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Abstract

Cell atlases are revolutionizing our understanding of tissue and disease heterogeneity, yet most
single-cell transcriptomic analyses on tumors are not leveraging atlases effectively. We
developed northstar, a computational approach to classify cells in tumor datasets guided by but
not restricted by previously annotated cell atlases. To benchmark northstar, we transferred
annotations from a human brain atlas to a published dataset on glioblastoma and could
recapitulate the tumor composition accurately and within seconds. We then collected 1,622 cells
from 11 pancreatic tumors and could robustly identify healthy pancreatic and immune cells and
neoplastic cell states. Three cell populations were shared across patients while five were private
to a single sample. northstar’s cell type classification offered rapid insight into the origins of
neuroendocrine and exocrine tumors and fibromatosis. northstar is a useful tool to classify
single-cell transcriptomes into known and novel cell types in the age of cell atlases.

Introduction

The widespread adoption of single-cell transcriptomics has led to a growing body of cell atlases,
large and carefully annotated datasets describing tissue heterogeneity with unprecedented
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resolution [1]. Single-cell approaches are also transforming our understanding of disease and
physiological perturbations [2]. As atlas data across species [3], tissues [4—8], development [9],
and aging [5,10] are being amassed, there is growing demand for computational tools that
leverage cell atlases to guide the analysis of new single-cell datasets. In particular, there is an
unmet need for annotation tools that classify new cells based on cell type annotations found in a
cell atlas.

The most direct route to learn from an atlas is to combine atlas and new dataset into a single
gene expression counts table and apply an unsupervised clustering algorithm such as Leiden
[11]. This method is resource intensive and often leads to ambiguous classification, because
atlas cell types can split into subclusters or merge into superclusters. Batch correction
techniques can also be adapted for this task but are equally greedy for computational resources
[12,13]. Supervised learning approaches - training a classifier on an atlas and using it on the
new dataset - are too restrictive because cell states missing from the atlas (e.g. cancer cells)
would nonetheless be forced into an atlas population leading to data misinterpretation.

Here we present northstar, an algorithm and software package that classifies single-cell
transcriptomes guided by one or multiple atlases but is also able to discover new cell types or
cell states. northstar is computationally efficient and its output is simple to interpret. We
benchmarked northstar on a published dataset on glioblastoma [14] and then applied it to newly
collected 1,622 cells from 11 pancreatic cancer patients. northstar rapidly classified both
datasets in terms of both healthy cell types and neoplastic states and ultimately led to useful
biological insight into the composition and origin of the tumors.

Results

northstar identifies cell types guided by a cell atlas

northstar is a computational approach to identify cell types in a new single cell dataset
leveraging one or multiple cell atlases. The unique feature of northstar is that every new cell can
be either assigned to either a known atlas cell type or a novel cluster. An implementation in
C++/Python is available at https://github.com/northstaratlas/northstar and preprocessed atlases
for immediate use are available at https://northstaratlas.github.io/atlas_landmarks. We are
accepting contributions to expand the list of ready-to-use atlases.

As input, the gene expression table for the new dataset and the gene expression table and cell
type annotations for the cell atlas are specified by the user. northstar can use either an average
expression vector for each cell type or a small subsample of each cell type. Atlas averages and
subsamples can be used by northstar as reference landmarks to annotate the new cells. In this
sense, northstar serves the same purpose in single-cell datasets as the North Star always had
for maritime navigation: providing fixed points that guide the exploration of new landscapes. To
simplify adoption, we provide precomputed landmarks (averages and subsamples) of several
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atlases (see above link). If a precomputed atlas is chosen, the user only needs to specify its
name: counts and annotations are downloaded automatically.

The algorithm consists of the following steps. First, atlas landmarks (averages or subsamples)
are merged with the new single-cell dataset into a single data table (Fig. 1A). Then, informative
genes are selected: upregulated markers of each atlas cell type are included as well as genes
showing a high variation within the new dataset. A similarity graph of the merged dataset is
constructed, in which each edge connects either two cells with similar expression from the new
dataset or a new cell with an atlas cell type (Fig. 1B). Finally, nodes in the graph are clustered
into communities using a variant of the Leiden algorithm that prevents the atlas nodes from
merging or splitting [11]. The output of northstar is an assignment of each cell to either an atlas
cell type or, if a group of cells show a distinctive gene expression profile, to a novel cluster (Fig.
1C).

