

1 **Title:** Marine foams represent compressed sea-surface microlayer with distinctive bacterial
2 communities

3 **Running title:** Foams are ephemeral hotspots for microbial life

4

5 **Authors:** Janina Rahlff^{1*}, Daniel Herlemann^{2,3}, Helge-Ansgar Giebel⁴, Nur Ili Hamizah
6 Mustaffa¹, Oliver Wurl¹, Christian Stolle^{1,2,#}

7 **Affiliations:**

8 ¹Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky
9 University Oldenburg, Schleusenstraße 1, 26382 Wilhelmshaven, Germany

10 ²Leibniz Institute for Baltic Sea Research (IOW), Seestraße 15, 18119 Rostock, Germany

11 ³Estonian University of Life Sciences, Center of Limnology, Vehendi küla Tartumaa 61117
12 Estonia

13 ⁴Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky
14 University Oldenburg, PO Box 2503, Carl-von-Ossietzky-Straße 9-11, 26111 Oldenburg,
15 Germany

16

17 ***Corresponding author:** Institute for Environmental Microbiology and Biotechnology,
18 University of Duisburg-Essen, Universitätsstr. 5, 45141 Essen

19 Email: janina.rahlff@uol.de

20 Tel.: 0049 (0) 201 - 183 - 7081

Other present addresses: #Project management Jülich, Schweriner Str. 44, 18069 Rostock, Germany

22 **Key words**

23 Air-sea interface, surfactants, particles, 16S rRNA amplicon sequencing, neuston

24

25 **Originality-Significance Statement**

26 Marine foams are highly underexplored microbial habitats at the air-sea interface. Here, we
27 provide the first comparison of the bacterial community composition of foams, sea-surface
28 microlayer (SML, the uppermost layer on top of aquatic ecosystems) and seawater collected from
29 1 m depth. Our work shows that the foam environment selects for bacterial taxa common to the
30 SML but overall harbors a distinctive bacterial community compared to the other two habitats,
31 allowing the conclusion that foams are a highly compressed version of the SML.

32

33 **Summary**

34 The occurrence of foams at the oceans' surface is patchy and generally short-lived. Here we
35 investigated if marine foams as important sea surface phenomena represent a compressed form of
36 the sea-surface microlayer (SML), a <1 mm thick film at the air-sea interface. The comparison of
37 marine foams, SML and underlying water (ULW) collected from the North Sea and Timor Sea
38 revealed that foams were often characterized by high abundance of small phototrophic and
39 prokaryotic cells as well as high concentrations of surface-active substances (SAS) in contrast to
40 SML and ULW. Amplicon sequencing also revealed distinctive bacterial communities in foams
41 including species of *Persicirhabdus* and *Winogradskyella* that were part of the particle-attached,
42 bacterial communities. Comparison of rRNA and DNA based sequenced data suggests that
43 *Pseudoalteromonas* sp. are highly active and thus might enhance foam formation and stability by
44 producing SAS. Presence of motile *Vibrio* might indicate an active migration of *Vibrio* towards

45 ephemeral and nutrient-rich foams. Our study supports that foam is a compressed version of the
46 SML due to increased cell numbers and SAS concentration, and bacterial taxa found in foam
47 were also present in the SML entailing major implications for air-sea exchange processes,
48 biogeochemical cycling and food web functioning.

49

50 **Introduction**

51 Foams are patches floating on the water surface and may appear in any aquatic habitat. Foam is
52 loosely defined as a dispersion of gas in liquid in the presence of surface-active substances (SAS)
53 (Schilling and Zessner 2011). Convergence at zones of downwelling water and fronts, currents,
54 and breaking waves compress SAS and lead to foam formation at the sea surface and
55 occasionally cause massive foam aggregates at beaches and in coastal zones (Eisenreich et al.,
56 1978; Bärlocher et al., 1988; Thornton, 1999; Kesaulya et al., 2008; Jenkinson et al., 2018).
57 Furthermore, bubbles that do not burst immediately but rise to and accumulate at the surface can
58 cause foam formation (Schilling and Zessner, 2011). The nature, distribution and occurrence of
59 foam in the marine environment is elusive, since its lifespan is limited to hours or days
60 (Velimirov, 1980; Pugh, 1996), and the mean coverage of the ocean's surface by foams (white
61 caps) is 1 - 6% based on satellite observations (Anguelova and Webster, 2006).

62 One major prerequisite for foam formation are SAS, which represent a complex mixture of
63 mainly organic compounds. Due to their amphipathic nature, SAS accumulate at the sea surface
64 (Wurl et al., 2009) and influence CO₂ air-sea gas exchange (Pereira et al., 2018; Ribas-Ribas et
65 al., 2018). In foams, SAS can originate from a variety of sources such as marine bacteria (Satpute
66 et al., 2010), kelp mucilage (Velimirov, 1980), exudates of alive or broken phytoplankton cells
67 (Velimirov, 1980; Velimirov, 1982; Frew et al., 1990; Wegner and Hamburger, 2002), or other
68 organic detritus (Velimirov, 1980). In addition, during phytoplankton blooms organic material
69 accumulates at the sea surface, and mainly biogenic lipids and amino acids are important
70 substrates for the formation of foam (Eberlein et al., 1985; Riebesell, 1993; Hunter et al., 2008).
71 Even if foam is generally short-lived, its high concentration of organic matter (Eisenreich et al.,
72 1978; Johnson et al., 1989), especially of proteins and carbohydrates (Stefani et al., 2016), allows

73 these nutrient-rich islands functioning as microbial habitats. By comprising ephemeral feeding
74 grounds, foams are “remarkably rich and diverse” in microorganisms (Tsyban, 1971), including
75 bacteria (Maynard, 1968; Gobalakrishnan et al., 2014), protists and algae (Maynard, 1968;
76 Harold and Schlichting, 1971). In addition, foams were shown to enclose Metazoans including
77 copepods, polychaete and tunicate larvae (Armonies, 1989; Castilla et al., 2007) thus forming
78 vital food sources for the higher trophic levels of the food web (Bärlocher et al., 1988; Craig et
79 al., 1989; Scully, 2009).

80 The sea-surface microlayer (SML) is a <1 mm thick, biofilm-like layer (Wurl and Holmes, 2008;
81 Wurl et al., 2016), located at the air-sea boundary of all aquatic ecosystems. It is characterized by
82 remarkably different physicochemical and biological properties that allow its differentiation from
83 the underlying water (ULW) (Hardy, 1982; Cunliffe et al., 2013). Increasing interest in the SML
84 throughout the last decades revealed that the accumulation of inorganic and organic substances
85 and particles (including microorganisms) at the sea surface is a widespread phenomenon with
86 important implications for biogeochemical cycles (Engel et al., 2017; Wurl et al., 2017; Rahlff,
87 2019). The interfacial position of the SML makes it a challenging environment for its inhabiting
88 organisms termed as neuston (Maki, 1993). Differences in bacterial community composition
89 between SML and ULW have been related to meteorological conditions (Agogué et al., 2005b;
90 Stolle et al., 2011; Rahlff et al., 2017b), however the specific adaptation of bacteria to the SML
91 habitat remains an open question (Agogué et al., 2005a).

92 Napolitano and Cicerone (1999) suggested that 1 L of foam water would represent 2 m² of SML,
93 i.e. foams are essentially compressed SML. Supporting this idea, enrichment of bacteria in foams
94 compared to SML and/or ULW has been reported (Tsyban, 1971; Kuznetsova and Lee, 2002;
95 Rahlff et al., 2017b). However, a thorough characterization of foam microbial community

96 composition compared to the SML and the ULW is missing. Using a microscopic approach,
97 Druzhkov et al. (1997) found a highly identical taxonomic composition of heterotrophs
98 (nanoflagellates <5 μ m and bacteria), nano- and microphytoplankton in foam and the SML. The
99 authors further described higher abundances (one order of magnitude) of autotrophs but not of
100 heterotrophs in foams compared to the SML. If microorganisms are rather passively transported
101 to foams by, e.g., bubbles or SML compression, or whether they actively seek the presence of
102 foams remains to be elucidated.

103 In this study, we investigated the bacterial community composition of marine foams in direct
104 comparison to non-foamy SML and ULW. Collected foam samples were associated with
105 different events such as surface slicks, cyanobacterial blooms, presumptive phytoplankton
106 exudates and surface compression by wave action (Figure 1, Table S1; supporting information).
107 Based on the theory that foam is an extreme condensed form of the SML (Napolitano and
108 Cicerone, 1999), we hypothesized that the bacterial community composition of foam and SML
109 are more similar than between foam and ULW. Since the SML is considered as an extreme
110 habitat (Maki, 1993) likely comprising many dead or dormant cells, we also considered the
111 community composition among active and abundant bacteria as inferred from a cDNA and DNA-
112 based 16S rRNA amplicon sequencing approach, respectively. We expect that nutrient-rich foams
113 harbour a distinct bacterial community and favour fast-growing heterotrophic bacteria. Overall,
114 we provide a detailed understanding of the bacterial community composition associated with
115 marine foams with implications for the uppermost sea surface in air-sea exchange processes and
116 biogeochemical cycling.

117

118

119

120 **Results**

121 **Foams are enriched with surface-active substances and microorganisms**

122 Overall, foams from both sites, North Sea (NS) and Timor Sea (TS), were enriched with
123 prokaryotic microorganisms, small phototrophs and SAS (Table 1). Cell counts of prokaryotic
124 microorganisms, which mainly consisted of heterotrophs, ranged between 2.63×10^6 and $4.62 \times$
125 10^7 , 9.83×10^5 and 4.57×10^6 , and 1.01×10^6 and 3.71×10^6 cells mL^{-1} in foam, SML and ULW,
126 respectively (Figure 2A). Thus, prokaryotic microorganisms in foams were enriched with a
127 maximum EF (enrichment factor) of 10.1 and 5.9 over SML, and with a maximum EF of 14.8
128 and 33.6 over ULW in NS and TS, respectively (Table 1). Prokaryotic cells in the SML were
129 enriched with a maximum EF of 1.5 and 1.7 over ULW in NS and TS, respectively. Likewise, the
130 total number of small phototrophs, which also contained some cyanobacteria, was always higher
131 in foam (range= 1.38×10^4 to 5.71×10^5 cells mL^{-1}) compared to SML (range= 1.15×10^3 to
132 3.97×10^4 cells mL^{-1}) and ULW (range= 1.06×10^3 to 4.17×10^4 cells mL^{-1} , Figure 2B). Thus, the
133 maximum EF was 3.5 and 81.2 for SML over ULW and foam over ULW, respectively. The
134 absolute number of small phototrophs was two orders of magnitude lower compared to the
135 prokaryotic cell counts (Figure 2 A&B). Interestingly, small phototrophs were often depleted in
136 the SML compared to the ULW (S/U minimum EF= 0.4), while they were enriched in foams over
137 ULW at the same time (F/U EF=12.9 (Table 1)).

138 Foams also contained the highest SAS concentrations compared to the other two habitats (Figure
139 2C). SAS concentrations in foams varied between 900 to 148233 $\mu\text{g Teq L}^{-1}$ in NS and TS
140 whereas SML SAS concentrations were in a range of 66 to 1753 $\mu\text{g Teq L}^{-1}$, and ULW SAS

141 concentrations in a range of 109 to 223 $\mu\text{g Teq L}^{-1}$ (Table 1). While SAS concentrations in the
142 SML were enriched and depleted compared to ULW, their concentration in foams compared to
143 ULW was typically enriched by three orders of magnitude (EF ranging from 5 to 665).

144

145 **Changes in the number of OTUs among foam, sea-surface microlayer and underlying water**

146 We analyzed the bacterial community composition of all NS samples to compare the diversity
147 between the different habitats (foam, SML, ULW). We furthermore differentiated the attachment
148 status of bacteria between particle-attached (PA) and free-living (FL) as well as the community
149 composition between abundant (based on DNA) and active (based on cDNA) operational
150 taxonomic units (OTUs, Figure 3). Analyses revealed overall higher numbers of OTUs, i.e.
151 higher diversity, in cDNA-based communities (reflecting active taxa, median=786.5) compared
152 to DNA-based communities (reflecting abundant taxa, median=571). In DNA-derived samples,
153 the number of foam OTUs was significantly increased for PA over FL communities (Dunn's test,
154 $p=0.0031$), and also significantly higher compared to the SML and ULW PA fraction (Figure 3)
155 with $p=0.0103$ and 0.0146, respectively. OTUs derived from cDNA were significantly more
156 diverse among the PA samples of foam ($p=0.037$) and SML ($p=0.042$) compared to the respective
157 FL samples (Figure 3). We found indications for a higher diversity of FL OTUs in foams (cDNA-
158 based evaluation) compared to their SML and ULW counterparts, although these trends lacked
159 significance (Figure 3).

