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ABSTRACT

Gene duplication has generated new biological functions during evolution that have contributed to the
increase in tissue complexity. Several comparative genomics and large-scale transcriptional studies
performed across different organs have observed that paralogs and particularly small-scale
duplications (SSD) tend to be more tissue-specifically expressed than other gene categories. However,
the major involvement of whole-genome duplications (WGD) was also suggested in the emergence of
tissue-specific expression features in the brain. Our work complements these previous studies by
exploring intra-organ expression properties of paralogs through multiple territories of the human
central nervous system (CNS) using transcriptome data generated by the Genotype-Tissue Expression
(GTEx) consortium. Interestingly, we show that paralogs, and especially those originating from young
SSDs (ySSD), are significantly implicated in tissue-specific expression between CNS territories. Our
analysis of co-expression of gene families across human CNS tissues allows also the detection of the
tissue-specific ySSD duplicates expressed in the same tissue. Moreover, we uncover the distinct effect
of the young duplication age, in addition to the SSD type effect, on the tissue-specific expression of
ySSDs within the CNS. Overall, our study suggests the major involvement of ySSDs in the differentiation
of human CNS territories and shows the added value of exploring tissue-specific expression at both the

inter and intra-organ levels.

INTRODUCTION

Comparative genomics and large-scale transcriptional studies have highlighted the major contribution
of gene duplication to tissue differentiation and phenotypic diversity (Ohno 1970; S. Chen et al. 2013).
The fact that some paralogs are retained in genomes through evolution seems to be initially favored by
dosage balance (Zhang 2003) and their long-term preservation is then made possible by the following
two processes: the neo-functionalization, which consists in the gain of a new function by one duplicate
potentially associated with a different spatial expression (Stephens 1951; Force et al. 1999; Teshima
and Innan 2008; Innan and Kondrashov 2010), or the sub-functionalization which consists in the

partition of the ancestral function or spatial expression between duplicates (Prince and Pickett 2002;
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Assis and Bachtrog 2015). The divergence of spatial expression between paralogs can be approached
by the study of gene tissue-specificity, which indicates whether a gene has a broad or narrow
expression pattern across a collection of tissues (Zhang 2003; Freilich et al. 2006; Lan and Pritchard
2016). The comparison of transcriptomes between different mouse organs has shown that the brain
was the one that expresses the highest proportion of tissue-specific paralogs in relation to the total
number of genes expressed in the brain, while it does not express the highest proportion of tissue-
specific singletons (Freilich et al. 2006). The brain is therefore a model perfectly suited to the detailed
exploration of the transcriptional properties of the duplicated genes.

Among the 60% of human genes considered as paralogs (S. Chen et al. 2013), some come from whole-
genome duplications (WGD) in early vertebrate lineage approximately 500 million years ago
(McLysaght et al. 2002; Nakatani et al. 2007), the others come from small scale duplications (SSD) that
have occurred throughout the evolution (Hakes et al. 2007). A comparison in mammals, notably in
human, of the brain transcriptome with those of other organs has shown that WGDs tend to be
enriched in brain-specific genes compared to SSDs (Satake et al. 2012; Guschanski et al. 2017; Roux et
al. 2017). This supports the theory that genome duplications have allowed vertebrates to develop more
complex cellular organizations, such as the different brain tissues (Holland 2009; Chen et al. 2011).

In complement of the role of the WGDs in the tissue complexity, some theories support the idea that
young duplicated genes tend to be preferentially expressed in evolutionarily young tissues (Domazet-
Lo$o and Tautz 2010). Moreover, a higher proportion of primate-specific paralogs were found to be up-
regulated in the developing human brain compared to the adult brain, whereas this expression pattern
was not found for older duplications (Zhang et al. 2011). Regarding recent duplications, that emerged
in the human lineage, studies have suggested their contribution to human-specific adaptive traits, such
as the gain of brain complexity (Sudmant et al. 2010; Dennis and Eichler 2016; Dennis et al. 2017;
Guschanski et al. 2017).

While the expression properties of paralogs between different organs, including the brain, have been
well studied, we have little knowledge of the expression characteristics of duplicated genes between

different regions of the same organ. Large-scale transcriptional profiling of neuroanatomic regions
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(Melé et al. 2015) allows us now to further investigate paralog expression between the different
territories of the human central nervous system (CNS) according to their evolutionary properties.

This present study explores in detail the expression patterns of paralogs between the different
territories of the human CNS, using the GTEx resource, according to their evolutionary characteristics
and gene families. We started assessing whether duplicated genes were associated with differences in
expression between CNS tissues and we investigated their tissue-specificity. Secondly, we studied the
evolutionary characteristics of tissue-specific paralogs such as their age and the type of duplication
event. We then analyzed the organization of paralogs in families using co-expression to define co-
expressed gene families and studied their tissue-specificity and evolutionary characteristics.

A better comprehension of the biology of paralogs could also support our understanding of diseases,
since disease-associated genes have been found to be over-represented in paralogs compared to
singletons (Makino and McLysaght 2010; Dickerson and Robertson 2012; W.-H. Chen et al. 2013) and
particularly in WGDs and old SSDs (Singh et al. 2014; Acharya and Ghosh 2016). Thus, we finally

explored the association of paralogs with human brain diseases.

RESULTS

1/ Association of paralog expression with CNS differentiation

We considered in our study all human protein coding genes and the information collected on
duplication events in order to split the gene population into paralogs and singletons (S. Chen et al.
2013) (Methods). In a recent landmark contribution, the GTEx (Genotype-Tissue Expression)
consortium used RNA sequencing technology to establish the landscape of human gene expression
across a large collection of postmortem biopsies (Melé et al. 2015). Gene expression data for hundreds
of individuals from 13 normal brain-related tissues (Methods) were obtained from the GTEx
consortium. After filtering out low information content genes, abundance values of 16,427 protein-
coding genes, including 10,335 paralogs and 6,092 singletons were conserved. Previous work by GTEx
established the relevance of using gene expression data to cluster samples obtained from the same

tissues, even though assigning samples to the correct CNS region was more difficult than for other
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organs (Melé et al. 2015). We extended this analysis by focusing specifically on CNS tissues and
assessing whether paralog expression could better classify samples into tissues than singletons or all
protein-coding genes. Our unsupervised hierarchical classification of human CNS samples, based on
their pair-wise similarity in terms of correlation across gene expression values, was able to group
together most samples belonging to the same tissue (Methods; Fig. 1). The choice of color gradients for
tissues that anatomically overlap confirmed the ability of gene expression profiles to classify these
tissues into neurologically relevant groups. Therefore, from the next result sections, we will pool
together some of the 13 initial tissues that showed similar expression profiles in order to define a
shorter list of 7 CNS regions (Methods) that will be used for the tissue-specificity analysis.

