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Abstract

Background: Ageing is associated with DNA methylation changesin all human tissues, and epigenetic markers
can estimate chronological age based on DNA methylation patterns across tissues. However, the construction of
the original pan-tissue epigenetic clock did not include skeletal muscle samples, and hence exhibited a strong

deviation between DNA methylation and chronological age in thistissue.

Methods. To address this, we developed a more accurate, muscle-specific epigenetic clock based on the
genome-wide DNA methylation data of 682 skeletal muscle samples from 12 independent datasets (18-89 years
old, 22% women, 99% Caucasian), all generated with Illumina HumanMethylation arrays (HM27, HM 450 or
HMEPIC). We also took advantage of the large number of samples to conduct an epigenome-wide association
study (EWAS) of age-associated DNA methylation patternsin skeletal muscle.

Results: The newly developed clock uses 200 CpGs to estimate chronological age in skeletal muscle, 16 of
which are in common with the 353 CpGs of the pan-tissue clock. The muscle clock outperformed the pan-tissue
clock, with a median error of only 4.6 years across datasets (vs 13.1 years for the pan-tissue clock, p < 0.0001)
and an average correlation of p = 0.62 between actual and predicted age across datasets (vs p = 0.51 for the pan-
tissue clock). Lagtly, we identified 180 differentially methylated regions (DMRs) with age in skeletal muscle at
a False Discovery Rate < 0.005. However, Gene Set Enrichment Analysis did not reveal any enrichment for

Gene Ontologies.

Conclusions: We have developed a muscle-specific epigenetic clock that predicts age with better accuracy than
the pan-tissue clock. We implemented the muscle clock in an R package called MEAT available on
Bioconductor to estimate epigenetic age in skeletal muscle samples. This clock may prove valuable in assessing
the impact of environmental factors, such as exercise and diet, on muscle-specific biological ageing processes.
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Introduction
Ageing is the normal, progressive decline of function occurring at the cellular, tissue and organismal levels over

the lifespan’. Ageing increases susceptibility to a wide range of diseases, including cardiovascular and
neurodegenerative diseases, metabolic disorders and many cancers’. It is therefore important to identify early
and potentially modifiable molecular mechanisms that occur with advancing age. Changes in epigenetic patterns
congtitute a primary hallmark of ageing in all tissues of the human body?® Epigenetic marks are cellular
properties conferring the ability to remember a previous biological event®, and some of these marks are sensitive
to environmental stimuli such as diet, sleep” and exercise training®®. Epigenetic changes with age are
particularly well characterised at the DNA methylation level”8, including skeletal muscle®.

The first DNA methylation-based estimator of chronological age (known as the pan-tissue epigenetic clock) was
developed using a wide spectrum of tissues and nucleated cell types’. The resulting regression model could then
be used to estimate the chronological age of tissue samples based on the DNA methylation levels of 353 CpGs
(Cytosine-phosphate-Guanine dinucleotides). The difference between estimated DNA methylation age and
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chronological age reflects not only technical noise but also biologically meaningful variation seen in
epidemiological studies linking epigenetic aging rates to mortality risk, Alzheimer’s disease, and many age-
related conditions'®". Age-related conditions are often associated with tissue-specific effects. For example,
obesity is associated with strong epigenetic age acceleration in human liver samples but negligible effects in
muscle tissue when assessed by the pan-tissue clock™.

Most tissues exhibit similar epigenetic ages according to the pan-tissue clock but there are a few exceptions. For
example, the cerebellum has been found to age more slowly™. Conversely, female breast tissue exhibits an
increased epigenetic aging rate, especially in younger women”**. The construction of the original pan-tissue
clock did not include any skeletal muscle samples; instead, the pan-tissue clock was tested on few skeletal
muscle samples (n = 66) with a strong deviation observed between DNA methylation and chronological age in
this tissue’. While the pan-tissue clock has many applications, tissue-specific clocks developed exclusively in a
given tissue, provide higher accuracy and specific application to specific tissues. In particular, blood tissue

provides the opportunity to develop accurate predictors of lifespan and healthspan®>*®

, Which is particularly
useful as blood samples are little invasive. Specific epigenetic clocks have been developed for fibroblasts,
keratinocytes, and buccal swabs™, and for cord blood samples'®. However, to the best of our knowledge, no
study to date has tackled the challenge of developing an epigenetic clock that is specific to human skeletal

muscle.

