4,10,11,12,‡,*}

Affiliations:

¹Graduate School of Systems Life Sciences, Kyushu University, Fukuoka 819-0395, Japan. ²Graduate School of Medicine, Hokkaido University, Hokkaido 060-8638, Japan. ³Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan. ⁴Department of Applied Biological Science, Tokyo University of Science, Noda 278-8510, Japan. ⁵Graduate School of Mathematical Sciences, The University of Tokyo, Tokyo 1538914, Japan. ⁶Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan. ⁷PRESTO, Japan Science and Technology Agency, Saitama 332-0012, Japan. ⁸Mathematisch Institute, Universiteit Utrecht, 3508 TA Utrecht, The Netherlands. ⁹Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka 819-0395, Japan. ¹⁰MIRAI, JST, Saitama 332-0012, Japan. ¹¹CREST, JST, Saitama 332-0012, Japan. ¹²Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan.

†, ‡ These authors contributed equally to this study.

* Correspondence and requests for materials should be addressed to S.I. (email: siwami@kyushu-u.org) or K.W. (email: kwatashi@nih.go.jp).

1 **Abstract (244/250)**

2 Viruses proliferate through both genome replication inside infected cells and
3 transmission to new target cells or to new hosts. Each viral genome molecule in
4 infected cells is used either for amplifying the intracellular genome as a template
5 (“stay-at-home strategy”) or for packaging into progeny virions to be released
6 extracellularly (“leaving-home strategy”). The balance between these strategies is
7 important for both initial growth and transmission of viruses. In this study, we used
8 hepatitis C virus (HCV) as a model system to study the functions of viral genomic
9 RNA in both RNA replication in cells and in progeny virus assembly and release.
10 Using viral infection assays combined with mathematical modelling, we characterized
11 the dynamics of two different HCV strains (JFH-1, a clinical isolate, and Jc1-n, a
12 laboratory strain), which have different viral assembly and release characteristics. We
13 found that 1.27% and 3.28% of JFH-1 and Jc1-n intracellular viral RNAs, respectively,
14 are used for producing and releasing progeny virions. Analysis of the Malthusian
15 parameter of the HCV genome (i.e., initial growth rate) and the number of *de novo*
16 infections (i.e., initial transmissibility) suggests that the leaving-home strategy
17 provides a higher level of initial transmission for Jc1-n, while, in contrast, the
18 stay-at-home strategy provides a higher initial growth rate for JFH-1. Thus,
19 theoretical-experimental analysis of viral dynamics enables us to better understand
20 the proliferation strategies of viruses. Ours is the first study to analyze stay-leave
21 trade-offs during the viral life cycle and their significance for viral proliferation.

22

23 **Keywords:**

24 adaptation, trade-off, HCV, multi-scale model, viral proliferation strategy

25

26 Introduction

27 Hepatitis C virus (HCV) is an RNA virus specifically infecting liver cells. HCV
28 produces progeny viruses rapidly, with $\sim 10^{12}$ copies sometimes observed in patients
29 [1]. Following virus entry into target cells, viral genomic RNA produces structural
30 proteins (S) and non-structural proteins (NS) (Fig. 1A). Using the genomic RNA as a
31 template, the viral non-structural proteins amplify HCV RNA (“RNA replication”).
32 Genomic RNA can also be assembled with viral structural proteins into progeny
33 virions to be egressed outside of cells, creating the opportunity for transmission (in
34 this study, we call the process including particle assembly and egress “release”).
35 Thus, a single HCV genomic RNA molecule can be used either for RNA replication or
36 for release, and the balance between these processes governs viral proliferation. The
37 molecular mechanisms underlying each event in the viral life cycle have been
38 extensively investigated [2, 3], yet the replication-release trade-off and its significance
39 for viral proliferation remain poorly understood.

40 HCV JFH-1 is a genotype 2a strain isolated by our group from a patient with
41 fulminant hepatitis [4]. JFH-1 has been a standard strain used for experiments to
42 characterize HCV infection, virus-host interactions, and immune responses against
43 HCV [4]. In addition, Jc1 or J6/JFH (a chimeric strain in which a region of the JFH-1
44 genome from the core to NS2 was replaced by sequences from another genotype 2a
45 virus, the J6 strain) was developed as a laboratory strain to improve virus production,
46 and used for development of antiviral agents and vaccines, which requires large
47 amounts of virus [5, 6]. In spite of their high sequence similarity (97% identity over the
48 whole genome), these two viruses have different virological characteristics especially
49 in terms of the release process: while JFH-1 particles assemble on lipid droplet
50 membranes, particle assembly of J6/JFH-1-chimeric lab strains is associated with
51 endoplasmic reticulum-derived membranes [2, 3]. Thus, these two related strains are
52 a useful a reference set to compare the dynamics of release and RNA replication.

53 In this study, we used a cell culture model of infection with these two HCV
54 reference strains and measured the time-course of viral production (including HCV
55 RNA inside cells and virions produced outside of the cells), infectivity of progeny HCV,
56 and infected cell numbers. We also developed a multiscale mathematical model to
57 describe intra- and inter-cellular HCV dynamics. This interdisciplinary approach
58 suggests that different strategies exist for viral proliferation: the stay-at-home strategy
59 (JFH-1) and the leaving-home strategy (Jc1-n, a J6/JFH-1-chimeric strain). We

- 60 discuss the relevance of these strategies for viral proliferation, while referring to [7] for
61 wider evolutionary context.

62 Results

63 Age-structured multiscale modeling of HCV infection

64 To describe the intracellular replication dynamics of HCV viral RNA, we used
65 the following mathematical model:

$$66 \frac{dR(a)}{da} = kR(a) - (\mu + \rho)R(a),$$

(1)

67 where $R(a)$ is the amount of intracellular viral RNA in cells that have been infected
68 for time a . The intracellular viral RNA replicates at rate k , degrades at rate μ , and is
69 released to extracellular space at rate ρ (Fig. 1B). Note that if viruses have small or
70 large ρ , then they tend to stay inside or leave the cell, respectively (see later). In our
71 virus experiments (see **Methods**), the released viruses could infect other target cells.
72 To describe multi-round virus transmission (i.e., *de novo* infection), we needed to
73 couple intracellular viral replication with a standard mathematical model for
74 intercellular virus infection in cell culture [8, 9] (Fig. 1C). In **Supplementary Note 1**,
75 we derived the following multiscale ordinary differential equation (ODE) model for
76 HCV infection from the corresponding age-structured partial differential equation
77 (PDE) model [10, 11]:

$$78 \frac{dT(t)}{dt} = gT(t)\left(1 - \frac{T(t) + I(t)}{K}\right) - \beta_\theta T(t)V_\theta(t),$$

(2)

$$79 \frac{dI(t)}{dt} = gI(t)\left(1 - \frac{T(t) + I(t)}{K}\right) + \beta_\theta T(t)V_\theta(t),$$

(3)

$$80 \frac{dA(t)}{dt} = \beta_\theta T(t)V_\theta(t) + (k - \mu - \rho)A(t),$$

(4)

$$81 \frac{dV_\theta(t)}{dt} = f_\theta \rho A(t) - rV_\theta(t) - cV_\theta(t),$$

(5)

82
$$\frac{dV(t)}{dt} = \rho A(t) - cV(t).$$

(6)

83 Here, the intercellular variables $T(t)$ and $I(t)$ represent the numbers of uninfected
84 and infected target cells, and $V(t)$ and $V_\theta(t)$ represent the total amount of
85 extracellular viral RNA (copies/well) and the extracellular viral infectious titer
86 expressed (ffu/well), respectively. The intracellular variable $A(t)$ represents the total
87 amount of intracellular viral RNA. The parameters g and K represent the growth
88 rate and the carrying capacity of target cells, and β_θ and f_θ are the converted
89 infection rate constant and the fraction of infectious virus, respectively. We assumed
90 that progeny viruses were cleared at rate c , and that infectious virions lose infectivity
91 at rate r . Separately, we directly estimated g , K , c , $\mu + \rho$ and r for both HCV
92 JFH-1 and Jc1-n in **Fig. S1**. Detailed explanations of Eqs. (2–6) are given in
93 **Supplementary Note 1**.

94 To assess the variability of kinetic parameters and model predictions, we
95 performed Bayesian estimation for the whole dataset using Markov chain Monte
96 Carlo (MCMC) sampling (see **Methods**). Simultaneously, we fitted Eqs. (2–6) to the
97 experimentally-determined numbers of uninfected and infected cells, extracellular
98 viral RNA (copies/well) and infectious titer (ffu/well), and intracellular viral RNA
99 (copies/well). These figures were derived from infection experiments using different
100 numbers of plated cells for either HCV JFH-1 or Jc1-n as described previously [8, 9,
101 12, 13]. The remaining free model parameters (i.e., β_θ , k , ρ , f_θ) along with initial
102 values for variables (i.e., $T(0)$, $I(0)$, $A(0)$, $V_\theta(t)$, $V(0)$) were determined.
103 Experimental measurements below the detection limit were excluded in the fitting.
104 The estimated parameters and initial values are listed in **Table 1** and **Table S1**. The
105 typical behavior of the model using these best-fit parameter estimates is shown
106 together with the data in **Fig. 2A** for HCV JFH-1 (orange) and Jc1-n (green) (see
107 **Methods** for HCV strains), and indicated that Eqs. (2–6) described the *in vitro* data
108 very well. The shadowed regions corresponded to 95% posterior predictive intervals,
109 the solid and dashed lines gave the best-fit solution (mean) for Eqs. (2–6), and the
110 orange circles and green triangles showed the experimental datasets.

111 Using the estimated parameters shared between the original PDE model in
112 **Supplementary Note 1** and the transformed ODE model (i.e., Eqs. (2–6)), we
113 successfully reconstructed age information for intracellular viral RNA in infected cells
114 of infection age a , which cannot be obtained through conventional experiments alone

115 **(Fig. 2B). Fig. 2C** shows the differences in intracellular JFH-1 and Jc1-n viral RNA
116 levels in cells of infection age a . At the beginning of the experiment, intracellular viral
117 RNA increased faster under Jc1-n infection than under JFH-1 infection (shown in
118 green). However, intracellular JFH-1 viral RNA gradually accumulated to higher levels
119 than Jc1-n at later time points after infection (shown in yellow to brown). These data
120 illustrated the different dynamics of these two strains and the impact of these
121 dynamics on intracellular viral RNA production, all resulting from different strategies
122 to transmit the viral genome (see below).