The relevance of our experimental classification was evaluated according to the expected belonging of
samples to the 13 brain-related tissues using the adjusted rand index (ARI) (Hubert and Arabie 1985).
We observed that globally, the sample classification based on paralog expression (ARI = 0.197) was
slightly better than the classification obtained using all protein-coding genes (ARI = 0.175) or
singletons (ARI= 0.182). It should be noted that the quality of a clustering is likely to be influenced by
the number of genes used in the analysis. Therefore, the better ARI score obtained with the paralogs
compared to singletons could be partly due to the higher number of paralogs in relation to singletons.
However, we also obtained a greater ARI with the paralogs in comparison to the ARI calculated from all
protein-coding genes, thus suggesting a particular biological relationship between paralogs expression

and CNS tissue differentiation.
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Figure 1. Unsupervised hierarchical clustering of genes expressed in human central nervous system
regions. Hierarchical clustering of genes expressed in the CNS regions was performed based on gene
pairwise distance in terms of correlation across gene expression values. The three gene groups
considered are: protein-coding genes, singletons and paralogous genes. Each CNS region is represented
by a different color. The tissues belonging to the same anatomically defined CNS region are represented
in the same color: blue for the cerebellum region (cerebellum and cerebellar hemisphere tissues),
green for the cortex region (cortex, frontal cortex and anterior cingulate cortex tissues), purple for the
basal ganglia region (putamen, nucleus accumbens and caudate tissues), and red for the amygdala-
hippocampus region (amygdala and hippocampus tissues). The remaining tissues are considered as
independent CNS regions: pink for the hypothalamus region, yellow for the spinal cord region and

black for the substantia nigra.

In addition to this clustering analysis, we carried out another assessment by performing differential
expression analysis of gene count data between all pairs of CNS tissues (Methods). We obtained a list of
significantly differentially expressed genes (DEGs) for each pair of tissues (Supplemental Materials
Table S3). By comparing the relative proportion of DEGs in paralogs and singletons, we observed that
DEGs were significantly enriched in paralogs for 75 out of the 78 tissue-pairs tested (Chi-squared test,

and threshold p-value = 6.41E-04 with Bonferroni correction to account for the number of tissue
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pairs). Furthermore, in order to assess the potential bias of expression level in these results, we
calculated the overall expression of paralogs averaged over brain-related tissues and found it to be
significantly lower than that of singletons (12 versus 37 RPKM respectively, t-test, p-value=5E-16). This
observation, which implies less power in the DE tests for the former group, makes the enrichment of
the DEGs in paralogs even more reliable.

Overall, these complementary analyses on tissue clustering and differential expression illustrate the

strong biological contribution of paralogous genes to expression differences between CNS territories.

2/ Tissue-specific expression of paralogs in CNS regions

We further investigated these expression differences of paralogs between CNS territories by looking at
their tissue-specificity. The detection of tissue-specific genes was performed using expression profiles
quantified across the 7 CNS regions previously defined. From the collection of methods developed to
measure tissue specificity, we selected the method based on Tau score because of its high sensitivity to
detect tissue-specific genes (Yanai et al. 2005; Kryuchkova-Mostacci and Robinson-Rechavi 2017). The
Tau score ranges from O for broadly expressed genes, to 1 for highly tissue-specific genes (Methods).
Contrary to Tau score distributions reported in a previous study on different organs (Kryuchkova-
Mostacci and Robinson-Rechavi 2017), the distribution of Tau scores across the CNS regions in the
present study was not bi-modal and had a unique mode centered on low values (Fig. 2A). Consequently,
the Tau threshold for declaring a gene tissue-specific could not be visually defined. We thus developed
an approach based on permutations to adapt this threshold choice to the case of similar tissues within
a single organ system. We calculated an empirical p-value for each gene, based on permutations of the
tissue labels, and then performed a False Discovery Rate (FDR) correction on the p-values for the
multiple genes tested (Benjamini-Hochberg corrected p-value < 0.01) (Fig. 2A). This approach led to a
Tau threshold of 0.525. We found that 17% (2,829) of protein-coding genes expressed in the CNS
regions were tissue-specific (Supplemental Materials Fig. S1). Moreover, we established that paralogs
were significantly enriched in tissue-specific genes compared to singletons (19.2% of paralogs were

tissue-specific, versus 13.9% of singletons, p-value = 2.045E-18, using a Chi-squared test) (Table 1). We
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confirmed this association between paralogs and tissue-specificity in addition to their expression level,
by using a multivariate linear model, inspired from the analyses of Guschanski et al. 2017, that predicts
the Tau score of a gene from its maximal expression over the CNS regions and its duplication status

(Supplemental Materials Result S1 and Table S16A).
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Figure 2. Tissue-specific expression of paralogous genes across human CNS regions. (A) Density plot of
original Tau scores (blue line) calculated from the expression values of 16227 protein coding genes,
and permutated Tau scores (purple line) calculated from 1000 x 16427 permutations. The tissue-
specificity threshold of 0.525 (red dotted line) is defined, from permutated scores using the Benjamini-
Hotchberg corrected P-value of 0.01. (B) Unsupervised hierarchical clustering of tissue-specific genes
expressed across CNS regions. The heatmap illustrates the mean gene expression calculated over

sample cohort for each CNS region.
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Table 1. Enrichments in tissue-specific genes for the tested and reference gene groups