An epigenetic clock well calibrated in skeletal muscle could prove useful for studying the impact of
environmental factors (e.g. exercise) on epigenetic ageing of this tissue, and the relationship with heath and
disease processes'®. In general, skeletal muscle tissue is of great interest to aging researchers and clinicians
because skeletal muscle mass is lost at a rate of 0.5-1% per year after age 50%°. This muscle loss (sarcopenia)
leads to a host of age related complications including frailty, as well as increased morbidity and mortality®. At
the same time, skeletal muscle loses mitochondrial function and becomes increasingly resistant to insulin with
age®. However, skeletal muscle is remarkably plastic, which makes it a highly responsive target tissue for
lifestyle?. For example, changes in DNA methylation that occur with a healthy diet®®, and exercise®® may be
mechanigtically involved in slowing down the ageing process’.

In the current study, we aimed to address the poor performance of the pan-tissue clock in muscle by developing
a muscle-specific epigenetic clock. We hypothesise that by using a large number of human skeletal muscle DNA
methylation profiles, we can develop a muscle-specific epigenetic clock that outperforms the pan-tissue clock
and that can estimate chronological age with high accuracy. We utilised DNA methylation data to estimate
epigenetic age in a total of 682 male and female skeletal muscle samples aged 18-89. We also conducted an
epigenome-wide association study (EWAS) to discover genes whose methylation change with age in skeletal
muscle. We have made the muscle clock freely available in an R package called MEAT (Muscle Epigenetic Age

Test) on Bioconductor.

Results

Description of the 12 skeletal muscle DNA methylation datasets
We gathered skeletal muscle methylomes from 12 datasets generated with three different platforms. HM27,

HM 450 and the more recent HMEPIC, totalling n = 682 samples (Fig. 1, Additional file 1). Three datasets came
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from our own lab or collaborators, and the other nine were publicly available on the Gene Expression Omnibus
(GEO) platform or the database of Genotypes and Phenotypes (dbGAP). Only three datasets included women
and only two datasets included non-Caucasian individuas. Eight of the 12 datasets were paired designs (e.g.
monozygotic twins discordant for disease or pre/post interventions, Additional file 1), meaning that some of the
682 muscle samples were taken from healthy individuals at baseline or after a control diet, while other samples
were taken after an exercise intervention, a high-fat diet, sleep deprivation, insulin stimulation, or were from
individuals with T2D. We chose to keep all samples in the development of the muscle clock, as none of these
factors were associated with drastic changes in age acceleration. For details on each individual dataset such as

sample collection and DNA methylation assay, see Additional file 2.

The 682 samples had a bimodal distribution of age, with an under-representation of 30-50 year olds (n = 242
aged 18-30, n = 105 aged 30-50, n = 275 aged 50-70, n = 60 aged 70-90, Fig. 1). More importantly, datasets
greatly differed in their mean age and age range (Fig. 1, Additional file 1). For example, dataset GSE50498
contained younger (21.3 + 2.4 years old), and older (73.2 + 4.6 years old) but no middle-aged individuals;
GSE36166 and GSE40798 had no variability in age, as all individuals were 24-25 years old.

Development of a highly accurate skeletal muscle epigenetic clock
To develop the muscle clock, we adopted the same approach as Horvath’. Briefly, we restricted our analysis to

the 19,401 CpGs that were present in all 12 datasets. Then, we used dataset GSE50498 that had a large sample
size (n = 48), and the broadest age range (18-89 years old), as a gold standard to calibrate all other datasets.
Although it does not entirely remove variability from different labs and platforms, this step alows for a
harmonisation of DNA methylation profiles between datasets. Then, a transformed version of chronological age
was regressed on the 19,401 CpGs using a penalized regression model (elastic net).

The elastic net model automatically selected 200 CpGs; with increasing age, 109 were hypomethylated and 91
hypermethylated (Additional file 3). Sixteen were in common with the 353 CpGs used in the pan-tissue clock
(Fig. 248). Thisis more than expected by chance, as none of the 1,000,000 randomly drawn samples of 200 CpGs
from our dataset had more than 14 CpGs in common with the 353 CpGs of the pan-tissue clock. In addition, the
effect of age on the methylation levels of 15/16 of these common CpGs was the same in both clocks. This shows
that the muscle clock includes some CpGs whose methylation changes with age in all human tissues. We then
tested for enrichment of the 200 muscle clock CpGs in CpG idlands, and in skeletal muscle chromatin states.
These chromatin states were determined by the Roadmap Epigenomics Project and provide a powerful, accurate
mapping of gene and enhancer activity in human skeletal muscle at individual genomic positions. While we did
not find any enrichment in CpG idands, shores or shelves, the muscle clock CpGs that were hypomethylated
with age showed depletion in regions flanking active promoters (False Discovery Rate (FDR) = 0.00085, Fig.
2b).