northstar is designed to be easy to use (Fig. 1D). To examine northstar’s scalability to large
atlases, we downloaded the Tabula Muris plate data [3], subsampled it to different cell numbers,
and counted the number of cell types with at least 20 cells. As more cells were sampled new
cell types were discovered, however with diminishing returns. At full sampling (50,000 cells), we
estimated at most 20 new cell types per tenfold increase in cell numbers (Fig. 1E). Because of
this sublinear behaviour, northstar scales to atlases of arbitrary size, unlike a naive approach
that combines all atlas cells with the new dataset (Fig. 1F). Although subsampling each cell type
(e.g. 20 cells) requires more storage memory than a single average, their scaling behaviour is
exactly the same (i.e. logarithmic or better). In practical tests, we found that subsampling helps
with very heterogeneous cell types, however it is more reliant on a high-quality atlas annotation.

Benchmark against published datasets on healthy brain and glioblastoma

To validate northstar's performance, we analyzed a glioblastoma (GBM) dataset [14] on the
basis of a previously annotated cell atlas of the human brain by the same authors [4]. The
annotations of the GBM dataset according to the original authors define seven healthy cell
types: neurons, astrocytes, oligodendrocytes, oligodendrocyte progenitor cells (OPCs),
endothelial cells, microglia, and other immune cells. In addition to these seven, an additional
cluster of neoplastic cells is described. Of these cell types, the first five are also present in the
brain atlas, while some fetal cells were excluded from the atlas because the GBM patients were
adults. A projection of the GBM data via t-Distributed Stochastic Neighbor Embedding (t-SNE) is
shown in Fig. 2A with the original annotations. The relative abundances of the various cell types
in the atlas and GBM data is shown in Fig. 2B.

We calculated cell type gene expression averages of the brain atlas, deleted the annotations
from the GBM data, and fed labeled atlas averages and unlabeled GBM data into northstar. We
obtained a classification of the new cells and observed that our method recapitulated previously
reported cell types and also created new classes for myeloid and neoplastic cells as these cell
types were absent from the atlas (Fig. 2C, Supplementary Fig. 1).
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A detailed analysis of the original annotations versus new annotations generated by our
algorithm highlights the strength of the method (Fig. 2D). Almost all cells of known types were
correctly assigned to their respective cluster. The main misclassification was a population
annotated as neoplastic in the original paper but classified as oligodendrocyte precursor (OPC)
by northstar. However, those cells formed a relatively distinct cloud in both Fig. 2C and, even
more clearly, in the original t-SNE plot (Supplementary Fig. 1). Moreover, northstar classified a
diverse population of immune cells is either classified as microglia, which are resident immune
cells, or into new cluster 7. Neoplastic cells were correctly assigned to new clusters 8 and 9. To
identify why both immune and neoplastic clusters were split by northstar we examined their
connectedness in the similarity graph. We found that their subcomponents were only weakly
connected (Supplementary Fig. 2); the Leiden algorithm - which wasn’t available to Darmanis et
al. in 2017 - split them to increase internal connectedness [11]. Similar classifications were
obtained using northstar with a subsample of the atlas, confirming that the classification is
robust (Supplementary Fig. 3). Differential expression analysis indicates that the immune
clusters express CD207, CD300E and other classical immune surface markers while the
neoplastic cell clusters expressed KLK6, MIR1322, and other RNAs previously implicated in
malignancies [15,16].

Classification of healthy and neoplastic cells in pancreatic cancer

To test the ability of northstar to provide biological insight into new datasets, we collected 1,622
single cells from 11 pancreatic tumors (Supplementary Table 1) and aimed to determine their
composition in terms of known cell types and, potentially, novel clusters. Briefly, tumors were
surgically resected at Stanford hospital from patients with diagnosed pancreatic cancer and
dissociated into single-cell suspensions (see Methods). Single cells were isolated by
fluorescence-activated cell sorting (FACS) into 96- or 384-well microtiter plates and processed
as described previously [5,17].

northstar was then used to identify the cells in these samples based on the pancreas atlas by
Baron et al. (2016) [18] and the immune atlas by Zanini et al. (2018) [19]. We found that the
cells from the cancer patients were classified into both known and novel cell types (Fig. 3A).
Among the known cell types were mesenchymal, exocrine and endocrine cell types, and various
immune cells. Although all tumors were resected in a similar procedure, the fraction of cells
belonging to each known cell type varied considerably among patients (Fig. 3B and
Supplementary Table 2). This reflects the challenges of isolating tumor tissue during surgery
without capturing surrounding tissue, and making single-cell suspensions from pancreatic
exocrine tissue while the tissue is self-digesting.