160

161

162

163 **Bacterial community composition of North Sea foams**

164 On a phylum-level, the bacterial community composition of foam, SML and ULW was
165 comparable (Figure 4). The most dominant group was assigned to *Gammaproteobacteria*
166 (maximum=37.4%). DNA-based community analyses showed that for all three habitats
167 *Gammaproteobacteria*, *Verrucomicrobia* and *Cyanobacteria* formed a higher portion of PA than
168 FL communities. In contrast, *Alphaproteobacteria* and *Actinobacteria* were more abundant in the
169 FL form (Figure 4, Table S2; supporting information). Differences between cDNA and DNA-
170 derived bacteria were only minor, indicating that abundant phyla were also active.
171 *Gammaproteobacteria*, as a single exception, showed high relative abundance in the cDNA-
172 based community composition (37.4% and 35.0% of FL and PA OTUs, respectively) compared
173 to the DNA-based community composition (22.7% and 26.0% of FL and PA OTUs,
174 respectively). The cDNA-based communities of foam contained less *Alphaproteobacteria* but
175 more *Gammaproteobacteria* compared to SML and ULW communities (Figure 4). Non-metric
176 multidimensional scaling plots revealed that foam bacterial communities were clearly distinct
177 from SML and ULW communities, irrespective of differentiating cDNA and DNA or FL and PA
178 (Figure 5). In contrast to this, SML and ULW bacterial community composition were more
179 similar to each other as shown by the clustering (Figure 5). On the order-level, the difference
180 between cDNA- and DNA-based communities became more obvious: A depletion of the relative
181 abundance of active OTUs in foam in contrast to the other two surface habitats was most
182 apparent in the MB11C04 marine group (*Verrucomicrobia*), SAR11 clade (*Alphaproteobacteria*)
183 and *Oceanospirillales* (*Gammaproteobacteria*) (Figure S1, S2, S3; supporting information). A
184 higher relative abundance of active OTUs in foam compared to SML and ULW was found among
185 the *Puniceicoccales* (*Verrucomicrobia*), *Sphingomonadales* (*Alphaproteobacteria*),

186 *Alteromonadales* and *Vibrionales* (both *Gammaproteobacteria*) (Figure S1, S2, S3; supporting
187 information). Active FL OTUs of the order *Flavobacteriales* and *Oceanospirillales* were more –
188 whereas free-living *Sphingobacteriales* were less numerous than their PA counterparts in all three
189 habitats (Figure S1, S4; supporting information).

190 Apart from the order *Rhodobacterales* (Figure S3; supporting information), foam generally had
191 less alphaproteobacterial DNA-based OTUs compared to SML and ULW. However, foam
192 contained a higher DNA-based relative abundance of *Verrucomicrobia* and
193 *Gammaproteobacteria* (Figure 4). Among the *Gammaproteobacteria*, especially more OTUs of
194 the orders *Cellvibrionales*, *Vibrionales*, *Legionellales*, *Alteromonadales* were increasingly
195 detected in foam compared SML and ULW, whereas the order *Oceanospirillales* was more
196 depleted in foam (Figure S1; supporting information).

197

198 **Foam-specific bacteria**

199 Using the linear discriminant analysis (LDA) effect size (LefSe) method we could identify OTUs
200 that were enriched in foam compared to SML and ULW (Figure 6). The analysis does not refer to
201 the most abundant OTUs in terms of absolute numbers but points out the largest differences
202 between foam and the other two habitats. Members of the *Gammaproteobacteria* were typical
203 active and abundant foam colonizers (Figure 6). Taxa including *Winogradskyella*, *Vibrio*,
204 *Halioglobus* and *Pseudoaltermonas* were particularly abundant in both cDNA and DNA-derived
205 foam samples as well as when compared to SML and ULW habitats. *Persicirhabdus* and other
206 *Verrucomicrobiaceae* were typical foam-dwellers with 11% and 7% relative abundance
207 according their presence in DNA samples but seemed not very active according to cDNA

208 samples. Typical SML populating bacteria belonged to taxa which were phylogenetically related
209 to *Alphaproteobacteria*, *Gammaproteobacteria* and *Flavobacteria*. Strikingly, abundance and
210 activity profiles for SML microbes were hardly different from the ULW but more different from
211 foam samples. High relative abundances (>5%) of *Planktomarina*, SAR116 and SAR86 could be
212 revealed for SML samples for cDNA and DNA. Microbial taxa of SAR11 and *Candidatus*
213 *Actinomarina* typically occurred in high abundances in the ULW.

214

215 ***Trichodesmium* sp.-produced foam – a case study**

216 Due to technical restrictions we could only obtain a single DNA/cDNA sample from the Timor
217 Sea (Station 8). Among the DNA-based community in foam we found most PA OTUs assigned
218 to *Trichodesmium* (relative abundance=33.4%), *Alteromonas* (26.4%) and *Rhodobium* (5.4%),
219 whereas FL OTUs were mostly assigned to *Alteromonas* (18.0%) and *Rhodobium* (10.2%) (Table
220 S3; supporting information). PA OTUs were mainly assigned to *Trichodesmium* (68%) and
221 *Rhodobium* (10.9%) in the SML, and to *Trichodesmium* (23.8%) and *Oscillatoria* (26.7%) in the
222 ULW. Most FL OTUs from SML and ULW were assigned to *Synechococcus* with 15.7% and
223 21.6% relative abundance, respectively. In all cDNA samples, *Trichodesmium* was also the most
224 abundant among active OTUs in foam and SML, only in the ULW *Oscillatoria* (48.2%) had
225 higher relative abundance compared to *Trichodesmium* (29.1%). The relative abundance of
226 cDNA-based OTUs assigned to *Alteromonas* in foams (PA: 17.8%, FL: 12.6%) was
227 comparatively enhanced to the SML (PA: 0.2%, FL: 1.2%). The ten most abundant OTUs found
228 in the three habitats are given in Table S3 (supporting information).

229

230 **Discussion**

231 **Foams comprise an extreme form of SML**

232 Foams are peculiar but understudied microbial habitats at the air-sea interface. They stem from
233 the SML and bursting bubbles, and as soon as foams subside, their material becomes part of the
234 SML again (Kuznetsova and Lee, 2002). The idea that foams are essentially compressed SML is
235 supported by our results. The SML is usually enriched in bacterial cells compared to the ULW
236 (Hardy, 1982). As expected for an extreme form of the SML, we found high concentrations of
237 SAS in foams as well as an enrichment of prokaryotic microorganisms (determined by flow
238 cytometry and DNA-based amplicon sequencing) and small phototrophic cells (flow cytometry
239 only), matching previous observations (Kuznetsova and Lee, 2002; Rahlff et al., 2017b;
240 Robinson et al., 2019). Foams likely originating from cyanobacterial cells and presumptive
241 phytoplankton exudates (Figure 1 A&B) that principally contain high loads of SAS (Ćutić et al.,
242 1981) were also linked to higher amounts of microbes compared to foams formed by
243 convergence of surface water (Figure 1C, Table S1; supporting information). This indicates that
244 foams originating from photoautotrophic biomass contain substantial amounts of labile organic
245 matter, stimulating enhanced growth of heterotrophic bacteria. The presumptive phytoplankton-
246 associated foam was mostly found in slicks, which are visible sea surface features that result from
247 SAS causing dampening of capillary waves, and which are known to comprise distinct microbial
248 communities (Wurl et al., 2016). Interestingly, abundance of small phototrophic cells declined in
249 the SML while it was enhanced in the respective foam sample. This observation might argue for
250 passive transport of microbes from SML to foam, e.g. by SML compression, and some
251 transferred, fast-growing, opportunistic bacteria took the advantage and thrived. An OTU
252 assigned to *Alteromonas* was the most abundant FL bacterium in the *Trichodesmium*-associated

253 foam (Table S3; supporting information), and a high relative abundance among the active OTUs
254 was found in foam compared to SML in both FL and PA fractions. The increased relative
255 abundance of active OTUs being restricted to the foam environment allows speculations on active
256 migration of certain taxa towards the foam, e.g. *Vibrio* may use flagella to actively move there
257 (Atsumi et al., 1992).

258

259 One striking finding of our study is that we mostly observed a higher diversity within the cDNA-
260 based compared to the DNA-based bacterial community, suggesting that bacteria being enriched
261 in foams were generally alive and most likely active. Sequencing of cDNA-derived amplicons of
262 small subunit RNA gives a rough estimate for assessing activity of bacterial taxa because cellular
263 rRNA concentration is linked to cell growth and activity (Schaechter et al., 1958; Poulsen et al.,
264 1993; Lanzén et al., 2011). Detecting both amplicon types allows to find rare and active
265 communities (Campbell et al., 2011) and to detect two distinct communities, for instance if small
266 cells having a general lower RNA content are highly active. However, the taxonomic resolution
267 of 16S rRNA (gene) amplicon sequencing cannot discriminate between closely related species
268 (Fox et al., 1992), and especially between cyanobacteria.

269 Long residence time of microbes at the air-sea interface and thus prolonged exposure to the cell-
270 inhibitory effects of high solar and ultraviolet (UV) radiation (Santos et al., 2013) and wind-wave
271 dynamics (Stolle et al., 2011) are neither expected for foam being highly ephemeral (Pugh, 1996)
272 nor the SML being prone to sudden changes in physical and chemical properties (Zhang et al.,
273 2003). Some bacteria, such as *Trichodesmium* sp. show more tolerance towards photoinhibition at
274 the air-sea interface (Sieburth et al., 1976), tend to accumulate in slicks (Sieburth and Conover,

275 1965), and can remain active as our results for the Timor Sea revealed (Table S3; supporting
276 information).

277

278 **The role of particles for foam-populating bacteria**

279 According to Figure 5, PA and FL bacteria form distinctive communities in all of the studied
280 habitats. Particulate organic matter is frequently enriched within the SML (Aller et al., 2005) as
281 well as in foams (Johnson et al., 1989) compared to the ULW. In addition, SML bacteria are
282 more attached to substrates than occurring in the free-living state (Cunliffe et al., 2009), and PA
283 bacteria are generally more prone to changes in community composition (Stolle et al., 2010). In
284 agreement with that and former studies (Parveen et al., 2013; Rieck et al., 2015), we found higher
285 OTU numbers being linked to the PA lifestyle independent of the habitat under investigation. For
286 instance, the LefSe analysis revealed that *Winogradskyella* was particularly abundant in the
287 cDNA fraction, reflecting active OTUs. Previous work has shown that *Winogradskyella* spp. is
288 often extracted from other species such as brown algae or sponges (Yoon and Lee, 2012; Park
289 and Yoon, 2013; Schellenberg et al., 2017). As broken algal cells and detritus are major parts of
290 foams, high relative abundance of *Winogradskyella* in the foam PA fraction (Figure S5;
291 supporting information) might be due to its attachment to algal-derived particles. Especially
292 *Verrucomicrobia* were attached to particles rather than occurring in the FL form, which has been
293 previously suggested (Freitas et al., 2012), and one of its members, *Persicirhabdus* was
294 particularly abundant in foam-derived cDNA samples. *Persicirhabdus* might have a preference
295 for particle adherence since it also occurs in higher abundance in sediments compared to free
296 water column (Freitas et al., 2012) or colonizes plastic debris (Oberbeckmann et al., 2016). In
297 addition, *Persicirhabdus* and *Winogradskyella* are well-known for their polysaccharide-degrading

298 capacities (Yoon and Lee, 2012; Cardman et al., 2014) and, hence, might prefer to stick to
299 organic materials feeding them. Certain bacteria that were particularly active in foams, e.g.
300 *Alteromonas* sp., were previously shown to be highly abundant and active degraders of alginic acid, a
301 cell wall components from marine macroalgae (Mitulla et al., 2016), and of labile dissolved
302 organic carbon (Pedler et al., 2014). By using 16S rRNA gene sequencing of individual
303 transparent exopolymer particles (TEP) from the SML, Zäncker et al. (2019) found that
304 *Alteromonadaceae* on TEP was significantly increased compared to subsurface water. Though
305 being attached to particles might have some drawbacks for bacteria when it comes to grazing
306 (Albright et al., 1987), this might not be necessarily true for the SML, or this disadvantage is
307 easily outweighed by the benefits of particles providing food and shelter for extreme levels of UV
308 and solar radiation. In this regard, foam bacteria might be important key players in
309 biogeochemical cycling, jump starting the microbial loop from the air-sea interface.