The muscle clock outperfor msthe pan-tissue clock
As the number of datasets and samples were rather limited (around six times fewer samples than those used to

develop the pan-tissue clock), we adopted a leave-one dataset-out-cross-validation (LOOCV) procedure to
obtain unbiased estimates of the muscle clock accuracy’. LOOCV is performed by removing one dataset and
developing the clock on the 11 remaining datasets; the omitted dataset is then used as a test set (Fig. 3). Since
we had 12 available datasets, we performed 12 LOOCVss (one for each dataset); thisis better than performing a
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leave-one sample-out cross-validation procedure where the samples used to develop the clock contain samples
from the same dataset as the omitted sample. This could lead to overly accurate age estimation, and would not
apply well to new datasets. We then calculated three measures of accuracy: the correlation between predicted
and actual age, the difference between predicted and actual age (AAgs), and the residua from a linear
regression of predicted age against actual age (AA(esa) (Fig. 3).

The skeletal muscle clock significantly outperformed the pan-tissue clock on the correlation between predicted
and actual age (average p = 0.62 vs p = 0.51 across datasets, Fig. 4a, Additional file 4), and on the absolute
AAgi by 7.0 years (paired t-test p < 0.0001, Fig. 2b left panel, Additional file 4); however, the muscle clock
was as accurate as the pan-tissue clock on the absolute AA g (paired t-test p = 0.16, Figure 2b right panel,
Additional file 4). We also estimated the accuracy of the muscle clock by calculating the median absolute error
and the average difference between predicted age and chronological age for each dataset . While the median
absolute error is arobust measure of prediction error, the average difference indicates whether the predicted age
of a given dataset is consistently higher (or lower) than expected’ (Fig. 3). Across the 12 datasets, the muscle
clock performed very well, with a median absolute AAqi of only 4.6 years on average (range 2.4-10.6 years) vs
12.0 years for the pan-tissue clock, and a median absolute AAesq Of 3.4 years on average vs 2.7 years for the
pan-tissue clock (Additional file 4). Unsurprisingly considering the biased age distribution between and within
datasets (Fig. 1, Additional file 1), both the muscle and pan-tissue clocks tended to predict younger ages for
older individuals using AAq (Fig. 5). However, this bias was significantly reduced in the muscle clock, and
was inexistent for AAesq Since by definition, AAesq iS unrelated to age.

EWAS of age
We took advantage of the large number of samples to explore DNA methylation patterns associated with age in

skeletal muscle. We found 1,975 age-associated Differentially Methylated Positions (DMPs), corresponding to
180 Differentially Methylated Regions (DMRs) at FDR < 0.005 (Fig. 6a, Additiona file 5). The direction of
DNA methylation with age was balanced, with 51% of DMRs hypomethylated and 49% hypermethylated with
advancing age (Additional file 5). 60% of the muscle clock CpGs were among the age-associated DMPs; one of
these DMPs, located in Pipecolic Acid And Sarcosine Oxidase (PIPOX), was both in the muscle and pan-tissue
clocks and showed one of the largest effect sizes (DNA methylation increased by 2.8% per decade of age, Fig
6b, Additiona file 5). Both hypo- and hypermethylated DMPs were depleted in CpG idands and active TSS
while smultaneously enriched in CpG island shelves, open sea, actively transcribed regions and enhancers (Fig.
6c). However, while hypomethylated DMPs were enriched in regions flanking active TSS and depleted in
bivalent/poised TSS and in regions flanking bivalent TSS/enhancers, hypermethylated DMPs showed the
opposite pattern (Fig. 6¢). We then conducted a Gene Set Enrichment Analysis (GSEA) that takes into account
the biased digtribution of CpGs in genes, but found no enrichment of the DMPs for particular gene ontologies
(GO) at FDR < 0.005.