Percentage of tissue-

Reference group? t'il'se:;(;(_isgl(:;lilfri)cfi'ora specific genes in the tChlt-;(fualreq) Oidsc
P ty tested group (%) estFrvalue ratio

Protein coding  p, 1 10g0us genes 19.2 2.045E-18* 148

genes

WGD genes 15.7 1.061E-18* 0.64

Paralogous genes* SSD genes 22.6 9.022E-11* 1.39
ySSD genes 28.6 6.341E-18* 1.82

ySSD genes 28.6 3.483E-09* 1.62

SSD genes 0SSD genes 15.6 2.729E-13" 0.52
WGD + wSSD genes WGD genes 15.7 5.185E-12* 0.59

* Abbreviations for gene duplication categories : WGD (Whole-Genome Duplication), SSD (Small-Scale
Duplication), ySSD (younger SSD occuring after WGD events), oSSD (older SSD occuring before WGD
events) and wSSD (WGD-old SSD occuring around WGD events).

" Application of Chi-squared tests (or of Fisher’s exact test when the Chi-squared test could not be
applied) with a corrected p-value threshold = 7.14E-03 (Bonferroni correction for 7 statistical tests).

¢ The odds ratio (>1 or <1) indicates the group (tested or non-tested respectively) in which there is an
enrichment.

4 The paralog reference group includes the genes belonging to WGD, SSD and WGD-SSD

categories and the paralogs without annotation.

Although this method based on the Tau score can identify tissue-specific genes, it does not indicate

which CNS region is targeted by this specificity (Yanai et al. 2005). In order to study the regional
distribution of tissue-specific genes, we mapped each tissue specific gene to one CNS region
(Supplemental Materials Table S4). Therefore, for each tissue-specific gene, we considered the
anatomical region associated with the highest expression value to be the specific region (Fig. 2B).
We discovered that the distribution of tissue-specific genes across CNS regions was very
heterogeneous (Supplemental Materials Table S6) compared to an almost constant proportion of
expressed genes across these regions (Supplemental Materials Table S5). The highest proportions of
tissue-specific genes were found in the cerebellum (40.2%), spinal cord (20.9%) and hypothalamus

(16.4%). The remaining tissue-specific genes (22.5%) were scattered over the last four brain-related
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regions. The distribution of tissue-specific paralogs across CNS territories was also highly
heterogeneous and similar to the distribution obtained for all tissue-specific protein-coding genes
(Supplemental Materials Table S6).

In summary, we found that paralogs were more tissue-specific than other genes and that tissue-specific
paralogs were concentrated in a limited number of CNS regions similarly to the other tissue-specific
genes. Precisely, we observed that the paralogous status contributed to the tissue-specific property in

addition of the expression value.

3/ Evolutionary and genomic properties of tissue-specific paralogs

The date of an SSD can be estimated in relation to the WGD events and attributed to one of the three
duplication age categories: younger SSD (after WGD events - ySSD), older SSD (before WGD events-
0SSD) and WGD-old SSD (around WGD events — wSSD) (Methods) (Singh et al. 2014). Using our
collection of paralogs with tissue-specific expression between CNS regions, we performed statistical
tests to determine if they were enriched in particular duplication events (WGD or SSD) or dates of SSDs
(oSSD, wSSD and ySSD categories). Genes can undergo both WGD and SSD duplication and can
sometimes be retained after each duplication. Unless otherwise stated, when we refer to a duplication
type from this point on in the paper, we are referring to genes that have been retained after this
duplication type only (WGD or SSD), in order to make a clear distinction between the effects of the two
duplication types. Of the 10,335 paralogs considered in our study, 5,114 are from WGD, 3,719 from SSD
(1,192 from ySSD, 1,260 from wSSD and 1,267 from oSSD) and 1,502 unclassified (966 both WGD-SSD
and 536 without annotation).

We first observed that, among paralogs, SSD genes were significantly enriched in tissue-specific genes
(22.6% of SSDs were tissue-specific versus 17.3% of the other paralogs, p-value = 9.022E-11), while on
the opposite WGDs were depleted in tissue-specific genes (Table 1). However, we noticed that WGDs
seemed slightly enriched in tissue-specific genes, compared to singletons (15.7% of WGDs were tissue-
specific versus 14.4% of the singletons, p-value = 4.1E-02). Furthermore, when we performed the same

analysis only on the paralogs duplicated around the WGD events (WGDs and wSSDs), the WGD genes
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were still significantly depleted in tissue-specific genes (15.7% of WGDs were tissue-specific versus
24% of wSSDs, p-value = 5.185E-12) (Table 1). These tests allowed us to conclude that SSD paralogs
were enriched in tissue-specific genes, independently of the potential effect of the duplication date on
tissue-specificity.

In addition to assessing the effect of duplication type, we also tested the association between
duplication age categories and tissue-specificity, and found that ySSD were also enriched in tissue-
specific paralogs (28.6% of ySSDs versus 18.0% of the remaining paralogs, p-value = 6.341E-18).
Moreover, ySSDs were still enriched in tissue-specific paralogs when we performed the analysis on SSD
paralogs only (28.6% of ySSDs versus 19.8% of the remaining SSDs, p-value = 3.483E-09). On the other
hand, oSSDs were depleted in tissue-specific genes compared to other SSD paralogs (15.6% of 0SSDs
versus 26.2% of the remaining SSDs, p-value = 2.729E-13) (Table 1). We confirmed the contribution of
both duplication age and duplication type to the tissue-specificity of paralogs, independently of the
effect of their maximal expression level, using multivariate linear models (Supplemental Materials
Result S1 and Table S16C, D). In summary, we could conclude that ySSD genes were more tissue-
specific than other paralogs, probably due to both their SSD origin and their duplication age.

