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 24 

Originality-Significance Statement 25 

Marine foams are highly underexplored microbial habitats at the air-sea interface. Here, we 26 

provide the first comparison of the bacterial community composition of foams, sea-surface 27 

microlayer (SML, the uppermost layer on top of aquatic ecosystems) and seawater collected from 28 

1 m depth. Our work shows that the foam environment selects for bacterial taxa common to the 29 

SML but overall harbors a distinctive bacterial community compared to the other two habitats, 30 

allowing the conclusion that foams are a highly compressed version of the SML. 31 

 32 

Summary 33 

The occurrence of foams at the oceans’ surface is patchy and generally short-lived. Here we 34 

investigated if marine foams as important sea surface phenomena represent a compressed form of 35 

the sea-surface microlayer (SML), a <1 mm thick film at the air-sea interface. The comparison of 36 

marine foams, SML and underlying water (ULW) collected from the North Sea and Timor Sea 37 

revealed that foams were often characterized by high abundance of small phototrophic and 38 

prokaryotic cells as well as high concentrations of surface-active substances (SAS) in contrast to 39 

SML and ULW. Amplicon sequencing also revealed distinctive bacterial communities in foams 40 

including species of Persicirhabdus and Winogradskyella that were part of the particle-attached, 41 

bacterial communities. Comparison of rRNA and DNA based sequenced data suggests that 42 

Pseudoalteromonas sp. are highly active and thus might enhance foam formation and stability by 43 

producing SAS. Presence of motile Vibrio might indicate an active migration of Vibrio towards 44 
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ephemeral and nutrient-rich foams. Our study supports that foam is a compressed version of the 45 

SML due to increased cell numbers and SAS concentration, and bacterial taxa found in foam 46 

were also present in the SML entailing major implications for air-sea exchange processes, 47 

biogeochemical cycling and food web functioning. 48 

 49 
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Introduction 50 

Foams are patches floating on the water surface and may appear in any aquatic habitat. Foam is 51 

loosely defined as a dispersion of gas in liquid in the presence of surface-active substances (SAS) 52 

(Schilling and Zessner 2011). Convergence at zones of downwelling water and fronts, currents, 53 

and breaking waves compress SAS and lead to foam formation at the sea surface and 54 

occasionally cause massive foam aggregates at beaches and in coastal zones (Eisenreich et al., 55 

1978; Bärlocher et al., 1988; Thornton, 1999; Kesaulya et al., 2008; Jenkinson et al., 2018). 56 

Furthermore, bubbles that do not burst immediately but rise to and accumulate at the surface can 57 

cause foam formation (Schilling and Zessner, 2011). The nature, distribution and occurrence of 58 

foam in the marine environment is elusive, since its lifespan is limited to hours or days 59 

(Velimirov, 1980; Pugh, 1996), and the mean coverage of the ocean’s surface by foams (white 60 

caps) is 1 - 6% based on satellite observations (Anguelova and Webster, 2006).  61 

One major prerequisite for foam formation are SAS, which represent a complex mixture of 62 

mainly organic compounds. Due to their amphipathic nature, SAS accumulate at the sea surface 63 

(Wurl et al., 2009) and influence CO2 air-sea gas exchange (Pereira et al., 2018; Ribas-Ribas et 64 

al., 2018). In foams, SAS can originate from a variety of sources such as marine bacteria (Satpute 65 

et al., 2010), kelp mucilage (Velimirov, 1980), exudates of alive or broken phytoplankton cells 66 

(Velimirov, 1980; Velimirov, 1982; Frew et al., 1990; Wegner and Hamburger, 2002), or other 67 

organic detritus (Velimirov, 1980). In addition, during phytoplankton blooms organic material 68 

accumulates at the sea surface, and mainly biogenic lipids and amino acids are important 69 

substrates for the formation of foam (Eberlein et al., 1985; Riebesell, 1993; Hunter et al., 2008). 70 

Even if foam is generally short-lived, its high concentration of organic matter (Eisenreich et al., 71 

1978; Johnson et al., 1989), especially of proteins and carbohydrates (Stefani et al., 2016), allows 72 
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these nutrient-rich islands functioning as microbial habitats. By comprising ephemeral feeding 73 

grounds, foams are “remarkably rich and diverse” in microorganisms (Tsyban, 1971), including 74 

bacteria (Maynard, 1968; Gobalakrishnan et al., 2014), protists and algae (Maynard, 1968; 75 

Harold and Schlichting, 1971). In addition, foams were shown to enclose Metazoans including 76 

copepods, polychaete and tunicate larvae (Armonies, 1989; Castilla et al., 2007) thus forming 77 

vital food sources for the higher trophic levels of the food web (Bärlocher et al., 1988; Craig et 78 

al., 1989; Scully, 2009).  79 

The sea-surface microlayer (SML) is a <1 mm thick, biofilm-like layer (Wurl and Holmes, 2008; 80 