MEAT: an R package to deter mine the epigenetic age of skeletal muscle
As part of the current investigation, we devel oped an open-access R package called MEAT (Muscle Epigenetic

Age Test), available on Bioconductor. MEAT uses R code adapted from Horvath’ to calibrate skeletal muscle
DNA methylation profiles to the GSE50498 gold standard. MEAT then calculates the epigenetic age of the
calibrated samples using the muscle clock (elastic net model asimplemented in glnnet). Users should provide a
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pre-processed -value matrix generated with the Illumina HumanMethylation platform, as well as an optional
phenotype table containing information such as age, sex, health/disease datus, etc. If age is provided, the
package will not only estimate epigenetic age, but also age acceleration (AAgisr and AA esq). Users can also ask
MEAT to fit standard or robust linear models to test associations between phenotypes of interest (e.g. sex) and
age acceleration in their datasets.

Discussion

In the present study we developed an accurate epigenetic clock, specific to skeletal muscle, which outperformed
the pan-tissue clock by an average of ~7 years across 682 samples, in 12 independent datasets. This clock uses
DNA methylation levels at 200 CpGs to predict chronological age, with a median absolute error of only 4.6
years, a significant improvement compared with the pan-tissue clock (12.0 years). We have made this clock
available as an open-access R package cdled MEAT and available on Bioconductor. MEAT takes DNA
methylation profiles assessed with the Illumina Infinium technology as input and outputs predicted age. This
tool allows researchers to study the impact of environmental factors (e.g., exercise training, bed
rest/immobilisation, diet, etc.) on the rate of aging in skeletal muscle samples. It could also be used to test
whether diseased populations exhibit accelerated muscle-specific age acceleration compared with a matched

healthy population, as was previously done using the pan-tissue clock'?2°,

We highlighted some important limitations in age distribution both within and between datasets that could
influence the accuracy of the muscle clock. Despite these limitations, the accuracy of the age predictor was
excellent. The remarkable accuracy in prediction can be explained by multiple factors, most of which previously
mentioned by Horvath’. First, the largest datasets (GSE50498, GSE49908, Gene SMART and FUSION) were
aso those with the broadest age range, which limits the confounding effect of age with dataset. Second,
measurements from Illumina DNA methylation arrays are known to be less affected by normalization issues
compared with those from gene expression (MRNA) arrays. Third, the elastic net model used to develop the
epigenetic clock automatically selects CpGs that are less senditive to differences in cohorts, labs and platforms
since it is trained on datasets from various cohorts, labs and platforms. Fourth, the relatively large number of
datasets helps average out spurious results and artefacts. Lastly, age affects DNA methylation levels of tens of
thousands of CpGs’.

We found that there were more CpGs in common between the muscle- and pan-tissue clock’ than what would be
expected by chance (as determined by our random sampling test). This suggests that the ageing process, despite
being associated with many tissue-specific DNA methylation changes, is also associated with DNA methylation
changes ubiquitous to all human cell types. The EWAS of age in skeletal muscle uncovered many genes whose
methylation change with age. However, these genes were mostly digtinct from the genes that are known to be
differentially expressed in muscle with age®’. Our relatively large sample size and wide age range allowed us to
detect small effect sizes, and to uncover alarge number of genesdifferentially methylated with aging in skeletal
muscle. It is possible that age affects DNA methylation levels at these CpGs in all muscle cells. However, it is
also possible that the DNA methylation differences between young and old individuals are due to differencesin
fibre type distribution, and perhaps also differences in satellite cell number and profiles. Slow- and fast-twitch
fibres have distinct DNA methylation profiles®, and older muscle tends to have a greater proportion of slow-
twitch fibres than young muscle®. In addition, satellite cells maintain their multipotent state via distinct DNA
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methylation profiles®® and both satellite cell numbers®™ and DNA methylation profile® change with age. The
strength of this study lies in the utilisation of datasets that contained both young and older individuals from the
general population; thus, it islikely that the muscle clock captured these DNA methylation changes due to fibre
type changes with age. It was recently shown that controlling for heterogeneity in tissue/muscle fibre type
reduces the number of physiological trait associations®, and it may also be the case that the epigenetic clock
developed herein predicts different ages in different fibre types of a given individual. Uncovering which DNA
methylation patterns change with age in fast-twitch fibres, slow-twitch fibres or in both fibres would be the next
step to further enhance precision in the estimate of muscle age and in understanding how age affects muscle

structure and function.