123

124 **Dynamics of HCV JFH-1 and Jc1-n strain replication**

125 Our model [Eqs. (2–6)] applied to time-course experimental data allowed us to
126 extract the following kinetic parameters: the distribution of the rate constant for
127 infection, β_θ , the release rate of intracellular viral RNA, ρ , the degradation rate of
128 intracellular viral RNA, μ , the converted fraction of infectious viral RNA, f_θ , and the
129 replication rate of intracellular viral RNA, k (**Fig. 3** and **Table 1**). Comparing these
130 parameters for JFH-1 and Jc1-n showed a significant difference between the rate
131 constant for infections, β_θ , of JFH-1 (1.29×10^{-4} , 95% CI: $0.81 - 1.92 \times 10^{-4}$) and
132 Jc1-n (2.21×10^{-4} , 95% CI: $1.69 - 2.77 \times 10^{-4}$) ($p = 1.82 \times 10^{-4}$ by repeated
133 bootstrap *t*-test) (**Fig. 3A**). In addition, the release rate of intracellular viral RNA, ρ ,
134 for JFH-1 and Jc1-n were 2.43×10^{-2} (95% CI: $1.87 - 3.11 \times 10^{-2}$) and $6.25 \times$
135 10^{-2} (95% CI: $4.62 - 8.44 \times 10^{-2}$), respectively ($p = 2.00 \times 10^{-6}$ by repeated
136 bootstrap *t*-test) (**Fig. 3B**). These estimates indicated that Jc1-n infects cells 1.71
137 times faster and produces progeny viruses from infected cells 2.57 times faster than
138 JFH-1. The estimate was further validated by independent experiments, in which
139 Jc1-n entry and virus production were indeed significantly higher than those of JFH-1
140 (**Supplementary Note 2** and **Fig. S2**). There was also a small but significant
141 difference between the degradation rate, μ , of JFH-1 (0.78, 95% CI: $0.77 - 0.78$) and
142 Jc1-n (0.83, 95% CI: $0.80 - 0.84$) (**Fig. 3C**). No significant difference was apparent in
143 the converted fraction of infectious virus, f_θ (**Fig. 3D**). Because JFH-1 and Jc1-n
144 have identical non-structural regions essential for RNA replication (NS3–NS5B), we
145 estimated the same viral RNA replication rate, k , for these two viruses (**Fig. 3E**).
146 Hence, our parameter estimation captured the characteristics of the two strains well
147 and was able to quantitatively describe viral infection dynamics.

148 In our multiscale model (Eqs. (2–6)), the accumulation rate of intracellular
149 viral RNA was defined as the difference between the replication rate and the sum of

150 the degradation rate and the release rate (i.e., $k - \mu - \rho$). The distributions of
151 calculated intracellular RNA accumulation rates for JFH-1 (1.11, 95% CI: 1.04 – 1.18)
152 and Jc1-n (1.02, 95% CI: 0.95 – 1.09) are shown in **Fig. 3F** ($p = 1.58 \times 10^{-3}$ by
153 bootstrap *t*-test) (**Table 1**). The preferential accumulation of JFH-1 RNA inside cells
154 was consistent with its tendency toward gradual increased levels of intracellular RNA
155 at later time points (**Fig. 2C**). To further evaluate total viral RNA level considering
156 multi-round virus transmission, the Malthusian parameter, M , was used as an
157 indicator of the initial growth rate of intracellular viral RNA for each HCV strain [8, 12,
158 14]. Here, the Malthusian parameter was given by

$$159 M = \frac{k - \mu - \rho - r - c + \sqrt{(k - \mu - \rho + r + c)^2 + 4\beta_\theta K f_\theta \rho}}{2}$$

160 The Malthusian parameters for JFH-1 and Jc1-n were calculated as 1.11 (95% CI:
161 1.04 – 1.18) and 1.02 (95% CI: 0.95 – 1.09), respectively, and were significantly
162 different from one another ($p = 1.02 \times 10^{-3}$ by bootstrap *t*-test) (**Fig. 3G** and **Table 1**).
163 Interestingly, even if Jc1-n had a larger infection rate, β_θ , and release rate, ρ ,
164 compared with JFH-1, the initial growth rate of total JFH-1 RNA was higher than that
165 of Jc1-n. This result demonstrated that the capacity to accumulate viral RNA inside
166 cells predominantly determines the initial growth rate rather than release of progeny
167 viruses.

168

169 **Stay-at-home strategy or leaving-home strategy for “optimizing” HCV 170 proliferation**

171 We investigated how differences between the two strains, JFH-1 and Jc1-n,
172 might be interpreted in an evolutionary perspective. As mentioned above, we
173 considered two opposing strategies: the “stay-at-home strategy” and the
174 “leaving-home strategy”: If viruses have smaller ρ , they preferentially stay inside the
175 cell, but if they have larger ρ , they leave the cell. To quantitatively characterize these
176 different strategies, we defined the fraction of viral RNA remaining in the cells ($(k - \mu - \rho)/k$),
177 released from the cells (ρ/k), and degraded in the cells (μ/k) within the
178 total intracellular viral RNA produced (**Fig. 4A**). Using all accepted MCMC parameter
179 estimates from the time-course experimental datasets, we calculated that the
180 fractions of viral RNA remaining were 57.9% and 53.5%, the fractions of viral RNA
181 degraded were 40.8% and 43.2%, and the fractions of viral RNA released were
182 1.27% and 3.28% for JFH-1 and Jc1-n, respectively (**Fig. 4B**). Notably, Jc1-n used
183 intracellular viral RNA for virus release 2.58 times faster than JFH-1, explaining the

184 rapid transmission of Jc1-n (**Fig. 2C**). These results indicate the preferential
185 “leaving-home” strategy of Jc1-n as compared with JFH-1, which adopts a
186 “stay-at-home” strategy.

187 To further investigate these two opposing strategies, we addressed the
188 relevance of viral RNA release rates for viral proliferation using *in silico* analysis. With
189 various values of the release rate of intracellular viral RNA, ρ , we calculated the
190 Malthusian parameter for each strain as an indicator of viral fitness (**Fig. 4C**). Each
191 curve shows Malthusian parameters calculated using 100 parameter sets sampled
192 from MCMC parameter estimates as functions of ρ , and each gray vertical line is the
193 corresponding estimated release rate. Interestingly, the smaller release rate, the
194 larger the Malthusian parameter HCV achieves. This is because intracellular viral
195 RNAs can be amplified faster compared with viral RNAs outside of cells that are
196 degraded or enter new cells. This result showed that the JFH-1 strain is more
197 optimized in terms of its Malthusian parameter compared with Jc1-n because of the
198 smaller estimated values of ρ . That is, HCV JFH-1 adopts the stay-at-home strategy
199 for acquiring a higher initial growth rate.

200 Next, we defined the cumulative number of newly infected cells at time t to
201 evaluate viral transmissibility:

$$202 \int_0^t \beta T(\tau) V(\tau) d\tau = \int_0^t \beta_\theta T(\tau) V_\theta(\tau) d\tau.$$

203 We also calculated the cumulative number of newly infected cells for each strain
204 using the means of the estimated parameters as functions of ρ (**Fig. 4D**). Each curve
205 showed the calculated cumulative number of infected cells until 2, 4, 6, 8, and 10
206 days post-infection, and the gray vertical line represented the mean release rate
207 estimated from the infection experiment. The value of the release rate, which
208 maximized the cumulative number of newly infected cells, was between 0.1 and 1.
209 This is because an intermediate release rate effectively increases extracellular viral
210 RNA for new infection: Lower release rates do not effectively produce new infections
211 while higher release rates decrease intracellular viral RNA levels and thus diminish
212 future new infections. Thus, it appears that Jc1-n is more optimized for producing
213 newly infected cells. This implies that HCV Jc1-n adopts the leaving-home strategy to
214 acquire an advantage in producing newly-infected cells.

215 Taken together, our theoretical investigation based on viral infection
216 experiments revealed that the JFH-1 strain optimizes its initial growth rate, but the
217 Jc1-n strain optimizes *de novo* infection. Ours is the first report to quantitatively

218 evaluate these opposing evolutionary strategies and to show their significance for
219 virus proliferation at the intracellular and intercellular levels.

220 Discussion

221 Through a combined experimental-theoretical approach, we analyzed the
222 dynamics of the HCV life cycle using two related HCV strains, JFH-1 and Jc1-n,
223 employing different particle assembly/release strategies. We quantified the intra- and
224 inter-cellular viral dynamics of these strains by applying an age-structured multiscale
225 model to time-course experimental data from an HCV infection cell culture assay (**Fig.**
226 **2A and Table 1**): As in [10, 11], we transformed the multiscale model formulated by
227 PDEs to an identical multiscale ODE model (i.e., Eqs. (2–6)), and estimated
228 parameters shared between the PDE and ODE models. It is technically challenging to
229 obtain experimental measurements with age information, but thanks to the estimated
230 values of these common parameters, we managed to reconstruct age information for
231 intracellular viral RNA (**Fig. 2BC**). In addition, comparing the calculated Malthusian
232 parameters and the cumulative number of newly infected cells between the two
233 strains (**Fig. 3FG**), we found that the JFH-1 strain had a higher initial growth rate but
234 that Jc1 produced more *de novo* infections.

235 Based on our results, we propose two opposing strategies for viral
236 proliferation: the “stay-at-home strategy” and the “leaving-home strategy.” From an
237 evolutionary perspective, JFH-1 adopts a stay-at-home strategy and preferentially
238 uses viral genomic RNA for increasing intracellular replication. In contrast, adopting a
239 leaving-home strategy, Jc1-n uses more viral genomic RNA for producing progeny
240 virions capable of new transmission events to increase the number of infected cells
241 (**Fig. 4**). Thus, Jc1-n infects cells 1.71 times faster and produces viral RNA from
242 infected cells 2.57 times faster than JFH-1. Our group and others reported that JFH-1
243 assembled progeny virions on the membranes of hepatic lipid droplets, while
244 J6/JFH-1 chimeric strains mainly used endoplasmic reticulum-derived membranes for
245 particle production [2, 3]. Although the molecular aspects of this difference have been
246 analyzed, its significance for viral proliferation and dynamics is not completely
247 understood. Our results raise the possibility that different subcellular locations for
248 particle assembly impact the rates of particle assembly and release, which in turn
249 determine virus proliferation. Further analysis might shed light on why one HCV strain
250 has to be assembled on the lipid droplet membrane while another assembles in
251 association with the endoplasmic reticulum.

252 The choice of replication strategy not only determines virus proliferation but
253 also affects the pathogenic features of the virus: JFH-1, which preferentially amplifies
254 intracellular RNA, caused fulminant hepatitis with rapid viral replication and severe

255 inflammation. By contrast, J6, the original strain encoding the Jc1-n structural region,
256 was isolated from a patient with chronic hepatitis and generally replicates more
257 moderately, with robust spread of infected cells used as a longer term strategy to
258 establish persistent infection. Characterization of the proliferation strategies of viruses
259 is of significant importance when trying to understand their clinical as well as
260 evolutionary properties.

