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ABSTRACT

Gene duplication has generated new biological functions during evolution that have contributed to the

increase in tissue complexity.  Several  comparative  genomics and large-scale transcriptional  studies

performed  across  different  organs  have  observed  that  paralogs  and  particularly  small-scale

duplications (SSD) tend to be more tissue-specifically expressed than other gene categories. However,

the major involvement of whole-genome duplications (WGD) was also suggested in the emergence of

tissue-specific  expression  features  in  the  brain.  Our  work  complements  these  previous  studies  by

exploring  intra-organ expression  properties  of  paralogs  through  multiple  territories  of  the  human

central nervous system (CNS) using transcriptome data generated by the Genotype-Tissue Expression

(GTEx) consortium. Interestingly, we show that paralogs, and especially those originating from young

SSDs (ySSD),  are significantly implicated in tissue-specific  expression between CNS territories.  Our

analysis of co-expression of gene families across human CNS tissues allows also the detection of the

tissue-specific ySSD duplicates expressed in the same tissue. Moreover,  we uncover the distinct effect

of the young duplication age, in addition to the SSD type effect, on the tissue-specific expression of

ySSDs within the CNS. Overall, our study suggests the major involvement of ySSDs in the differentiation

of human CNS territories and shows the added value of exploring tissue-specific expression at both the

inter and intra-organ levels.

INTRODUCTION

Comparative genomics and large-scale transcriptional studies have highlighted the major contribution

of gene duplication to tissue differentiation and phenotypic diversity (Ohno 1970; S. Chen et al. 2013).

The fact that some paralogs are retained in genomes through evolution seems to be initially favored by

dosage balance (Zhang 2003) and their long-term preservation is then made possible by the following

two processes: the neo-functionalization, which consists in the gain of a new function by one duplicate

potentially associated with a different spatial expression (Stephens 1951; Force et al. 1999; Teshima

and Innan 2008;  Innan and Kondrashov 2010),  or  the  sub-functionalization which consists  in  the

partition of the ancestral function or spatial expression between duplicates (Prince and Pickett 2002;
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Assis and Bachtrog 2015). The divergence of spatial expression between paralogs can be approached

by  the  study  of  gene  tissue-specificity,  which  indicates  whether  a  gene  has  a  broad  or  narrow

expression pattern across a collection of tissues  (Zhang 2003; Freilich et al. 2006; Lan and Pritchard

2016). The comparison of transcriptomes between different mouse organs has shown that the brain

was the one that expresses the highest proportion of tissue-specific paralogs in relation to the total

number of genes expressed in the brain, while it does not express the highest proportion of tissue-

specific singletons (Freilich et al. 2006). The brain is therefore a model perfectly suited to the detailed

exploration of the transcriptional properties of the duplicated genes.

Among the 60% of human genes considered as paralogs (S. Chen et al. 2013), some come from whole-

genome  duplications  (WGD)  in  early  vertebrate  lineage  approximately  500  million  years  ago

(McLysaght et al. 2002; Nakatani et al. 2007), the others come from small scale duplications (SSD) that

have occurred throughout the evolution  (Hakes et al.  2007).  A comparison in mammals,  notably in

human,  of  the  brain  transcriptome  with  those  of  other  organs  has  shown  that  WGDs  tend  to  be

enriched in brain-specific genes compared to SSDs (Satake et al. 2012; Guschanski et al. 2017; Roux et

al. 2017). This supports the theory that genome duplications have allowed vertebrates to develop more

complex cellular organizations, such as the different brain tissues (Holland 2009; Chen et al. 2011). 

In complement of the role of the WGDs in the tissue complexity, some theories support the idea that

young duplicated genes tend to be preferentially expressed in evolutionarily young tissues (Domazet-

Lošo and Tautz 2010). Moreover, a higher proportion of primate-specific paralogs were found to be up-

regulated in the developing human brain compared to the adult brain, whereas this expression pattern

was not found for older duplications (Zhang et al. 2011). Regarding recent duplications, that emerged

in the human lineage, studies have suggested their contribution to human-specific adaptive traits, such

as the gain of brain complexity  (Sudmant et al.  2010; Dennis and Eichler 2016; Dennis et al.  2017;

Guschanski et al. 2017).

While the expression properties of paralogs between different organs, including the brain, have been

well studied, we have little knowledge of the expression characteristics of duplicated genes between

different  regions of  the same organ.  Large-scale transcriptional  profiling of  neuroanatomic regions
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(Melé  et  al.  2015) allows  us  now  to  further  investigate  paralog  expression  between  the  different

territories of the human central nervous system (CNS) according to their evolutionary properties. 

This  present  study  explores  in  detail  the  expression  patterns  of  paralogs  between  the  different

territories of the human CNS, using the GTEx resource, according to their evolutionary characteristics

and gene families. We started assessing whether duplicated genes were associated with differences in

expression between CNS tissues and we investigated their tissue-specificity. Secondly, we studied the

evolutionary characteristics of tissue-specific paralogs such as their age and the type of duplication

event. We then analyzed the organization of  paralogs in families  using co-expression to define co-

expressed gene families and studied their tissue-specificity and evolutionary characteristics.

A better comprehension of the biology of paralogs could also support our understanding of diseases,

since  disease-associated  genes  have  been  found  to  be  over-represented  in  paralogs  compared  to

singletons (Makino and McLysaght 2010; Dickerson and Robertson 2012; W.-H. Chen et al. 2013) and

particularly in WGDs and old SSDs  (Singh et  al.  2014;  Acharya and Ghosh 2016).  Thus,  we finally

explored the association of paralogs with human brain diseases.

RESULTS

1/ Association of paralog expression with CNS differentiation

We  considered  in  our  study  all  human  protein  coding  genes  and  the  information  collected  on

duplication events in order to  split the gene population into paralogs and singletons  (S. Chen et al.