To refine the association between duplication age and tissue-specificity, we performed enrichment
analyses using a short list of paralogs that came from human-specific duplication events (Methods)
(Dennis et al. 2017) and found no significant associations (Supplemental Materials Table S19).
However, the statistical test leading to this result may be underpowered because of the small number
of genes and of the abundance estimation uncertainty of recent paralogs with high sequence identity
(Dougherty et al. 2018). To obtain a complementary view of this tissue-specificity loss for very recent
duplications, we examined the distribution of the Tau scores of paralogs according to their phyletic age
(Supplemental Materials Fig. S4). We found that the maximum Tau scores were obtained for genes with
phyletic ages around 0.12 which corresponds in most cases to ySSD duplication events that occurred
around the separation of the Simians clade (Ensembl Compara GRCh37 p.13). This result seems to
indicate that tissue-specific expression is not a property particularly associated with human-specific

duplications, even though it seems to increase for slightly older ySSDs and to decrease afterwards.
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In summary, we found that SSD genes and in particular ySSD genes were more often tissue-specific

than other paralogs due to their duplication origin and to the age of ySSD genes.

4/ Tissue-specificity analysis of co-expressed gene families

We previously found that paralogs, and especially SSDs and ySSDs, were involved in territorial
expression between the different CNS regions, notably through tissue-specificity. In this section, we
tried to determine if the paralogs within gene families tended to share the same tissue-specificity
across CNS regions. We studied the potential expression similarity between paralogs across CNS
regions by using a co-expression analysis without a priori knowledge on their tissue-specificity.

The study of co-expression allowed us to explore the higher level of organization of the paralogs into
groups of genes with coordinated expression across CNS tissues and compare these modules of co-
expressed paralogs across tissues against annotated gene families. The Weighted Gene Correlation
Network Analysis (WGCNA) methodology (Langfelder and Horvath 2008) was used to infer the
correlation-based co-expression network. Contrary to previous studies that inferred a network per
tissue and then compared modules between networks (Oldham et al. 2008; Pierson et al. 2015), in this
study we carried out co-expression network inference by simultaneously using all the 13 CNS tissue
samples profiled by the GTEx consortium in order to explore gene associations with tissue
differentiation. We optimized the WGCNA to generate highly correlated co-expression modules of small
size in order to compare them with the annotated gene families (Supplemental Materials Fig. S2;
Methods). Indeed, out of our 3,487 gene families, 1,644 (47%) were constituted of only two genes. Our
WGCNA analysis extracted 932 modules of co-expressed paralogous genes. Only 104 genes were not
included in a co-expression module. The module size ranged from 2 to 911 genes with 84% of small
size modules (modules with less than 10 genes) (Supplemental Materials Table S7). A high proportion
of modules were enriched in molecular function and biological process GO terms indicating that our
network inference approach captured shared biological functions among co-expressed paralogs
(Supplemental Materials Result S4).

To first check the relationship between co-expression and shared tissue-specificity, we analyzed the
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distribution of tissue-specific genes across the 932 modules of co-expressed paralogs and found that
177 modules included at least two tissue-specific genes. We then looked at whether within each of
these modules the tissue-specific genes were expressed in the same or in different regions. We found
that among these 177 modules, 66% and 92% consisted of tissue-specific genes associated respectively
with the same region or at most two different regions (Supplemental Materials Table S15). Therefore,
gene modules identified from correlation-based co-expression networks also capture shared tissue-
specificity.

This co-expression network analysis allowed us to classify the gene families into two categories,
homogeneous and heterogeneous gene families, based on their patterns of expression across CNS
tissues (Methods). A homogeneous gene family was defined by the property that the majority of its
member genes were included in the same co-expression module. Out of the 3,487 gene families
considered in this study, we identified 111 homogeneous families (with 257 co-expressed paralogs out
of a total of 300 expressed paralogs in these families, the remaining 43 not co-expressed paralogs being
removed from all tests on homogeneous family genes in the rest of the article) and thus 3,376
heterogeneous families (10,035 paralogs) (Supplemental Materials Tables S13 and S14). We showed by
a permutation approach that this number of homogeneous families was significantly large, with an
empirical p-value inferior to 10 (Methods), suggesting that paralogs were more co-expressed across
tissues when they came from the same family. The comparison of the average size of families between
each category showed that homogeneous families were significantly smaller than heterogeneous ones
(Welch statistical test, average size of homogeneous families = 2.89, average size of heterogeneous
families = 3.84, p-value = 8.278E-10). A total of 53 of these homogeneous families were completely
included in the same module of co-expression. Furthermore, some modules were found to comprise
several homogeneous gene families (Supplemental Materials Table S9). A biological pathway
enrichment analysis of the homogeneous family genes revealed that they were notably enriched in
transcription factors and signaling proteins involved in neural development (Supplemental Materials
Result S6 and Table S10).

Before looking at shared tissue-specificity within homogeneous families, we investigated the
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association of tissue-specificity with these co-expressed families, and observed a significant
enrichment of tissue-specific paralogs in genes coming from homogeneous families (4.7% of tissue-
specific paralogs versus 2% of the other paralogs, p-value = 5.374E-12) (Table 2). We then investigated
the link between shared tissue-specificity and homogeneous gene families by categorizing families
according to their tissue-specificity following the classification defined by Guschanski et al. 2017.
Families composed of a majority of genes tissue-specific to the same regions were classified as tissue-
specific families. We identified 58 tissue-specific families and we found a significant enrichment of
tissue-specific families in homogeneous families (45% of tissue-specific families versus 2.5% of other

families, p-value = 1.691E-69) (Table 2).

Table 2. Enrichments in genes from homogeneously expressed families for the tested and reference

gene groups

Percentage of

Tested group for . Chi-squared
Reference . homogeneous family . .
a homogeneous family . test P- 0Odds ratio
group . a genes in the tested b
expression value
group (%)
SSD genes 3.3 2.777E-04* 1.59
Paralogous
genes! ySSD genes 5.2 5.758E-10* 2.49
Tissue-specific genes 4.7 5.374E-12* 2.45
ySSD genes Human-specific 50 3.868E-04* 19.58
paralogous genes
Pa;ifiﬂus Tissue-specific families® 45 1.691E-69* 42.94

* Abbreviations for gene duplication categories : WGD (Whole-Genome Duplication), SSD (Small-Scale
Duplication) and ySSD (younger SSD occuring after WGD events).