310

311 **Ecological implications of sea foam bacteria**

312 Sea foams are often perceived as aesthetically unpleasant or are associated with pollutants
313 (Schilling and Zessner, 2011). In this study we detected bacteria of the orders *Cellvibrionales*,
314 *Vibrionales* and *Legionellales*, all of which include potentially pathogenic bacteria. Likewise, sea
315 foam bacteria near a sandy beach on Havelock Island, India were shown to contain high portions
316 of *Vibrio* and *Salmonella*, as well as of fecal coliforms such as *E.coli* (Gobalakrishnan et al.,
317 2014). A general awareness for the presence of pathogens in sea foams can benefit public health
318 and the recreational value of coastal areas and beaches where foams frequently occur.

319 Recent work has shown that massive foam events in association with blooms of *Phaeocystis*
320 *globosa* and an unknown plankton species can have devastating effects for local residents
321 (Jenkinson et al., 2018). Likewise, *Phaeocystis pouchetii*, the kelp species *Ecklonia maxima* and
322 the river water-crowfoot *Ranunculus fluitans* contributed to foam formation in their respective
323 habitats (Velimirov, 1980; Eberlein et al., 1985; Wegner and Hamburger, 2002). Heterotrophic
324 bacteria in foams might be an important but overlooked component in the foam formation
325 process, because also bacteria can produce SAS and exopolysaccharides (Satpute et al., 2010),
326 which may contribute to foam production and stabilization (Jenkinson et al., 2018). Experiments
327 by Velimirov (1980) revealed that the metabolic products of growing bacteria in kelp bed foams
328 would not remarkably contribute to foam stability and formation time. The author demonstrated
329 foam formation in the presence of *E.maxima* while bacterial growth was antibiotically inhibited.
330 Our foam samples contained bacterial OTUs which are likely capable of producing SAS, as
331 previously demonstrated for the genus *Vibrio* and *Pseudoalteromonas* (Hu et al., 2015; Dang et
332 al., 2016). However, if these bacteria enhance foam formation and stability in the absence of a
333 major SAS-producing algae however requires further experiments.

334 The SML is an important component for the regulation of gas-exchange (Frew, 1997) but foams
335 covering up to 6% of the ocean's surface (Anguelova and Webster, 2006) are rarely part of this
336 concept. While performing research in the Timor Sea, we used a free-floating Surface In Situ
337 Incubator (Rahlff et al., 2017a) to incubate water from 5 m depth supplemented with 1 mL
338 *Trichodesmium* foam and found complete oxygen (O₂) depletion after less than 14 hours (data not
339 shown), while samples without foam showed incomplete O₂ consumption (Rahlff et al., 2017a).
340 We assume that complete O₂ depletion was attributable to highly active bacteria associated with
341 the foam. Since a recent study found that even pronounced biological activity within the SML

342 had no major contribution to O₂ air-water gas exchange (Rahlff et al., 2019), if extensive surface
343 foams and therein enhanced bacterial activity may play a role in air-sea gas exchange
344 consequently merits further investigation.

345 This study presents first detailed insights into the distinctive bacterial communities associated
346 with marine foams in contrast to SML and ULW. Our study identified particularly well-adapted
347 bacteria including *Vibrio*, *Winogradskyella* and *Pseudoalteromonas* for foam and foam particle
348 colonization. Although foams contain distinctive bacterial communities and a higher diversity
349 compared to the other two habitats, a selection towards typical SML taxa, e.g. *Vibrio* or
350 *Pseudoalteromonas* cannot be dismissed. It follows that foam represents an ephemeral and
351 compressed version of the SML and studying its microbes aids our understanding of air-sea
352 exchange and bacterial transport processes. While sticking on rising bubbles, bacteria might
353 benefit from SML and foams as a nutrient-rich “rest stop” before being transferred to sea-spray
354 aerosols and clouds or return to bulk water. Air-sea interfaces span 70% of the Earth’s surface
355 and much remains to be learned about patchy surface phenomena such as foams and their
356 ecological implications for the functioning of the marine food web, biogeochemical cycles and
357 human health.

358

359 **Experimental Procedures:**

360 **Field sample collection**

361 Field sampling was conducted from the bow of a small boat in the Jade Bay, North Sea (NS)
362 offshore Wilhelmshaven, Germany (Table S1; supporting information) in spring and summer
363 2016. Foams originated from different sources such as from presumptive phytoplankton exudates

364 and convergence of surface water (Figure 1A, Figure 1C, Table S1; supporting information).
365 Additional samples were collected during a *Trichodesmium* sp. bloom encountered in the Timor
366 Sea (TS) (Figure 1B, Table S1; supporting information) in October 2016 during *R/V* Falkor cruise
367 FK161010 as recently described (Wurl et al., 2018). A set of foam, SML and ULW samples was
368 collected from each location. Foams and SML were sampled with the glass plate technique
369 (Harvey and Burzell, 1972) using a withdrawal rate of 5-6 cm s⁻¹ as suggested by Carlson (1982).
370 The glass plate was cleaned with 70% ethanol and rinsed with sample before use. Material
371 adhering on the glass plate was removed by wiping its surface with a squeegee into a sample-
372 rinsed brown bottle. The procedure was repeated until the required volume of approximately 100
373 mL was collected (~20 dips). SML samples were collected between the foam patches and any
374 dips contaminated with foam were rejected, and the glass plate was cleaned with ethanol again.
375 Collected foams were not generated by the small boat whose engine was not running. Samples
376 from the ULW were taken at a depth of 1 m around the foams by using a syringe connected to a
377 hose. All samples were kept on ice and immediately processed after sampling, since Velimirov
378 (1980) showed that bacterial density in old foam was significantly higher than in fresh foam.

379

380 **Concentration of surface-active substances**

381 The concentration of SAS was measured by automated VA Stand 747 (Methrom, Herisau,
382 Switzerland) with a hanging drop mercury electrode as previously described (Ćosović and
383 Vojvodić, 1998; Wurl et al., 2011). The quantification is based on SAS adsorption on the Hg
384 electrode measured by the change of capacity current (ΔI_c) at an applied potential (E) of -0.6 V
385 (Ćosović and Vojvodić, 1998). Before measurement, thick samples such as foam samples were
386 diluted with artificial seawater (0.55 M of NaCl solution) to achieve measurement within the

387 linear range. Standard addition technique was utilized where non-ionic surfactant Triton X-100
388 (Sigma Aldrich, Taufkirchen, Germany) was used as a standard. SAS concentration in the
389 samples was measured using two to three technical replicates, resulting in relative standard
390 deviations below 6% (Rickard et al., 2019). Concentration of SAS is expressed as the equivalent
391 concentration of the additional Triton X-100 ($\mu\text{g Teq L}^{-1}$).

392

393 **Determination of microbial abundance**

394 For determination of prokaryotic and small ($< 50 \mu\text{m}$) phototrophic cell numbers, foam and water
395 samples were fixed with glutardialdehyde (1% final concentration), incubated at room
396 temperature for 1 hour, and stored at -80°C until further analysis. Prior staining and counting by
397 flow cytometry, the particle-enriched foam samples were pre-filtered by gravity onto CellTrics®
398 50 μm filter (Sysmex Partec, Muenster, Germany) to avoid clogging of the instrument by
399 particulate matter. Autofluorescence analysis was used to count small phototrophic cells (Marie
400 et al., 2000), and prokaryotic cells were stained with SYBR® Green I Nucleic Acid Gel Stain (9x
401 in final concentration, Thermo Fisher Scientific, Darmstadt, Germany) following a protocol after
402 Giebel et al. (2019). Enrichment factors (EF) were calculated for the pairings foam/SML (F/S),
403 foam/ULW (F/U) and SML/ULW (S/U) (Table 1). This means that the relative abundance of
404 cells in a foam or SML sample was divided by its SML or ULW counterpart. Therefore, an EF>1
405 implies an enrichment of cells, whereas an EF<1 indicates a depletion.

406

407 **Nucleic acid extraction and PCR**

408 A two-step filtration of foam, SML and ULW samples was conducted. Sample water was filtered
409 through 3 µm pore size polycarbonate (PC) filters, after which the filtrate was filtered onto 0.2
410 µm pore size PC filters (Merck Millipore, Darmstadt, Germany). These two size fractions were
411 defined to contain the particle-associated (PA, on 3 µm filter) and free-living (FL, on 0.2 µm
412 filter) bacterial community, respectively. Foam from the Timor Sea (Station 8) collected during a
413 bloom of *Trichodesmium* sp. was additionally pre-filtered on a 100 µm mesh before subsequent
414 filtration on the 3 µm pore size filter. All filters were initially stored at -80°C prior analysis.
415 Extraction of DNA and RNA from the filters was performed by using the DNA + RNA + Protein
416 Extraction Kit (Roboklon, Berlin, Germany) with a modified protocol (Rahlf et al., 2017b).
417 RNA was digested on-column using 3 U of DNase and subsequently checked for contaminations
418 with genomic DNA by PCR. A quantity of 10 ng RNA was converted to cDNA using the NG
419 dART Kit (Roboklon, Berlin, Germany) including negative controls either without reverse
420 transcriptase or without RNA. The reaction was incubated for 60 minutes at 50°C followed by 5
421 minutes at 85°C. All DNAs and cDNAs were quantified using the Quant-iTTM PicoGreenTM
422 dsDNA assay (Thermo Fisher Scientific, Darmstadt, Germany).

423

424 **16S rRNA library preparation, sequencing run and data analysis**

425 The bacterial 16S rRNA gene was amplified according to Herlemann et al. (2011) with the
426 following modifications. Genomic DNA was amplified with 35 cycles prior Index-PCR. The
427 cDNA samples were amplified with 25 cycles prior Index-PCR. Amplicon PCR, Index PCR,
428 quantity and quality control and sequencing of the individual libraries as pool in one Illumina
429 MiSeq run was performed by an external provider (Eurofins Genomics, Ebersberg, Germany).
430 Raw sequencing data were deposited at the European Nucleotide Archive (ENA) under accession

431 number PRJEB34343. For data analysis, the resulting sequences were assembled using
432 QIIME 1.9.1 (Caporaso et al., 2010) "joins paired-end Illumina reads" function with default
433 settings to merge forward and reverse sequence with an overlap of at least 30 bp. Sequences
434 without overlap were removed. After converting fastq to fasta using the
435 "convert_fastaqual_fastq" function the resulting sequences were evaluated using the SILVA NGS
436 pipeline. The SILVA next - generation sequencing (NGS) pipeline (Glöckner et al., 2017)
437 performs additional quality checks according to the SINA-based alignments (Pruesse et al., 2012)
438 with a curated seed database in which PCR artifacts or non-SSU reads are excluded (based on
439 SILVA release version 128 (Pruesse et al., 2007). The longest read serves as a reference for the
440 taxonomic classification in a BLAST (version 2.2.28+) search against the SILVA SSU Ref
441 dataset. The classification of the reference sequence of a cluster (98% sequence identity) is
442 mapped to all members of the respective cluster and to their replicates. Best BLAST hits were
443 only accepted if they had a (sequence identity + alignment coverage)/2 \geq 93% or otherwise
444 defined as unclassified. SILVA NGS classified a total of 9182084 reads (2% were rejected by the
445 quality control). Sequences assigned to chloroplasts, mitochondria, eukaryotes and *Archaea* were
446 removed since the primer set employed in the analysis has only a very limited coverage of these
447 groups.

448

449 **Statistical analyses**

450 Operational taxonomic unit (OTU) counts based on genus level were rarefied to 43500 reads per
451 sample using the single_rarefaction.py script implemented in QIIME. We visualized the
452 differences in the bacterial community composition through non-metric multidimensional

453 scaling (NMDS) plots using Bray–Curtis dissimilarity indices based on a genus rank
454 classification. A linear discriminant analysis (LDA) effect size (LEfSe) analysis was performed
455 to determine bacterial groups which are significantly different between the samples using the
456 ‘one against all’ strategy for multi-class analysis (Segata et al., 2011). The program LEfSe uses
457 a non-parametric test that combines standard tests for statistical significance with additional tests
458 encoding biological consistency and effect relevance. $P < 0.05$ was regarded as statistical
459 significance.