2013) (Methods).  In  a  recent  landmark  contribution,  the  GTEx  (Genotype-Tissue  Expression)

consortium used RNA sequencing technology to establish the landscape of human gene expression

across a large collection of postmortem biopsies (Melé et al. 2015). Gene expression data for hundreds

of  individuals  from  13  normal  brain-related  tissues  (Methods)  were  obtained  from  the  GTEx

consortium. After filtering out low information content genes,  abundance values of 16,427 protein-

coding genes, including 10,335 paralogs and 6,092 singletons were conserved. Previous work by GTEx

established the relevance of using gene expression data to cluster samples obtained from the same

tissues,  even though assigning samples to the correct CNS region was more difficult than for other
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organs  (Melé  et  al.  2015).  We  extended  this  analysis  by  focusing  specifically  on  CNS  tissues  and

assessing whether paralog expression could better classify samples into tissues than singletons or all

protein-coding genes. Our unsupervised hierarchical classification of human CNS samples, based on

their  pair-wise similarity in terms of  correlation across gene expression values,  was able to group

together most samples belonging to the same tissue (Methods; Fig. 1). The choice of color gradients for

tissues that anatomically overlap confirmed the ability of gene expression profiles to classify these

tissues  into  neurologically  relevant  groups.  Therefore,  from  the  next  result  sections,  we  will  pool

together some of the 13 initial tissues that showed similar expression profiles in order to define a

shorter list of 7 CNS regions (Methods) that will be used for the tissue-specificity analysis.

The relevance of our experimental classification was evaluated according to the expected belonging of

samples to the 13 brain-related tissues using the adjusted rand index (ARI) (Hubert and Arabie 1985).

We observed that globally, the sample classification based on paralog expression (ARI = 0.197) was

slightly  better  than  the  classification  obtained  using  all  protein-coding  genes  (ARI  =  0.175)  or

singletons (ARI= 0.182). It should be noted that the quality of a clustering is likely to be influenced by

the number of genes used in the analysis. Therefore, the better ARI score obtained with the paralogs

compared to singletons could be partly due to the higher number of paralogs in relation to singletons.

However, we also obtained a greater ARI with the paralogs in comparison to the ARI calculated from all

protein-coding genes, thus suggesting a particular biological relationship between paralogs expression

and CNS tissue differentiation.
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Figure 1. Unsupervised hierarchical clustering of genes expressed in human central nervous system

regions. Hierarchical clustering of genes expressed in the CNS regions was performed based on gene

pairwise  distance  in  terms  of  correlation  across  gene  expression  values.  The  three  gene  groups

considered are: protein-coding genes, singletons and paralogous genes. Each CNS region is represented

by a different color. The tissues belonging to the same anatomically defined CNS region are represented

in the same color:  blue for  the cerebellum region (cerebellum and cerebellar hemisphere tissues),

green for the cortex region (cortex, frontal cortex and anterior cingulate cortex tissues), purple for the

basal ganglia region (putamen, nucleus accumbens and caudate tissues),  and red for the amygdala-

hippocampus region (amygdala and hippocampus tissues). The remaining tissues are considered as

independent CNS regions:  pink for the hypothalamus region,  yellow for the spinal  cord region and

black for the substantia nigra.

In addition to this clustering analysis, we carried out another assessment by performing differential

expression analysis of gene count data between all pairs of CNS tissues (Methods). We obtained a list of

significantly differentially  expressed genes (DEGs) for each pair  of  tissues (Supplemental Materials

Table S3). By comparing the relative proportion of DEGs in paralogs and singletons, we observed that

DEGs were significantly enriched in paralogs for 75 out of the 78 tissue-pairs tested (Chi-squared test,

and threshold p-value = 6.41E-04 with Bonferroni  correction to  account  for  the number of  tissue
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pairs).  Furthermore,  in  order  to  assess  the  potential  bias  of  expression  level  in  these  results,  we

calculated the overall expression of paralogs averaged over brain-related tissues and found it to be

significantly lower than that of singletons (12 versus 37 RPKM respectively, t-test, p-value=5E-16). This

observation, which implies less power in the DE tests for the former group, makes the enrichment of

the DEGs in paralogs even more reliable. 

Overall, these complementary analyses on tissue clustering and differential expression illustrate the

strong biological contribution of paralogous genes to expression differences between CNS territories.

2/ Tissue-specific expression of paralogs in CNS regions

We further investigated these expression differences of paralogs between CNS territories by looking at

their tissue-specificity. The detection of tissue-specific genes was performed using expression profiles

quantified across the 7 CNS regions previously defined. From the collection of methods developed to

measure tissue specificity, we selected the method based on Tau score because of its high sensitivity to

detect tissue-specific genes (Yanai et al. 2005; Kryuchkova-Mostacci and Robinson-Rechavi 2017). The

Tau score ranges from 0 for broadly expressed genes, to 1 for highly tissue-specific genes (Methods).

Contrary to Tau score distributions reported in a previous study on different organs  (Kryuchkova-

Mostacci and Robinson-Rechavi 2017), the distribution of Tau scores across the CNS regions in the

present study was not bi-modal and had a unique mode centered on low values (Fig. 2A). Consequently,

the Tau threshold for declaring a gene tissue-specific could not be visually defined. We thus developed

an approach based on permutations to adapt this threshold choice to the case of similar tissues within

a single organ system. We calculated an empirical p-value for each gene, based on permutations of the

tissue labels,  and then performed a False Discovery Rate (FDR) correction on the p-values for the

multiple genes tested (Benjamini-Hochberg corrected p-value < 0.01) (Fig. 2A). This approach led to a

Tau threshold of  0.525.  We found that  17% (2,829) of  protein-coding genes expressed in the CNS

regions were tissue-specific (Supplemental Materials Fig. S1). Moreover, we established that paralogs

were significantly enriched in tissue-specific genes compared to singletons (19.2% of paralogs were

tissue-specific, versus 13.9% of singletons, p-value = 2.045E-18, using a Chi-squared test) (Table 1). We
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confirmed this association between paralogs and tissue-specificity in addition to their expression level,

by using a multivariate linear model, inspired from the analyses of Guschanski et al. 2017, that predicts

the Tau score of a gene from its maximal expression over the CNS regions and its duplication status

(Supplemental Materials Result S1 and Table S16A).