> Application of Chi-squared tests (or of Fisher’s exact test when the Chi-squared test could not be
applied) with a corrected p-value threshold = 1E-02 (Bonferroni correction for 5 statistical tests).

¢ The odds ratio (>1 or <1) indicates the group (tested or non-tested respectively) in which there is an
enrichment.

4 The paralog reference group includes the genes belonging to WGD, SSD and WGD-SSD categories and
the paralogs without annotation.

¢ Genes included into tissue-specific families. Only genes specific to the major tissue are considered.

14 /31


https://doi.org/10.1101/821256
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/8212586; this version posted November 26, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

We then studied whether homogeneous families were associated with a type of duplication event or
with a duplication age. We found that SSD and ySSD genes were both enriched in genes coming from
homogeneous families (3.3% of SSD versus 2.1% of the other paralogs, p-value= 2.777E-04; 5.2% of
ySSD versus 2.1% of the other paralogs, p-value = 5.758E-10) (Table 2). We also found a significant
enrichment of human-specific genes in homogeneous families, using ySSD genes as reference group,
suggesting that the recent ySSDs tend to be more co-expressed than the other ySSDs (p-value = 3.868E-
04, OR = 19.58) (Table 2; Supplemental Materials Result S7). Similarly, SSD and ySSD genes were
significantly enriched in genes coming from tissue-specific families (Supplemental Materials Table
S17). Finally, we also analyzed the shared tissue-specificity of SSDs and ySSDs at the pair level but the
very low number of tissue-specific paralog pairs did not allow to get significant results (Supplemental
Materials Result S2).

It can be expected that co-expression between two duplicates in a paralog pair will be associated with
their proximity on the genome, as epigenetic co-regulation of gene expression partly depends on the
proximity between genes on the genome (Xie et al. 2016; Ibn-Salem et al. 2017; Lian et al. 2018). We
thus investigated whether the genomic distance between paralog pairs (Supplemental Materials Result
S5) could be used to differentiate homogeneous from heterogeneous families. For homogeneous
families, we considered only pairs in which both paralogs belonged to the main co-expression module
(37 pairs), and removed the other pairs from the test. We found that homogeneous families were
depleted in inter-chromosomal pairs (70.3% of homogeneous families versus 90.2% of heterogeneous
families were spread across different chromosomes, p-value= 7.73E-04) and were enriched in tandem
duplicated pairs (27% of homogeneous families and 6.7% of heterogeneous families were separated by
less than 1 Mb, p-value = 1.743E-04) (Supplemental Materials Table S21); this supports the idea that
paralog co-expression is favored by proximity along the genome. Moreover, we confirmed that the
genomic proximity of duplicates was associated with recent SSDs and that the younger the SSD pair, the
more the duplicate were found in tandem in the genome (Supplemental Materials Result S5). The

tandem duplication explains why SSDs, and especially ySSDs, tend to be more co-expressed and to
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share more often the same tissue-specificity within their family than other paralogs.

In summary, the gene co-expression network analysis performed on the CNS tissues allowed us to find
that when several tissue-specific genes were clustered in the same module of co-expression, they were
often expressed in the same CNS region or the same pair of regions. We showed that within gene
families, the shared tissue-specificity of paralogs was associated with their co-expression across tissues
and we classified gene families into two categories according to co-expression status. Homogeneous
families were enriched in paralog pairs which were closely located on the genome in tandem
duplication, probably due to the specific trend of SSD pairs to be duplicated in tandem. Indeed, these
homogeneous families were enriched in SSDs, especially in ySSDs, and were associated with a shared

tissue-specificity.

5/ Exploration of brain disorder-associated genes

In addition to paralog implication in tissue-specific gene expression, another factor contributing to the
importance of a gene is its potential association with disease. Indeed, disease-associated mutations
preferentially accumulate in paralogous genes rather than singletons (Dickerson and Robertson 2012).
In the case of duplication categories, it has been reported that the proportion of both Mendelian
(monogenic) and complex (polygenic) disease genes are enriched in WGD genes in comparison to non-
disease genes (W.-H. Chen et al. 2013). We decided to refine theses analyses by considering only the
genes that are associated with brain diseases. We therefore used the ClinVar database to collect a list of
genes that harbored a Single Nucleotide Variant (SNV) or were located within a Copy Number Variant
(CNV) and related to a brain disorder (Landrum et al. 2016) (Methods). We found that paralogs were
enriched in brain disease genes (50.2% of paralogous genes, versus 46% of other genes, p-value =
3.740E-07) (Supplemental Materials Table S18). We further focused on paralog categories and
observed that, among paralogs, neither WGDs or SSDs were enriched in brain disease genes (p-value =
0.555) but we noticed that ySSDs genes tended to be very slightly enriched in brain disease genes
(53.1% of ySSD genes, versus 49.8% of other paralogs, p-value = 3.535E-02). However, brain disease

genes tended to be slightly depleted in tissue-specific genes and were neither enriched in genes coming
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from homogeneous families or in human-specific paralogs (Supplemental Materials Table S18). In
summary, brain disease genes are enriched in paralogs but not in WGDs in particular and the paralogs
associated with brain diseases do not seem to be the same ones that we found in the previous result

sections associated with tissue-specificity and co-expressed gene families.

DISCUSSION

As far as we are aware, this study is the first to focus specifically on the spatial expression of paralogs
and gene families between the different human CNS territories based on post-mortem human tissues
analyzed by the GTEx consortium. Previous studies based on gene expression analysis between organs
have already established the important association between paralogs and tissue differentiation
(Freilich et al. 2006; Kryuchkova-Mostacci and Robinson-Rechavi 2016). We showed that paralog
expression could separate CNS tissues better than singletons, despite their low expression compared to
singletons. Therefore, the relationship between paralogs and tissue differentiation is also true for
comparisons of the different anatomical regions of the CNS.