460 Differences in alpha diversity between habitats, nucleic acid types and attachment status were
461 statistically analyzed using a Kruskal-Wallis test and Dunn’s multiple pairwise comparisons
462 within the R package “dunn.test” (R version 3.4.3, Team (2014)). The null hypothesis was
463 rejected if $p \leq 0.05$. Comparisons were made between FL and PA status within a habitat (foam,
464 SML, ULW) and between habitats for each DNA and cDNA, respectively.

465

466 **Acknowledgements:**

467 We thank the captain and crew of the *R/V* Falkor during cruise FK161010. We highly appreciate
468 the help of Julius Schmidt and the ICBM workshop team for arranging small boat operation in
469 the Jade Bay, North Sea. We are also grateful to our colleagues Isabel Stahmer, Tiera-Brandy
470 Robinson, Kimberley Bird and Mariana Ribas-Ribas for their assistance during water sampling.
471 Further we appreciate the expert technical assistance of Lisa Maria Engl and Mathias Wolterink.
472 This work was funded by the ERC project PASSME [grant number GA336408] as well as by the
473 Leibniz Association project MarParCloud (SAW-2016-TROPOS-2).

474

475 **Competing interests:**

476 The authors declare no conflict of interests.

477

478

479 **References**

480 Agogué, H., Joux, F., Obernosterer, I., and Lebaron, P. (2005a) Resistance of marine
481 bacterioneuston to solar radiation. *Appl Environ Microbiol* **71**: 5282-5289.

482 Agogué, H., Casamayor, E.O., Bourrain, M., Obernosterer, I., Joux, F., Herndl, G.J., and
483 Lebaron, P. (2005b) A survey on bacteria inhabiting the sea surface microlayer of coastal
484 ecosystems. *FEMS Microbiol Ecol* **54**: 269-280.

485 Albright, L.J., Sherr, E.B., Sherr, B.F., and Fallon, R.D. (1987) Grazing of ciliated protozoa on
486 free and particle-attached bacteria. *Mar Ecol Prog Ser* **38**: 125-129.

487 Aller, J.Y., Kuznetsova, M.R., Jahns, C.J., and Kemp, P.F. (2005) The sea surface microlayer as
488 a source of viral and bacterial enrichment in marine aerosols. *J Aerosol Sci* **36**: 801-812.

489 Anguelova, M.D., and Webster, F. (2006) Whitecap coverage from satellite measurements: A
490 first step toward modeling the variability of oceanic whitecaps. *J Geophys Res-Oceans*
491 **111**.

492 Armonies, W. (1989) Occurrence of meiofauna in *Phaeocystis* seafoam. *Mar Ecol Prog Ser* **53**:
493 305-309.

494 Atsumi, T., McCarter, L., and Imae, Y. (1992) Polar and lateral flagellar motors of marine *Vibrio*
495 are driven by different ion-motive forces. *Nature* **355**: 182-184.

496 Bärlocher, F., Gordon, J., and Ireland, R.J. (1988) Organic composition of seafoam and its
497 digestion by *Corophium volutator* (Pallas). *J Exp Mar Biol Ecol* **115**: 179-186.

498 Campbell, B.J., Yu, L., Heidelberg, J.F., and Kirchman, D.L. (2011) Activity of abundant and
499 rare bacteria in a coastal ocean. *Proc Natl Acad Sci U S A* **108**: 12776-12781.

500 Caporaso, J.G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F.D., Costello, E.K. et al.
501 (2010) QIIME allows analysis of high-throughput community sequencing data. *Nat Methods* **7**: 335-336.

502 Cardman, Z., Arnosti, C., Durbin, A., Ziervogel, K., Cox, C., Steen, A.D., and Teske, A. (2014)
503 *Verrucomicrobia* are candidates for polysaccharide-degrading bacterioplankton in an
504 arctic fjord of Svalbard. *Appl Environ Microbiol* **80**: 3749-3756.

505 Carlson, D.J. (1982) A field evaluation of plate and screen microlayer sampling techniques. *Mar
506 Chem* **11**: 189-208.

507 Castilla, J.C., Manriquez, P.H., Delgado, A.P., Gargallo, L., Leiva, A., and Radic, D. (2007) Bio-
508 foam enhances larval retention in a free-spawning marine tunicate. *P Natl Acad Sci USA*
509 **104**: 18120-18122.

510 Ćosović, B., and Vojvodić, V. (1998) Voltammetric analysis of surface active substances in
511 natural seawater. *Electroanalysis* **10**: 429-434.

512 Craig, D., Ireland, R.J., and Bärlocher, F. (1989) Seasonal variation in the organic composition of
513 seafoam. *J Exp Mar Biol Ecol* **130**: 71-80.

514 Cunliffe, M., Whiteley, A.S., Newbold, L., Oliver, A., Schäfer, H., and Murrell, J.C. (2009)
515 Comparison of bacterioneuston and bacterioplankton dynamics during a phytoplankton
516 bloom in a fjord mesocosm. *Appl Environ Microbiol* **75**: 7173-7181.

517 Cunliffe, M., Engel, A., Frka, S., Gašparović, B., Guitart, C., Murrell, J.C. et al. (2013) Sea
518 surface microlayers: A unified physicochemical and biological perspective of the air-
519 ocean interface. *Progr Oceanogr* **109**: 104-116.

520 Dang, N.P., Landfald, B., and Willassen, N.P. (2016) Biological surface-active compounds from
521 marine bacteria. *Environ Technol* **37**: 1151-1158.

522

523 Druzhkov, N.V., Makarevich, P.R., and Bardan, S.I. (1997) Sea foam as an object of sea□surface
524 film studies. *Polar research* **16**: 117-121.

525 Eberlein, K., Leal, M.T., Hammer, K.D., and Hickel, W. (1985) Dissolved organic-substances
526 during a *Phaeocystis pouchetii* bloom in the German Bight (North-Sea). *Mar Biol* **89**:
527 311-316.

528 Eisenreich, S.J., Elzerman, A.W., and Armstrong, D.E. (1978) Enrichment of micronutrients,
529 heavy metals, and chlorinated hydrocarbons in wind-generated lake foam. *Environ Sci
530 Technol* **12**: 413-417.

531 Engel, A., Bange, H.W., Cunliffe, M., Burrows, S.M., Friedrichs, G., Galgani, L. et al. (2017)
532 The ocean's vital skin: Toward an integrated understanding of the sea surface microlayer.
533 *Front Mar Sci* **4**.

534 Fox, G.E., Wisotzkey, J.D., and Jurtshuk, P., Jr. (1992) How close is close: 16S rRNA sequence
535 identity may not be sufficient to guarantee species identity. *Int J Syst Bacteriol* **42**: 166-
536 170.

537 Freitas, S., Hatosy, S., Fuhrman, J.A., Huse, S.M., Welch, D.B., Sogin, M.L., and Martiny, A.C.
538 (2012) Global distribution and diversity of marine *Verrucomicrobia*. *ISME J* **6**: 1499-
539 1505.

540 Frew, N. (1997) The role of organic films in air-sea gas exchange. In *The sea surface and global
541 change*. Liss, P.S.D., R.A. (ed). Cambridge, UK: Cambridge University Press.

542 Frew, N.M., Goldman, J.C., Dennett, M.R., and Johnson, A.S. (1990) Impact of
543 phytoplankton□generated surfactants on air□sea gas exchange. *J Geophys Res-Oceans*
544 **95**: 3337-3352.

545 Giebel, H.A., Wolterink, M., Brinkhoff, T., and Simon, M. (2019) Complementary energy
546 acquisition via aerobic anoxygenic photosynthesis and carbon monoxide oxidation by
547 *Planktomarina temperata* of the *Roseobacter* group. *FEMS Microbiol Ecol* **95**: fiz050.

548 Glöckner, F.O., Yilmaz, P., Quast, C., Gerken, J., Beccati, A., Ciuprina, A. et al. (2017) 25 years
549 of serving the community with ribosomal RNA gene reference databases and tools. *J
550 Biotechnol* **261**: 169-176.

551 Gobalakrishnan, R., Sivakumar, K., Sethubathi, G.V., and Kannan, L. (2014) Seafoam bacteria
552 from the Havelock island of the Andamans, India. *Indian Journal of Geo-Marine Sciences*
553 **43**: 1562-1565.

554 Hardy, J.T. (1982) The sea surface microlayer: Biology, chemistry and anthropogenic
555 enrichment. *Progr Oceanogr* **11**: 307-328.

556 Harold, E., and Schlichting, J.R. (1971) A preliminary study of the algae and protozoa in
557 seafoam. *Botanica Marina* **14**: 24-28.

558 Harvey, G.W., and Burzell, L.A. (1972) A simple microlayer method for small samples *Limnol
559 Oceanogr* **17**: 156-157.

560 Herlemann, D.P.R., Labrenz, M., Jurgens, K., Bertilsson, S., Waniek, J.J., and Andersson, A.F.
561 (2011) Transitions in bacterial communities along the 2000 km salinity gradient of the
562 Baltic Sea. *ISME J* **5**: 1571-1579.

563 Hu, X., Wang, C., and Wang, P. (2015) Optimization and characterization of biosurfactant
564 production from marine *Vibrio* sp. strain 3B-2. *Front Microbiol* **6**: 976.

565 Hunter, T.N., Pugh, R.J., Franks, G.V., and Jameson, G.J. (2008) The role of particles in
566 stabilising foams and emulsions. *Adv Colloid Interface Sci* **137**: 57-81.

567 Jenkinson, I.R., Laurent, S., Ding, H., and Elias, F. (2018) Biological modification of mechanical
568 properties of the sea surface microlayer, influencing waves, ripples, foam and air-sea
569 fluxes. *Elem Sci Anth* **6**.

570 Johnson, B.D., Zhou, X., Parrish, C.C., Wangersky, P.J., and Kerman, B.R. (1989) Fractionation
571 of particulate matter, the trace metals Cu, Cd, and Zn, and lipids in foam and water below
572 Niagara Falls. *J Great Lakes Res* **15**: 189-196.

573 Kesaulya, I., Leterme, S.C., Mitchell, J.G., and Seuront, L. (2008) The impact of turbulence and
574 phytoplankton dynamics on foam formation, seawater viscosity and chlorophyll
575 concentration in the eastern English Channel. *Oceanologia* **50**: 167-182.

576 Kuznetsova, M., and Lee, C. (2002) Dissolved free and combined amino acids in nearshore
577 seawater, sea surface microlayers and foams: Influence of extracellular hydrolysis.
578 *Aquatic Sciences* **64**: 252-268.

579 Lanzén, A., Jørgensen, S.L., Bengtsson, M.M., Jonassen, I., Øvreås, L., and Urich, T. (2011)
580 Exploring the composition and diversity of microbial communities at the Jan Mayen
581 hydrothermal vent field using RNA and DNA. *FEMS Microbiol Ecol* **77**: 577-589.

582 Maki, J. (1993) The air-water interface as an extreme environment. In *Aquatic Microbiology: An*
583 *Ecological Approach*. Ford, T. (ed). Boston, MA: Blackwell Scientific Publication, pp.
584 409-439.

585 Marie, D., Simon, N., Guillou, L., Partensky, F., and Vaulot, D. (2000) Flow Cytometry Analysis
586 of Marine Picoplankton. In *In Living Color Springer Lab Manuals*. Diamond, R.A., and
587 Demaggio, S. (eds). Berlin, Heidelberg: Springer, pp. 421-454.

588 Maynard, N.G. (1968) Aquatic foams as an ecological habitat. *Zeitschrift für allgemeine*
589 *Mikrobiologie* **8**: 119-126.

590 Mitulla, M., Dinasquet, J., Guillemette, R., Simon, M., Azam, F., and Wietz, M. (2016) Response
591 of bacterial communities from California coastal waters to alginate particles and an
592 alginolytic *Alteromonas macleodii* strain. *Environ Microbiol* **18**: 4369-4377.

593 Napolitano, G.E., and Cicerone, D.S. (1999) Lipids in water-surface microlayers and foams. In
594 *Lipids in Freshwater Ecosystems*: Springer, pp. 235-262.

595 Oberbeckmann, S., Osborn, A.M., and Duhaime, M.B. (2016) Microbes on a bottle: Substrate,
596 season and geography influence community composition of microbes colonizing marine
597 plastic debris. *PLoS One* **11**: e0159289.

598 Park, S., and Yoon, J.H. (2013) *Winogradskyella undariae* sp. nov., a member of the family
599 *Flavobacteriaceae* isolated from a brown algae reservoir. *Antonie Van Leeuwenhoek* **104**:
600 619-626.