A B 

Figure 2. Tissue-specific expression of paralogous genes across human CNS regions. (A) Density plot of

original Tau scores (blue line) calculated from the expression values of 16227 protein coding genes,

and permutated Tau scores (purple  line)  calculated from 1000 x  16427 permutations.  The tissue-

specificity threshold of 0.525 (red dotted line) is defined, from permutated scores using the Benjamini-

Hotchberg corrected P-value of 0.01. (B) Unsupervised hierarchical clustering of tissue-specific genes

expressed  across  CNS  regions.  The  heatmap  illustrates  the  mean  gene  expression  calculated  over

sample cohort for each CNS region.
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Table 1. Enrichments in tissue-specific genes for the tested and reference gene groups

Reference groupa Tested group for
tissue-specificitya

Percentage of tissue-
specific genes in the

tested group (%)

Chi-squared
test P-valueb

Odds
ratioc

Protein coding
genes

Paralogous genes 19.2 2.045E-18* 1.48

Paralogous genesd
WGD genes 15.7 1.061E-18* 0.64
SSD genes 22.6 9.022E-11* 1.39

ySSD genes 28.6 6.341E-18* 1.82

SSD genes
ySSD genes 28.6 3.483E-09* 1.62
oSSD genes 15.6 2.729E-13* 0.52

WGD + wSSD genes WGD genes 15.7 5.185E-12* 0.59
a Abbreviations for gene duplication categories : WGD (Whole-Genome Duplication), SSD (Small-Scale

Duplication), ySSD (younger SSD occuring after WGD events), oSSD (older SSD occuring before WGD

events) and wSSD (WGD-old SSD occuring around WGD events).

b Application of Chi-squared tests (or of Fisher’s exact test when the Chi-squared test could not be

applied) with a corrected p-value threshold = 7.14E-03 (Bonferroni correction for 7 statistical tests).

c  The odds ratio (>1 or <1) indicates the group (tested or non-tested respectively) in which there is an

enrichment.

d The paralog reference group includes the genes belonging to WGD, SSD and WGD-SSD 

categories and the paralogs without annotation.

Although this method based on the Tau score can identify tissue-specific genes, it does not indicate

which CNS region is targeted by this specificity  (Yanai  et al.  2005).  In order to study the regional

distribution  of  tissue-specific  genes,  we  mapped  each  tissue  specific  gene  to  one  CNS region

(Supplemental Materials  Table S4).  Therefore,  for  each tissue-specific  gene,  we considered  the

anatomical region associated with the highest expression value to be the specific region (Fig. 2B).

We  discovered  that  the  distribution  of  tissue-specific  genes  across  CNS  regions  was  very

heterogeneous (Supplemental Materials  Table S6) compared to an almost constant proportion of

expressed genes across these regions (Supplemental Materials Table S5). The highest proportions of

tissue-specific genes were found in the cerebellum (40.2%), spinal cord (20.9%) and hypothalamus

(16.4%). The remaining tissue-specific genes (22.5%) were scattered over the last four brain-related
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regions.  The  distribution  of  tissue-specific  paralogs  across  CNS  territories  was  also  highly

heterogeneous and similar to the distribution obtained for all tissue-specific protein-coding genes

(Supplemental Materials Table S6).

In summary, we found that paralogs were more tissue-specific than other genes and that tissue-specific

paralogs were concentrated in a limited number of CNS regions similarly to the other tissue-specific

genes. Precisely, we observed that the paralogous status contributed to the tissue-specific property in

addition of the expression value.

3/ Evolutionary and genomic properties of tissue-specific paralogs

The date of an SSD can be estimated in relation to the WGD events and attributed to one of the three

duplication age categories: younger SSD (after WGD events - ySSD), older SSD (before WGD events-

oSSD)  and  WGD-old  SSD  (around  WGD  events  –  wSSD)  (Methods)  (Singh  et  al.  2014).  Using  our

collection of paralogs with tissue-specific expression between CNS regions, we performed statistical

tests to determine if they were enriched in particular duplication events (WGD or SSD) or dates of SSDs

(oSSD,  wSSD  and  ySSD  categories).  Genes  can  undergo  both  WGD  and  SSD  duplication and  can

sometimes be retained after each duplication. Unless otherwise stated, when we refer to a duplication

type from this  point  on in the paper,  we are  referring to genes that  have been retained after  this

duplication type only (WGD or SSD), in order to make a clear distinction between the effects of the two

duplication types. Of the 10,335 paralogs considered in our study, 5,114 are from WGD, 3,719 from SSD

(1,192 from ySSD, 1,260 from wSSD and 1,267 from oSSD) and 1,502 unclassified (966 both WGD-SSD

and 536 without annotation).

We first observed that, among paralogs, SSD genes were significantly enriched in tissue-specific genes

(22.6% of SSDs were tissue-specific versus 17.3% of the other paralogs, p-value = 9.022E-11), while on

the opposite WGDs were depleted in tissue-specific genes (Table 1). However, we noticed that WGDs

seemed slightly enriched in tissue-specific genes, compared to singletons (15.7% of WGDs were tissue-

specific versus 14.4% of the singletons, p-value = 4.1E-02). Furthermore, when we performed the same

analysis only on the paralogs duplicated around the WGD events (WGDs and wSSDs), the WGD genes
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were still significantly depleted in tissue-specific genes (15.7% of WGDs were tissue-specific versus

24% of wSSDs, p-value = 5.185E-12) (Table 1). These tests allowed us to conclude that SSD paralogs

were enriched in tissue-specific genes, independently of the potential effect of the duplication date on

tissue-specificity.

In  addition  to  assessing  the  effect  of  duplication  type,  we  also  tested  the  association  between

duplication age  categories  and tissue-specificity,  and found that ySSD were also enriched in tissue-

specific  paralogs  (28.6% of  ySSDs versus  18.0% of  the  remaining  paralogs,  p-value  =  6.341E-18).

Moreover, ySSDs were still enriched in tissue-specific paralogs when we performed the analysis on SSD

paralogs only (28.6% of ySSDs versus 19.8% of the remaining SSDs, p-value = 3.483E-09). On the other

hand, oSSDs were depleted in tissue-specific genes compared to other SSD paralogs (15.6% of oSSDs

versus 26.2% of the remaining SSDs, p-value = 2.729E-13) (Table 1). We confirmed the contribution of

both duplication age and duplication type to the tissue-specificity of paralogs, independently of the

effect  of  their  maximal  expression level,  using  multivariate  linear  models  (Supplemental  Materials

Result  S1 and Table  S16C,  D).  In summary,  we could conclude that  ySSD genes were more tissue-

specific than other paralogs, probably due to both their SSD origin and their duplication age.

To refine the association between duplication age and tissue-specificity,  we performed enrichment

analyses using a short list of paralogs that came from human-specific duplication events (Methods)

(Dennis  et  al.  2017) and  found  no  significant  associations  (Supplemental Materials  Table  S19).