Wurl et al., 2016), located at the air-sea boundary of all aquatic ecosystems. It is characterized by 81 

remarkably different physicochemical and biological properties that allow its differentiation from 82 

the underlying water (ULW) (Hardy, 1982; Cunliffe et al., 2013). Increasing interest in the SML 83 

throughout the last decades revealed that the accumulation of inorganic and organic substances 84 

and particles (including microorganisms) at the sea surface is a widespread phenomenon with 85 

important implications for biogeochemical cycles (Engel et al., 2017; Wurl et al., 2017; Rahlff, 86 

2019). The interfacial position of the SML makes it a challenging environment for its inhabiting 87 

organisms termed as neuston (Maki, 1993). Differences in bacterial community composition 88 

between SML and ULW have been related to meteorological conditions (Agogué et al., 2005b; 89 

Stolle et al., 2011; Rahlff et al., 2017b), however the specific adaptation of bacteria to the SML 90 

habitat remains an open question (Agogué et al., 2005a). 91 

Napolitano and Cicerone (1999) suggested that 1 L of foam water would represent 2 m2 of SML, 92 

i.e. foams are essentially compressed SML. Supporting this idea, enrichment of bacteria in foams 93 

compared to SML and/or ULW has been reported (Tsyban, 1971; Kuznetsova and Lee, 2002; 94 

Rahlff et al., 2017b). However, a thorough characterization of foam microbial community 95 
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composition compared to the SML and the ULW is missing. Using a microscopic approach, 96 

Druzhkov et al. (1997) found a highly identical taxonomic composition of heterotrophs 97 

(nanoflagellates <5 µm and bacteria), nano- and microphytoplankton in foam and the SML. The 98 

authors further described higher abundances (one order of magnitude) of autotrophs but not of 99 

heterotrophs in foams compared to the SML. If microorganisms are rather passively transported 100 

to foams by, e.g., bubbles or SML compression, or whether they actively seek the presence of 101 

foams remains to be elucidated.  102 

In this study, we investigated the bacterial community composition of marine foams in direct 103 

comparison to non-foamy SML and ULW. Collected foam samples were associated with 104 

different events such as surface slicks, cyanobacterial blooms, presumptive phytoplankton 105 

exudates and surface compression by wave action (Figure 1, Table S1; supporting information). 106 

Based on the theory that foam is an extreme condensed form of the SML (Napolitano and 107 

Cicerone, 1999), we hypothesized that the bacterial community composition of foam and SML 108 

are more similar than between foam and ULW. Since the SML is considered as an extreme 109 

habitat (Maki, 1993) likely comprising many dead or dormant cells, we also considered the 110 

community composition among active and abundant bacteria as inferred from a cDNA and DNA-111 

based 16S rRNA amplicon sequencing approach, respectively. We expect that nutrient-rich foams 112 

harbour a distinct bacterial community and favour fast-growing heterotrophic bacteria. Overall, 113 

we provide a detailed understanding of the bacterial community composition associated with 114 

marine foams with implications for the uppermost sea surface in air-sea exchange processes and 115 

biogeochemical cycling. 116 

 117 

 118 
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 119 

Results 120 

Foams are enriched with surface-active substances and microorganisms 121 

Overall, foams from both sites, North Sea (NS) and Timor Sea (TS), were enriched with 122 

prokaryotic microorganisms, small phototrophs and SAS (Table 1). Cell counts of prokaryotic 123 

microorganisms, which mainly consisted of heterotrophs, ranged between 2.63 x 106 and 4.62 x 124 

107, 9.83 x 105 and 4.57 x 106, and 1.01 x 106 and 3.71 x 106 cells mL-1 in foam, SML and ULW, 125 

respectively (Figure 2A). Thus, prokaryotic microorganisms in foams were enriched with a 126 

maximum EF (enrichment factor) of 10.1 and 5.9 over SML, and with a maximum EF of 14.8 127 

and 33.6 over ULW in NS and TS, respectively (Table 1). Prokaryotic cells in the SML were 128 

enriched with a maximum EF of 1.5 and 1.7 over ULW in NS and TS, respectively. Likewise, the 129 

total number of small phototrophs, which also contained some cyanobacteria, was always higher 130 

in foam (range=1.38 x 104 to 5.71 x 105 cells mL-1) compared to SML (range=1.15 x 103 to 131 

3.97 x 104 cells mL-1) and ULW (range=1.06 x 103 to 4.17 x 104 cells mL-1, Figure 2B). Thus, the 132 

maximum EF was 3.5 and 81.2 for SML over ULW and foam over ULW, respectively. The 133 

absolute number of small phototrophs was two orders of magnitude lower compared to the 134 

prokaryotic cell counts (Figure 2 A&B). Interestingly, small phototrophs were often depleted in 135 

the SML compared to the ULW (S/U minimum EF= 0.4), while they were enriched in foams over 136 