601 Parveen, B., Mary, I., Velle, A., Ravet, V., and Debroas, D. (2013) Temporal dynamics and
602 phylogenetic diversity of free-living and particle-associated Verrucomicrobia
603 communities in relation to environmental variables in a mesotrophic lake. *FEMS*
604 *Microbiol Ecol* **83**: 189-201.

605 Pedler, B.E., Aluwihare, L.I., and Azam, F. (2014) Single bacterial strain capable of significant
606 contribution to carbon cycling in the surface ocean. *Proc Natl Acad Sci U S A* **111**: 7202-
607 7207.

608 Pereira, R., Ashton, I., Sabbaghzadeh, B., Shutler, J.D., and Upstill-Goddard, R.C. (2018)
609 Reduced air-sea CO₂ exchange in the Atlantic Ocean due to biological surfactants. *Nat*
610 *Geosci* **11**: 492-496.

611 Poulsen, L.K., Ballard, G., and Stahl, D.A. (1993) Use of rRNA fluorescence in situ
612 hybridization for measuring the activity of single cells in young and established biofilms.
613 *Appl Environ Microbiol* **59**: 1354-1360.

614 Pruesse, E., Peplies, J., and Glöckner, F.O. (2012) SINA: accurate high-throughput multiple
615 sequence alignment of ribosomal RNA genes. *Bioinformatics* **28**: 1823-1829.

616 Pruesse, E., Quast, C., Knittel, K., Fuchs, B.M., Ludwig, W., Peplies, J., and Glockner, F.O.
617 (2007) SILVA: a comprehensive online resource for quality checked and aligned
618 ribosomal RNA sequence data compatible with ARB. *Nucleic Acids Res* **35**: 7188-7196.

619 Pugh, R. (1996) Foaming, foam films, antifoaming and defoaming. *Advances in Colloid and*
620 *Interface Science* **64**: 67-142.

621 Rahlff, J. (2019) The virioneuston: A review on viral-bacterial associations at air-water
622 interfaces. *Viruses-Basel* **11**: 191.

623 Rahlff, J., Stolle, C., and Wurl, O. (2017a) SISI: A new device for in situ incubations at the ocean
624 surface. *J Mar Sci Eng* **5**: 46.

625 Rahlff, J., Stolle, C., Giebel, H.A., Ribas-Ribas, M., Damgaard, L.R., and Wurl, O. (2019)
626 Oxygen profiles across the sea-surface microlayer-effects of diffusion and biological
627 activity. *Front Mar Sci* **6**.

628 Rahlff, J., Stolle, C., Giebel, H.A., Brinkhoff, T., Ribas-Ribas, M., Hodapp, D., and Wurl, O.
629 (2017b) High wind speeds prevent formation of a distinct bacterioneuston community in
630 the sea-surface microlayer. *FEMS Microbiol Ecol* **93**.

631 Ribas-Ribas, M., Helleis, F., Rahlff, J., and Wurl, O. (2018) Air-sea CO₂-exchange in a large
632 annular wind-wave tank and the effects of surfactants. *Front Mar Sci* **5**: 457.

633 Rickard, P.C., Uher, G., Upstill-Goddard, R.C., Frka, S., Mustaffa, N.I.H., Banko-Kubis, H.M. et
634 al. (2019) Reconsideration of seawater surfactant activity analysis based on an inter-
635 laboratory comparison study. *Mar Chem* **208**: 103-111.

636 Riebesell, U. (1993) Aggregation of *Phaeocystis* during phytoplankton spring blooms in the
637 southern North-Sea. *Mar Ecol Prog Ser* **96**: 281-289.

638 Rieck, A., Herlemann, D.P., Jurgens, K., and Grossart, H.P. (2015) Particle-associated differ
639 from free-living bacteria in surface waters of the Baltic Sea. *Front Microbiol* **6**: 1297.

640 Robinson, T.B., Wurl, O., Bahlmann, E., Jürgens, K., and Stolle, C. (2019) Rising bubbles
641 enhance the gelatinous nature of the air-sea interface. *Limnol Oceanogr*.

642 Santos, L., Santos, A.L., Coelho, F.J., Marcial Gomes, N.C., Dias, J.M., Cunha, Â., and Almeida,
643 A. (2013) Heterotrophic activities of neustonic and planktonic bacterial communities in
644 an estuarine environment (Ria de Aveiro). *J Plankton Res* **36**: 230-242.

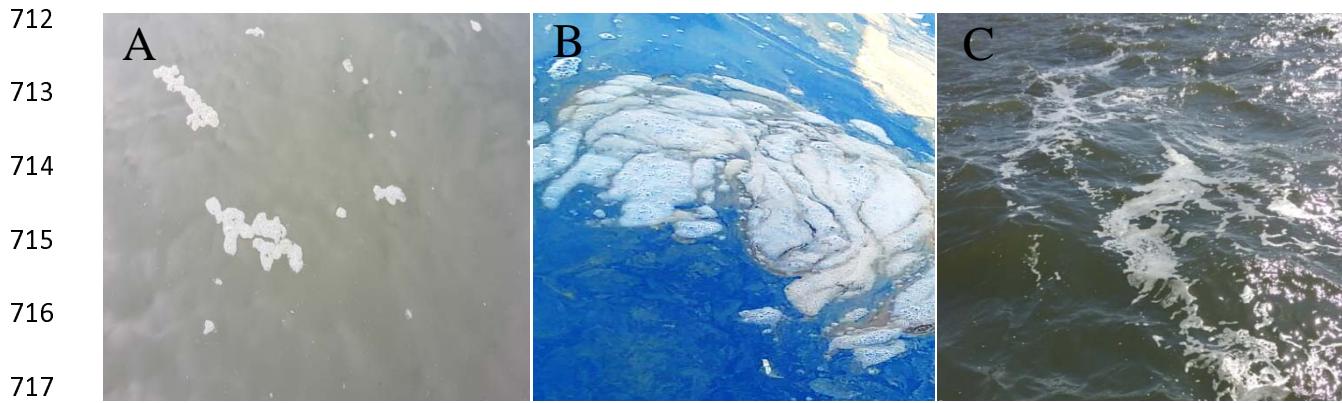
645 Satpute, S.K., Banat, I.M., Dhakephalkar, P.K., Banpurkar, A.G., and Chopade, B.A. (2010)
646 Biosurfactants, bioemulsifiers and exopolysaccharides from marine microorganisms.
647 *Biotechnol Adv* **28**: 436-450.

648 Schaechter, M., Maaløe, O., and Kjeldgaard, N.O. (1958) Dependency on medium and
649 temperature of cell size and chemical composition during balanced growth of *Salmonella*
650 *typhimurium*. *Microbiology* **19**: 592-606.

651 Schellenberg, J., Busse, H.J., Hardt, M., Schubert, P., Wilke, T., Kampfer, P., and Glaeser, S.P.
652 (2017) *Winogradskyella haliclonae* sp. nov., isolated from a marine sponge of the genus
653 *Haliclona*. *Int J Syst Evol Microbiol* **67**: 4902-4910.

654 Schilling, K., and Zessner, M. (2011) Foam in the aquatic environment. *Water Res* **45**: 4355-
655 4366.

656 Scully, E.P. (2009) Utilization of surface foam as a food source by the Hermit crab, *Pagurus*
657 *longicarpus* say, 1817. *Marine Behaviour and Physiology* **5**: 159-162.

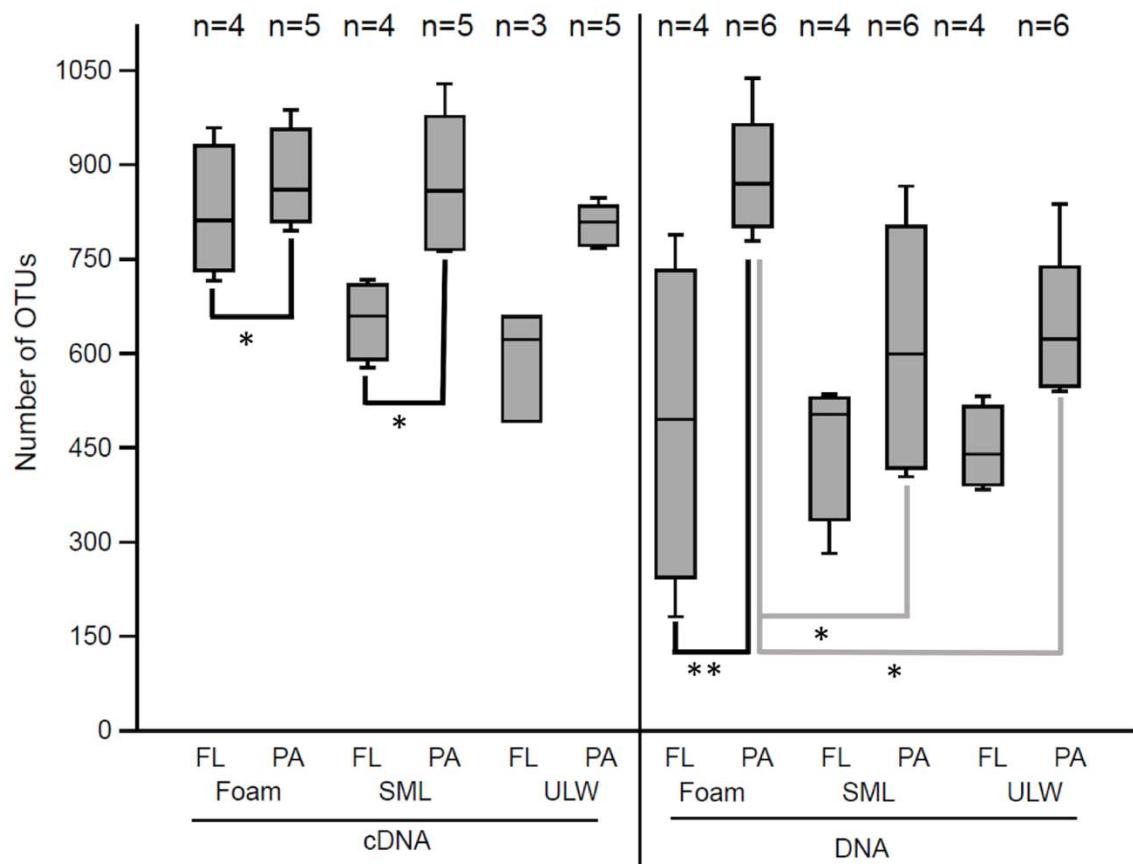

658 Segata, N., Izard, J., Waldron, L., Gevers, D., Miropolsky, L., Garrett, W.S., and Huttenhower, C.
659 (2011) Metagenomic biomarker discovery and explanation. *Genome Biol* **12**: R60.

660 Sieburth, J.M., and Conover, J.T. (1965) Slicks associated with *Trichodesmium* blooms in the
661 Sargasso Sea. *Nature* **205**: 830-831.