Skeletal muscle follows a circadian rhythm whose phase can be changed by environmental cues such as food,
exercise and sleep®. Importantly, epigenetic mechanisms are involved in circadian rhythms and some DNA
methylation oscillations were recently shown to happen a the same CpG sites that show age-related DNA
methylation shifts in mice®. In the datasets we used to develop the muscle clock, most biopsies were taken in
the morning in a fasted state, following a control diet for > 24h and exercise restriction for > 48h, which limits
short-term environmental influences on DNA methylation levels. However, some datasets containing middle-
aged and older individuals (GSE49908, GSE38291) did not have information on the conditions surrounding
biopsy collection, so there is the possibility that some of these oscillationsin DNA methylation are confounded
with age in these datasets. We foresee that as more DNA methylation profiles in skeletal muscle are generated
under controlled conditions and become publicly available, the muscle clock will be updated and gain in

precision.

Conclusions
In conclusion, we have developed an advanced muscle-specific epigenetic clock, using all known available

datasets. Thisclock is freely available on Bioconductor as an R package (MEAT) for the scientific community to
calculate epigenetic age. This new clock sgnificantly outperforms the previous pan-tissue clock, and can
calculate the epigenetic age in skeletal muscle with a mean accuracy of 4.9 + 4.5 years across 682 samples. This
muscle clock will be of interest and potential use to researchers, clinicians and forensic scientists working in the
fields of skeletal muscle, chronic diseases, and ageing. In the future, we intend to evaluate how environmental

factors, such as exercise and diet, could influence ageing via this newly developed clock.

M ethods

Description of datasets used
We combined three datasets of DNA methylation in skeletal muscle (the Gene SMART (Skeletal Muscle

Adaptive Response to Training)®, the E-MTAB-6908 study*, and the Bond University LITER study
(unpublished)), with human skeletal muscle DNA methylation data from the open-access Gene Expression
Omnibus (GEO) platform and the database of Genotypes and Phenotypes (dbGAP). We excluded datasets with
< 3 samples, missing information on age (i.e. no age information on the GEO and corresponding author
unresponsive), and datasets from primary cell culture experiments. Overall, we identified 8 datasets on the GEO
and one dataset on dbGAP (Additional file 1), with sample sizes ranging from n = 3 to n = 282. Eight datasets


https://doi.org/10.1101/821009
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/821009; this version posted November 13, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

were paired designs (e.g. monozygotic twins discordant for disease or pre/post interventions) and four cross-
sectional. We described each dataset in detailsin the Supporting Information.

Pre-processing
Whenever possible (i.e. when we had information on p-value detection for each probe, raw methylated and

unmethylated signals or IDAT files, and batch/position information for each sample), we downloaded and pre-
processed the raw data. If we did not have enough information on a given dataset (e.g. missing batch
information), we utilised the processed data available on the GEO. In datasets that we did not pre-process,
missing data was imputed using the champ.impute function of the ChAMP package®, with default parameters.
As quality control, we ensured all datasets had a mean inter-correlation > 0.97 and a maximum beta-value >
0.99. For each individual dataset we pre-processed, we applied the following pre-processing steps using the R
statistical software (www.r-project.org) together with the ChAMP analysis pipeline® (for a full description of

pre-processing steps on each dataset, see Additional file 1):

Any sample with > 10% of probes with detection p-value > 0.01 was removed (default parameter of the
champ.load function). All probes with missing p-values, with a detection p-value > 0.01, probes with a bead
count < 3 in at least 5% of samples, non-CG probes and probes aligning to multiple locations were removed,
and for datasets containing males and females, probes located on the sex chromosomes were removed. SNP-
related probes (“EUR” population probes in Zhou et al. *) were also removed. p-values were obtained, and
defined as

intensity of the Methylated allele

—value =
B intensity of the Unmethylated allele + intensity of the Methylated allele + 100

Then, B-mixture quantile normalization (BMI1Q) method was applied to adjust for the Type | and Type Il probe
designs for methylation profiles generated from the HM450 and HMEPIC arrays. To identify technical and
biological sources of variation in each individual dataset, Singular Value Decomposition (SVD) was performed.
In all pre-processed datasets, both the plate and the position on the plate were identified as significant technical
effects. Thus, al p-values were converted to M-values and the ComBat function from the sva package used to
adjust directly for these technical artefacts.