However, the statistical test leading to this result may be underpowered because of the small number

of genes and of the abundance estimation uncertainty of recent paralogs with high sequence identity

(Dougherty et al. 2018). To obtain a complementary view of this tissue-specificity loss for very recent

duplications, we examined the distribution of the Tau scores of paralogs according to their phyletic age

(Supplemental Materials Fig. S4). We found that the maximum Tau scores were obtained for genes with

phyletic ages around 0.12 which corresponds in most cases to ySSD duplication events that occurred

around the separation of the Simians clade (Ensembl Compara GRCh37 p.13).  This result  seems to

indicate that tissue-specific expression is not a property particularly associated with human-specific

duplications, even though it seems to increase for slightly older ySSDs and to decrease afterwards.
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In summary, we found that SSD genes and in particular ySSD genes were more often tissue-specific

than other paralogs due to their duplication origin and to the age of ySSD genes.

4/ Tissue-specificity analysis of co-expressed gene families

We  previously  found  that  paralogs,  and  especially  SSDs  and  ySSDs,  were  involved  in  territorial

expression between the different CNS regions,  notably through tissue-specificity.  In this section, we

tried to determine if  the paralogs within gene families  tended to share the same tissue-specificity

across  CNS  regions.  We  studied  the  potential  expression  similarity  between  paralogs  across  CNS

regions by using a co-expression analysis without a priori knowledge on their tissue-specificity.

The study of co-expression allowed us to explore the higher level of organization of the paralogs into

groups of genes with coordinated expression across CNS tissues and compare these modules of co-

expressed paralogs  across  tissues against  annotated gene families.  The Weighted Gene Correlation

Network  Analysis  (WGCNA)  methodology  (Langfelder  and  Horvath  2008) was  used  to  infer  the

correlation-based co-expression network.  Contrary to previous studies that inferred a network per

tissue and then compared modules between networks (Oldham et al. 2008; Pierson et al. 2015), in this

study we carried out co-expression network inference by simultaneously using all the 13 CNS tissue

samples  profiled  by  the  GTEx  consortium  in  order  to  explore  gene  associations  with  tissue

differentiation. We optimized the WGCNA to generate highly correlated co-expression modules of small

size  in  order  to  compare them with  the  annotated gene  families  (Supplemental Materials  Fig.  S2;

Methods). Indeed, out of our 3,487 gene families, 1,644 (47%) were constituted of only two genes. Our

WGCNA analysis extracted 932 modules of co-expressed paralogous genes. Only 104 genes were not

included in a co-expression module. The module size ranged from 2 to 911 genes with 84% of small

size modules (modules with less than 10 genes) (Supplemental Materials Table S7). A high proportion

of modules were enriched in molecular function and biological process GO terms indicating that our

network  inference  approach  captured  shared  biological  functions  among  co-expressed  paralogs

(Supplemental Materials Result S4).

To first check the relationship between co-expression and shared tissue-specificity, we analyzed the
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distribution of tissue-specific genes across the 932 modules of co-expressed paralogs and found that

177 modules included at least two tissue-specific genes. We then looked at whether within each of

these modules the tissue-specific genes were expressed in the same or in different regions. We found

that among these 177 modules, 66% and 92% consisted of tissue-specific genes associated respectively

with the same region or at most two different regions (Supplemental Materials Table S15). Therefore,

gene modules identified from correlation-based co-expression networks also capture shared tissue-

specificity.

This  co-expression  network  analysis  allowed  us  to classify  the  gene  families  into  two  categories,

homogeneous and heterogeneous gene families,  based on their  patterns  of  expression across  CNS

tissues (Methods). A homogeneous gene family was defined by the property that the majority of its

member  genes  were  included  in  the  same  co-expression  module.  Out  of  the  3,487  gene  families

considered in this study, we identified 111 homogeneous families (with 257 co-expressed paralogs out

of a total of 300 expressed paralogs in these families, the remaining 43 not co-expressed paralogs being

removed  from  all  tests  on  homogeneous  family  genes  in  the  rest  of  the  article)  and  thus  3,376

heterogeneous families (10,035 paralogs) (Supplemental Materials Tables S13 and S14). We showed by

a permutation approach that this number of homogeneous families was significantly large, with an

empirical p-value inferior to 10-3  (Methods), suggesting that paralogs were more co-expressed across

tissues when they came from the same family. The comparison of the average size of families between

each category showed that homogeneous families were significantly smaller than heterogeneous ones

(Welch statistical test,  average size of homogeneous families = 2.89, average size of heterogeneous

families = 3.84, p-value = 8.278E-10). A total of 53 of these homogeneous families were completely

included in the same module of co-expression. Furthermore, some modules were found to comprise

several  homogeneous  gene  families  (Supplemental Materials  Table  S9).  A  biological  pathway

enrichment analysis of the homogeneous family genes revealed that they were notably enriched in

transcription factors and signaling proteins involved in neural development (Supplemental Materials

Result S6 and Table S10).

Before  looking  at  shared  tissue-specificity  within  homogeneous  families,  we  investigated  the
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association  of  tissue-specificity  with  these  co-expressed  families,  and  observed  a  significant

enrichment of tissue-specific paralogs in genes coming from homogeneous families (4.7% of tissue-

specific paralogs versus 2% of the other paralogs, p-value = 5.374E-12) (Table 2). We then investigated

the link between shared tissue-specificity and homogeneous gene families  by categorizing families

according  to  their  tissue-specificity  following  the  classification  defined  by  Guschanski  et  al.  2017.

Families composed of a majority of genes tissue-specific to the same regions were classified as tissue-

specific  families.  We identified 58 tissue-specific families and we found a significant enrichment of

tissue-specific families in homogeneous families (45% of tissue-specific families versus 2.5% of other

families, p-value = 1.691E-69) (Table 2).