662 Sieburth, J.M., Willis, P.J., Johnson, K.M., Burney, C.M., Lavoie, D.M., Hinga, K.R. et al.
663 (1976) Dissolved organic matter and heterotrophic microneuston in the surface
664 microlayers of the north atlantic. *Science* **194**: 1415-1418.
665 Stefani, F., Salerno, F., Copetti, D., Rabuffetti, D., Guidetti, L., Torri, G. et al. (2016)
666 Endogenous origin of foams in lakes: a long-term analysis for Lake Maggiore (northern
667 Italy). *Hydrobiologia* **767**: 249-265.
668 Stolle, C., Nagel, K., Labrenz, M., and Jürgens, K. (2010) Succession of the sea-surface
669 microlayer in the coastal Baltic Sea under natural and experimentally induced low-wind
670 conditions. *Biogeosciences* **7**: 2975-2988.
671 Stolle, C., Labrenz, M., Meeske, C., and Jürgens, K. (2011) Bacterioneuston community structure
672 in the southern Baltic sea and its dependence on meteorological conditions. *Appl Environ
673 Microbiol* **77**: 3726-3733.
674 Team, R.C. (2014) R: A language and environment for statistical computing. R Foundation for
675 Statistical Computing, Vienna, Austria. 2013. In: ISBN 3-900051-07-0.
676 Thornton, D.C.O. (1999) Phytoplankton mucilage production in coastal waters: a dispersal
677 mechanism in a front dominated system? *Ethology Ecology & Evolution* **11**: 179-185.
678 Tsyban, A. (1971) Marine bacterioneuston. *Journal of the Oceanographical Society of Japan* **27**:
679 56-66.
680 Velimirov, B. (1980) Formation and potential trophic significance of marine foam near kelp beds
681 in the Benguela upwelling system. *Mar Biol* **58**: 311-318.
682 Velimirov, B. (1982) Sugar and lipid components in sea foam near kelp beds. *Mar Ecol* **3**: 97-
683 107.
684 Wegner, C., and Hamburger, M. (2002) Occurrence of stable foam in the upper Rhine River
685 caused by plant-derived surfactants. *Environ Sci Technol* **36**: 3250-3256.
686 Wurl, O., and Holmes, M. (2008) The gelatinous nature of the sea-surface microlayer. *Mar Chem*
687 **110**: 89-97.
688 Wurl, O., Miller, L., Ruttgers, R., and Vagle, S. (2009) The distribution and fate of surface-active
689 substances in the sea-surface microlayer and water column. *Mar Chem* **115**: 1-9.
690 Wurl, O., Ekau, W., Landing, W.M., and Zappa, C.J. (2017) Sea surface microlayer in a changing
691 ocean – A perspective. *Elem Sci Anth* **5**: 31.
692 Wurl, O., Wurl, E., Miller, L., Johnson, K., and Vagle, S. (2011) Formation and global
693 distribution of sea-surface microlayers. *Biogeosciences* **8**: 121-135.
694 Wurl, O., Stolle, C., Van Thuoc, C., The Thu, P., and Mari, X. (2016) Biofilm-like properties of
695 the sea surface and predicted effects on air-sea CO₂ exchange. *Progr Oceanogr* **144**: 15-
696 24.
697 Wurl, O., Bird, K., Cunliffe, M., Landing, W.M., Miller, U., Mustaffa, N.I.H. et al. (2018)
698 Warming and inhibition of salinization at the ocean's surface by cyanobacteria. *Geophys
699 Res Lett* **45**: 4230-4237.
700 Yoon, J.H., and Lee, S.Y. (2012) *Winogradskyella multivorans* sp. nov., a polysaccharide-
701 degrading bacterium isolated from seawater of an oyster farm. *Antonie Van Leeuwenhoek*
702 **102**: 231-238.
703 Zäncker, B., Engel, A., and Cunliffe, M. (2019) Bacterial communities associated with individual
704 transparent exopolymer particles (TEP). *J Plankton Res.*
705 Zhang, Z., Liu, L., Liu, C., and Cai, W. (2003) Studies on the sea surface microlayer. II. The
706 layer of sudden change of physical and chemical properties. *J Colloid Interface Sci* **264**:
707 148-159.

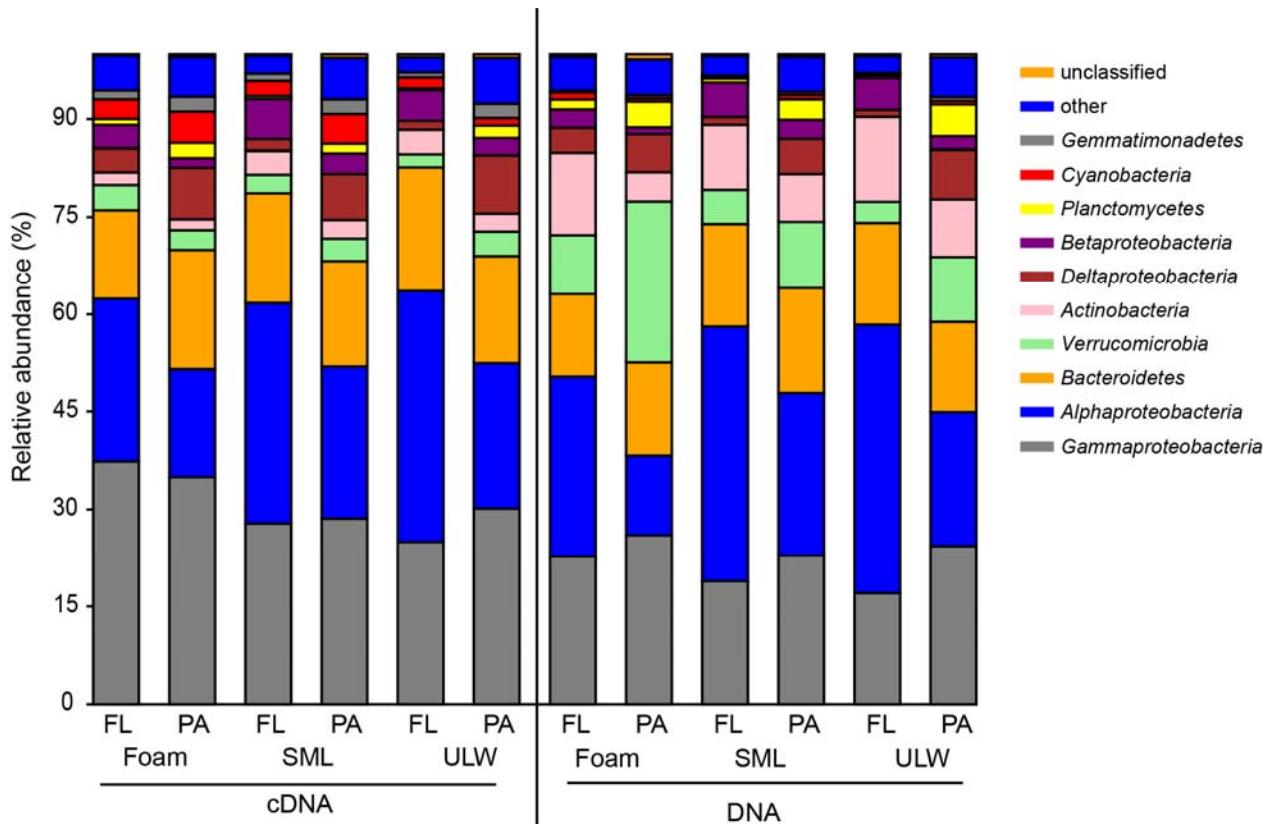

708 Zutić, V., Čosović, B., Marčenko, E., Bihari, N., and Kršinić, F. (1981) Surfactant production by
709 marine phytoplankton. *Mar Chem* **10**: 505-520.
710

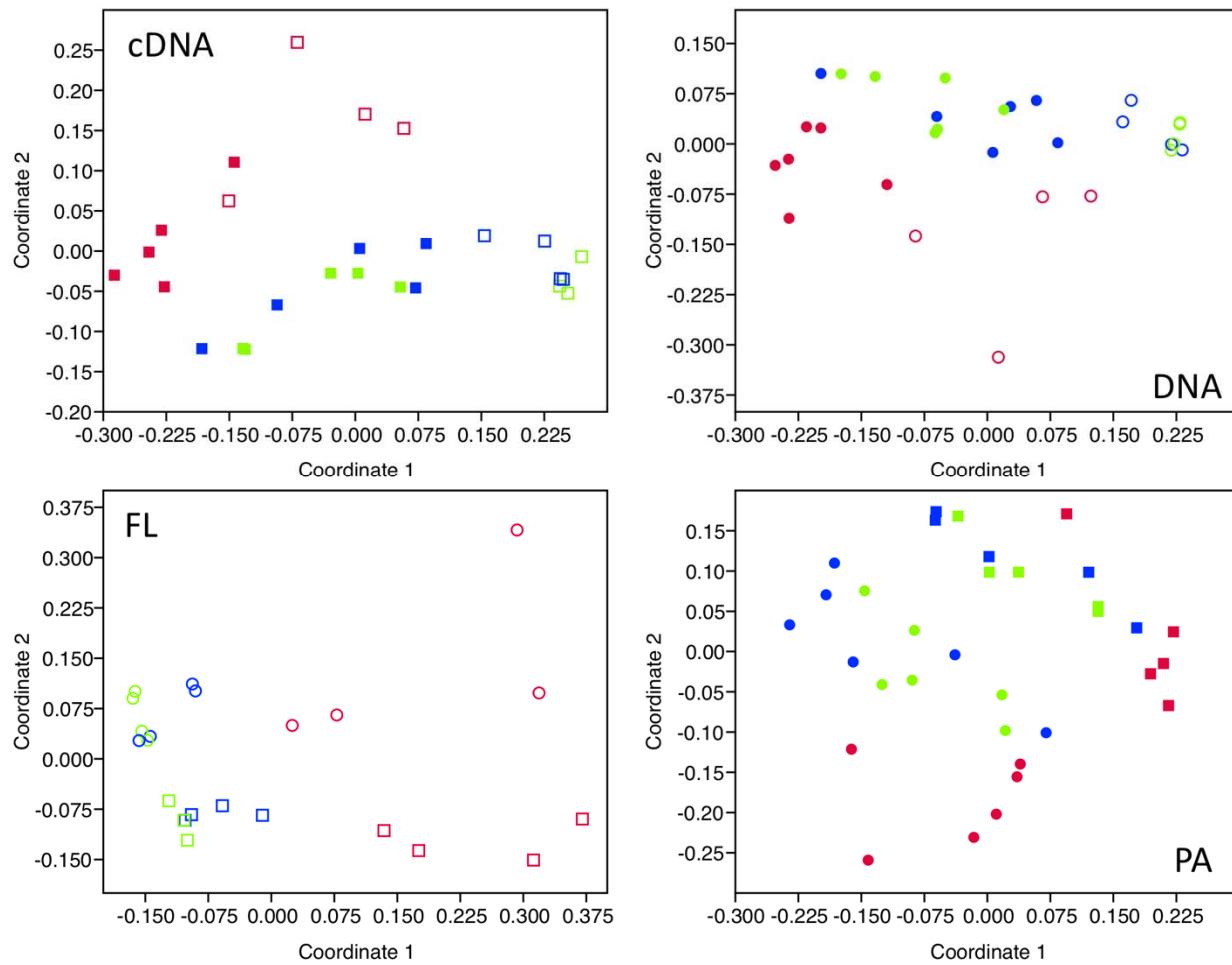
711 **Figures**


718 **Figure 1:** Marine foam originating from A) presumptive phytoplankton exudates (Jade Bay), B)
719 a *Trichodesmium* bloom (Timor Sea) and C) whitecaps produced by convergence of surface
720 water (Jade Bay, North Sea).

721

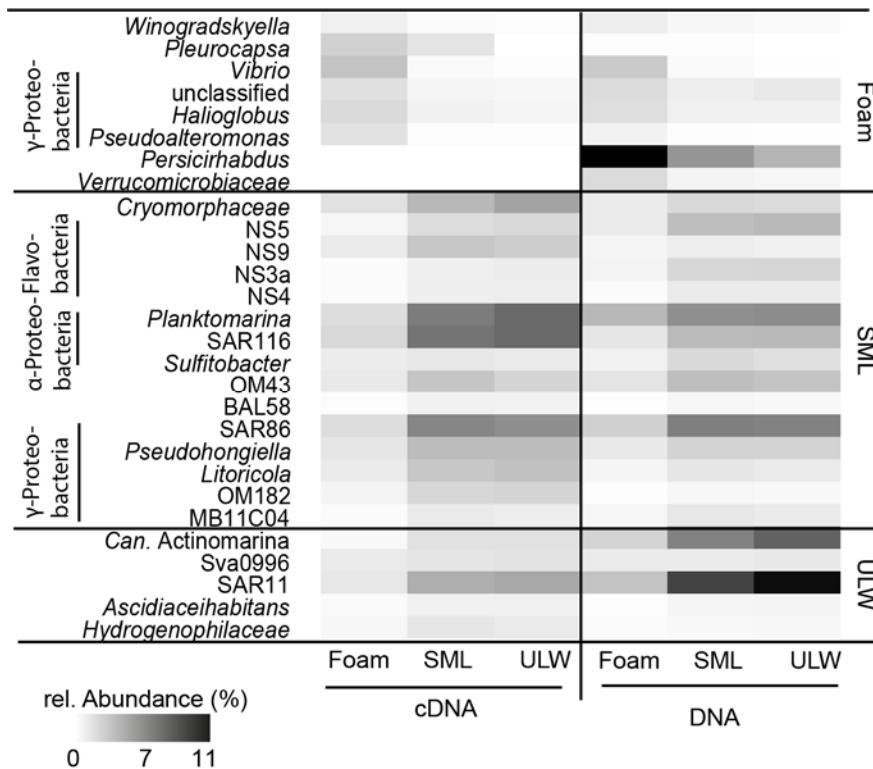
722


723 **Figure 2:** Absolute cell counts mL^{-1} for A) prokaryotes and B) small phototrophic cells and C)
724 concentration of surface-active substances (SAS) in $\mu\text{g Teq L}^{-1}$ for foam, sea-surface microlayer
725 (SML) and underlying water (ULW).