261 Methods

262 Cell culture and HCV infection

263 Huh-7.5.1 (kindly provided by Dr. Francis Chisari, The Scripps Research
264 Institute) and Huh7-25 cells were cultured in Dulbecco's Modified Eagle's Medium
265 (Invitrogen) supplemented with 10% fetal bovine serum (Sigma), 10 units/mL
266 penicillin, 10 mg/mL streptomycin, 0.1 mM non-essential amino acids (Invitrogen), 1
267 mM sodium pyruvate, and 10 mM HEPES, pH 7.4, at 37°C under a humidified
268 atmosphere containing 5% CO₂. We used HCV strains JFH-1, a genotype 2a clinical
269 isolate from a patient with fulminant hepatitis [4], and Jc1-n, a J6/JFH-1 chimeric
270 laboratory strain [13]. JFH-1 and Jc1-n have 96.7% amino acid identity over the whole
271 genome. HCV inoculum for infection experiments was recovered from the culture
272 supernatants of Huh-7.5.1 cells transfected with the corresponding HCV RNA as
273 described [4]. Huh-7.5.1 cells were inoculated with JFH-1 or Jc1-n for 4 h and then
274 passaged to seed a new 96 well plate at different cell densities (1000, 2000, or 4000
275 cells/well). At days 0, 1, 2, 3, and 4 post-seeding, culture supernatants and cell
276 lysates were recovered to quantify HCV RNA by real time RT-PCR as previously
277 described [13]. The infectivity of HCV in culture supernatants was measured using a
278 focus-forming assay as described [13]. To quantify the number of uninfected and
279 infected cells, cells were fixed and stained with anti-HCV core antibody by
280 immunofluorescence assay as described [13].

281

282 Data fitting and parameter estimation

283 The parameters g and K were separately estimated (see **Supplementary**
284 **Note 3**) and fixed at 0.660 and 4.12×10^4 , respectively, for the JFH-1 strain, and
285 0.665 and 3.75×10^4 , respectively, for the Jc1-n strain. A statistical model adopted
286 from Bayesian inference assumed that measurement error followed a normal
287 distribution with mean zero and unknown variance (error variance). A distribution of
288 error variance was also inferred using the Gamma distribution as its prior distribution.
289 The posterior predictive parameter distribution as an output of MCMC computation
290 represented parameter variability. Distributions of model parameters (i.e., β_θ , k , ρ ,
291 f_θ) and initial values (i.e., $T(0)$, $I(0)$, $A(0)$, $V_\theta(t)$, $V(0)$) in Eqs. (2–6) were inferred
292 directly by MCMC computations. Distributions of derived quantities were calculated
293 from the inferred parameter sets (**Fig. 3EF** for graphical representation). A set of
294 computations for Eqs (2–6) with estimated parameter sets gives a distribution of
295 outputs (the number of cells and the intra- and extra-cellular viral loads) as model

296 predictions. To investigate variation in model predictions, global sensitivity analyses
297 were performed. The range of possible variation is shown in **Fig. 2A** as 95%
298 confidence intervals. Technical details of MCMC computations are summarized
299 below.

300

301 **Statistical analysis**

302 Package FME [15] in R Statistical Software [16] was used to infer posterior
303 predictive parameter distributions. The delayed rejection and Metropolis method [17]
304 was used as a default computation scheme for FME to perform MCMC computations.
305 MCMC computations for parameter inference were implemented using the
306 pre-defined function modMCMC() in package FME as introduced in **Methods**.
307 Convergence of Markov chains to a stationary distribution was required to ensure
308 parameter sets were sampled from a posterior distribution. Only the last 90000 of
309 100000 chains were used as burn-in. The convergence of the last 90000 chains was
310 manually checked with figures produced by package coda [18], a collection of
311 diagnostic tools for MCMC computation. The 95% credible interval shown as a
312 shadowed region in each panel of **Fig. 2A** was produced from 100 randomly chosen
313 inferred parameter sets and corresponding model predictions. We employed a
314 bootstrap *t*-test [19] to quantitatively characterize differences in parameters and
315 derived quantities between HCV JFH-1 and Jc1-n. In total, 100000 parameter sets
316 were sampled with replacement from the posterior predictive distributions to calculate
317 the bootstrap *t*-statistics. To avoid potential sampling bias, the bootstrap *t*-test was
318 performed 100 times repeatedly. The averages of the computed p-values were used
319 as indicators of differences.

320 **REFERENCES**

- 321 1. Neumann AU, Lam NP, Dahari H, Gretch DR, Wiley TE, Layden TJ, et al.
322 Hepatitis C viral dynamics in vivo and the antiviral efficacy of interferon-alpha therapy.
323 Science. 1998;282(5386):103-7. Epub 1998/10/02. PubMed PMID: 9756471.
- 324 2. Miyanari Y, Atsuzawa K, Usuda N, Watashi K, Hishiki T, Zayas M, et al. The
325 lipid droplet is an important organelle for hepatitis C virus production. Nat Cell Biol.
326 2007;9(9):1089-97. Epub 2007/08/28. doi: 10.1038/ncb1631. PubMed PMID:
327 17721513.
- 328 3. Boson B, Granio O, Bartenschlager R, Cosset FL. A concerted action of
329 hepatitis C virus p7 and nonstructural protein 2 regulates core localization at the
330 endoplasmic reticulum and virus assembly. PLoS Pathog. 2011;7(7):e1002144. Epub
331 2011/08/05. doi: 10.1371/journal.ppat.1002144. PubMed PMID: 21814513; PubMed
332 Central PMCID: PMCPMC3141040.
- 333 4. Wakita T, Pietschmann T, Kato T, Date T, Miyamoto M, Zhao Z, et al.
334 Production of infectious hepatitis C virus in tissue culture from a cloned viral genome.
335 Nat Med. 2005;11(7):791-6. Epub 2005/06/14. doi: 10.1038/nm1268. PubMed PMID:
336 15951748; PubMed Central PMCID: PMCPMC2918402.
- 337 5. Lindenbach BD, Evans MJ, Syder AJ, Wolk B, Tellinghuisen TL, Liu CC, et al.
338 Complete replication of hepatitis C virus in cell culture. Science.
339 2005;309(5734):623-6. Epub 2005/06/11. doi: 10.1126/science.1114016. PubMed
340 PMID: 15947137.
- 341 6. Pietschmann T, Kaul A, Koutsoudakis G, Shavinskaya A, Kallis S, Steinmann
342 E, et al. Construction and characterization of infectious intragenotypic and
343 intergenotypic hepatitis C virus chimeras. Proceedings of the National Academy of
344 Sciences of the United States of America. 2006;103(19):7408-13. Epub 2006/05/03.
345 doi: 10.1073/pnas.0504877103. PubMed PMID: 16651538; PubMed Central PMCID:
346 PMCPMC1455439.
- 347 7. Dieckmann U, Metz JA, Sabelis MW. Adaptive dynamics of infectious
348 diseases: in pursuit of virulence management: Cambridge University Press; 2005.
- 349 8. Iwanami S, Kakizoe Y, Morita S, Miura T, Nakaoka S, Iwami S. A highly
350 pathogenic simian/human immunodeficiency virus effectively produces infectious
351 virions compared with a less pathogenic virus in cell culture. Theor Biol Med Model.
352 2017;14(1):9. doi: 10.1186/s12976-017-0055-8. PubMed PMID: 28431573; PubMed
353 Central PMCID: PMCPMC5401468.
- 354 9. Iwami S, Holder BP, Beauchemin CA, Morita S, Tada T, Sato K, et al.
355 Quantification system for the viral dynamics of a highly pathogenic simian/human
356 immunodeficiency virus based on an in vitro experiment and a mathematical model.
357 Retrovirology. 2012;9(1):18. Epub 2012/03/01. doi: 10.1186/1742-4690-9-18.
358 PubMed PMID: 22364292; PubMed Central PMCID: PMCPMC3305505.
- 359 10. Kitagawa K, Nakaoka S, Asai Y, Watashi K, Iwami S. A PDE multiscale model
360 of hepatitis C virus infection can be transformed to a system of ODEs. J Theor Biol.
361 2018;448:80-5. Epub 2018/04/11. doi: 10.1016/j.jtbi.2018.04.006. PubMed PMID:
362 29634960.
- 363 11. Kitagawa K, Kuniya T, Nakaoka S, Asai Y, Watashi K, Iwami S. Mathematical
364 Analysis of a Transformed ODE from a PDE Multiscale Model of Hepatitis C Virus
365 Infection. Bull Math Biol. 2019;81(5):1427-41. Epub 2019/01/16. doi:
366 10.1007/s11538-018-00564-y. PubMed PMID: 30644067.
- 367 12. Iwami S, Takeuchi JS, Nakaoka S, Mammano F, Clavel F, Inaba H, et al.
368 Cell-to-cell infection by HIV contributes over half of virus infection. eLife.
369 2015;4:e08150. Epub 2015/10/07. doi: 10.7554/eLife.08150. PubMed PMID:
370 26441404; PubMed Central PMCID: PMCPMC4592948.

- 371 13. Ohashi H, Nishioka K, Nakajima S, Kim S, Suzuki R, Aizaki H, et al. The aryl
372 hydrocarbon receptor-cytochrome P450 1A1 pathway controls lipid accumulation and
373 enhances the permissiveness for hepatitis C virus assembly. *J Biol Chem.*
374 2018;293(51):19559-71. Epub 2018/11/02. doi: 10.1074/jbc.RA118.005033. PubMed
375 PMID: 30381393; PubMed Central PMCID: PMCPMC6314116.
- 376 14. Nowak M, May RM. *Virus dynamics: mathematical principles of immunology*
377 and *virology: mathematical principles of immunology and virology*: Oxford University
378 Press, UK; 2000.
- 379 15. Soetaert K, Petzoldt T. *Inverse Modelling, Sensitivity and Monte Carlo*
380 *Analysis in R Using Package FME*. *J Stat Softw.* 2010;33(3):1-28. doi:
381 10.18637/jss.v033.i03. PubMed PMID: WOS:000275203400001.
- 382 16. R Core Team. *R: A Language and Environment for Statistical Computing*. R
383 Foundation for Statistical Computing; 2019.
- 384 17. Haario H, Laine M, Mira A, Saksman E. *DRAM: Efficient adaptive MCMC*.
385 *Stat Comput.* 2006;16(4):339-54. doi: 10.1007/s11222-006-9438-0. PubMed PMID:
386 WOS:000241260600002.
- 387 18. Plummer M, Best N, Cowles K, Vines K. *CODA: convergence diagnosis and*
388 *output analysis for MCMC*. *R news.* 2006;6(1):7-11.
- 389 19. Efron B, Tibshirani RJ. *An introduction to the bootstrap*: CRC press; 1994.
- 390