ULW at the same time (F/U EF=12.9 (Table 1)). 137 

Foams also contained the highest SAS concentrations compared to the other two habitats (Figure 138 

2C). SAS concentrations in foams varied between 900 to 148233 µg Teq L-1 in NS and TS 139 

whereas SML SAS concentrations were in a range of 66 to 1753 µg Teq L-1, and ULW SAS 140 
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concentrations in a range of 109 to 223 µg Teq L-1 (Table 1). While SAS concentrations in the 141 

SML were enriched and depleted compared to ULW, their concentration in foams compared to 142 

ULW was typically enriched by three orders of magnitude (EF ranging from 5 to 665). 143 

 144 

Changes in the number of OTUs among foam, sea-surface microlayer and underlying water 145 

We analyzed the bacterial community composition of all NS samples to compare the diversity 146 

between the different habitats (foam, SML, ULW). We furthermore differentiated the attachment 147 

status of bacteria between particle-attached (PA) and free-living (FL) as well as the community 148 

composition between abundant (based on DNA) and active (based on cDNA) operational 149 

taxonomic units (OTUs, Figure 3). Analyses revealed overall higher numbers of OTUs, i.e. 150 

higher diversity, in cDNA-based communities (reflecting active taxa, median=786.5) compared 151 

to DNA-based communities (reflecting abundant taxa, median=571). In DNA-derived samples, 152 

the number of foam OTUs was significantly increased for PA over FL communities (Dunn’s test, 153 

p=0.0031), and also significantly higher compared to the SML and ULW PA fraction (Figure 3) 154 

with p=0.0103 and 0.0146, respectively. OTUs derived from cDNA were significantly more 155 

diverse among the PA samples of foam (p=0.037) and SML (p=0.042) compared to the respective 156 

FL samples (Figure 3). We found indications for a higher diversity of FL OTUs in foams (cDNA-157 

based evaluation) compared to their SML and ULW counterparts, although these trends lacked 158 

significance (Figure 3). 159 

 160 

 161 

 162 
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Bacterial community composition of North Sea foams 163 

On a phylum-level, the bacterial community composition of foam, SML and ULW was 164 

comparable (Figure 4). The most dominant group was assigned to Gammaproteobacteria 165 

(maximum=37.4%). DNA-based community analyses showed that for all three habitats 166 

Gammaproteobacteria, Verrucomicrobia and Cyanobacteria formed a higher portion of PA than 167 

FL communities. In contrast, Alphaproteobacteria and Actinobacteria were more abundant in the 168 

FL form (Figure 4, Table S2; supporting information). Differences between cDNA and DNA-169 

derived bacteria were only minor, indicating that abundant phyla were also active. 170 

Gammaproteobacteria, as a single exception, showed high relative abundance in the cDNA-171 

based community composition (37.4% and 35.0% of FL and PA OTUs, respectively) compared 172 

to the DNA-based community composition (22.7% and 26.0% of FL and PA OTUs, 173 

respectively). The cDNA-based communities of foam contained less Alphaproteobacteria but 174 

more Gammaproteobacteria compared to SML and ULW communities (Figure 4). Non-metric 175 

multidimensional scaling plots revealed that foam bacterial communities were clearly distinct 176 

from SML and ULW communities, irrespective of differentiating cDNA and DNA or FL and PA 177 

(Figure 5). In contrast to this, SML and ULW bacterial community composition were more 178 

similar to each other as shown by the clustering (Figure 5). On the order-level, the difference 179 

between cDNA- and DNA-based communities became more obvious: A depletion of the relative 180 

abundance of active OTUs in foam in contrast to the other two surface habitats was most 181 

apparent in the MB11C04 marine group (Verrucomicrobia), SAR11 clade (Alphaproteobacteria) 182 

and Oceanospirillales (Gammaproteobacteria) (Figure S1, S2, S3; supporting information). A 183 

higher relative abundance of active OTUs in foam compared to SML and ULW was found among 184 

the Puniceicoccales (Verrucomicrobia), Sphingomonadales (Alphaproteobacteria), 185 
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Alteromonadales and Vibrionales (both Gammaproteobacteria) (Figure S1, S2, S3; supporting 186 

information). Active FL OTUs of the order Flavobacteriales and Oceanospirilliales were more – 187 

whereas free-living Sphingobacteriales were less numerous than their PA counterparts in all three 188 

habitats (Figure S1, S4; supporting information). 189 

Apart from the order Rhodobacterales (Figure S3; supporting information), foam generally had 190 

less alphaproteobacterial DNA-based OTUs compared to SML and ULW. However, foam 191 

contained a higher DNA-based relative abundance of Verrucomicrobia and 192 

Gammaproteobacteria (Figure 4). Among the Gammaproteobacteria, especially more OTUs of 193 

the orders Cellvibrionales, Vibrionales, Legionellales, Alteromonadales were increasingly 194 

detected in foam compared SML and ULW, whereas the order Oceanospirilliales was more 195 

depleted in foam (Figure S1; supporting information). 196 

 197 

Foam-specific bacteria 198 

Using the linear discriminant analysis (LDA) effect size (LefSe) method we could identify OTUs 199 

that were enriched in foam compared to SML and ULW (Figure 6). The analysis does not refer to 200 

the most abundant OTUs in terms of absolute numbers but points out the largest differences 201 

between foam and the other two habitats. Members of the Gammaproteobacteria were typical 202 

active and abundant foam colonizers (Figure 6). Taxa including Winogradskyella, Vibrio, 203 