726

727 **Figure 3:** cDNA and DNA-derived numbers of operational taxonomic units (OTUs) for foam,
728 SML and ULW habitat of pooled North Sea stations. Alpha diversity of the three habitats is
729 further distinguished between free-living (FL) and particle-associated (PA) bacterial
730 communities. Grey and black lines indicate inter- and intra-habitat comparisons, respectively.
731 The boxplot shows the 25–75 percent quartiles; the median is indicated by the horizontal line
732 inside the box. Error bars show minimal and maximal values. Asterisks indicate the level of
733 significant differences:

734 * $p \leq 0.05$, ** $p \leq 0.01$



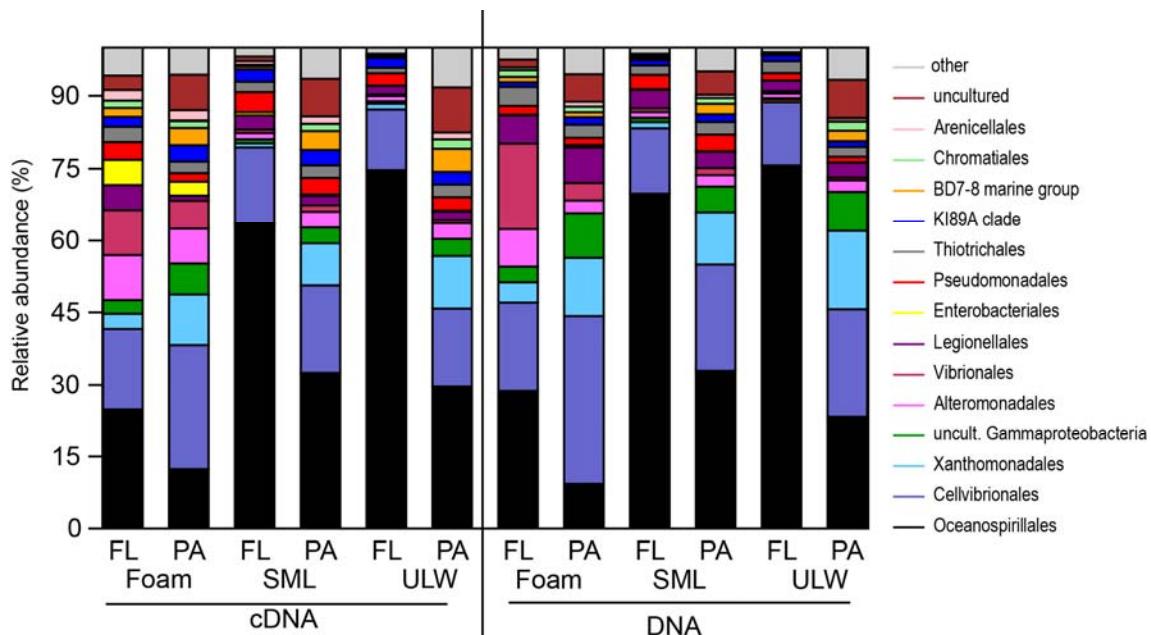
735 **Figure 4:** Beta diversity at the phylum-level of foam, SML and ULW samples of cDNA and
736 DNA-based relative abundance of operational taxonomic units (OTUs) of pooled North Sea
737 stations. Each habitat is further separated into free-living (FL) and particle-associated (PA)
738 bacterial communities.

740

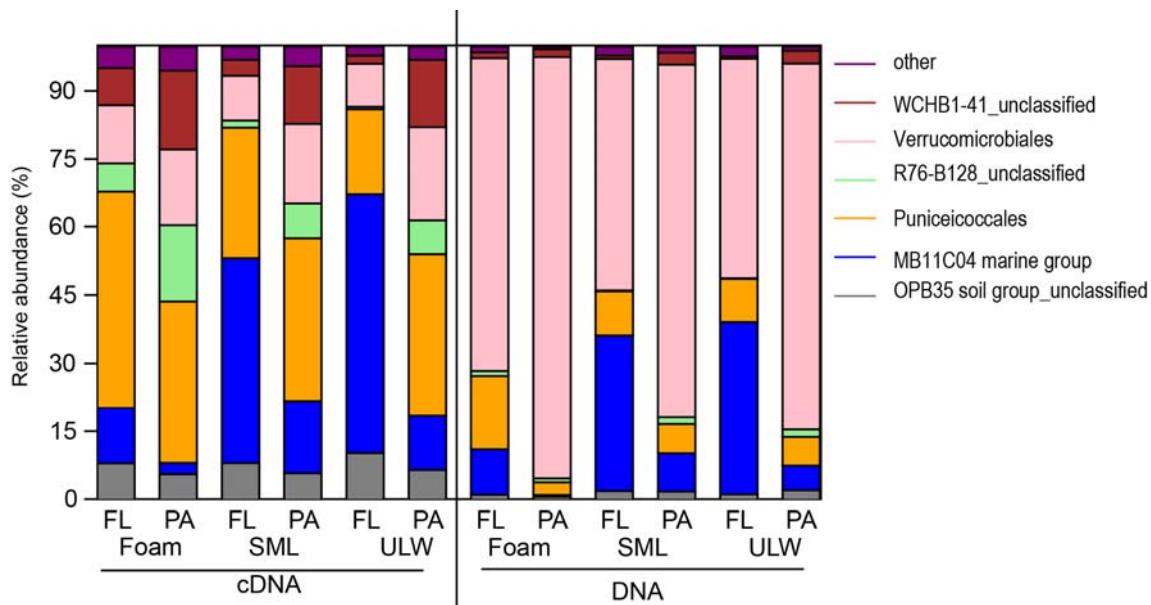
741 **Figure 5:** Non-metric multidimensional scaling plot shows distinct clustering of foam (red), SML
742 (blue) and ULW (green) bacterial communities. Further separation according to nucleic acid
743 source (cDNA=squares and DNA=circles) as well as free-living (open symbols) and particle-
744 associated (filled symbols) attachment style has been conducted.

745

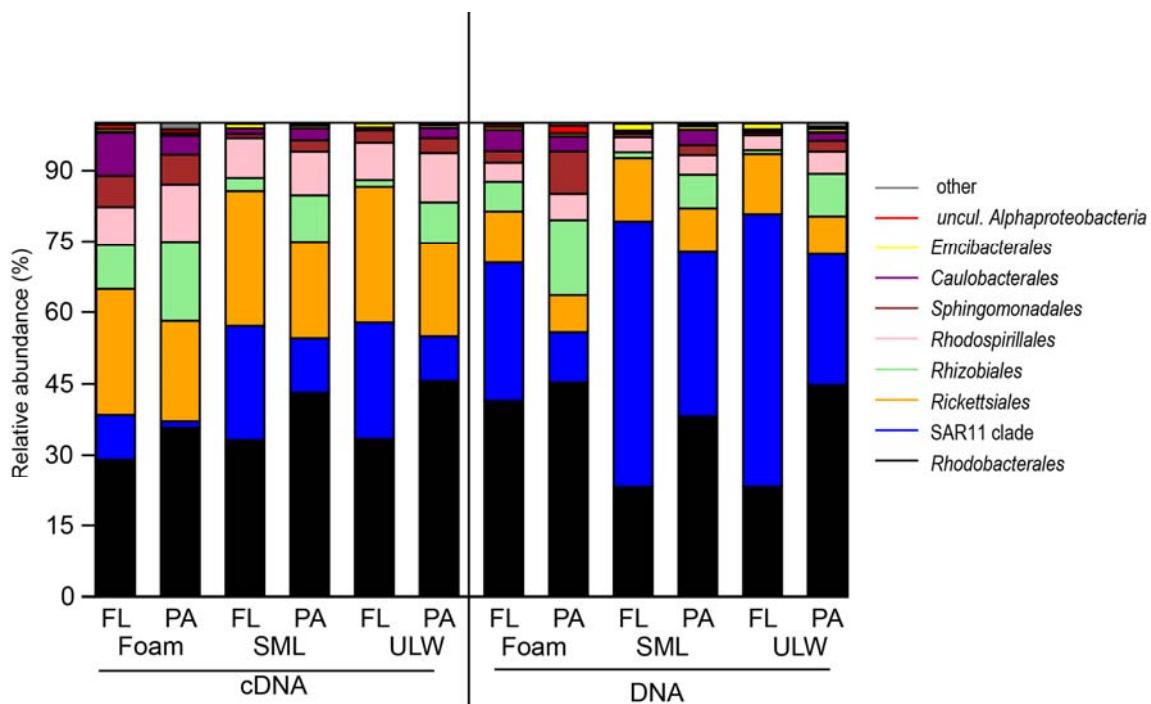
746 **Figure 6:** Heat-map showing the relative abundance of most different foam OTUs compared to
747 SML and ULW according to the linear discriminant analysis (LEfSe) method.

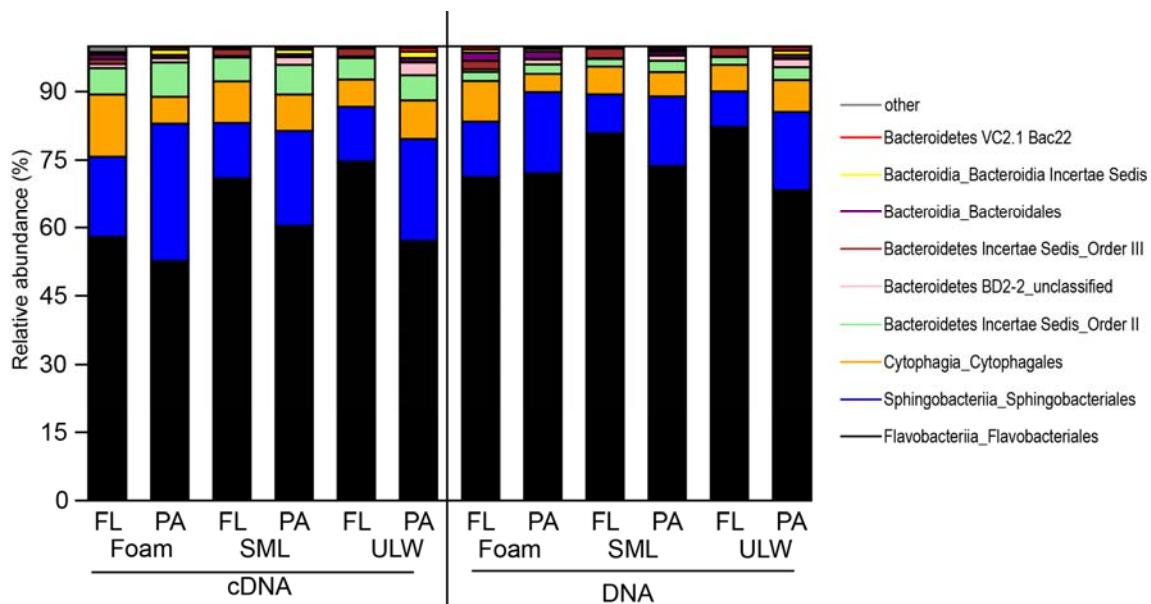

Table 1: Absolute and relative abundances of prokaryotes, small phototrophs and surface-active substances (SAS) in foam (F), SML (S) and ULW (U), NA=not available, Teq=Triton X-100 equivalents

	Foam	SML	ULW	EF (F/S)	EF (F/U)	EF (S/U)
Prokaryotes (cells mL⁻¹)						
NS_St1_210416	4.89	NA	2.56	NA	1.9	NA
NS_St2_210416	2.63	2.62	2.48	1.0	1.1	1.1
NS_St1_190516	13.70	3.34	3.23	4.1	4.2	1.0
NS_St3_190516	46.20	4.57	3.13	10.1	14.8	1.5
NS_St1_190716	6.61	3.90	3.71	1.7	1.8	1.1
NS_St2_190716	4.99	3.39	3.48	1.5	1.4	1.0
TS_St4_151016	9.97	1.77	1.07	5.6	9.3	1.7
TS_St5b_171016	33.90	NA	1.01	NA	33.6	NA
TS_St8_191016	5.83	0.98	1.18	5.9	4.9	0.8
Small phototrophic cells (cells mL⁻¹)						
NS_St1_210416	1.85	1.03	1.61	1.8	1.1	0.6
NS_St2_210416	1.38	1.41	2.24	1.0	0.6	0.6
NS_St1_190516	29.60	0.85	2.30	34.8	12.9	0.4
NS_St3_190516	57.10	1.02	1.88	56.0	30.4	0.5
NS_St1_190716	9.10	3.97	4.17	2.3	2.2	1.0
NS_St2_190716	4.23	2.49	2.82	1.7	1.5	0.9
TS_St4_151016	2.14	0.37	0.11	5.8	20.2	3.5
TS_St5b_171016	10.50	NA	0.13	NA	81.4	NA
TS_St8_191016	2.73	0.12	0.26	23.7	10.4	0.4


SAS ($\mu\text{g Teq L}^{-1}$)	Absolute values			Relative values		
	NA	NA	NA	NA	NA	NA
NS_St1_210416	NA	NA	NA	NA	NA	NA
NS_St2_210416	NA	NA	NA	NA	NA	NA
NS_St1_190516	77496	576	213	134.4	364.5	2.7
NS_St3_190516	148233	1753	223	84.6	665.0	7.9
NS_St1_190716	900	716	180	1.3	5.0	4.0
NS_St2_190716	1397	270	133	5.2	10.5	2.0
TS_St4_151016	69370	240	268	288.9	258.5	0.9
TS_St5b_171016	67546	66	109	1020.5	618.7	0.6
TS_St8_191016	28797	255	171	113.1	168.5	1.5

Supporting Information


Marine foams represent compressed sea-surface microlayer with distinctive bacterial communities


Figure S1: Beta diversity among *Gammaproteobacteria* in foam, sea-surface microlayer (SML) and underlying water (ULW) samples of cDNA and DNA-based operational taxonomic units (OTUs). Each habitat contains further information on free-living (FL) and particle-associated (PA) bacterial community composition.