Paralogs are known to be more tissue-specific than other genes (Huminiecki and Wolfe 2004; Freilich
et al. 2006; Huerta-Cepas and Gabaldén 2011; Guschanski et al. 2017). Among paralogs, SSDs (Satake
et al. 2012) and in particular ySSDs (Kryuchkova-Mostacci and Robinson-Rechavi 2016) seem to be
more often tissue-specific than other paralogs when comparing tissues from different organs. However,
when considering the brain as a whole and comparing it with other organs, it has been found that
WGDs tend to be enriched in brain-specific genes compared to SSDs (Satake et al. 2012; Guschanski et
al. 2017; Roux et al. 2017). In our study between the tissues that composed the human CNS, we
observed that paralogs, especially ySSDs were more tissue-specific than other genes. In addition, we
found that even wSSDs were enriched in tissue-specific genes compared to other paralogs of the same
age (WGDs), thus suggesting that the tissue-specificity between brain regions is not only associated
with the young age of duplication but also with the type of duplication (i.e. with SSD duplications). Our
results, although apparently contradictory, do not question the known involvement of WGDs in brain-

specific expression. Indeed, the fact that an SSD gene tends to be more often specific to only one or just
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a few CNS anatomical regions than a WGD gene, implies that the average expression of SSD genes over
the whole brain would be lower than the average expression of WGDs. Thus, this broad expression of
WGDs within brain regions facilitates the detection of their brain-specific expression when comparing
several organs, while the analysis of gene expression between organs may not promote the detection of
some ySSDs specific to human brain.

A previous study performed using gene expression profiles across mammalian organs established that
most of tissue-specificity variance was explained by the expression level, in addition to the duplication
status, with no significant contribution of the evolutionary time (Guschanski et al. 2017). Using
multivariate linear models, we confirmed the major contribution of expression level and that of
duplication status to tissue-specificity in CNS territories. The association with duplication status was
more significant when we considered the maximal expression, which gives a better interpretation of
gene abundance when studying the tissue-specificity than the average expression. Moreover, among
paralogs, we found that the SSD duplication type explained also part of the tissue-specificity variance.
Regarding the evolutionary time, low phyletic ages were also significantly associated with high tissue-
specificity; a property potentially restricted to CNS tissues. Despite this global effect of the duplication
age, we observed that tissue-specific expression did not seem to be associated with human-specific
duplications, but rather with less recent ySSDs.

We then studied the gene family level of organization using gene co-expression network analysis of
paralogs across CNS tissues. We showed that modules of co-expressed genes were able to identify
clusters of paralogs with the same tissue-specificity. The characterization of gene families according to
the level of co-expression of their member genes has led to the identification of two categories of
families: homogeneous families, which are composed of a majority of co-expressed genes, and
heterogeneous families. We observed that homogeneous families were enriched in ySSD genes
(particularly in human-specific genes) and tandem duplicate pairs, in agreement with a previous study
showing that pairs of ySSD paralogous genes tend to be duplicated in tandem and co-expressed just
after the duplication event (Lan and Pritchard 2016). A previous study established that when the two

paralogs of an ySSD pair are tissue-specific, they tend to be specific to the same tissue more often than
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for other paralog pairs (Kryuchkova-Mostacci and Robinson-Rechavi 2016). We observed that it was
also true for the CNS territories by showing the high co-expression of ySSD pairs and the enrichment of
co-expressed families in tissue-specific families, where the majority of genes were tissue-specific to the
same tissue.

From the analysis of gene expression across human and mouse organs, Lan and Pritchard 2016
proposed a model for the retention of SSD duplicates appearing in mammals. In this model, pairs of
young paralogs are often highly co-expressed probably because tandem duplicates are co-regulated by
shared regulatory regions. In addition, this model is consistent with the dosage-sharing hypothesis in
which down regulation of the duplicates, to match expression of the ancestral gene, is the first step
enabling the initial survival of young duplicates (Lan and Pritchard 2016). Our analyses of ySSDs
expression features between CNS territories seem to be concordant with this model, indeed ySSDs tend
to be organized within small families of co-expressed genes and also weakly expressed in concordance
with the sharing of the gene ancestral expression. Furthermore, our results in the CNS tissues seem to
confirm that, after the initially high co-expression of SSD paralogs just after their duplication, they
become more tissue-specific and less co-expressed in part through chromosomal rearrangement.,
suggesting a long term survival by sub-/neofunctionalization (Lan and Pritchard 2016). In the case of
ySSDs tissue-specific in the same tissue, one of these duplicates might not preserve its coding potential
in the long term and would lead to a pseudogene. This does not systematically imply its inactivation,
indeed some transcribed pseudogenes associated with low abundance and high tissue-specificity may
carry a regulatory function on their parental genes (Guo et al. 2014; Hezroni et al. 2017).

With regard to the relationship between paralogs and human diseases, if we consider all the genes
involved in Mendelian or complex genetic diseases, it is known that mutations accumulate
preferentially in paralogs compared to singletons (Dickerson and Robertson 2012; W.-H. Chen et al.
2013; Singh et al. 2014). Moreover, old paralogs (WGDs and oSSDs) tend to be more frequently
associated with diseases (Makino and McLysaght 2010; Chen et al. 2014; Singh et al. 2014; Acharya and
Ghosh 2016) potentially linked to their essentiality (Makino et al. 2009; Acharya and Ghosh 2016; Roux

et al. 2017). Finally, in the case of SSD paralogs, disease genes are known to be enriched in 0SSDs and
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depleted in ySSDs when compared to non-disease genes (Chen et al. 2014). Our study confirmed that
paralogs were enriched in brain disease-associated genes. However, using our list of brain disease
genes, we observed no enrichment in WGD or SSD duplications types.

In conclusion, our intra-organ exploration of paralogs suggests the major implication of young SSDs in
tissue-specific expression between the different human CNS territories. It will be relevant to explore
the expression patterns of these young SSDs between anatomic regions of other complex organs to

determine whether or not they are solely associated with the nervous system.