Samples TuPa2, 4, and 5 were composed mostly of acinar cells - or cells that closely resemble
that cell type. In fact, it is clear from the embedding (Fig 3A) that many of these cells are close
to both acinar and ductal types. This was expected for patients TuPa2 and 4 because the tumor
was diagnosed as Pancreatic Ductal Adenocarcinoma (PDAC) but not TuPa5, which is
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annotated as a neuroendocrine tumor. TuPa1 was clinically described as fibromatosis and we
found it is essentially composed of activated stellate cells. This is consistent with recent
literature [20-22]. Sample TuPa27 was classified as composed mainly of monocytes, which was
surprising considering that it was clinically described as a neuroendocrine tumor. Because
surgery took longer than usual for this sample, we speculate that the tumor cells might have
degraded leaving only the more robust immune cells. All other samples classified in one or more
novel clusters. TuPa6, 3, and 31 shared cluster 21 though those patients were diagnosed with
three different conditions: ampullary adenocarcinoma, mucinous cystic neoplasm, and
neuroendocrine tumor, respectively. The embedding confirms northstar’s prediction and places
these cells somewhere between alpha and gamma/PP endocrine types, indicating an endocrine
origin. A minority of cells in samples TuPa3 and 31 belonged to another new cluster, 23, which
is located nearby on the embedding. The tumor from TuPa28 belonged to its own private cluster
20. Its location is indicative of an endocrine lineage, in agreement with the patient’s diagnosis of
neuroendocrine tumor. The donor of TuPa29 was the only one diagnosed with invasive
adenosquamous carcinoma and was found to contain a majority of cells in a new, almost private
cluster 22 located in the vicinity of acinar cells. A minority of cells from this sample were
assigned to quiescent stellate and delta cells. Finally, sample TuPa23 was composed entirely of
quasi-private cluster 19, which is surrounded in the embedding by resident immune cells.

To better understand the nature of the novel clusters 19 to 23, we computed differentially
expressed genes (DEGs) between each novel cluster and all other cells by
Kolmogorov-Smirnov statistics on the expression. In short, we searched for genes that are
expressed by a high fraction of the cells within the focal cluster and by few cells outside of it
(Fig. 3C, top heatmap and Supplementary Table 3). The expression of PPY by clusters 21 and
23 is suggestive that these might be neoplastic cells derived from gamma/PP precursors.
Clusters 21, 23, and 20 all express TTR and SCG5 but the latter cluster is missing PPY; this
favors a distinct endocrine origin for the latter cluster. Cluster 22 expresses KRT19, indicating
an epithelial origin which is consistent with their proximity on the t-SNE with acinar and ductal
cells. Finally, cluster 19 expresses CD74 which is part of the MHC class Il machinery found in
immune, antigen presenting cells. To further validate these results, we also looked at the
expression of known markers for endocrine and exocrine cancers (bottom heatmap) and found
that clusters 20, 21 and 23 show an expression consistent with endocrine cancer cells, while
cluster 22 is consistent with exocrine cancer. Cluster 19 expresses PTPRC and IGKC, indicating
it is related to B cells. Its location on the embedding supports an immune cell type, although the
atlas B cells and plasmablasts are not located in proximity. This discrepancy might be due by
biological differences between tumor infiltrating B cells and peripheral blood lymphocytes from
healthy subjects.

Discussion

Annotating a new single-cell transcriptomic dataset traditionally involves clustering without an
atlas, however this process is laborious and can be inaccurate. Geometric subsampling of the
atlas [23], followed by merging with the new data and unsupersived clustering is a viable route,
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however known cell types can split into subclusters or merge into superclusters, leading to
difficulties in interpretation. In our experience such cases happen often because clustering can
be performed at different resolutions leading to equally valid classifications (e.g. all immune
cells, lymphocytes, T cells). northstar improves over these approaches by combining cell-type
aware subsampling of the atlas with fixed clustering resolution and a stable clustering algorithm
that guarantees internal connectedness [11]. Cell types can neither split nor merge simply
because they are determined by the atlas.