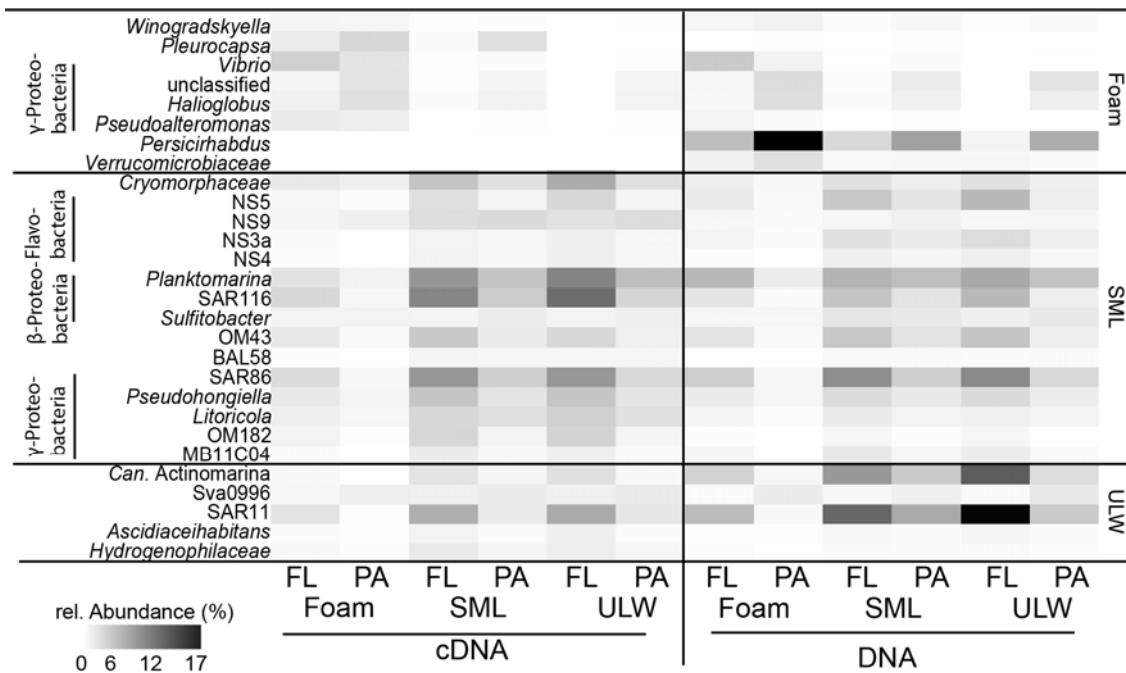

Figure S2: Beta diversity among *Verrucomicrobia* in foam, SML and ULW samples of cDNA and DNA-based operational taxonomic units (OTUs). Each habitat contains further information on free-living (FL) and particle-associated (PA) bacterial community composition.

Figure S3: Beta diversity among *Alphaproteobacteria* in foam, SML and ULW samples of cDNA and DNA-based operational taxonomic units (OTUs). Each habitat contains further information on free-living (FL) and particle-associated (PA) bacterial community composition.

Figure S4: Beta diversity among *Bacteroidetes* in foam, SML and ULW samples of cDNA and DNA-based operational taxonomic units (OTUs). Each habitat contains further information on free-living (FL) and particle-associated (PA) bacterial community composition.

Figure S5: Heat-map showing the relative abundance of most different foam OTUs compared to SML and ULW among free-living (FL) and particle-attached (PA) fractions according to the linear discriminant analysis (LDA) effect size (LEfSe) method.

Table S1: Sampling notes

Sample	Position	Remarks
NS_FO1_210416	53°30.374'N, 08°08.963'E	Foam produced by waves
NS_FO2_210416	53°31.089'N, 08°09.998'E	Foam produced by waves
NS_FO1_190516	53°29.916'N, 08°07.9380'E	Slick-associated, probably phytoplankton exudates
NS_FO3_190516	NA (similar to FO1 190516)	Slick-associated, probably phytoplankton exudates
NS_FO1_190716	53°30.627'N, 08°08.031'E	Close to beach, probably phytoplankton exudates
NS_FO2_190716	53°30.327'N, 08°07.854'E	-
TS_FO_St4_151016	-12°15.49'S, 126°22.36'E	Slick-associated, <i>Trichodesmium</i> bloom, little true foam
TS_FO_St5b_171016	-12°15.46'S, 125°58.60'E	Slick-associated foam, <i>Trichodesmium</i> bloom, SML and ULW no slick area
TS_FO_St8_191016	-13°41.51'S, 127°31.27'E	<i>Trichodesmium</i> bloom, little true foam, sudden rain and squalls during SML and ULW sampling

Table S2: Relative abundance (%) of operational taxonomic units as shown in Figure 4. SML=sea-surface microlayer, ULW=underlying water, PA=particle-attached, FL=free-living

DNA	Foam_PA	Foam_FL	SML_PA	SML_FL	ULW_PA	ULW_FL
> <i>Gammaproteobacteria</i>	25.98	22.70	22.85	18.91	24.33	17.05
> <i>Alphaproteobacteria</i>	12.31	27.65	24.98	39.18	20.56	41.33
<i>Bacteroidetes</i>	14.26	12.77	16.21	15.85	13.93	15.71
<i>Verrucomicrobia</i>	24.86	9.09	10.23	5.26	9.99	3.28
<i>Actinobacteria</i>	4.51	12.70	7.36	9.92	8.92	13.01
> <i>Deltaproteobacteria</i>	5.80	3.76	5.36	1.22	7.63	1.06
> <i>Betaproteobacteria</i>	1.04	2.82	2.90	5.30	2.03	4.93
<i>Planctomycetes</i>	3.96	1.54	3.16	0.64	4.87	0.42
<i>Cyanobacteria</i>	0.52	1.10	0.67	0.33	0.55	0.25
<i>Gemmatimonadetes</i>	0.48	0.27	0.47	0.11	0.60	0.08
other	5.50	5.22	5.40	3.00	6.11	2.57
unclassified	0.80	0.39	0.40	0.29	0.48	0.32

cDNA	Foam_PA	Foam_FL	SML_PA	SML_FL	ULW_PA	ULW_FL
<i>>Gammaproteobacteria</i>	34.98	37.40	28.59	27.83	30.14	24.94
<i>>Alphaproteobacteria</i>	16.56	25.00	23.33	33.91	22.31	38.66
<i>Bacteroidetes</i>	18.38	13.64	16.28	16.93	16.52	19.08
<i>Verrucomicrobia</i>	3.08	3.91	3.48	2.85	3.81	1.98
<i>Actinobacteria</i>	1.66	1.94	2.88	3.67	2.77	3.70
<i>>Deltaproteobacteria</i>	7.95	3.64	7.08	1.76	8.95	1.36
<i>>Betaproteobacteria</i>	1.48	3.58	3.14	6.18	2.61	4.75
<i>Planctomycetes</i>	2.27	0.93	1.44	0.45	1.93	0.28
<i>Cyanobacteria</i>	4.79	3.02	4.55	2.31	1.13	1.67
<i>Gemmatimonadetes</i>	2.31	1.35	2.28	1.13	2.21	0.78
other	6.13	5.36	6.38	2.74	7.05	2.32
unclassified	0.41	0.23	0.56	0.24	0.57	0.49

Table S3: Relative abundance (%) of most abundant operational taxonomic units in foam, SML and ULW among free-living (FL) and particle-attached (PA) fractions from Station 8, Timor Sea.

DNA	Foam_PA	Foam_FL	SML_PA	SML_FL	ULW_PA	ULW_FL
<i>Cyanobacteria; Cyanobacteria; SubsectionIII; FamilyI; Trichodesmium;</i>	33.39	2.11	67.96	6.17	23.78	0.02
<i>Cyanobacteria; Cyanobacteria; SubsectionI; FamilyI; Synechococcus;</i>	3.36	8.71	0.99	15.69	4.19	21.63
<i>Proteobacteria; Gammaproteobacteria; Alteromonadales; Alteromonadaceae; Alteromonas;</i>	26.40	18.02	1.83	2.30	3.65	2.06
<i>Proteobacteria; Alphaproteobacteria; Rhizobiales; Rhodobiaceae; Rhodobium;</i>	5.43	10.23	10.97	2.45	8.93	0.80
<i>Cyanobacteria; Cyanobacteria; SubsectionIII; FamilyI; Oscillatoria;</i>	0.47	0.04	0.46	0.06	26.57	0.00
<i>Proteobacteria; Alphaproteobacteria; SAR11 clade; Surface 1;</i>	0.26	1.65	0.03	7.57	0.29	8.58
<i>Cyanobacteria; Cyanobacteria; SubsectionI; FamilyI; Prochlorococcus;</i>	0.30	0.93	0.06	8.10	0.48	7.50
<i>Bacteroidetes; Sphingobacteriia; Sphingobacteriales; Saprospiraceae; Saprospira;</i>	4.52	3.36	5.90	0.02	0.99	0.01
<i>Proteobacteria; Gammaproteobacteria; Oceanospirillales; SAR86 clade;</i>	0.29	1.27	0.03	6.05	0.15	6.05
<i>Proteobacteria; Alphaproteobacteria; Rickettsiales; SAR116 clade;</i>	0.22	1.19	0.06	5.11	0.64	6.59
cDNA	Foam_PA	Foam_FL	SML_PA	SML_FL	ULW_PA	PA
<i>Cyanobacteria; Cyanobacteria; SubsectionIII; FamilyI; Trichodesmium;</i>	47.44	21.71	85.44	38.84	29.08	
<i>Cyanobacteria; Cyanobacteria; SubsectionIII; FamilyI; Oscillatoria;</i>	0.65	0.49	0.06	0.36	48.15	
<i>Proteobacteria; Alphaproteobacteria; Rhizobiales; Rhodobiaceae; Rhodobium;</i>	7.96	14.44	9.17	7.20	5.77	
<i>Cyanobacteria; Cyanobacteria; SubsectionI; FamilyI; Synechococcus;</i>	8.33	6.44	1.26	16.05	1.92	
<i>Proteobacteria; Gammaproteobacteria; Alteromonadales; Alteromonadaceae; Alteromonas;</i>	17.66	12.63	0.16	1.22	0.57	

<i>Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;Saprospira;</i>	2.88	6.63	2.00	1.37	0.90
<i>Cyanobacteria;Cyanobacteria;SubsectionI;FamilyI;Prochlorococcus;</i>	0.14	0.85	0.00	8.45	0.05
<i>Proteobacteria;Alphaproteobacteria;Rickettsiales;SM2D12;</i>	0.67	1.98	0.03	0.93	1.70
<i>Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;uncultured;</i>	0.22	0.40	0.02	3.08	0.42
<i>Bacteroidetes;Bacteroidetes Incertae Sedis;Order III;Unknown Family;Balneola;</i>	0.56	2.04	0.35	0.50	0.42