METHODS

Human genes, duplication events and families

A list of 21,731 human genes, with both their HGNC gene symbol and their Ensembl IDs (GRCh37,
release 59), was collected based on the work of Chen and co-workers (W.-H. Chen et al. 2013). Among
these genes, 14,084 paralogs made up of 3,692 gene families, identified by TreeFam methodology
(Ruan et al. 2008), were obtained from Chen and co-workers (W.-H. Chen et al. 2013). These authors
downloaded all gene families from the TreeFam v.8.0 database, which identifies duplicates based on
gene family evolution. Moreover, for each paralog, they represented the phyletic age of its last
duplication event by the total branch length from the node indicating where the duplication event had
happened on the species tree to the human leaf node, and they assigned the associated duplicate (Chen
etal. 2012; W.-H. Chen et al. 2013). A second list of 20,415 genes was extracted from Singh et al. 2014.
This gene ID list was converted to HGNC gene symbols and intersected with the first list in order to
annotate it (17,805 protein-coding genes in common). Thus, in the present study, we collected the
duplication category for each paralog (Singh et al. 2014). Singh et al. obtained WGD annotations from
(Tinti et al. 2012) and obtained their SSD annotations by running an all-against-all BLASTp using
human proteins (Singh et al. 2012). Singh and co-workers defined genes as singletons if they were not
classified as WGDs or SSDs and they obtained the duplication age for SSD genes from the Ensembl
compara (Vilella et al. 2009). They classified paralogs into the following categories: WGD, SSD, ySSD
(i.e. SSD with duplication date younger than WGD), oSSD (i.e. SSD with duplication date older than

WGD) and wSSD (i.e. SSD with duplication date around the WGD events). There were 5,390 annotated
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paralogs originating from the WGD and 4,889 from SSD (2,104 from ySSD, 1,354 from oSSD and 1,431
from wSSD). Moreover, there were 2,607 paralogs without annotations and 1,198 paralogs annotated
as both WGD and SSD (WGD-SSD). The WGD-SSD paralogs were not included into the WGD or the SSD
duplication categories. However, the unannotated and WGD-SSD paralogs were both considered into
the paralog group. We verified that these paralog duplication categories were consistent with the
phyletic ages (duplication dates) collected from Chen and co-workers (Chen et al. 2012; W.-H. Chen et
al. 2013) (Supplemental Materials Fig. S3). The list of our paralogous gene pairs and gene families is
given in the Supplemental Materials Table S1. The evolutionary annotation of paralogous genes is
indicated in the Supplemental Materials Table S2. The list of singleton genes is given in the
Supplemental Materials Table S12. Furthermore for the analysis of the duplicate pairs, we considered
only the 3,050 pairs which appeared twice in our paralog list (i.e. where the first paralog is associated
with the second paralog and vice versa and where the duplication category annotation is the same for
both paralogs); genomic distances between duplicate pairs were obtained from Ensembl (GRCh37/90).
We also obtained a list of paralogous genes generated by human-specific duplication events (Dennis et
al. 2017). From these human-specific duplications, 22 were in our list of paralogs and 8 were among

the genes expressed in the CNS.

Gene expression profiles in CNS tissues

We obtained gene counts and RPKM (Reads Per Kilobase Million) values for 63 to 125 individuals
(1259 post-mortem samples - RNA integrity > 6) distributed over 13 CNS tissues (cerebellum,
cerebellar hemisphere, cortex, frontal cortex, anterior cingulate cortex, hypothalamus, hippocampus,
spinal cord, amygdala, putamen, caudate, nucleus accumbens and substantia nigra) from the GTEx
consortium data release 6 (GRCh37) (Melé et al. 2015). The CNS tissue associated with each GTEx
patient sample used in our study is indicated in the Supplemental Materials Table S11. These gene
expression data, calculated by GTEx took into account only uniquely mapped reads
(https://gtexportal.org). After filtering out low-information content genes (genes with a null variance

across samples and weakly expressed genes, with mean expression per tissue lower than 0.1 RPKM for

21 /31


https://doi.org/10.1101/821256
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/8212586; this version posted November 26, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

all tissues), we kept for analyses a total 16,427 genes distributed across 10,335 paralogs (5,114 WGD,
3,719 SSD, 1,192 ySSD, 1,260 wSSD and 1,267 oSSD, 966 WGD-SSD and 536 without annotations)
grouped in 3,487 families and 6,092 singletons. It should be noted that all analyses of the articles were
performed on this list of expressed genes only, except for the analysis on brain disease genes. Moreover,
the WGD-SSD paralogs were not included in the WGD or SSD categories. However, unannotated and
WGD-SSD paralogs as well as all other duplication categories were considered to constitute the paralog
group. Gene RPKM values were log-transformed (log2 (RPKM + 1)) and adjusted by linear regression
for batch effects and various biological effects (platform, age, gender and the first 3 principal
components of genetic data illustrating the population structure given by the GTEx Consortium; the
intercept of the regression was not removed from the residuals in order to keep the mean differences
between genes (https://www.cnrgh.fr/genodata/BRAIN_paralog). These filtered, log-transformed and
adjusted RPKM values were used as input for unsupervised classification of brain tissues, as well as for
gene co-expression network inference and for tissue-specificity analysis. Moreover, gene expression
data for tissues considered to anatomically overlap were merged by calculating the average expression
value across related tissues prior to the tissue-specificity analysis. Therefore, from an initial list of 13
tissues, we defined a shorter list of 7 CNS regions: cerebellum (cerebellum and cerebellar hemisphere),
cortex (cortex, frontal cortex and anterior cingulate cortex), basal ganglia (putamen, nucleus

accumbens and caudate), amygdala-hippocampus, hypothalamus, spinal cord and substantia nigra.