391 **ACKNOWLEDGMENTS**

392 Huh7.5.1 cells were kindly provided by Dr. Francis Chisari at The Scripps
393 Research Institute. This study was supported in part by Grants-in-Aid for JSPS
394 Research Fellow 19J12319 (to S. Iwanami), 19J21395 (to K.K.), Scientific Research
395 (KAKENHI) Scientific Research B 18KT0018 (to S.I.), 18H01139 (to S.I.), 16H04845
396 (to S.I.), 17H04085 (to K.W.), Scientific Research in Innovative Areas 19H04839 (to
397 S.I.), 18H05103 (to S.I.); AMED CREST 19gm1310002 (to S.I.); AMED J-PRIDE
398 19fm0208006s0103 (to S.I.), 19fm0208014h0003 (to S.I.), 19fm0208019h0103 (to
399 S.I.), 19fm0208019j0003 (to K.W.); AMED Research Program on HIV/AIDS
400 19fk0410023s0101 (to S.I.); Research Program on Emerging and Re-emerging
401 Infectious Diseases 19fk0108050h0003 (to S.I.); Program for Basic and Clinical
402 Research on Hepatitis 19fk0210036h0502 (to S.I.), 19fk0210036j0002 (to K.W.);
403 Program on the Innovative Development and the Application of New Drugs for
404 Hepatitis B 19fk0310114h0103 (to S.I.), 19fk0310114j0003 (to K.W.),
405 19fk0310101j1003 (to K.W.) , 19fk0310103j0203 (to K.W.); JST MIRAI (to S.I. and
406 K.W.); JST CREST (to S.I. and K.W.); Mitsui Life Social Welfare Foundation (to S.I.
407 and K.W.); Shin-Nihon of Advanced Medical Research (to S.I.); Suzuken Memorial
408 Foundation (to S.I.); Life Science Foundation of Japan (to S.I.); SECOM Science and
409 Technology Foundation (to S.I.); The Japan Prize Foundation (to S.I.); Toyota
410 Physical and Chemical Research Institute (to S.I.); The Yasuda Medical Foundation
411 (to K.W.); Smoking Research Foundation (to K.W.); Takeda Science Foundation (to
412 K.W.).

413

414 **AUTHOR CONTRIBUTIONS**

415 OD, S Iwami and KW designed the research. HO, KN, and KW conducted the
416 experiments. S Iwanami, KK, YA, HI and S Iwami carried out the computational
417 analysis. OD, S Iwami and KW supervised the project. All authors contributed to
418 writing the manuscript.

419

420 **COMPETING FINANCIAL INTERESTS**

421 The authors declare that they have no competing interests.

422 **FIGURE LEGENDS**

423 **Figure 1 | Schematic representation of multiscale HCV infection and**
424 **mathematical model: (A)** Schematic representation of intracellular HCV life cycle
425 and trade-off between viral replication and release of intracellular viral RNA. Viral
426 RNA in cells is translated to produce structural (S) and non-structural (NS) proteins.
427 Viral RNA is either amplified through the functions of NS proteins through replication,
428 or is assembled with S proteins and released as a progeny virus. If the balance
429 between viral replication and release leans toward replication, intracellular viral RNAs
430 will accumulate. In contrast, high rates of intracellular RNA release will create
431 opportunities for transmission to new cells but will deplete viral RNA in the cell. **(B)**
432 Modeling the intracellular virus life cycle. Intracellular viral RNA either replicates
433 inside the cell at rate k , is degraded at rate μ , or assembles with viral proteins to be
434 released within HCV virions at rate ρ . **(C)** Multiscale modeling of intracellular
435 replication and intercellular infection. Target cells are infected by infectious viruses at
436 rate β .

437

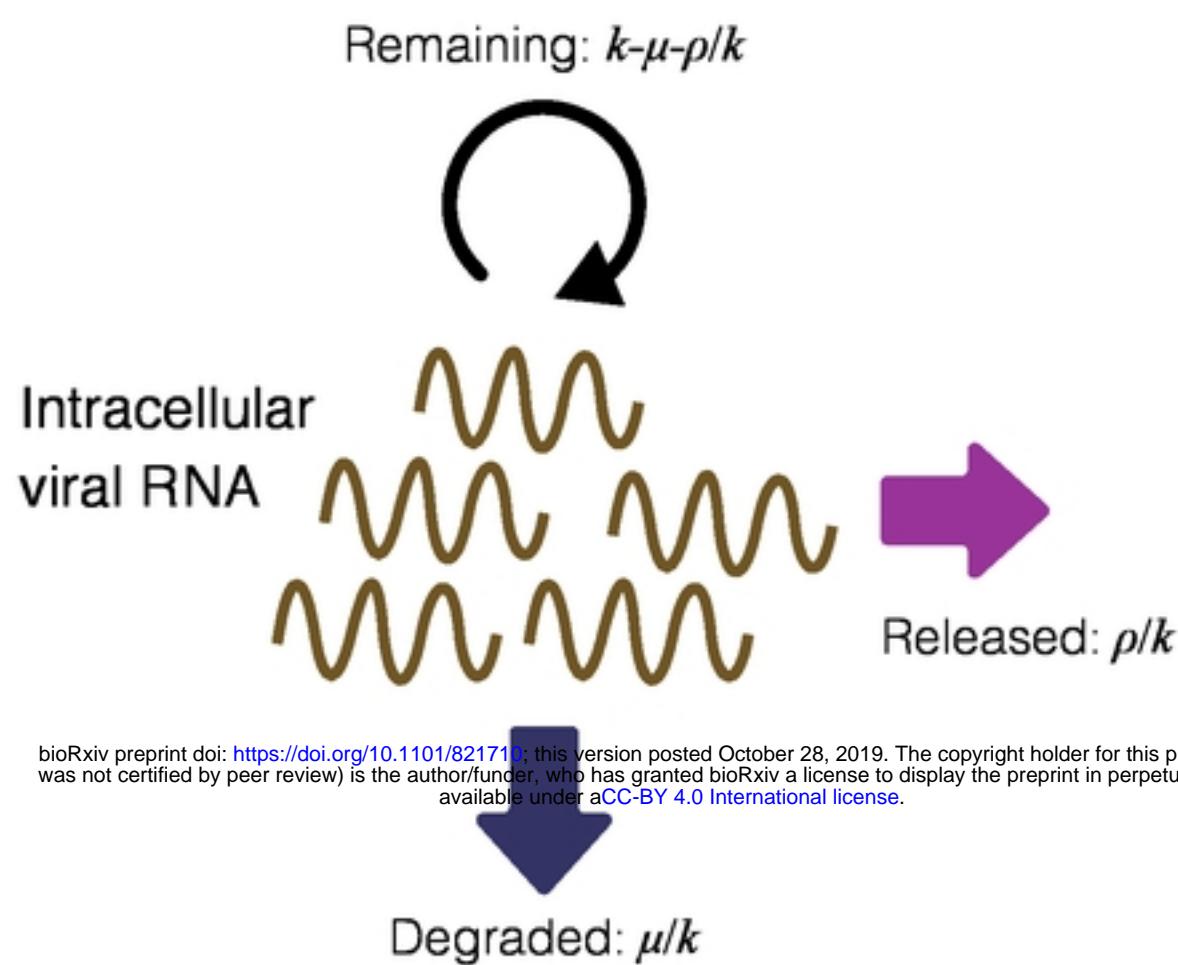
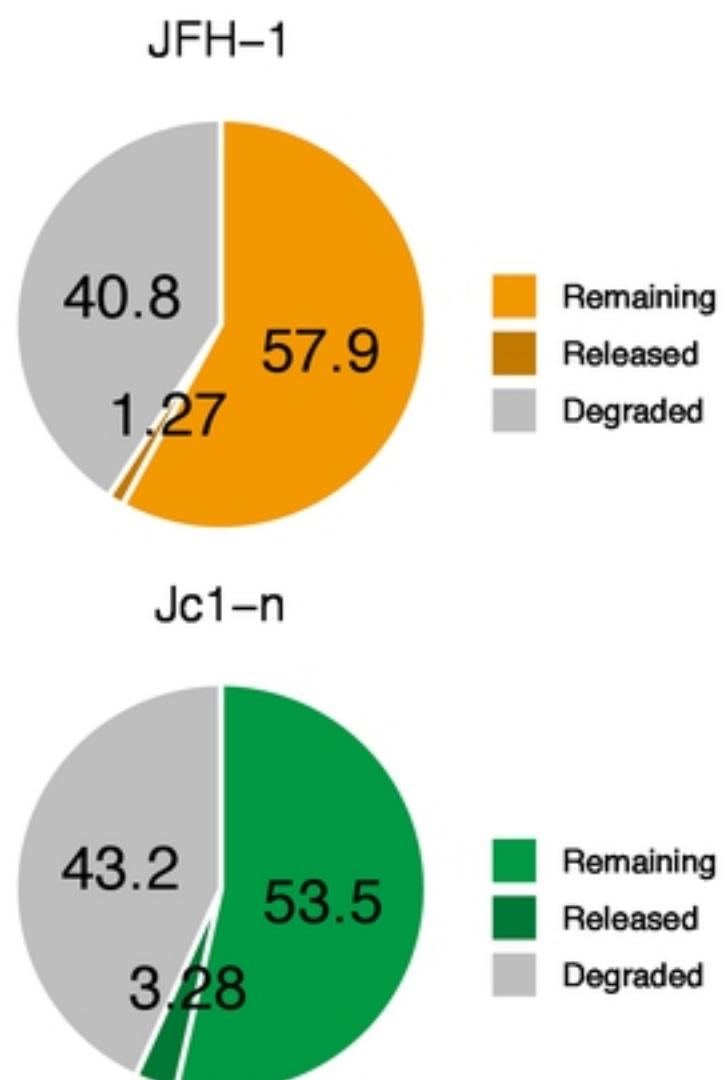
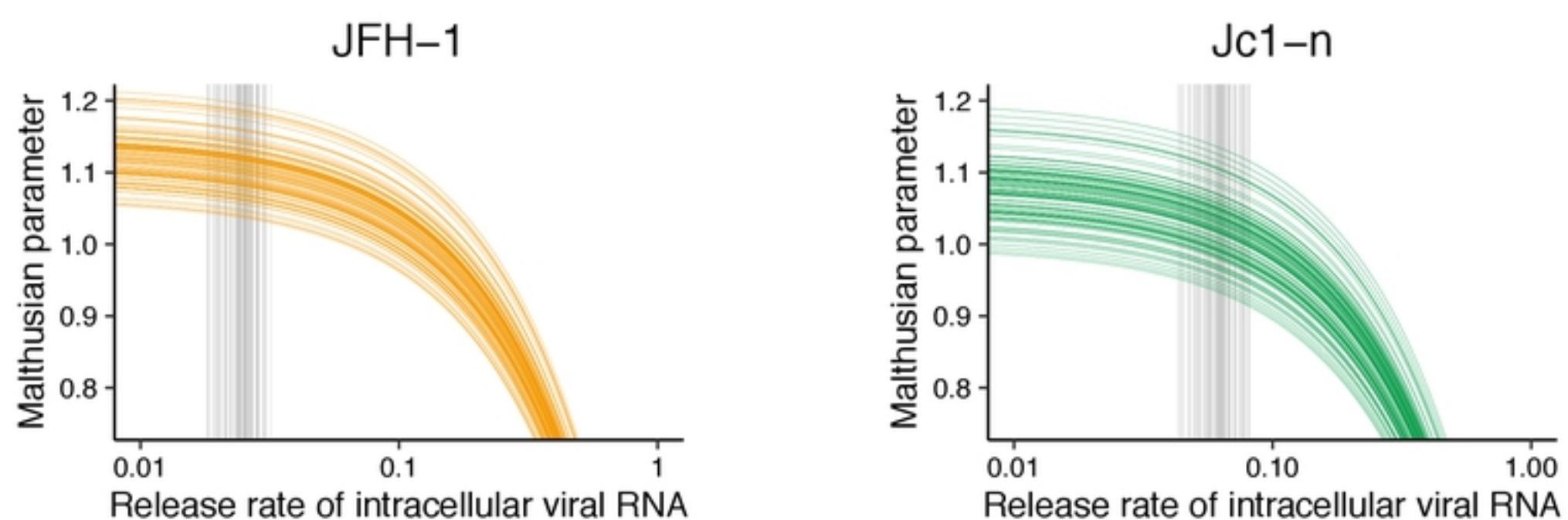
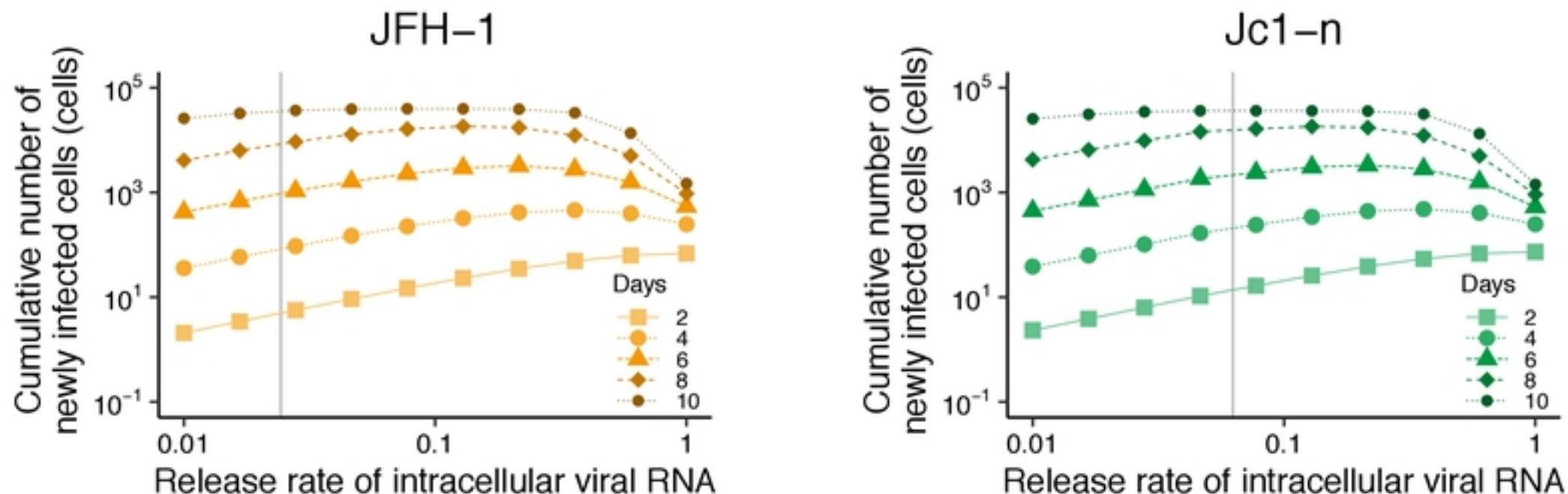
438 **Figure 2 | Dynamics of HCV JFH-1 and Jc1-n infection in cell culture. (A)** Fitting
439 of the mathematical model to the experimental data of HCV JFH-1 and Jc1-n infection
440 in cell culture. Three different numbers of Huh-7 cells infected with either HCV JFH-1
441 or Jc1-n 1 day after inoculation were seeded (Experiment A: 1000, Experiment B:
442 2000, and Experiment C: 4000 cells per well) and chased to detect the following
443 values at days 0, 1, 2, 3, and 4 post-seeding (\log_{10} scale): numbers of uninfected and
444 infected cells, amount of intracellular and extracellular viral RNA (copies/well), and
445 extracellular viral infectivity (ffu/well) (orange circle: JFH-1, green triangle: Jc1-n). The
446 shadowed regions correspond to 95% posterior intervals and the solid curves give the
447 best-fit solution (mean) for Eqs. (2–6) to the time-course dataset. All data for each
448 strain were fitted simultaneously. **(B)** Dynamics of the distributions of intracellular viral
449 RNA according to infection age, a . The distributions were calculated using the
450 original multiscale PDE model (Eqs. (S2–6) in **Supplementary Note 1**) using means
451 of estimated parameters for HCV JFH-1 and Jc1-n. The colored bars represent the
452 amount of intracellular viral RNA. **(C)** Difference in the distributions of intracellular
453 viral RNA in total infected cells of infection age, a , between HCV JFH-1 and Jc1-n.
454 The colored bar shows the difference in the amount of intracellular viral RNA (green:
455 intracellular viral RNA during Jc1-n infection is more abundant than during JFH-1