Table 2. Enrichments in genes from homogeneously expressed families for the tested and reference

gene groups

Reference
groupa

Tested group for
homogeneous family

expressiona

Percentage of
homogeneous family

genes in the tested
group (%)

Chi-squared
test P-
valueb

Odds ratioc

Paralogous
genesd

SSD genes 3.3 2.777E-04* 1.59
ySSD genes 5.2 5.758E-10* 2.49

Tissue-specific genes 4.7 5.374E-12* 2.45

ySSD genes
Human-specific

paralogous genes
50 3.868E-04* 19.58

Paralogous
genesd Tissue-specific familiese 45 1.691E-69* 42.94

a Abbreviations for gene duplication categories : WGD (Whole-Genome Duplication), SSD (Small-Scale

Duplication) and ySSD (younger SSD occuring after WGD events).

b Application of Chi-squared tests (or of Fisher’s exact test when the Chi-squared test could not be

applied) with a corrected p-value threshold = 1E-02 (Bonferroni correction for 5 statistical tests).

c The odds ratio (>1 or <1) indicates the group (tested or non-tested respectively) in which there is an

enrichment.

d The paralog reference group includes the genes belonging to WGD, SSD and WGD-SSD categories and

the paralogs without annotation.

e Genes included into tissue-specific families. Only genes specific to the major tissue are considered.
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We then studied whether homogeneous families were associated with a type of duplication event or

with a duplication age. We found that SSD and ySSD genes were both enriched in genes coming from

homogeneous families (3.3% of SSD versus 2.1% of the other paralogs, p-value= 2.777E-04; 5.2% of

ySSD versus 2.1% of  the other paralogs, p-value = 5.758E-10) (Table  2). We also found a significant

enrichment of human-specific genes in homogeneous families, using ySSD genes as reference group,

suggesting that the recent ySSDs tend to be more co-expressed than the other ySSDs (p-value = 3.868E-

04,  OR = 19.58) (Table  2; Supplemental Materials  Result  S7).  Similarly,  SSD and ySSD genes were

significantly  enriched in  genes  coming  from  tissue-specific  families  (Supplemental Materials  Table

S17). Finally, we also analyzed the shared tissue-specificity of SSDs and ySSDs at the pair level but the

very low number of tissue-specific paralog pairs did not allow to get significant results (Supplemental

Materials Result S2).

It can be expected that co-expression between two duplicates in a paralog pair will be associated with

their proximity on the genome, as epigenetic co-regulation of gene expression partly depends on the

proximity between genes on the genome (Xie et al. 2016; Ibn-Salem et al. 2017; Lian et al. 2018). We

thus investigated whether the genomic distance between paralog pairs (Supplemental Materials Result

S5)  could  be  used  to  differentiate  homogeneous  from  heterogeneous  families.  For  homogeneous

families, we considered only pairs in which both paralogs belonged to the main co-expression module

(37 pairs),  and removed the other  pairs  from the test.  We found that homogeneous families were

depleted in inter-chromosomal pairs (70.3% of homogeneous families versus 90.2% of heterogeneous

families were spread across different chromosomes, p-value= 7.73E-04) and were enriched in tandem

duplicated pairs (27% of homogeneous families and 6.7% of heterogeneous families were separated by

less than 1 Mb, p-value = 1.743E-04) (Supplemental Materials Table S21); this supports the idea that

paralog co-expression is  favored by proximity along the genome.  Moreover,  we  confirmed that  the

genomic proximity of duplicates was associated with recent SSDs and that the younger the SSD pair, the

more the duplicate were found in tandem in the genome (Supplemental Materials  Result  S5).  The

tandem duplication  explains why SSDs, and especially ySSDs, tend to be more co-expressed and to
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share more often the same tissue-specificity within their family than other paralogs.

In summary, the gene co-expression network analysis performed on the CNS tissues allowed us to find

that when several tissue-specific genes were clustered in the same module of co-expression, they were

often expressed in the same CNS region or the same pair of regions.  We showed that within gene

families, the shared tissue-specificity of paralogs was associated with their co-expression across tissues

and we classified gene families into two categories according to co-expression status. Homogeneous

families  were  enriched  in  paralog  pairs  which  were  closely  located  on  the  genome  in  tandem

duplication, probably due to the specific trend of SSD pairs to be duplicated in tandem. Indeed, these

homogeneous families were enriched in SSDs, especially in ySSDs, and were associated with a shared

tissue-specificity.

5/ Exploration of brain disorder-associated genes

In addition to paralog implication in tissue-specific gene expression, another factor contributing to the

importance of a gene is its potential association with disease.  Indeed, disease-associated mutations

preferentially accumulate in paralogous genes rather than singletons (Dickerson and Robertson 2012).

In the  case of  duplication categories,  it  has  been reported that  the proportion of  both Mendelian

(monogenic) and complex (polygenic) disease genes are enriched in WGD genes in comparison to non-

disease genes  (W.-H. Chen et al. 2013). We decided to refine theses analyses by considering only the

genes that are associated with brain diseases. We therefore used the ClinVar database to collect a list of

genes that harbored a Single Nucleotide Variant (SNV) or were located within a Copy Number Variant

(CNV) and related to a brain disorder (Landrum et al. 2016) (Methods). We found that paralogs were

enriched in brain disease genes (50.2% of paralogous genes, versus 46% of other genes, p-value =

3.740E-07)  (Supplemental  Materials  Table  S18).  We  further  focused  on  paralog  categories  and

observed that, among paralogs, neither WGDs or SSDs were enriched in brain disease genes (p-value =

0.555) but we noticed that ySSDs genes tended to be very slightly enriched in brain disease genes

(53.1% of ySSD genes, versus 49.8% of other paralogs, p-value = 3.535E-02). However, brain disease

genes tended to be slightly depleted in tissue-specific genes and were neither enriched in genes coming
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from  homogeneous families  or  in  human-specific  paralogs  (Supplemental  Materials  Table  S18).  In

summary, brain disease genes are enriched in paralogs but not in WGDs in particular and the paralogs

associated with brain diseases do not seem to be the same ones that we found in the previous result

sections associated with tissue-specificity and co-expressed gene families.

DISCUSSION

As far as we are aware, this study is the first to focus specifically on the spatial expression of paralogs

and gene families between the different human CNS territories based on post-mortem human tissues

analyzed by the GTEx consortium. Previous studies based on gene expression analysis between organs

have  already  established  the  important  association  between  paralogs  and  tissue  differentiation

(Freilich  et  al.  2006;  Kryuchkova-Mostacci  and  Robinson-Rechavi  2016).  We  showed  that  paralog

expression could separate CNS tissues better than singletons, despite their low expression compared to

singletons.  Therefore,  the  relationship  between  paralogs  and tissue  differentiation is  also  true  for

comparisons of the different anatomical regions of the CNS.