Unsupervised clustering of gene expression profiles

Gene expression profiles (filtered and adjusted RPKM values) generated by the GTEx Consortium for
the 1,259 samples distributed across the 13 CNS tissues, were clustered by unsupervised hierarchical
clustering using the pheatmap package of R version 3.4 (similarity measure: Pearson correlation,
clustering method: average linkage). We estimated the relevance of the clustering according to the
expected groups of CNS tissues. We evaluated, independently, the clusterings generated from protein-
coding genes, paralogs and singletons, using adjusted rand index (Hubert and Arabie 1985) after

cutting trees (so that we obtained 30 clusters for each gene category).
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Differential gene expression analysis

Genes with low-information content were removed before differential gene expression (DGE) analysis.
DGE analysis was performed by DESeq2 (Love et al. 2014) on count data for each pair of CNS tissues,
with the “median ratio” between-sample normalization and using batch and biological effects as
covariates. For each tissue pair, we then corrected gene p-values for the number of tested genes using
FDR (Benjamini and Hochberg 1995) and obtained a list of significantly differentially expressed genes

(DEGs) (FDR<0.05). Finally, we considered only the DEGs with a log2 fold-change greater than 0.5.

Inference of gene co-expression networks

The gene network inference was carried out using the Weighted Gene Correlation Network Analysis
(WGCNA) methodology (Langfelder and Horvath 2008), which generates co-expression networks and
identifies modules (groups) of co-expressed genes. We applied the WGCNA tool only to paralogous
gene expression data (RPKM) across the GTEx samples of the 13 CNS tissues. Genes were grouped into
modules according to their expression profile similarity. The module named “grey”, which grouped
genes that were not considered as co-expressed by WGCNA, was composed of genes with very low
variability across all samples. Since we had removed the genes with no variance across tissue samples
and those which were weakly expressed before performing the WGCNA analysis, the grey module was
small in size (104 genes). Furthermore, if this filtering had not been performed, some of the genes with
an overall weak expression might have been integrated into co-expression modules, thus creating a
bias. One of our goals was to compare gene families to co-expression modules. Given that 47% of gene
families have a size equal to 2, we optimized WGCNA parameters to obtain small highly co-expressed

modules (Supplemental Materials Result S3).

Homogeneous and heterogeneous families
Definition. A gene family was defined as homogeneous if the majority, more than 60%, of its member

genes were included in the same co-expression module. It should be noted that the total size of gene
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families was used to compute this percentage, even if some member genes were not in the list of
expressed paralogs. Gene families which did not respect this homogeneity rule, i.e. those with member
genes scattered over different co-expression modules, were defined as heterogeneous.

Assessment of the significance of the number of homogeneous families. Starting from the paralog modules
obtained with WGCNA, we used a permutation procedure (by permuting 1,000 times the module labels
of paralogs and counting the number of falsely homogeneous families for each permutation) and were
able to conclude that the number of homogeneous families was significantly large, since for each
permutation the number of falsely homogeneous families was lower than the number that we obtained,

leading to an empirical p-value inferior to 10°.

Tissue-specificity calculation
Tau score calculation. To select tissue-specific genes, we used the T score (Yanai et al. 2005) to estimate

the degree of tissue-specificity of each gene in our set of CNS tissues:

e i) o~ X.
n—1 max (x|
1<isn

In this equation, x; is the mean expression of a given gene in tissue i and n is the number of different
tissues. T varies from O to 1 where O indicates that the gene is broadly expressed and 1 that the gene is
tissue-specific. For T computation, genes must have a positive mean of expression in every CNS region.
Although we log-normalized expression data with log2(RPKM+1) leading to positive expression values,
the correction for batch and some biological effects induced some negative values in gene mean
expression. We replaced the negative values by zeros to keep all protein coding genes (16,427 genes)
for the T score computation. We pooled expression data generated by GTEx for the 13 tissues into 7
CNS regions so that the T score would not decrease artificially for genes specific to several close tissues.
Tau score threshold defined by permutations. The T score was computed for each gene and for the 7 CNS
regions. We then plotted the T score distribution obtained from all protein coding genes (Fig. 2A).
However, there is no general T score threshold at which a gene is considered to be tissue-specific. To

define a tissue-specificity threshold, we implemented a statistical method based on permutations. We
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applied 1000 permutations on the region labels assigned to the samples to shuffle the correspondence
between samples and regions. For each permutation, T scores were recomputed for each gene. The
distribution of the 1000 X 16427 T scores obtained from the permutations is given in the Figure 2. For
each gene and its original T score, a p-value was then calculated as the proportion of permutation-
based T scores higher than the original T score. The Benjamini-Hochberg correction for the number of
genes tested was applied to all p-values. Genes with a corrected p-value lower than 0.01 were declared
tissue-specific, which corresponded to a T score threshold of 0.525 (Fig. 2A). Visualization of gene
profiles across brain regions at different windows of the T score showed tissue-specificity beyond the T
score threshold of 0.525 (Supplemental Materials Fig. S1). However even for T scores in the range [0.5-
0.75] some genes were still expressed in two regions. Therefore for each tissue-specific gene, we

considered that the CNS region with the highest expression value to be the specific region.

Brain disease genes

The ClinVar database was used to collect genes linked to brain diseases (Landrum et al. 2016). We
considered brain disease-associated genes containing a pathogenic alteration (SNV) or located within a
CNV (duplication, amplification or deletion). We selected genes associated by ClinVar to the following

“Disease/Phenotypes” : “Parkinson”, “Alzheimer”, “brain”, “Autism”, “Epilepsy”, “Aicardi”, “Angelman”,

” o«

“Aphasia”, “Apraxia”, “Asperger”, “Behcet”, “spinal”, “Canavan”, “Charcot”, “Chorea”, “Dementia”,

” o«

“Dyslexia”, “Fabry”, “Gaucher”, “Gerstmann”, “Huntington”, “Refsum”, “Joubert”, “Kennedy”, “Klippel”,

” o« ” o« ” o«

“Krabbe”, “learning”, “mental”, “Leigh”, “Leukodystrophy”, “migraine”, “Niemann”, “Rett”, “Sandhoff”,

” o« ” o« ” o« ” o«

“syncope”, “Tay-sachs”, “Tourette”, “nervous”, “Schizophrenia”, “Narcolepsy”, “neuro”, “cephal”, “cortico”,

0« ” o«

“crani”, “mening”, “psych”. We then removed genes associated with tumors or cancers. We obtained a
total of 10,375 genes linked to brain diseases including 7,989 gene expressed in CNS tissues. Among

them, 5,184 were expressed paralogous genes.
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