Halioglobus and Pseudoaltermonas were particularly abundant in both cDNA and DNA-derived 204 

foam samples as well as when compared to SML and ULW habitats. Persicirhabdus and other 205 

Verrucomicrobiaceae were typical foam-dwellers with 11% and 7% relative abundance 206 

according their presence in DNA samples but seemed not very active according to cDNA 207 
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samples. Typical SML populating bacteria belonged to taxa which were phylogenetically related 208 

to Alphaproteobacteria, Gammaproteobacteria and Flavobacteria. Strikingly, abundance and 209 

activity profiles for SML microbes were hardly different from the ULW but more different from 210 

foam samples. High relative abundances (>5%) of Planktomarina, SAR116 and SAR86 could be 211 

revealed for SML samples for cDNA and DNA. Microbial taxa of SAR11 and Candidatus 212 

Actinomarina typically occurred in high abundances in the ULW.  213 

 214 

Trichodesmium sp.-produced foam – a case study 215 

Due to technical restrictions we could only obtain a single DNA/cDNA sample from the Timor 216 

Sea (Station 8). Among the DNA-based community in foam we found most PA OTUs assigned 217 

to Trichodesmium (relative abundance=33.4%), Alteromonas (26.4%) and Rhodobium (5.4%), 218 

whereas FL OTUs were mostly assigned to Alteromonas (18.0%) and Rhodobium (10.2%) (Table 219 

S3; supporting information). PA OTUs were mainly assigned to Trichodesmium (68%) and 220 

Rhodobium (10.9%) in the SML, and to Trichodesmium (23.8%) and Oscillatoria (26.7%) in the 221 

ULW. Most FL OTUs from SML and ULW were assigned to Synechococcus with 15.7% and 222 

21.6% relative abundance, respectively. In all cDNA samples, Trichodesmium was also the most 223 

abundant among active OTUs in foam and SML, only in the ULW Oscillatoria (48.2%) had 224 

higher relative abundance compared to Trichodesmium (29.1%). The relative abundance of 225 

cDNA-based OTUs assigned to Alteromonas in foams (PA: 17.8%, FL: 12.6%) was 226 

comparatively enhanced to the SML (PA: 0.2%, FL: 1.2%). The ten most abundant OTUs found 227 

in the three habitats are given in Table S3 (supporting information). 228 

 229 
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Discussion 230 

Foams comprise an extreme form of SML  231 

Foams are peculiar but understudied microbial habitats at the air-sea interface. They stem from 232 

the SML and bursting bubbles, and as soon as foams subside, their material becomes part of the 233 

SML again (Kuznetsova and Lee, 2002). The idea that foams are essentially compressed SML is 234 

supported by our results. The SML is usually enriched in bacterial cells compared to the ULW 235 

(Hardy, 1982). As expected for an extreme form of the SML, we found high concentrations of 236 

SAS in foams as well as an enrichment of prokaryotic microorganisms (determined by flow 237 

cytometry and DNA-based amplicon sequencing) and small phototrophic cells (flow cytometry 238 

only), matching previous observations (Kuznetsova and Lee, 2002; Rahlff et al., 2017b; 239 

Robinson et al., 2019). Foams likely originating from cyanobacterial cells and presumptive 240 

phytoplankton exudates (Figure 1 A&B) that principally contain high loads of SAS (�utić et al., 241 

1981) were also linked to higher amounts of microbes compared to foams formed by 242 

convergence of surface water (Figure 1C, Table S1; supporting information). This indicates that 243 

foams originating from photoautotrophic biomass contain substantial amounts of labile organic 244 

matter, stimulating enhanced growth of heterotrophic bacteria. The presumptive phytoplankton-245 

associated foam was mostly found in slicks, which are visible sea surface features that result from 246 

SAS causing dampening of capillary waves, and which are known to comprise distinct microbial 247 

communities (Wurl et al., 2016). Interestingly, abundance of small phototrophic cells declined in 248 

the SML while it was enhanced in the respective foam sample. This observation might argue for 249 

passive transport of microbes from SML to foam, e.g. by SML compression, and some 250 

transferred, fast-growing, opportunistic bacteria took the advantage and thrived. An OTU 251 

assigned to Alteromonas was the most abundant FL bacterium in the Trichodesmium-associated 252 
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foam (Table S3; supporting information), and a high relative abundance among the active OTUs 253 

was found in foam compared to SML in both FL and PA fractions. The increased relative 254 

abundance of active OTUs being restricted to the foam environment allows speculations on active 255 

migration of certain taxa towards the foam, e.g. Vibrio may use flagella to actively move there 256 