northstar is very efficient because it approximates a cell atlas by compressed representations,
i.e. averages or small subsamples. One can easily use an atlas with millions of cells on a laptop
with 16 GB of RAM as long as the number of cell types remains within a few thousands.
Current atlases only have tens (see Figs. 2 and 3) or hundreds of cell types and that figure is
unlikely to be surpassed by orders of magnitude. Classifying thousands of glioblastoma and
pancreatic tumor cells only took seconds and is actually faster than computing their t-SNEs.

northstar clearly separates the concerns of building the similarity graph (see Fig. 1B) and
classifying cell types based on an existing graph (Fig. 1C). Although a simple and effective
algorithm for graph building is implemented, we intentionally allow the use of custom similarity
graphs to cope with batch effects. A plethora of batch correction methods has been proposed
and northstar is designed to be compatible with most of them [12,13,24,25].

Unfortunately, many cell atlases and single cell datasets are poorly disseminated. Data access
is idiosyncratic to each dataset and often requires manual steps (e.g. writing emails to the
authors). To change this trend and help disseminate northstar we provide a website with
averages and subsamples for several atlases that can be accessed programmatically:
https://northstaratlas.github.io/atlas_landmarks. This makes it easy to combine atlases and
cherry pick different cell types from each to maximize the leverage provided by the annotations.

The analyses of brain and pancreatic tumors presented here highlights the utility of northstar to
quickly characterize the cell type composition of tumors. Simple differential expression can be
applied immediately afterwards (Fig. 3C) to identify the nature of the new clusters and to shed
light on their biological origins. Sampling human tumors is challenging due to cell death
preferential to certain cell types (e.g. neurons, pancreatic exocrine cells), hence northstar is an
ideal tool to verify whether the cell types of interest are captured effectively. Moreover, the joint
analysis of multiple patient samples is informative about how stereotypic neoplastic cell state
progression is across individuals. In the 11 pancreatic tumors analyzed, we observed both
shared and private clusters and also found corroborating evidence linking fibromatosis to
activated stellate cells [20—22]. Cell atlases from large numbers of cancers are being collected
in addition to healthy tissues [26]. This will further boost the utility of northstar for rapidly
classifying tumors into known or novel neoplastic cell states.
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Cell atlases provide an invaluable resource to study heterogeneous disease and in particular
cancer. northstar’'s unique ability to identify healthy and neoplastic cells is an important step
towards personalized diagnosis and characterization of disease states at the single cell level.
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Methods

Brain atlas, glioblastoma dataset, and pancreas atlas

Gene expression count tables and cell type annotations were downloaded from NCBI’s Gene
Expression Omnibus website (brain atlas: GSE67835, glioblastoma: GSE84465, pancreas atlas:
GSEB81547). To combine the brain atlas and glioblastoma dataset, only genes that were present
in both datasets were retained. Gene expression counts were normalized by 1 million total
counts per cell. For the brain and pancreas atlases, arithmetic averages of the normalized
counts were computed for each cell type and stored. Fetal cell types were excluded from the
brain atlas since the glioblastoma dataset refers to adult patients, while ambiguous cell types
(e.g. “unknown”, “hybrid”) were excluded from both atlases.

Pancreatic cancer dataset

A novel single-cell transcriptomic dataset from human individuals with pancreatic cancer was
collected. 11 individuals were sampled with a total of 1,622 cells. A table of individual metadata
is available as Supplementary Table 1.

Pancreatic tumor tissue was obtained at the Stanford Hospital from individuals undergoing
surgery for pancreatic cancer between September 2015 and June 2018. Single-cell suspension
was then achieved dissociating the samples for 1-2 hours with Collagenase/Hyaluronidase
(Stemcell Technologies, 7912) in DMEM 1% FBS, followed by 2 minutes digestion with
Trypsin-EDTA (0.25%, Life Tech, except for TuPa#1, #3 and #4). ACK and DNAse treatments
were performed as needed.
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Single cell suspensions were isolated by fluorescence-activated cell sorting (FACS) on FACS
Aria Il (BD Biosciences for TuPa#1-6) into a single well of 96-well plate and on Sony SH800Z
(for TuPa 23,27,28,29,31) into single wells of 384-well Biorad HardShell plates. Antibodies used
for sorting pancreatic cells were: EpCAM fluorescein isothiocyanate (FITC), CD49f
phycoerythrin (PE), CD24 PE-Cy7, CD44 Allophycocyanin (APC), hCD45/GPA Pacific-blue
(BioLegend). Cells were gated on the basis of forward- and side- scatter profiles, and live/dead
discrimination was obtained with Sytox Blue (ThermoFisher #0S34857) or DAPI
(4',6-diamidino-2-phenylindole). The plates were pre-filled with 500nl of lysis buffer containing
poly-T capture oligos, spike-in External RNA Controls Consortium (ERCC) control RNAs, and
other molecules as described elsewhere [3]. cDNA synthesis and amplification was performed
as described in the same reference. Libraries using in-house Tn5 were done as described and
sequenced on lllumina NovaSeq 6000 on S2 or S4 flow cells and 100 base paired-end kits at an
average depth of 1 million reads per cell. To avoid index hopping, dual unique barcodes with a
reciprocal Hamming distance > 2 were used.