456 infection, yellow-red-brown: intracellular viral RNA is more abundant for JFH-1 than
457 for Jc1-n, gray: no new infection occurs due to depletion of target cells).

458

459 **Figure 3 | Characterization of viral dynamics of HCV JFH-1 and Jc1-n.** The
460 distributions of the rate constant for infection, β_θ , the release rate of intracellular viral
461 RNA, ρ , the degradation rate of intracellular viral RNA, μ , the converted fraction of
462 infectious viral RNA, f_θ , and the replication rate of intracellular viral RNA, k , inferred
463 by MCMC computations are shown in (A), (B), (C), (D) and (E), respectively, for HCV
464 JFH-1 (orange) and Jc1-n (green). Parameters β_θ , ρ and μ for Jc1-n were
465 significantly larger than for JFH-1, while there was no significant difference in f_θ
466 between the two strains as assessed by repeated bootstrap *t*-test. JFH-1 and Jc1-n
467 stains had identical viral RNA replication rates. The distributions of accumulation
468 rates of intracellular viral RNA, $k - \mu - \rho$, and the Malthusian parameter, M ,
469 calculated from all accepted MCMC parameter estimates are shown in (F) and (G),
470 respectively, for HCV JFH-1 (orange) and Jc1-n (green). These indices were
471 significantly larger for JFH-1 than for Jc1-n as assessed by the repeated bootstrap
472 *t*-test.

473





474 **Figure 4 | Different strategies adopted by JFH-1 and Jc1-n for viral proliferation.**

475 (A) Schematic representation of the fate of replicated intracellular viral RNA. Viral
476 RNA is used either for driving RNA replication in cells, for producing progeny viruses
477 for release outside cells, or is degraded. (B) Percentage of replicated intracellular
478 HCV JFH-1 and Jc1-n viral RNA that remains inside cells, is released outside cells,
479 and is degraded. (C) Change in the Malthusian parameter with various release rates
480 of intracellular viral RNA. The orange and green curves show Malthusian parameters
481 calculated using 100 parameter sets sampled from MCMC parameter estimates as
482 functions of ρ for JFH-1 and Jc1-n, respectively. The gray vertical lines are the
483 corresponding release rates estimated from the actual experimental data. (D) Change
484 in the cumulative number of newly infected cells with the various release rates. The
485 orange and green curves represent the cumulative number of newly infected cells
486 until 2, 4, 6, 8, and 10 days post-infection calculated using the means of estimated
487 parameters as function of ρ for JFH-1 and Jc1-n, respectively. The gray vertical line
488 represents the mean release rate estimated from the experimental data.