(Atsumi et al., 1992). 257 

 258 

One striking finding of our study is that we mostly observed a higher diversity within the cDNA-259 

based compared to the DNA-based bacterial community, suggesting that bacteria being enriched 260 

in foams were generally alive and most likely active. Sequencing of cDNA-derived amplicons of 261 

small subunit RNA gives a rough estimate for assessing activity of bacterial taxa because cellular 262 

rRNA concentration is linked to cell growth and activity (Schaechter et al., 1958; Poulsen et al., 263 

1993; Lanzén et al., 2011). Detecting both amplicon types allows to find rare and active 264 

communities (Campbell et al., 2011) and to detect two distinct communities, for instance if small 265 

cells having a general lower RNA content are highly active. However, the taxonomic resolution 266 

of 16S rRNA (gene) amplicon sequencing cannot discriminate between closely related species 267 

(Fox et al., 1992), and especially between cyanobacteria. 268 

Long residence time of microbes at the air-sea interface and thus prolonged exposure to the cell-269 

inhibitory effects of high solar and ultraviolet (UV) radiation (Santos et al., 2013) and wind-wave 270 

dynamics (Stolle et al., 2011) are neither expected for foam being highly ephemeral (Pugh, 1996) 271 

nor the SML being prone to sudden changes in physical and chemical properties (Zhang et al., 272 

2003). Some bacteria, such as Trichodesmium sp. show more tolerance towards photoinhibition at 273 

the air-sea interface (Sieburth et al., 1976), tend to accumulate in slicks (Sieburth and Conover, 274 
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1965), and can remain active as our results for the Timor Sea revealed (Table S3; supporting 275 

information).  276 

 277 

The role of particles for foam-populating bacteria 278 

According to Figure 5, PA and FL bacteria form distinctive communities in all of the studied 279 

habitats. Particulate organic matter is frequently enriched within the SML (Aller et al., 2005) as 280 

well as in foams (Johnson et al., 1989) compared to the ULW. In addition, SML bacteria are 281 

more attached to substrates than occurring in the free-living state (Cunliffe et al., 2009), and PA 282 

bacteria are generally more prone to changes in community composition (Stolle et al., 2010). In 283 

agreement with that and former studies (Parveen et al., 2013; Rieck et al., 2015), we found higher 284 

OTU numbers being linked to the PA lifestyle independent of the habitat under investigation. For 285 

instance, the LefSe analysis revealed that Winogradskyella was particularly abundant in the 286 

cDNA fraction, reflecting active OTUs. Previous work has shown that Winogradskyella spp. is 287 

often extracted from other species such as brown algae or sponges (Yoon and Lee, 2012; Park 288 

and Yoon, 2013; Schellenberg et al., 2017). As broken algal cells and detritus are major parts of 289 

foams, high relative abundance of Winogradskyella in the foam PA fraction (Figure S5; 290 

supporting information) might be due to its attachment to algal-derived particles. Especially 291 

Verrucomicrobia were attached to particles rather than occurring in the FL form, which has been 292 

previously suggested (Freitas et al., 2012), and one of its members, Persicirhabdus was 293 

particularly abundant in foam-derived cDNA samples. Persicirhabdus might have a preference 294 

for particle adherence since it also occurs in higher abundance in sediments compared to free 295 

water column (Freitas et al., 2012) or colonizes plastic debris (Oberbeckmann et al., 2016). In 296 

addition, Persicirhabdus and Winogradskyella are well-known for their polysaccharide-degrading 297 
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capacities (Yoon and Lee, 2012; Cardman et al., 2014) and, hence, might prefer to stick to 298 

organic materials feeding them. Certain bacteria that were particularly active in foams, e.g. 299 

Alteromonas sp., were previously shown to be highly abundant and active degraders of alginate, a 300 

cell wall components from marine macroalgae (Mitulla et al., 2016), and of labile dissolved 301 

organic carbon (Pedler et al., 2014). By using 16S rRNA gene sequencing of individual 302 

transparent exopolymer particles (TEP) from the SML, Zäncker et al. (2019) found that 303 

Alteromonadaceae on TEP was significantly increased compared to subsurface water. Though 304 

being attached to particles might have some drawbacks for bacteria when it comes to grazing 305 

(Albright et al., 1987), this might not be necessarily true for the SML, or this disadvantage is 306 

easily outweighed by the benefits of particles providing food and shelter for extreme levels of UV 307 

and solar radiation. In this regard, foam bacteria might be important key players in 308 

biogeochemical cycling, jump starting the microbial loop from the air-sea interface.  309 

 310 

Ecological implications of sea foam bacteria 311 

Sea foams are often perceived as aesthetically unpleasant or are associated with pollutants 312 