The sequencing read pairs were mapped to the human genome using STAR RNA aligner [28]
and sorted by name. Genes were counted using HTSeq [29]. One of us (FZ) is the maintainer of
HTSeq. A new package for grouping mapping and counting was developed by one of us (FZ)
and is available on GitHub: https://github.com/iosonofabio/bag_of stars. Cells with less than
100,000 reads were discarded.

Data processing

For both datasets, count tables were further analyzed in Python 3.7 using numpy [30], pandas
[31], and singlet. The latter package was developed by one of us (FZ) and is available on
GitHub: https://github.com/iosonofabio/singlet and on PyPI: https://pypi.org/project/singlet/. A
detailed description of the northstar algorithm is available in Supplementary Text 1.

Code and data availability

northstar is available on GitHub at https://github.com/northstaratlas/northstar. The constrained
clustering step was developed with the assistance of Vincent Traag and requires the
development branch of leidenalg on GitHub at https://github.com/viraag/leidenalg. Cell type
averages for a number of cell atlases are available at
https://northstaratlas.github.io/atlas_landmarks/. All scripts used to generate the figures and
tables for this manuscript are available on GitHub at
https://github.com/northstaratlas/northstar_analysis/. The code is written in Python 3, C, and
C++ and is tested via continuous integration on Linux and OSX.
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Figure 1

northstar annotates cell transcriptomes guided by a cell atlas. (A) northstar’s input: the
gene expression table of the tumor dataset and the cell atlas. Annotated cell type averages are
depicted by colored stars, unannotated new cells by green circles. (B) Similarity graph between
atlas and new dataset. (C) Clustering the graph assigns cells to known (stars) or new cell types
(purple, bottom right). Cell types themselves do not split or merge. (D) Typical code used to run
northstar. (E) Number of cell types with at least 20 cells in the Tabula Muris atlas (FACS data
only), subsampled to different number of cells [3]. (F) Computational requirements (random
access memory) to classify cells using a full atlas and using northstar with averages or
subsamples. With growing atlas size, northstar’s requirements barely increase.
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Figure 2

Atlas-based annotation of glioblastoma. (A) t-SNE of all cells in Darmanis et al. (2017)
colored by original annotation [14]. (B) The number and type of cells that constitute the atlas
data and the new glioblastoma data. (C) The same embedding of glioblastoma cells as in (A)
but colored by northstar’s annotation and showing atlas cells (stars: atlas averages). (D) Sankey
diagram with original manual annotations (left) vs. automated annotation by northstar (right).

Band widths are proportional to the number of cells in the cluster.
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Figure 3

Application of northstar to a new pancreatic cancer dataset. (A) t-SNE of 11 pancreatic
tumors together with averages from two atlases by Baron et al (2016) and Zanini et al. (2018)
[18,19]. Stars: atlas averages. (B) Number of cells from each tumor and fractions of cells
belonging to each cell type. (C) Top differentially expressed genes for each novel cluster (top)
and some known markers (bottom) for pancreatic cancers [32]. Black indicates no expression,
red to white increasing expression levels. PTPRC (CD45) and IGKC are added to highlight the
probable B cell phenotype of cluster 19. First bar: novel cluster (colored as in A and B). Second
bar: patient of origin, with legend below.
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Supplementary Materials

Supplementary tables and figures

Supplementary Table 1. Patient metadata for pancreatic cancer dataset

Sample Sex Age Diagnosis

TuPa1 Female 58 Fibromatosis

TuPa2 Female 59 Pancreatic Ductal Adenocarcinoma (PDAC)
TuPa3 Female 59 Mucinous Cystic Neoplasm