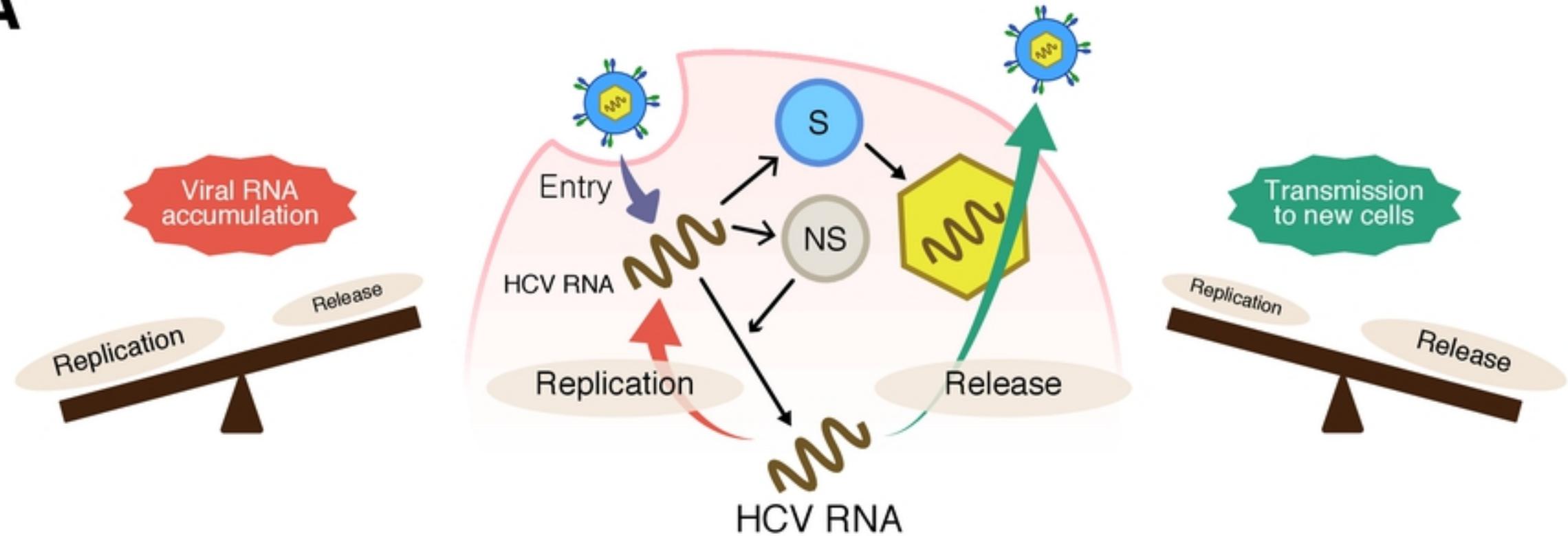
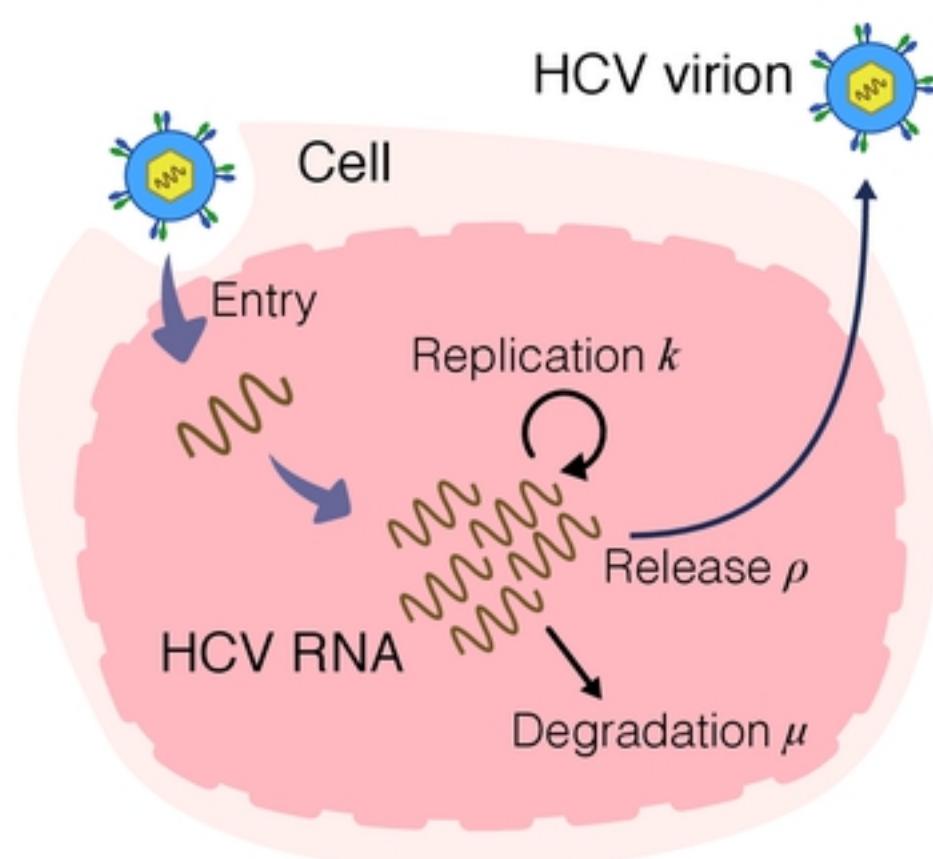

489

Table 1. Parameter values estimated from the cell culture infection experiment.


Parameter Name	Symbol	Unit	HCV JFH-1		HCV Jc1	
			Value	95% CI	Value	95% CI
Fitted parameters from separate experiments						
Rate of virion infectivity loss	r	day ⁻¹	1.60	—	2.40	—
Degradation rate of extracellular viral RNA	c_{RNA}	day ⁻¹	0.08	—	0.24	—
Clearance rate of extracellular viral RNA	c_w	day ⁻¹	1.18	—	1.82	—
Reduction rate of intracellular viral RNA	$\mu + \rho$	day ⁻¹	0.80	—	0.89	—
Estimated parameters from <i>in vitro</i> total cell growth data						
Proliferation rate of Huh-7 cells	g	day ⁻¹	0.67	—	0.67	—
Carrying capacity of Huh-7 cells	K	cells	4.12×10^4	—	3.75×10^4	—
Parameters obtained from simultaneous fitting of full <i>in vitro</i> dataset						
Rate constant for infections	β_θ	(ffu/well · day) ⁻¹	1.29×10^{-4}	$0.81\text{--}1.92 \times 10^{-4}$	2.21×10^{-4}	$1.69\text{--}2.77 \times 10^{-4}$
Replication rate of intracellular viral RNA	k	day ⁻¹	1.91	1.84–1.98	1.91	1.84–1.98
Release rate of intracellular viral RNA	ρ	day ⁻¹	2.43×10^{-2}	$1.87\text{--}3.11 \times 10^{-2}$	6.25×10^{-2}	$4.62\text{--}8.44 \times 10^{-2}$
Degradation rate of intracellular viral RNA	μ	day ⁻¹	0.78	0.77–0.78	0.83	0.80–0.84
Converted fraction of infectious viral RNA	f_θ	RNA copies · ffu ⁻¹	1.21×10^{-3}	$0.86\text{--}1.67 \times 10^{-3}$	1.13×10^{-3}	$0.83\text{--}1.49 \times 10^{-3}$