(Schilling and Zessner, 2011). In this study we detected bacteria of the orders Cellvibrionales, 313 

Vibrionales and Legionellales, all of which include potentially pathogenic bacteria. Likewise, sea 314 

foam bacteria near a sandy beach on Havelock Island, India were shown to contain high portions 315 

of Vibrio and Salmonella, as well as of fecal coliforms such as E.coli (Gobalakrishnan et al., 316 

2014). A general awareness for the presence of pathogens in sea foams can benefit public health 317 

and the recreational value of coastal areas and beaches where foams frequently occur.  318 
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Recent work has shown that massive foam events in association with blooms of Phaeocystis 319 

globosa and an unknown plankton species can have devastating effects for local residents 320 

(Jenkinson et al., 2018). Likewise, Phaeocystis pouchetii, the kelp species Ecklonia maxima and 321 

the river water-crowfoot Ranunculus fluitans contributed to foam formation in their respective 322 

habitats (Velimirov, 1980; Eberlein et al., 1985; Wegner and Hamburger, 2002). Heterotrophic 323 

bacteria in foams might be an important but overlooked component in the foam formation 324 

process, because also bacteria can produce SAS and exopolysaccharides (Satpute et al., 2010), 325 

which may contribute to foam production and stabilization (Jenkinson et al., 2018). Experiments 326 

by Velimirov (1980) revealed that the metabolic products of growing bacteria in kelp bed foams 327 

would not remarkably contribute to foam stability and formation time. The author demonstrated 328 

foam formation in the presence of E.maxima while bacterial growth was antibiotically inhibited. 329 

Our foam samples contained bacterial OTUs which are likely capable of producing SAS, as 330 

previously demonstrated for the genus Vibrio and Pseudoalteromonas (Hu et al., 2015; Dang et 331 

al., 2016). However, if these bacteria enhance foam formation and stability in the absence of a 332 

major SAS-producing algae however requires further experiments. 333 

The SML is an important component for the regulation of gas-exchange (Frew, 1997) but foams 334 

covering up to 6% of the ocean’s surface (Anguelova and Webster, 2006) are rarely part of this 335 

concept. While performing research in the Timor Sea, we used a free-floating Surface In Situ 336 

Incubator (Rahlff et al., 2017a) to incubate water from 5 m depth supplemented with 1 mL 337 

Trichodesmium foam and found complete oxygen (O2) depletion after less than 14 hours (data not 338 

shown), while samples without foam showed incomplete O2 consumption (Rahlff et al., 2017a). 339 

We assume that complete O2 depletion was attributable to highly active bacteria associated with 340 

the foam. Since a recent study found that even pronounced biological activity within the SML 341 
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had no major contribution to O2 air-water gas exchange (Rahlff et al., 2019), if extensive surface 342 

foams and therein enhanced bacterial activity may play a role in air-sea gas exchange 343 

consequently merits further investigation.  344 

This study presents first detailed insights into the distinctive bacterial communities associated 345 

with marine foams in contrast to SML and ULW. Our study identified particularly well-adapted 346 

bacteria including Vibrio, Winogradskyella and Pseudoalteromonas for foam and foam particle 347 

colonization. Although foams contain distinctive bacterial communities and a higher diversity 348 

compared to the other two habitats, a selection towards typical SML taxa, e.g. Vibrio or 349 

Pseudoalteromonas cannot be dismissed. It follows that foam represents an ephemeral and 350 

compressed version of the SML and studying its microbes aids our understanding of air-sea 351 

exchange and bacterial transport processes. While sticking on rising bubbles, bacteria might 352 

benefit from SML and foams as a nutrient-rich “rest stop” before being transferred to sea-spray 353 

aerosols and clouds or return to bulk water. Air-sea interfaces span 70% of the Earth’s surface 354 

and much remains to be learned about patchy surface phenomena such as foams and their 355 

ecological implications for the functioning of the marine food web, biogeochemical cycles and 356 

human health. 357 

 358 

Experimental Procedures: 359 

Field sample collection 360 

Field sampling was conducted from the bow of a small boat in the Jade Bay, North Sea (NS) 361 

offshore Wilhelmshaven, Germany (Table S1; supporting information) in spring and summer 362 

2016. Foams originated from different sources such as from presumptive phytoplankton exudates 363 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 29, 2019. ; https://doi.org/10.1101/820696doi: bioRxiv preprint 

https://doi.org/10.1101/820696
http://creativecommons.org/licenses/by-nc-nd/4.0/


 19

and convergence of surface water (Figure 1A, Figure 1C, Table S1; supporting information). 364 

Additional samples were collected during a Trichodesmium sp. bloom encountered in the Timor 365 

Sea (TS) (Figure 1B, Table S1; supporting information) in October 2016 during R/V Falkor cruise 366 

FK161010 as recently described (Wurl et al., 2018). A set of foam, SML and ULW samples was 367 

collected from each location. Foams and SML were sampled with the glass plate technique 368 