TuPa4 Female 44 Pancreatic Ductal Adenocarcinoma (PDAC)
TuPab Female 68 Pancreatic NeuroEndocrine Tumor

TuPab Female 80 Ampullary Adenocarcinoma

TuPa 23 Female 70 Well Differentiated NeuroEndocrine Tumor
TuPa 27 Male 65 Well Differentiated NeuroEndocrine Tumor
TuPa 28 Male 52 Well Differentiated NeuroEndocrine Tumor
TuPa 29 Female 70 Invasive Adenosquamous carcinoma, g. 3

TuPa 31 Male 74 Well Differentiated NeuroEndocrine Tumor
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Supplementary Table 2. Number of cells from each pancreatic tumor sample assigned to each
known cell type or new cluster.

Cell type
Macrophage
Schwann cell
Mast cell

T cell

NK cell

B cell
Plasmablast

Classical
monocyte

Nonclassical
monocyte

Endothelial
Quiescent stellate
Activated stellate
Ductal

Acinar

Alpha

Beta

Gamma/PP
Delta

Epsilon

19

20

21

22

23

105

46 16

18

28

14

356

58

295

121

31

15

201
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Supplementary Table 3. Top 15 differentially expressed genes per new cluster. Genes to
which we could assign a clear association with known cell types are highlighted in boldface.

Cluster

19 20 21 22 23
EGFR-AS1 APOH PAX6 ANXA2 TTR
CTC-441N14-4 AGT GC C190rf33 GC
C19orf57 CFC1B GAD2 KRT19 SCG5
CD74 SCGN FAM159B ANXA2P2 PPY
TMEM229B TM4SF5 KRT39 TM4SF1 RPL34P18
HLA-DRA CFC1 PPY OCIAD2 CHGB
DNAJC27-AS1 CALY ERO1B TMPRSS4 PAX6
PCDH10 PCSK1N CHGA LGALS3 TM4SF4
TNR CCL15 SCG5 PLAT CHGA
GAREM2 MGST1 TTR GPRC5A ATP5EP2
RP11-253M7-1 SLC14A1 CHGB S100P C100rf10
HLA-DPB1 RTBDN PAPPA2 RPL7P1 HSP90AA2P
HLA-DRB1 SPTSSB CPE RPL7P23 ERO1B
ST7L TPPP3 SCG3 RPL7P32 PDK4
HLA-DRB5 COL28A1 PDK4 RPL7P6 TTI2
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Figure S1. Original t-SNE representation of glioblastoma dataset. Cells colored by
original annotation (left) and newly annotated classes (right)
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Figure S2. Distance matrix characteristics and cluster stability using northstar.
(A) Edges of 5 highest correlating cells drawn for each cell, colored by correlation (= 1 -
distance). This correlation matrix of cells and atlas class ‘cells’ was used to perform
weighted PCA and render t-SNE as shown in Fig. 2. Correlation is the pairwise
correlation of each cell using the union of top 20 overdispersed genes for each atlas
class and the top 400 overdispersed genes of the new glioblastoma dataset. (B): Top
11 largest clusters of cells (colors and number of cells) that always grouped together
over 20 rounds of re-initialization of the semi-Annotate algorithm (atlas cell weight=60,
number of PCs=20, resolution parameter=0.0012. threshold neighborhood=.8, with
self-edging). Cells forming smaller consistent clusters or that are grouped varyingly
shown in black. (C): Single nearest neighbor of each cell, based on averaged
class-based correlation matrix taken over 20 rounds of re-initialization of northstar.
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Figure S3. Annotation of the GBM dataset by subsampling atlas cells. Notice that
the microglia annotation is expanded to include around a third of the cells that were
originally annotated more generically as “immune cells”, in agreement with the result
found by averaging within cell types.
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Figure S4. Key marker genes for different pancreatic and blood cell types
projected onto the t-SNE of Fig. 3A, colored by their expression level (low: blue,
intermediate: green, high: yellow). As in Fig. 3A, squares indicate atlas cell types,
circles new cells from pancreatic tumors.
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Supplementary Text 1: Detailed description of the northstar algorithm

Merge cell atlas and new single cell dataset

northstar starts with a gene expression matrix M with L rows (genes) and N columns (cells). The
first N, columns represent the cell atlas. Since the atlas is already annotated, the gene
expression of each cell can be approximated by the average of its cell type. Therefore, each of
these columns contains the mean gene expression within a cell type from the atlas. In addition
to these averages, the number of atlas cells within each cell type is taken as input as a vector,
which we call S. The last N, = N - N, columns of M represent single cells from the new dataset
(“new cells”), which need to be annotated. For these columns, no equivalent of S is needed
since each column describes only one cell. The input data for northstar is also depicted in Fig.
1A. The steps below are illustrated in Fig. 1B.