Only 19,401 CpGs were identified to be in common between the 12 datasets after pre-processing, and all probes
found on the HM 27, HM450 and HMEPIC arrays (Additional file 6). To obtain DNA methylation profiles that
were comparable between datasets, we adopted Horvath’'s calibration method. We calibrated 11 or the 12
datasets to a gold standard, using the adapted version of the BMIQ algorithm’. We used GSE50498 as the gold
standard since it was a large dataset (n = 48 samples) with the broadest age range (18-89 years old).

Muscle clock development
We analysed 12 DNA methylation datasets from human skeletal muscle for which chronological age was

available. We developed the muscle clock using an elastic net regression model identical to Horvath’s where a
transformed version of chronological age was regressed on the 19,401 CpGs'. We first performed 10-fold cross-

validation to select the optimal regularization parameter &, using the elastic-net mixing parameter o, = 0.5.

Given the limited number of datasets and the biased age distribution in each dataset, we adopted a leave-one-

dataset-out cross-validation procedure to obtain an unbiased estimate of the muscle clock accuracy. We then
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calculated the prediction error as the age acceleration (AA), using two definitions that have been previously
described”®: the difference between predicted and actual age (AAgi), and the residual from a linear regression
of predicted age against actual age (AAresig) (Fig. 3). While AAqi is a straightforward way of calculating the
error in age prediction, it is sensitive to the mean age of the dataset * and to the pre-processing of the DNA
methylation dataset®®; AAgi can be biased upwards or downwards depending on how the dataset was
normalized, and depending on the mean age and age variance of the dataset. In contrast, AA g iSinsensitive to
the mean age of the dataset and is robust against different pre-processing methods™. Finally, we also calculated
the Pearson correlation between predicted and actual age of the sample cohorts.

Pan-tissue clock
We used the online epigenetic age calculator (https://dnamage.genetics.ucla.edu/home) selecting the option

“Normalized Data’ to implement the original pan-tissue clock’.

Statistics
We used a paired t-test on the absolute AA (AAgi or AAresiq) to compare the accuracy of the muscle clock to

that of the pan-tissue clock. As recently suggested to improve replicability in science™, a p-value < 0.005 was

deemed significant .

To identify age-associated methylation positions (DMPs), we used linear models and moderated Bayesian
statistics as implemented in the limma package™. The DNA methylation levels at 19,401 CpGs from the n = 682
muscle samples were regressed against age, sex, and dataset ID. We used the block design as implemented in
ImFit to account for the paired designs of some datasets. DMPs associated with age at a false discovery rate
(FDR) < 0.005 were deemed significant*®*2. To identify differentially methylated regions (DMRS, i.e. clusters of
DMPs with consistent DNA methylation change with age), we used the dmrcate package™.

To identify age-associated GO terms, we conducted a Gene Set Enrichment Analysis (GSEA) asimplemented in
the gometh function of the missMethyl package®, using our own improved annotation of the epigenome and
largely based on Zhou et al.’s annotation®. This function accounts for the biased distribution of CpGs in genes.
All GO terms pathways at FDR < 0.005 were deemed significant*®,

To test whether the clock CpGs showed any enrichment inside or outside CpG islands, or enrichment for
specific chromatin states, we compared the distribution of the clock CpGs with that of all other CpGs in
different CpG idand domains (open sea, CpG island, CpG island shore, CpG island shelf), or chromatin statesin
male skeletal muscle from the Roadmap Epigenomics Project with a Fisher’s exact test. As there are 4 different
positions with respect to CpG idands and 15 different chromatin states, we only considered positions with
respect to CpG islands and chromatin states significant if FDR < 0.005.
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Additional files

Additional file 1. Overview of the 12 datasets of DNA methylation in skeletal muscle.

Additional file 2. Detailed description of the 12 datasets of DNA methylation in skeletal

muscle.

Additional file 3. Detailed information on the 200 CpGs automatically selected by the
elastic net model.

Coefficient = coefficient in the elagtic net model. Each CpG was annotated to one or more genes using the

annotation file from Zhou et al.® to which we added annotation to long-range interaction promoters using

chromatin states in male skeletal muscle from the Roadmap Epigenomics Project and GeneHancer information

from the Genome Browser (hg38).

Additional file 4. Leave-one dataset-out cross-validation (LOOCV) analysis of the

muscle clock and comparison with the pan-tissue clock.