Paralogs are known to be more tissue-specific than other genes (Huminiecki and Wolfe 2004; Freilich

et al. 2006; Huerta-Cepas and Gabaldón 2011; Guschanski et al. 2017). Among paralogs, SSDs (Satake

et al.  2012) and in particular  ySSDs  (Kryuchkova-Mostacci and Robinson-Rechavi 2016) seem to be

more often tissue-specific than other paralogs when comparing tissues from different organs. However,

when considering the brain as a whole and comparing it with other organs, it has been found that

WGDs tend to be enriched in brain-specific genes compared to SSDs (Satake et al. 2012; Guschanski et

al.  2017; Roux et al.  2017).   In our study  between the tissues that composed the human CNS,  we

observed  that paralogs, especially ySSDs were more  tissue-specific  than other genes. In addition, we

found that even wSSDs were enriched in tissue-specific genes compared to other paralogs of the same

age (WGDs), thus suggesting that the tissue-specificity between brain regions is not only associated

with the young age of duplication but also with the type of duplication (i.e. with SSD duplications). Our

results, although apparently contradictory, do not question the known involvement of WGDs in brain-

specific expression. Indeed, the fact that an SSD gene tends to be more often specific to only one or just
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a few CNS anatomical regions than a WGD gene, implies that the average expression of SSD genes over

the whole brain would be lower than the average expression of WGDs. Thus, this broad expression of

WGDs within brain regions facilitates the detection of their brain-specific expression when comparing

several organs, while the analysis of gene expression between organs may not promote the detection of

some ySSDs specific to human brain.

A previous study performed using gene expression profiles across mammalian organs established that

most of tissue-specificity variance was explained by the expression level, in addition to the duplication

status, with  no  significant  contribution  of  the  evolutionary  time  (Guschanski  et  al.  2017).  Using

multivariate  linear  models,  we  confirmed  the  major  contribution  of  expression  level  and  that  of

duplication status to tissue-specificity in CNS territories.  The association with duplication status was

more significant when we considered the maximal expression, which gives a better interpretation of

gene abundance when studying the tissue-specificity than the average expression. Moreover, among

paralogs, we found that  the SSD duplication type explained also part of the tissue-specificity variance.

Regarding the evolutionary time, low phyletic ages were also significantly associated with high tissue-

specificity; a property potentially restricted to CNS tissues. Despite this global effect of the duplication

age, we observed that tissue-specific expression did not seem to be  associated with human-specific

duplications, but rather with less recent ySSDs.

We then studied the gene family level of organization  using gene co-expression network analysis of

paralogs across CNS tissues.  We showed that modules of  co-expressed genes were able to identify

clusters of paralogs with the same tissue-specificity. The characterization of gene families according to

the level  of  co-expression of their  member genes has led to the identification of two categories of

families:  homogeneous  families,  which  are  composed  of  a  majority  of  co-expressed  genes,  and

heterogeneous  families.  We  observed  that  homogeneous  families  were  enriched  in  ySSD  genes

(particularly in human-specific genes) and tandem duplicate pairs, in agreement with a previous study

showing that pairs of ySSD paralogous genes tend to be duplicated in tandem and co-expressed just

after the duplication event (Lan and Pritchard 2016). A previous study established that when the two

paralogs of an ySSD pair are tissue-specific, they tend to be specific to the same tissue more often than
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for other paralog pairs  (Kryuchkova-Mostacci and Robinson-Rechavi 2016). We observed that it  was

also true for the CNS territories by showing the high co-expression of ySSD pairs and the enrichment of

co-expressed families in tissue-specific families, where the majority of genes were tissue-specific to the

same tissue. 

From  the  analysis  of  gene  expression  across  human  and  mouse  organs,  Lan  and  Pritchard  2016

proposed a model for the retention of SSD duplicates appearing in mammals. In this model, pairs of

young paralogs are often highly co-expressed probably because tandem duplicates are co-regulated by

shared regulatory regions. In addition, this model is consistent with the dosage-sharing hypothesis in

which down regulation of the duplicates, to match expression of the ancestral gene, is the first step

enabling  the  initial  survival  of  young duplicates  (Lan and Pritchard 2016).  Our  analyses  of  ySSDs

expression features between CNS territories seem to be concordant with this model, indeed ySSDs tend

to be organized within small families of co-expressed genes and also weakly expressed in concordance

with the sharing of the gene ancestral expression. Furthermore, our results in the CNS tissues seem to

confirm that,  after the initially high co-expression of SSD paralogs just after their duplication, they

become  more  tissue-specific  and  less  co-expressed  in  part  through  chromosomal  rearrangement.,

suggesting a long term survival by sub-/neofunctionalization (Lan and Pritchard 2016). In the case of

ySSDs tissue-specific in the same tissue, one of these duplicates might not preserve its coding potential

in the long term and would lead to a pseudogene. This does not systematically imply its inactivation,

indeed some transcribed pseudogenes associated with low abundance and high tissue-specificity may

carry a regulatory function on their parental genes (Guo et al. 2014; Hezroni et al. 2017).

With regard to the relationship between paralogs and human diseases, if we consider all the genes

involved  in  Mendelian  or  complex  genetic  diseases,  it  is  known  that  mutations accumulate

preferentially in paralogs compared to singletons  (Dickerson and Robertson 2012; W.-H. Chen et al.

2013;  Singh  et  al.  2014).  Moreover,  old  paralogs  (WGDs  and  oSSDs)  tend  to  be  more  frequently

associated with diseases (Makino and McLysaght 2010; Chen et al. 2014; Singh et al. 2014; Acharya and

Ghosh 2016) potentially linked to their essentiality (Makino et al. 2009; Acharya and Ghosh 2016; Roux

et al. 2017). Finally, in the case of SSD paralogs, disease genes are known to be enriched in oSSDs and
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depleted in ySSDs when compared to non-disease genes (Chen et al. 2014). Our study confirmed that

paralogs were enriched in brain disease-associated genes.  However,  using our list  of  brain disease

genes, we observed no enrichment in  WGD or SSD duplications types. 

In conclusion, our intra-organ exploration of paralogs suggests the major implication of young SSDs in

tissue-specific expression between the different human CNS territories. It will be relevant to explore

the expression patterns of these young SSDs between anatomic regions of other complex organs to

determine whether or not they are solely associated with the nervous system.