Feature selection

The first step of northstar is to select features (genes) to calculate the neighborhood graph.
Briefly, feature selection is necessary because noisy points in a high-dimensional space are,
loosely speaking, almost equidistant from one another (“curse of dimensionality”): the selection
of 300-1000 most relevant genes drastically reduces noise while retaining enough information to
calculate neighborhoods. It is empirically observed that excluding key features from the
selection might cause overclustering, while erring on the side of too many features has a less
dramatic impact on the results.

A common and simple way to select features is to take the most overdispersed genes, i.e.
genes with a large variance-to-mean ratio across all cells. northstar by default takes this
approach for the sake of simplicity, however it includes two modifications. First, it only computes
overdispersion within the new dataset, since the atlas might be much larger and might otherwise
dominate the feature selection, obfuscating de novo cell type discovery. Second, it explicitly
includes the most discriminating genes for each cell type in the atlas, to ensure that new cells
can be positioned correctly within the atlas if they do belong to any of the known cell types. To
maximize customizability, the user can select features before northstar if she prefers to use
different criteria.

Weighted PCA

Principal component analysis (PCA) is a commonly used technique across scientific fields and is
used in single cell transcriptomics to further mitigate the effect of noise in high-dimensional
spaces beyond feature selection. northstar performs PCA on the feature-selected data using
weights to balance the influence of the atlas and the new dataset on the annotation result.

Note that most descriptions of PCA consider the rows as observations and columns as
variables, whereas we consider a gene expression matrix M that has the cells as columns and
the genes as rows, to be more consistent with the single cell transcriptomics literature (see
above). In any case, the same operations can be trivially applied to the transposed matrix and
lead to the same result.
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First, the weights are normalized into fraction of the total weight via division by the total number
of cells in both atlas and the new dataset. The resulting vector of weights is then written in a
diagonal matrix W of size N x N. We call this matrix the normalized weight matrix.

Then, M is linearly shifted to have zero weighted mean across all cells. It is then normalized by
dividing by the square root of the weighted variance across all cells.

The weighted covariance matrix of M is calculated as Cov,, M = M W M". This matrix has
dimensions L x L and is real and symmetric, so its canonical linear map has L real eigenvalues
and L real eigenvectors. Let U be the matrix with the eigenvectors as columns.

The first P eigenvalues and eigenvectors are computed by standard linear algebraic techniques.
Although all L components can be calculated in principle, it is in practice sufficient for the sake
of subsequent steps to trim this operation to P ~ 20 because the spectrum of eigenvalues
decays sharply after the first few elements.

The P eigenvectors are the top gene loadings of the weighted PCA. To find the cell loadings or
principal components (PCs), we exploit the well known connection between PCA and singular
value decomposition (SVD): the eigenvectors of Cov,, M are also right singular vectors of the
data matrix M, while the PCs are left singular vectors. The matrix V with the PCs as columns
can therefore be computed by matrix multiplication:

v=MuUx"

where X is the smi-diagonal matrix with the singular values (i.e. the square roots of the
eigenvalues of the covariance matrix) as the first diagonal entries and zero elsewhere and '
indicates the reciprocal of all nonzero singular values and zeros elsewhere. In theory, it is
possible that this inversion cannot be computed if the covariance matrix is degenerate (i.e. it
has rank < L). However, such pathological cases are unlikely to appear in real datasets and are
not considered further here.

Note that the linearity of PCA explains why it is possible to calculate an approximate result
without having to load all atlas data: since the atlas cells are approximated with their cell type
average, having a cell type with a weight of 2 is exactly the same as duplicating that column into
the data matrix and having both copies have a weight of 1.