Each row shows accuracy estimates for a given dataset. The three accuracy measures reported in this paper

include the Pearson correlation coefficient between predicted and actual age, the difference between predicted

age and actual age (AAgi), and the residuals from a linear model of predicted age againg actual age (AA esq)-
Note, the shaded cells indicate we did not calculate the Pearson correlation coefficient for datasets GSE36166
and GSE40798 as they are invariant in age, nor for dataset GSE87655 as the sample sze was too low (n = 3).

Data are shown as mean + SD.

Additional file5. Summary of differentially methylated positions and regions with age.

Effect size = methylation change per year of age or between men and women. Each CpG was annotated to one

or more genes using the annotation file from Zhou et al .
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Additional file 6. Genomic location and annotated genes for the 19,401 CpGs in
common between all 12 datasets of DNA methylation in skeletal muscle.

Figure legends
Fig. 1. Agedistribution in the 12 datasets used to develop the muscle clock.

a) Waffle chart of the 12 datasets, split by database. Each cell represents 1 percentage point summing up
to the total number of samples (n = 682); dbGAP = database of Genotypes and Phenotypes; GEO =
Gene Expression Omnibus.

b) Agedistributioninall 12 datasets pooled together (n = 682).

c) Agedistribution in each individual dataset. Datasets were color-coded as in the waffle chart (a).

Fig. 2. The 200 muscle clock CpGs.

a) Overlap between the 353 CpGs of the pan-tissue clock and the 200 CpGs of the muscle clock. The 16
CpGs in common between the two clocks are displayed as table, with the annotated gene(s), and the
direction of methylation with age in each of the two clocks.

b) Enrichment of the 200 muscle clock CpGs in positions with respect to CpG islands (top), and in
chromatin (bottom). Enrichment was tested with a Fisher's exact test, adjusted for multiple testing.
*FDR < 0.005.

Fig. 3. Methodology for leave-one dataset-out cross-validation (LOOCV) and measures

of age prediction accuracy.

In the LOOCV, one dataset is left out (test set) and all other datasets (training sets) are used to develop the age
predictor. The DNA methylation profiles of the training sets are input into an elagtic net regression model
(glmnet package in R) and this model is then used to estimate age in the test set. Predicted and actual age were
correlated using Pearson’ s correlation coefficient (unless all individuals had the same age or the dataset was too
small). We also calculated the AA 4+ as the difference between predicted and actual age. We then calculated the
median of the absolute values of AA; to estimate how well calibrated the clock was to this particular test set,
and the mean of AAi to see whether the test set as a whole was younger (or older) than expected. Finally, we
calculated the residuals from a linear regression of predicted age against actual age (AAesq) t0 Obtain accuracy
measures insensitive to the mean age of the dataset and to pre-processing techniques.

Fig. 4. Predicted vs actual ageand errorsin age prediction in the LOOCYV procedure.

Each point corresponds to one of the 682 samples, colored by datasets to which they belong.

a) Predicted vsactual age. Note that to obtain truly unbiased estimates of age prediction accuracy, the age
predicted by the muscle clock is from the leave-one-out cross-validation procedure.

b) Error in age prediction, either as the difference between predicted and actual age (left panel), or as the
residuals from a linear model of predicted against actual age (right panel). Note that both panels are on
different scales.

12


https://doi.org/10.1101/821009
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/821009; this version posted November 13, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

Fig. 5. Age acceleration as a function of agein the muscle and the pan-tissue clocks.

Here we show the bias in age prediction depending on the age of the individual. Using the difference between
predicted and actual age (AAdi), younger individuals show systematically epigenetic ages than their real age,
while older individuals show systematically older epigenetic ages than their real age. However, thisbias is less
pronounced in the muscle clock, and inexistent when using AA esg-

Fig. 6. Differential DNA methylation with age in skeletal muscle.

a) Volcano plot of DNA methylation changes with age. Each point represents a tested CpG (19,401 in
total) and those highlighted in red were the differentially methylated positions (DMPs) sgnificant at a
false discovery rate (FDR) < 0.005. The x axis represents effect size, expressed as differential
methylation per year of age. They axis represents statistical significance, expressed as —0g;q(p-value),
so0 CpGsthat are higher on the graph are more significant.

b) DNA methylation level as a function of age, for the CpG in PIPOX that was in both the muscle and
pan-tissue clocks and that showed one of the largest effect size.

¢) Enrichment of DMPs in positions with respect to CpG islands (left), and in chromatin states (right).
Enrichment was tested with a Fisher’s exact test, adjusted for multiple testing. * FDR < 0.005.
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