(Harvey and Burzell, 1972) using a withdrawal rate of 5-6 cm s-1 as suggested by Carlson (1982). 369 

The glass plate was cleaned with 70% ethanol and rinsed with sample before use. Material 370 

adhering on the glass plate was removed by wiping its surface with a squeegee into a sample-371 

rinsed brown bottle. The procedure was repeated until the required volume of approximately 100 372 

mL was collected (~20 dips). SML samples were collected between the foam patches and any 373 

dips contaminated with foam were rejected, and the glass plate was cleaned with ethanol again. 374 

Collected foams were not generated by the small boat whose engine was not running. Samples 375 

from the ULW were taken at a depth of 1 m around the foams by using a syringe connected to a 376 

hose. All samples were kept on ice and immediately processed after sampling, since Velimirov 377 

(1980) showed that bacterial density in old foam was significantly higher than in fresh foam. 378 

 379 

Concentration of surface-active substances  380 

The concentration of SAS was measured by automated VA Stand 747 (Methrom, Herisau, 381 

Switzerland) with a hanging drop mercury electrode as previously described (Ćosović and 382 

Vojvodić, 1998; Wurl et al., 2011). The quantification is based on SAS adsorption on the Hg 383 

electrode measured by the change of capacity current (∆Ic) at an applied potential (E) of -0.6 V 384 

(Ćosović and Vojvodić, 1998). Before measurement, thick samples such as foam samples were 385 

diluted with artificial seawater (0.55 M of NaCl solution) to achieve measurement within the 386 
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linear range. Standard addition technique was utilized where non-ionic surfactant Triton X-100 387 

(Sigma Aldrich, Taufkirchen, Germany) was used as a standard. SAS concentration in the 388 

samples was measured using two to three technical replicates, resulting in relative standard 389 

deviations below 6% (Rickard et al., 2019). Concentration of SAS is expressed as the equivalent 390 

concentration of the additional Triton X-100 (µg Teq L–1).  391 

 392 

Determination of microbial abundance 393 

For determination of prokaryotic and small (< 50 µm) phototrophic cell numbers, foam and water 394 

samples were fixed with glutardialdehyde (1% final concentration), incubated at room 395 

temperature for 1 hour, and stored at -80°C until further analysis. Prior staining and counting by 396 

flow cytometry, the particle-enriched foam samples were pre-filtered by gravity onto CellTrics® 397 

50 µm filter (Sysmex Partec, Muenster, Germany) to avoid clogging of the instrument by 398 

particulate matter. Autofluorescence analysis was used to count small phototrophic cells (Marie 399 

et al., 2000), and prokaryotic cells were stained with SYBR® Green I Nucleic Acid Gel Stain (9x 400 

in final concentration, Thermo Fisher Scientific, Darmstadt, Germany) following a protocol after 401 

Giebel et al. (2019). Enrichment factors (EF) were calculated for the pairings foam/SML (F/S), 402 

foam/ULW (F/U) and SML/ULW (S/U) (Table 1). This means that the relative abundance of 403 

cells in a foam or SML sample was divided by its SML or ULW counterpart. Therefore, an EF>1 404 

implies an enrichment of cells, whereas an EF<1 indicates a depletion. 405 

 406 

Nucleic acid extraction and PCR 407 
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A two-step filtration of foam, SML and ULW samples was conducted. Sample water was filtered 408 

through 3 µm pore size polycarbonate (PC) filters, after which the filtrate was filtered onto 0.2 409 

µm pore size PC filters (Merck Millipore, Darmstadt, Germany). These two size fractions were 410 

defined to contain the particle-associated (PA, on 3 µm filter) and free-living (FL, on 0.2 µm 411 

filter) bacterial community, respectively. Foam from the Timor Sea (Station 8) collected during a 412 

bloom of Trichodesmium sp. was additionally pre-filtered on a 100 µm mesh before subsequent 413 

filtration on the 3 µm pore size filter. All filters were initially stored at -80°C prior analysis. 414 

Extraction of DNA and RNA from the filters was performed by using the DNA + RNA + Protein 415 

Extraction Kit (Roboklon, Berlin, Germany) with a modified protocol (Rahlff et al., 2017b). 416 

RNA was digested on-column using 3 U of DNase and subsequently checked for contaminations 417 

with genomic DNA by PCR. A quantity of 10 ng RNA was converted to cDNA using the NG 418 

dART Kit (Roboklon, Berlin, Germany) including negative controls either without reverse 419 

transcriptase or without RNA. The reaction was incubated for 60 minutes at 50°C followed by 5 420 

minutes at 85°C. All DNAs and cDNAs were quantified using the Quant-iTTM PicoGreenTM 421 

dsDNA assay (Thermo Fisher Scientific, Darmstadt, Germany). 422 

 423 

16S rRNA library preparation, sequencing run and data analysis 424 

The bacterial 16S rRNA gene was amplified according to Herlemann et al. (2011) with the 425 

following modifications. Genomic DNA was amplified with 35 cycles prior Index-PCR. The 426 

cDNA samples were amplified with 25 cycles prior Index-PCR. Amplicon PCR, Index PCR, 427 

quantity and quality control and sequencing of the individual libraries as pool in one Illumina 428 