Construction of the k nearest neighbors graph

To construct the k nearest neighbors (knn) graph, a distance matrix from the new cells and all
cells (including atlas and new ones) is first computed. The software package lets the user
choose the distance metric and defaults onto Pearson correlation, a commonly used metric in
single cell transcriptomics. The distance matrix has dimensions N, x N.
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Then, for each new cell (row in the distance matrix) the k elements at closest distance excluding
self are identified. Notice that there is no need to sort the distance vector fully for this. The
algorithm then scan these candidate neighbors in order of increasing distance. If a candidate
belongs to the new dataset, it is added to the neighbors list of this cell. If a candidate belongs to
the atlas, however, it is a representative of a larger cell type which is bona fide tightly clustered
around it. Hence, not only one neighbor is added but rather a number equal to the size of the
cell type in the atlas. The total number of neighbors is then trimmed to k.

In addition to the neighbors from the new data into the atlas, adding a few edges that are
computed outwards from the atlas helps to reduce batch effects (simlarly to mutual nearest
neighbors schemes). We usually compute 5 neighbors in the new dataset for each atlas
average and add this small amount of edges to the similarity graph.

It is possible that a cell (or atlas average) has no close neighbors or just fewer than k. To
consider this situation, a maximal distance threshold is used to compute the neighbor
candidates. The default for correlation distance is 0.8: cells with a Pearson r < 0.2 with the
current cell of interest are never treated as neighbors.

Once the nearest neighbors for every new cells are found, an undirected graph is constructed
by symmetrization of all edges. Edges between new cells and atlas cell types can be present
multiple times in the neighbors lists and are weighted accordingly. This increased edge weight
ensures that if a cell is really close to a known cell type it will rapidly be absorbed into that
cluster during the Leiden algorithm below. No direct edges are set between atlas cell types
because they are annotated already and are not allowed to change cluster membership during
the modified Leiden algorithm.

Leiden clustering with fixed nodes

The joint dataset is now represented as a neighborhood graph and can be clustered using
standard graph-based methods. However, the nodes belonging to atlas cell types are already
annotated and should not be allowed to change membership lest a full reannotation of the atlas
is required.

northstar solves this issue by modifying the Leiden algorithm for community detection in large
graphs to allow for a number of nodes to be “fixed” into their initial membership. The Leiden
algorithm itself has been proven effective in unsupervised clustering of single cell transcriptomic
data, scales well with graphs with millions of nodes, and provides mathematical connectivity
guarantees that lend trust to the resulting annotations.

Briefly, Leiden performs two kinds of operations on nodes, namely “move” and “merge”.
Moreover, it recursively collapses the initial graph into simplified aggregated graphs in which
each cluster becomes a single node: the “move” and “merge” steps are then repeated in the
aggregated graph. northstar changes both the “move/merge” steps and the aggregation step.


https://doi.org/10.1101/820928
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/820928; this version posted October 27, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

First, whenever a queue of nodes is constructed for consideration in terms of a move/merge,
nodes that are marked as fixed are just never considered. This prevents them from switching
membership to another community. Second, whenever aggregated graphs are constructed,
fixed nodes are collapsed only if they belong to the same community from the beginning;
otherwise they are never collapsed.

The output of northstar is a list of cluster memberships for each new cell. Numbers 0 to (N, - 1)
represent extant cell types in the atlas (corresponding to the first N, columns of M) and higher
numbers indicate new inferred cell types in the new dataset.

Supplementary Text 2: Extended methods

Analysis of the GBM dataset based on the human brain cell atlas by Darmanis et al.

First, we deleted any information on the cell type annotations on the cells from glioblastoma
patients. The annotations for the cells from the healthy brain atlas, excluding fetal cells, were
kept as a training set and the gene expression of the atlas was approximated by averaging
within each cell type. We then performed feature selection by taking a constant number of
overdispersed genes (adjustable, here 20) for each atlas cell type as well as the top
overdispersed genes of the new glioblastoma cells (typically the top 500 [currently shown: top
400]) to generate a feature-selected matrix. This matrix has the dimensions of at most 5*20+400
genes by 5 cell types + 3589 new cells, though it likely has fewer genes due to genes shared
between cell classes or between the atlas and the new dataset. This matrix was used to
instantiate and run northstar, and for visualization purposes we created a distance matrix by
calculating the pairwise correlation between cells and atlas classes, followed by a weighted
PCA that gives the atlas cells the weight of 60 single cells and using the top 20 PCs to generate
a 2D rendering of cell similarity using t-SNE.

Projecting the original glioblastoma annotation back onto the t-SNE, we observe that our
unbiased feature selection method roughly reproduces the previously reported cell clusters (Fig.
2C, Supplementary Fig. 1).
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