A**B****C****D****Fig4**

A

B

C

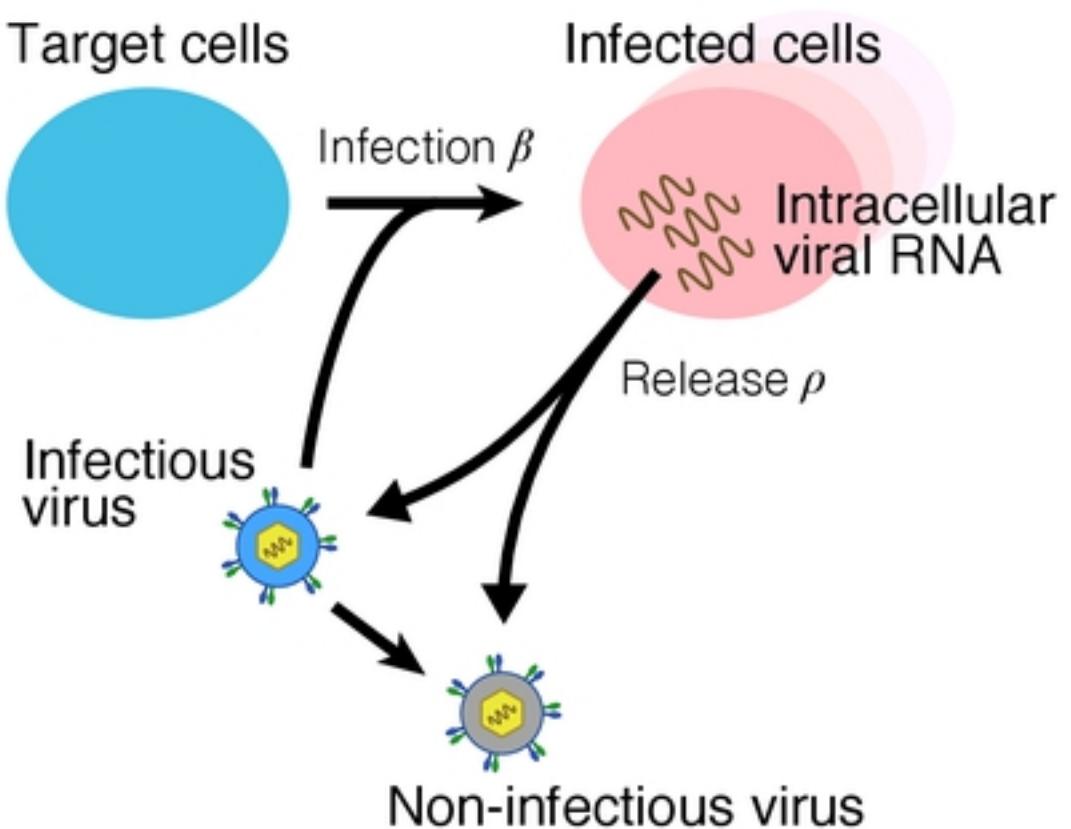
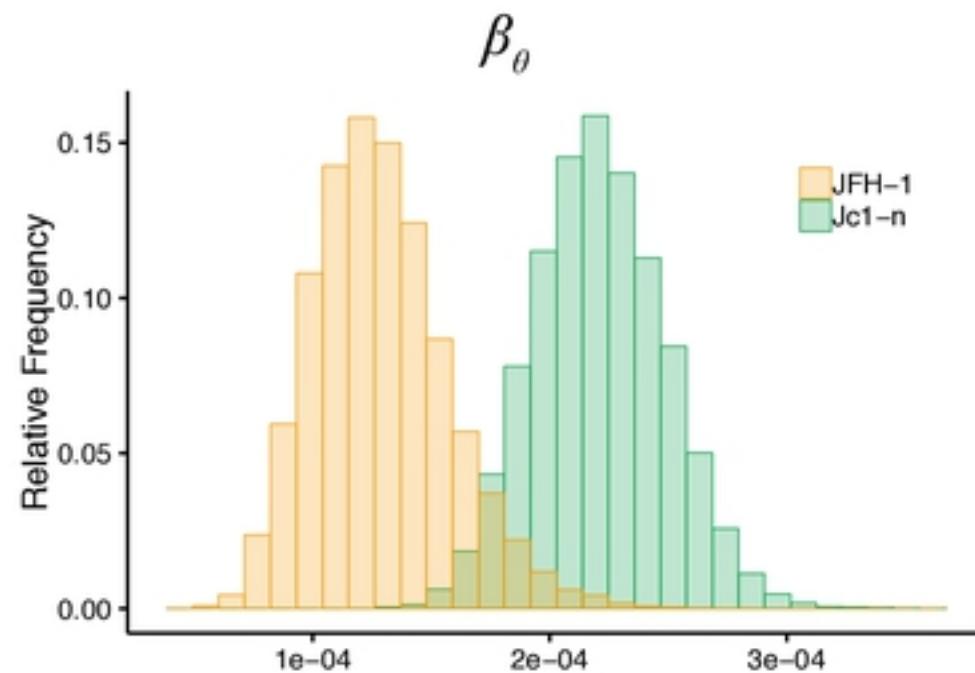
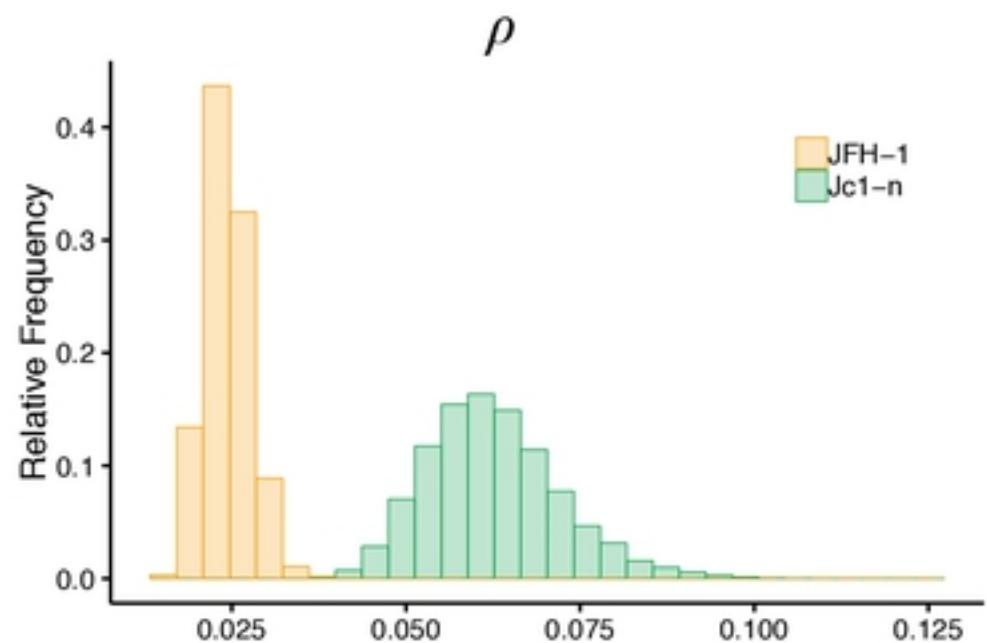
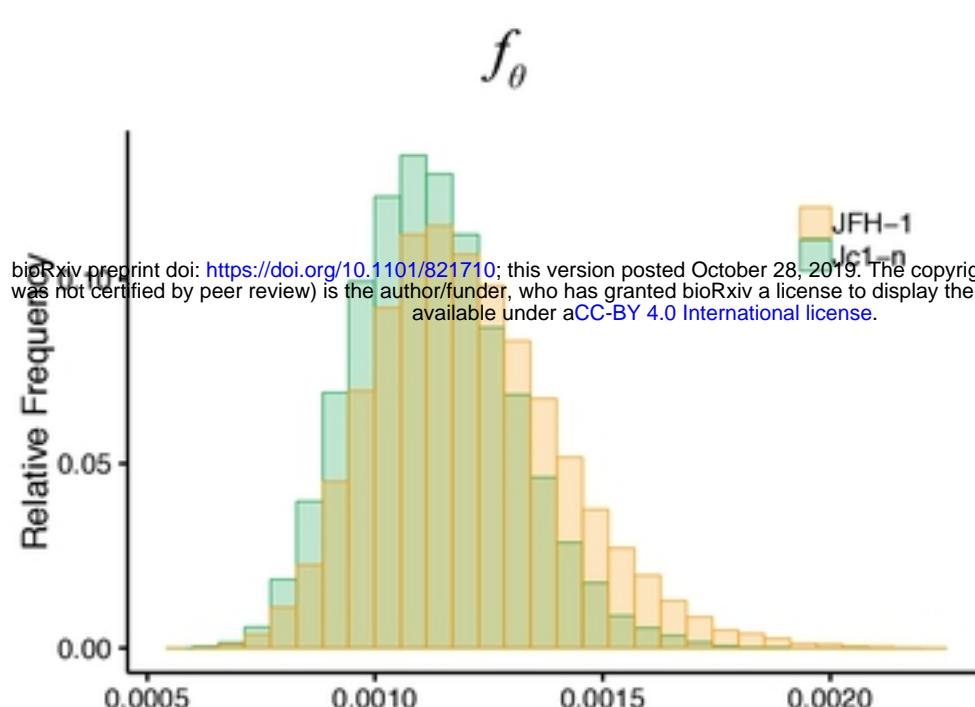
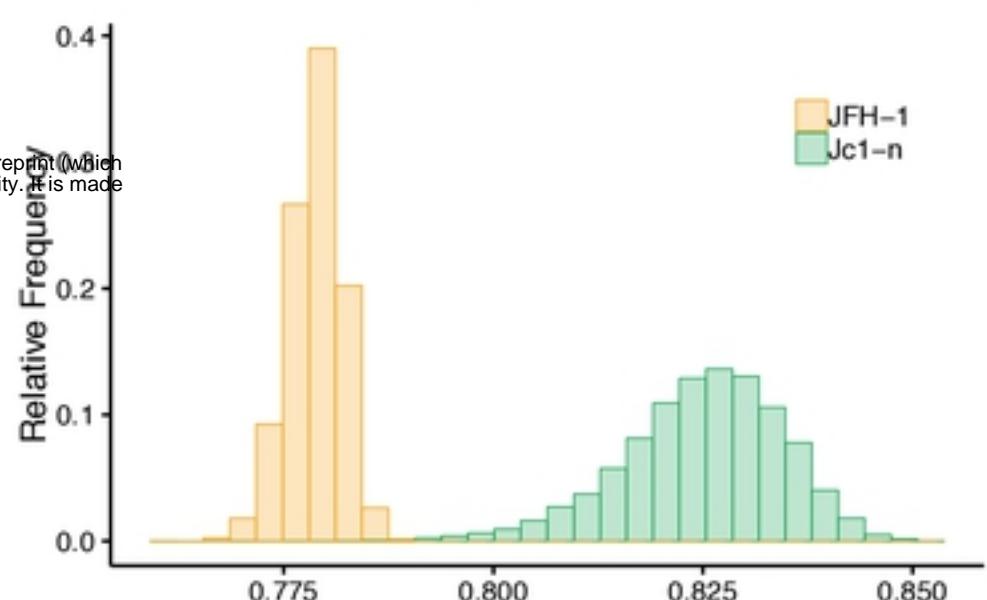
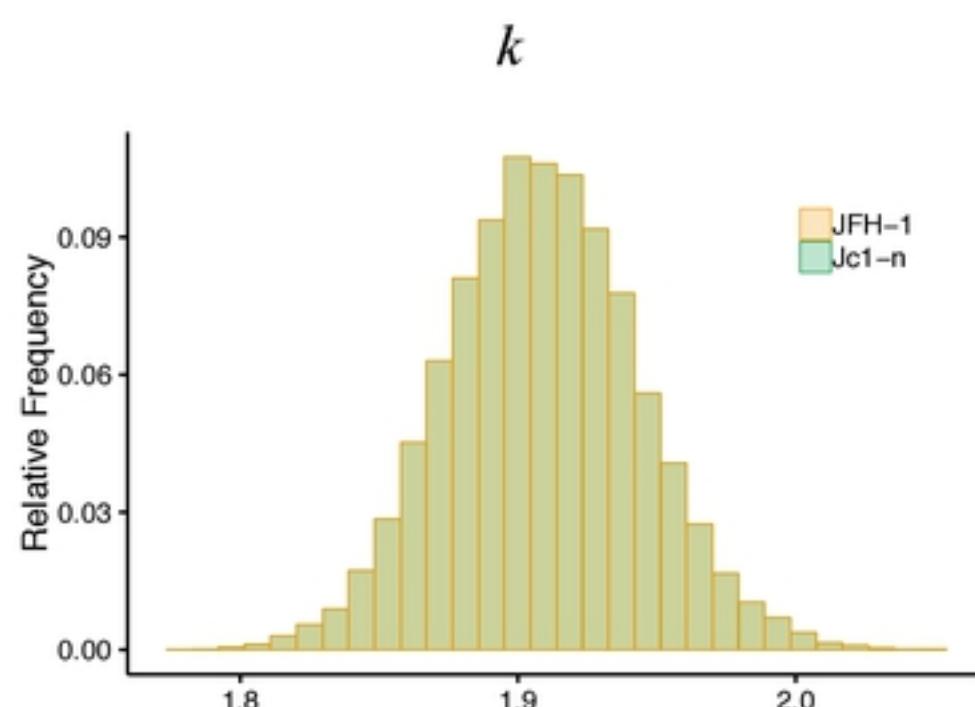
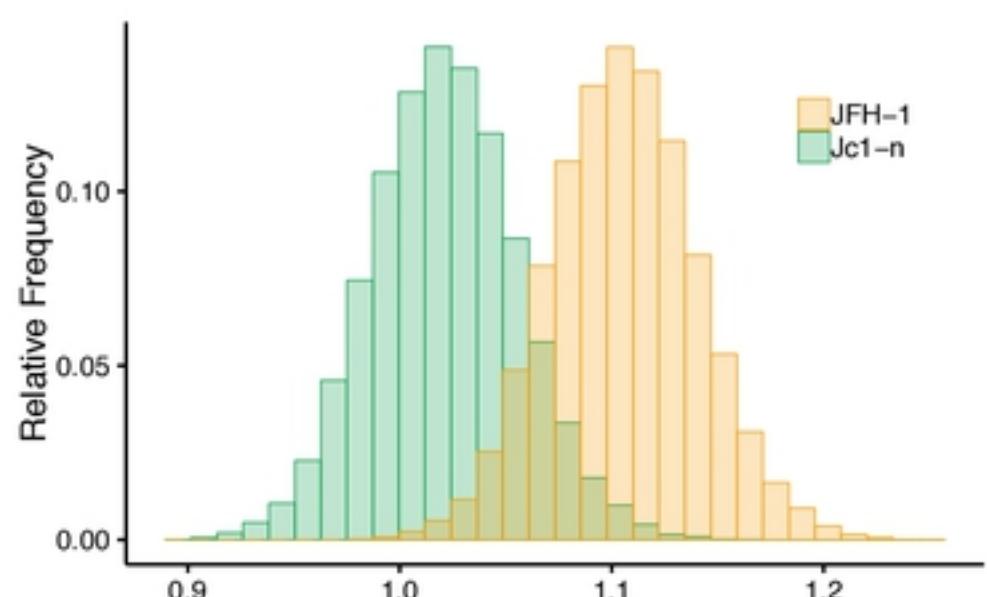