METHODS

Human genes, duplication events and families

A list of 21,731 human genes, with both their HGNC gene symbol and their Ensembl IDs (GRCh37,

release 59), was collected based on the work of Chen and co-workers (W.-H. Chen et al. 2013). Among

these genes,  14,084 paralogs made up of  3,692 gene families,  identified by TreeFam methodology

(Ruan et al. 2008), were obtained from Chen and co-workers (W.-H. Chen et al. 2013). These authors

downloaded all gene families from the TreeFam v.8.0 database, which identifies duplicates based on

gene  family  evolution.  Moreover,  for  each  paralog,  they  represented  the  phyletic  age  of  its  last

duplication event by the total branch length from the node indicating where the duplication event had

happened on the species tree to the human leaf node, and they assigned the associated duplicate (Chen

et al. 2012; W.-H. Chen et al. 2013). A second list of 20,415 genes was extracted from Singh et al. 2014.

This gene ID list was converted to HGNC gene symbols and intersected with the first list in order to

annotate it  (17,805 protein-coding genes in common).  Thus,  in the present study,  we collected the

duplication category for each paralog (Singh et al. 2014). Singh et al. obtained WGD annotations from

(Tinti  et  al.  2012) and obtained their  SSD annotations  by running an all-against-all  BLASTp using

human proteins (Singh et al. 2012). Singh and co-workers defined genes as singletons if they were not

classified as WGDs or SSDs and they obtained the duplication age for SSD genes from the Ensembl

compara  (Vilella et al. 2009). They classified paralogs into the following categories: WGD, SSD, ySSD

(i.e.  SSD with duplication date younger than WGD), oSSD (i.e. SSD with duplication date older than

WGD) and wSSD (i.e. SSD with duplication date around the WGD events). There were 5,390 annotated
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paralogs originating from the WGD and 4,889 from SSD (2,104 from ySSD, 1,354 from oSSD and 1,431

from wSSD). Moreover, there were 2,607 paralogs without annotations and 1,198 paralogs annotated

as both WGD and SSD (WGD-SSD). The WGD-SSD paralogs were not included into the WGD or the SSD

duplication categories. However, the unannotated and WGD-SSD paralogs were both considered into

the  paralog  group.  We  verified that  these paralog  duplication categories  were consistent  with the

phyletic ages (duplication dates) collected from Chen and co-workers (Chen et al. 2012; W.-H. Chen et

al. 2013) (Supplemental Materials Fig. S3). The list of our paralogous gene pairs and gene families is

given in the Supplemental  Materials  Table  S1.  The evolutionary annotation of  paralogous  genes is

indicated  in  the  Supplemental  Materials  Table  S2.  The  list  of  singleton  genes  is  given  in  the

Supplemental Materials Table S12. Furthermore for the analysis of the duplicate pairs, we considered

only the 3,050 pairs which appeared twice in our paralog list (i.e. where the first paralog is associated

with the second paralog and vice versa and where the duplication category annotation is the same for

both paralogs); genomic distances between duplicate pairs were obtained from Ensembl (GRCh37/90).

We also obtained a list of paralogous genes generated by human-specific duplication events (Dennis et

al. 2017). From these human-specific duplications, 22 were in our list of paralogs and 8 were among

the genes expressed in the CNS.

Gene expression profiles in CNS tissues

We obtained gene counts and RPKM (Reads Per Kilobase Million) values for 63 to 125 individuals

(1259  post-mortem  samples  –  RNA  integrity  >  6)  distributed  over  13  CNS  tissues  (cerebellum,

cerebellar hemisphere, cortex, frontal cortex, anterior cingulate cortex, hypothalamus, hippocampus,

spinal  cord,  amygdala,  putamen,  caudate,  nucleus accumbens and substantia  nigra)  from the GTEx

consortium data release 6 (GRCh37)  (Melé et al.  2015).  The CNS tissue associated with each GTEx

patient sample used in our study is indicated in the Supplemental Materials Table S11. These gene

expression  data,  calculated  by  GTEx  took  into  account  only  uniquely  mapped  reads

(https://gtexportal.org). After filtering out low-information content genes (genes with a null variance

across samples and weakly expressed genes, with mean expression per tissue lower than 0.1 RPKM for
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all tissues), we kept for analyses a total 16,427 genes distributed across 10,335 paralogs (5,114 WGD,

3,719 SSD,  1,192 ySSD,  1,260 wSSD and 1,267 oSSD,  966 WGD-SSD and 536 without annotations)

grouped in 3,487 families and 6,092 singletons. It should be noted that all analyses of the articles were

performed on this list of expressed genes only, except for the analysis on brain disease genes. Moreover,

the WGD-SSD paralogs were not included in the WGD or SSD categories. However, unannotated and

WGD-SSD paralogs as well as all other duplication categories were considered to constitute the paralog

group. Gene RPKM values were log-transformed (log2 (RPKM + 1)) and adjusted by linear regression

for  batch  effects  and  various  biological  effects  (platform,  age,  gender  and  the  first  3  principal

components of genetic data illustrating the population structure given by the GTEx Consortium; the

intercept of the regression was not removed from the residuals in order to keep the mean differences

between genes (https://www.cnrgh.fr/genodata/BRAIN_paralog). These filtered, log-transformed and

adjusted RPKM values were used as input for unsupervised classification of brain tissues, as well as for

gene co-expression network inference and for tissue-specificity analysis.  Moreover,  gene expression

data for tissues considered to anatomically overlap were merged by calculating the average expression

value across related tissues prior to the tissue-specificity analysis. Therefore, from an initial list of 13

tissues, we defined a shorter list of 7 CNS regions: cerebellum (cerebellum and cerebellar hemisphere),

cortex  (cortex,  frontal  cortex  and  anterior  cingulate  cortex),  basal  ganglia  (putamen,  nucleus

accumbens and caudate), amygdala-hippocampus, hypothalamus, spinal cord and substantia nigra.

Unsupervised clustering of gene expression profiles

Gene expression profiles (filtered and adjusted RPKM values) generated by the GTEx Consortium for

the 1,259 samples distributed across the 13 CNS tissues, were clustered by unsupervised hierarchical

clustering  using  the  pheatmap  package  of  R  version  3.4  (similarity  measure:  Pearson  correlation,

clustering method: average linkage).  We estimated the relevance of the clustering according to the

expected groups of CNS tissues. We evaluated, independently, the clusterings generated from protein-

coding  genes,  paralogs  and singletons,  using  adjusted  rand index  (Hubert  and Arabie  1985) after

cutting trees (so that we obtained 30 clusters for each gene category).
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Differential gene expression analysis

Genes with low-information content were removed before differential gene expression (DGE) analysis.

DGE analysis was performed by DESeq2 (Love et al. 2014) on count data for each pair of CNS tissues,

with  the  “median  ratio”  between-sample  normalization  and  using  batch  and  biological  effects  as

covariates. For each tissue pair, we then corrected gene p-values for the number of tested genes using

FDR (Benjamini and Hochberg 1995) and obtained a list of significantly differentially expressed genes

(DEGs) (FDR<0.05). Finally, we considered only the DEGs with a log2 fold-change greater than 0.5.

Inference of gene co-expression networks

The gene network inference was carried out using the Weighted Gene Correlation Network Analysis

(WGCNA) methodology (Langfelder and Horvath 2008), which generates co-expression networks and

identifies modules (groups) of co-expressed genes.  We applied the WGCNA tool  only to paralogous

gene expression data (RPKM) across the GTEx samples of the 13 CNS tissues. Genes were grouped into

modules according to their expression profile  similarity.  The module named “grey”,  which grouped

genes that were not considered as co-expressed by WGCNA, was composed of genes with very low

variability across all samples. Since we had removed the genes with no variance across tissue samples

and those which were weakly expressed before performing the WGCNA analysis, the grey module was

small in size (104 genes). Furthermore, if this filtering had not been performed, some of the genes with

an overall weak expression might have been integrated into co-expression modules, thus creating a

bias. One of our goals was to compare gene families to co-expression modules. Given that 47% of gene

families have a size equal to 2, we optimized WGCNA parameters to obtain small highly co-expressed

modules (Supplemental Materials Result S3).

Homogeneous and heterogeneous families

Definition. A gene family was defined as homogeneous if the majority, more than 60%, of its member

genes were included in the same co-expression module. It should be noted that the total size of gene
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families was used to compute this  percentage,  even if  some member genes were not  in the list  of

expressed paralogs. Gene families which did not respect this homogeneity rule, i.e. those with member

genes scattered over different co-expression modules, were defined as heterogeneous.

Assessment of the significance of the number of homogeneous families . Starting from the paralog modules

obtained with WGCNA, we used a permutation procedure (by permuting 1,000 times the module labels

of paralogs and counting the number of falsely homogeneous families for each permutation) and were

able  to  conclude  that  the  number  of  homogeneous  families  was  significantly  large,  since  for  each

permutation the number of falsely homogeneous families was lower than the number that we obtained,

leading to an empirical p-value inferior to 10-3.

Tissue-specificity calculation

Tau score calculation. To select tissue-specific genes, we used the  score τ (Yanai et al. 2005) to estimate 

the degree of tissue-specificity of each gene in our set of CNS tissues:

(1) τ=
∑
i=1

n

(1−X̂ i )

n−1
; X̂ i=

x i

max
1⩽ i⩽ n

(x i )

In this equation, xi is the mean expression of a given gene in tissue i and n is the number of different

tissues.  varies from 0 to 1 where 0 indicates that the gene is broadly expressed and 1 that the gene isτ

tissue-specific. For  computation, genes must have a positive mean of expression in every CNS region.τ

Although we log-normalized expression data with log2(RPKM+1) leading to positive expression values,

the  correction  for  batch  and  some  biological  effects  induced  some  negative  values  in  gene  mean

expression. We replaced the negative values by zeros to keep all protein coding genes (16,427 genes)

for the  score computation. We pooled expression data generated by GTEx for the 13 tissues into 7τ

CNS regions so that the  score would not decrease artificially for genes specific to several close tissues.τ

Tau score threshold defined by permutations. The  score was computed for each gene and for the 7 CNSτ

regions.  We then plotted the  score distribution obtained from all  protein coding genes (τ Fig.  2A).

However, there is no general  score threshold at which a gene is considered to be tissue-specific.  τ To

define a tissue-specificity threshold, we implemented a statistical method based on permutations. We
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applied 1000 permutations on the region labels assigned to the samples to shuffle the correspondence

between samples and regions. For each permutation,  scores were recomputed for each gene. Theτ

distribution of the 1000 X 16427  scores obtained from the permutations is given in the Figure 2. Forτ

each gene and its original  score, a p-value was then calculated as the proportion of permutation-τ

based  scores higher than the original  score. The Benjamini-Hochberg correction for the number ofτ τ

genes tested was applied to all p-values. Genes with a corrected p-value lower than 0.01 were declared

tissue-specific,  which corresponded to a  score threshold of 0.525 (Fig.  2A).  Visualization of geneτ

profiles across brain regions at different windows of the  score showed tissue-specificity beyond the τ τ

score threshold of 0.525 (Supplemental Materials Fig. S1). However even for  scores in the range [0.5-τ

0.75]  some  genes  were  still  expressed in  two  regions.  Therefore  for  each  tissue-specific  gene,  we

considered that the CNS region with the highest expression value to be the specific region.

Brain disease genes

The ClinVar database was used to collect genes linked to brain diseases  (Landrum et al.  2016). We

considered brain disease-associated genes containing a pathogenic alteration (SNV) or located within a

CNV (duplication, amplification or deletion). We selected genes associated by ClinVar to the following

“Disease/Phenotypes” : “Parkinson”, “Alzheimer”,  “brain”,  “Autism”,  “Epilepsy”, “Aicardi”, “Angelman”,

“Aphasia”,  “Apraxia”,   “Asperger”,   “Behcet”,  “spinal”,   “Canavan”,   “Charcot”,   “Chorea”,   “Dementia”,

“Dyslexia”, “Fabry”,  “Gaucher”,  “Gerstmann”,  “Huntington”,  “Refsum”,  “Joubert”,  “Kennedy”, “Klippel”,

“Krabbe”,  “learning”,  “mental”,  “Leigh”, “Leukodystrophy”,  “migraine”,  “Niemann”,  “Rett”,  “Sandhoff”,

“syncope”,  “Tay-sachs”, “Tourette”, “nervous”, “Schizophrenia”, “Narcolepsy”, “neuro”, “cephal”, “cortico”,

“crani”, “mening”, “psych”. We then removed genes associated with tumors or cancers. We obtained a

total of 10,375 genes linked to brain diseases including 7,989 gene expressed in CNS tissues. Among

them, 5,184 were expressed paralogous genes.
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