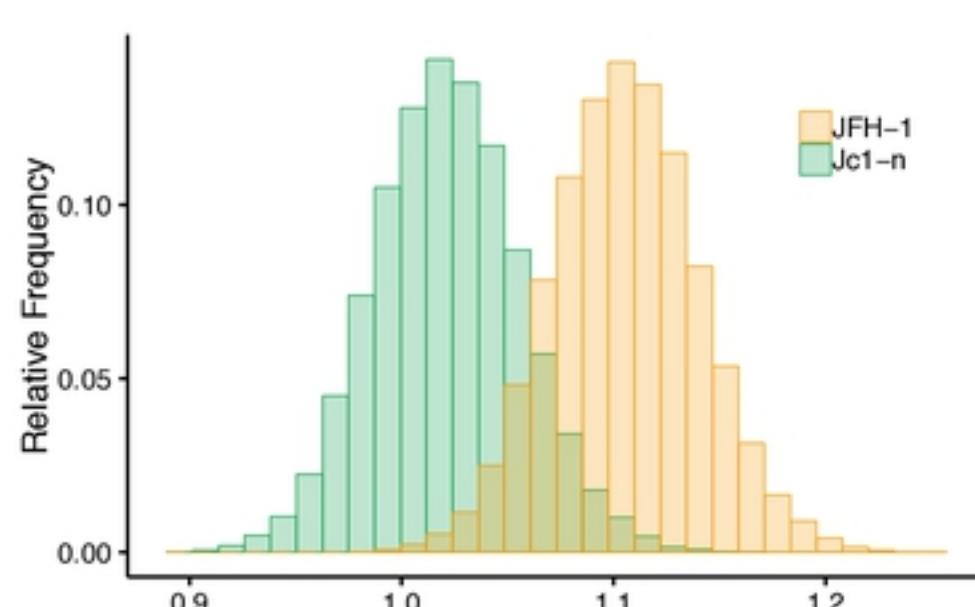
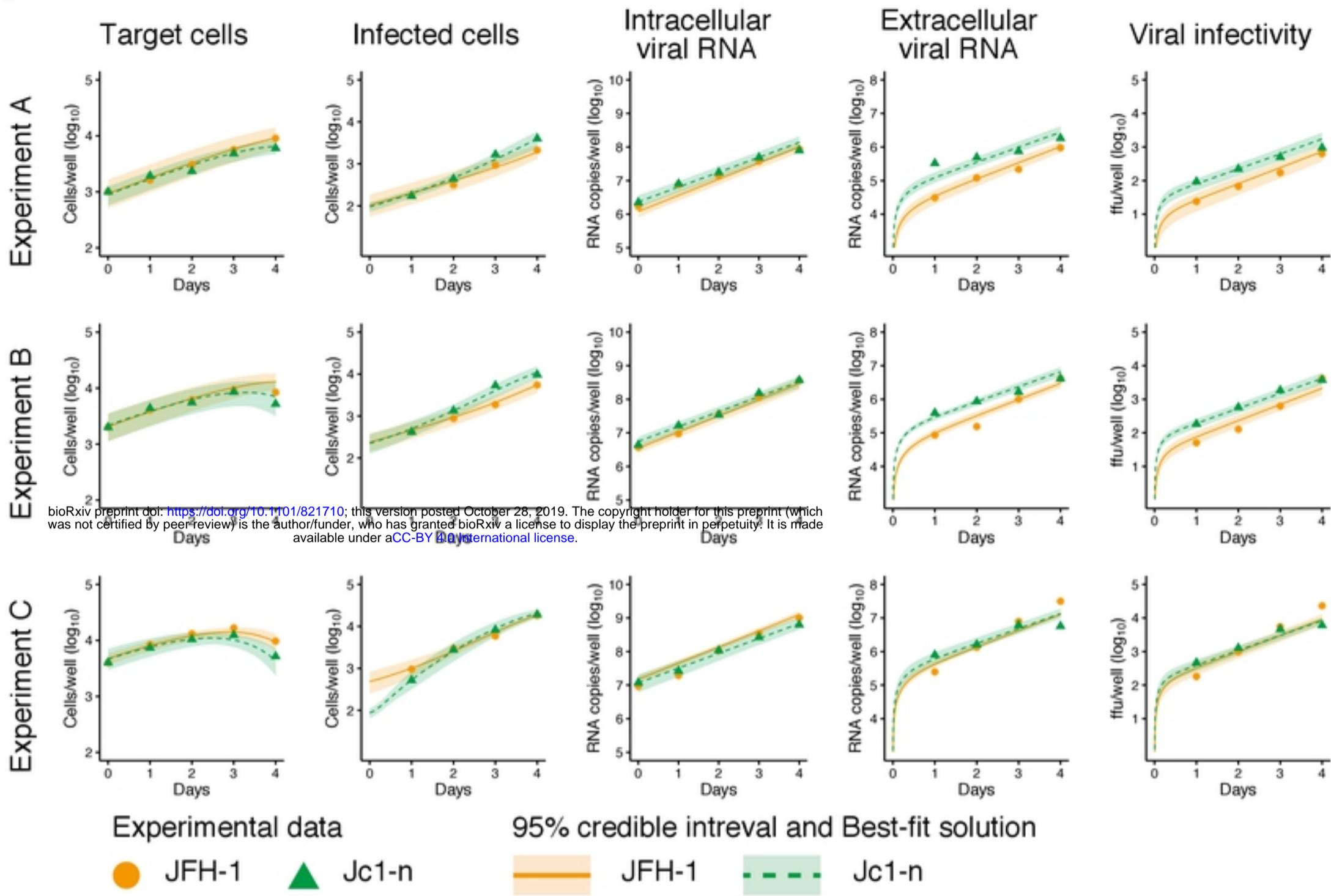
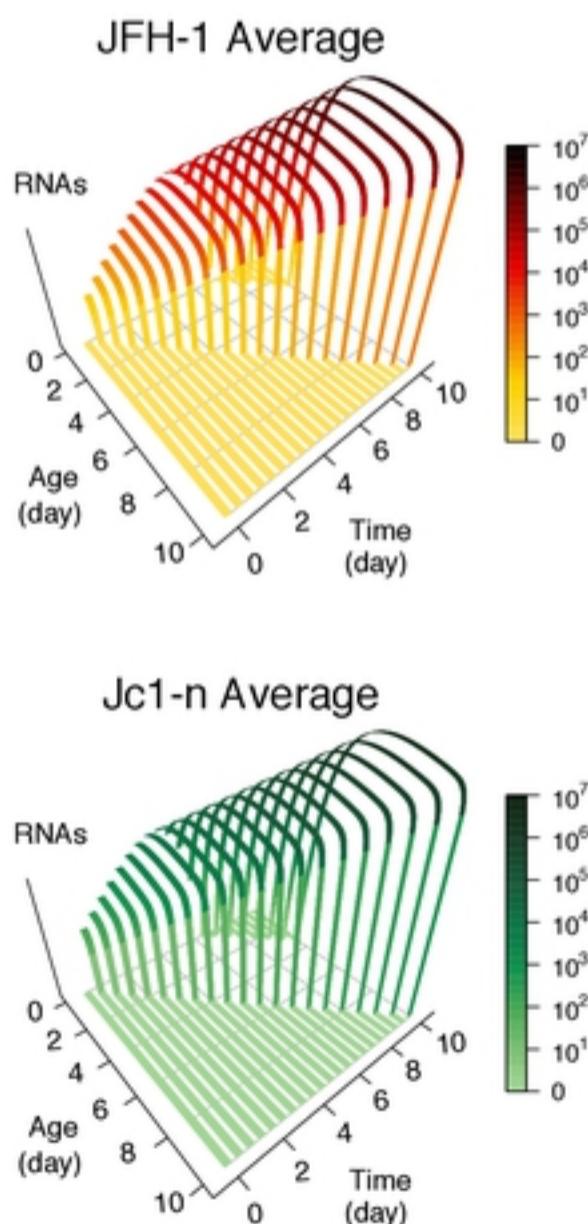
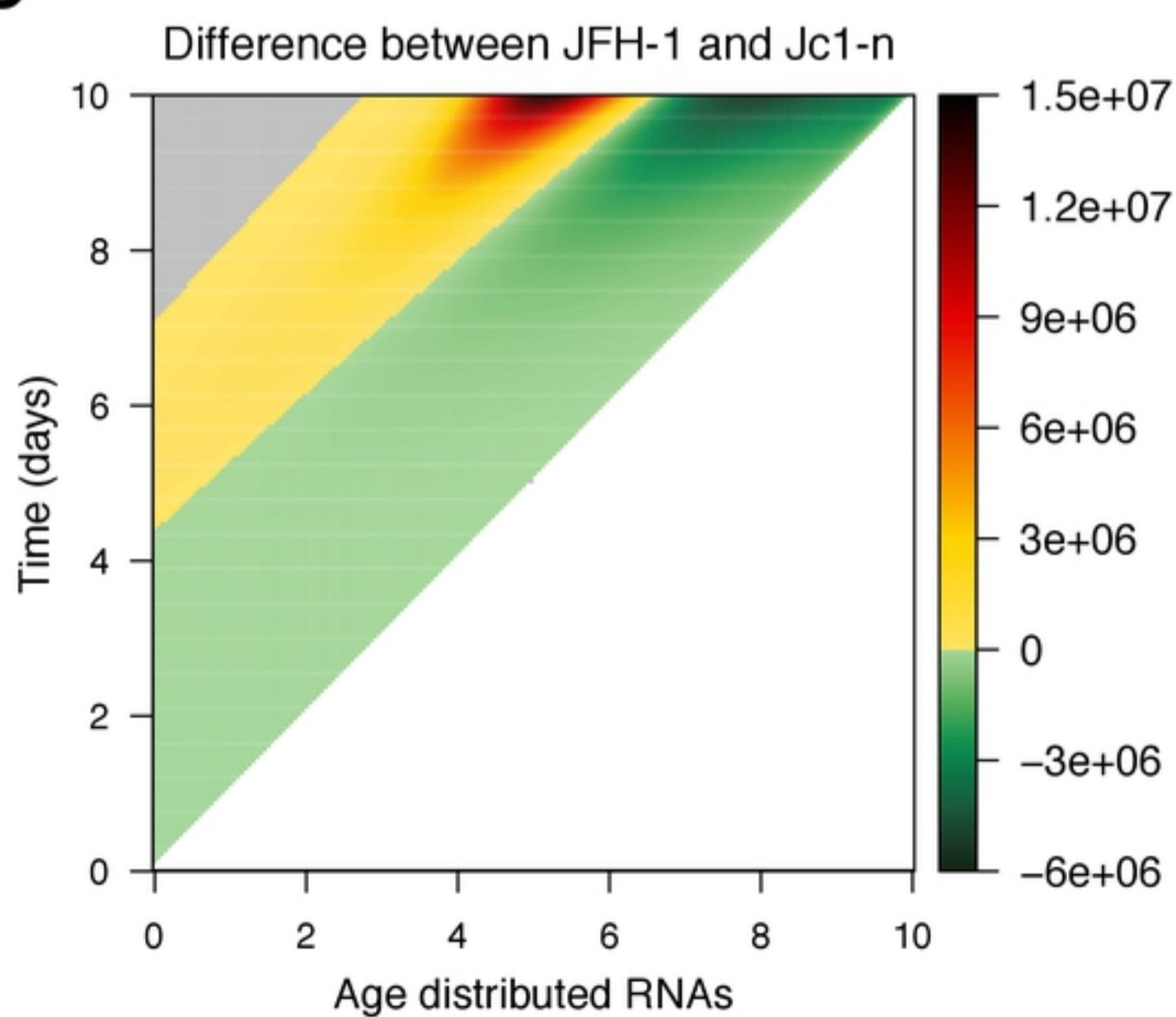












Fig1

A**B****C****D****E****F**

Accumulation rate of intracellular viral RNA

G**Fig3**

A**B****C****Figure**