MiSeq run was performed by an external provider (Eurofins Genomics, Ebersberg, Germany). 429 

Raw sequencing data were deposited at the European Nucleotide Archive (ENA) under accession 430 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 29, 2019. ; https://doi.org/10.1101/820696doi: bioRxiv preprint 

https://doi.org/10.1101/820696
http://creativecommons.org/licenses/by-nc-nd/4.0/


 22

number PRJEB34343. For data analysis, the resulting sequences were assembled using 431 

QIIME 1.9.1 (Caporaso et al., 2010) "joins paired-end Illumina reads" function with default 432 

settings to merge forward and reverse sequence with an overlap of at least 30 bp. Sequences 433 

without overlap were removed. After converting fastq to fasta using the 434 

"convert_fastaqual_fastq" function the resulting sequences were evaluated using the SILVA NGS 435 

pipeline. The SILVA next - generation sequencing (NGS) pipeline (Glöckner et al., 2017) 436 

performs additional quality checks according to the SINA-based alignments (Pruesse et al., 2012) 437 

with a curated seed database in which PCR artifacts or non-SSU reads are excluded (based on 438 

SILVA release version 128 (Pruesse et al., 2007). The longest read serves as a reference for the 439 

taxonomic classification in a BLAST (version 2.2.28+) search against the SILVA SSU Ref 440 

dataset. The classification of the reference sequence of a cluster (98% sequence identity) is 441 

mapped to all members of the respective cluster and to their replicates. Best BLAST hits were 442 

only accepted if they had a (sequence identity + alignment coverage)/2 ≥ 93% or otherwise 443 

defined as unclassified. SILVA NGS classified a total of 9182084 reads (2% were rejected by the 444 

quality control). Sequences assigned to chloroplasts, mitochondria, eukaryotes and Archaea were 445 

removed since the primer set employed in the analysis has only a very limited coverage of these 446 

groups. 447 

 448 

Statistical analyses 449 

Operational taxonomic unit (OTU) counts based on genus level were rarefied to 43500 reads per 450 

sample using the single_rarefraction.py script implemented in QIIME. We visualized the 451 

differences in the bacterial community composition through non�metric multidimensional 452 
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scaling (NMDS) plots using Bray–Curtis dissimilarity indices based on a genus rank 453 

classification. A linear discriminant analysis (LDA) effect size (LEfSe) analysis was performed 454 

to determine bacterial groups which are significantly different between the samples using the 455 

‘one against all’ strategy for multi�class analysis (Segata et al., 2011). The program LEfSe uses 456 

a non-parametric test that combines standard tests for statistical significance with additional tests 457 

encoding biological consistency and effect relevance. P < 0.05 was regarded as statistical 458 

significance. 459 

Differences in alpha diversity between habitats, nucleic acid types and attachment status were 460 

statistically analyzed using a Kruskal-Wallis test and Dunn’s multiple pairwise comparisons 461 

within the R package “dunn.test” (R version 3.4.3, Team (2014)). The null hypothesis was 462 

rejected if p ≤0.05. Comparisons were made between FL and PA status within a habitat (foam, 463 

SML, ULW) and between habitats for each DNA and cDNA, respectively.  464 
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Figures  711 

 712 

 713 

 714 

 715 

 716 

 717 

Figure 1: Marine foam originating from A) presumptive phytoplankton exudates (Jade Bay), B) 718 

a Trichodesmium bloom (Timor Sea) and C) whitecaps produced by convergence of surface 719 

water (Jade Bay, North Sea).720 
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 721 

722 

Figure 2: Absolute cell counts mL-1 for A) prokaryotes and B) small phototrophic cells and C)723 

concentration of surface-active substances (SAS) in µg Teq L-1 for foam, sea-surface microlayer724 

(SML) and underlying water (ULW).725 
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 726 

Figure 3: cDNA and DNA-derived numbers of operational taxonomic units (OTUs) for foam,727 

SML and ULW habitat of pooled North Sea stations. Alpha diversity of the three habitats is728 

further distinguished between free-living (FL) and particle-associated (PA) bacterial729 

communities. Grey and black lines indicate inter- and intra-habitat comparisons, respectively.730 

The boxplot shows the 25–75 percent quartiles; the median is indicated by the horizontal line731 

inside the box. Error bars show minimal and maximal values. Asterisks indicate the level of732 

significant differences:  733 

* p≤ 0.05, ** p≤ 0.01734 
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 735 

Figure 4: Beta diversity at the phylum-level of foam, SML and ULW samples of cDNA and 736 

DNA-based relative abundance of operational taxonomic units (OTUs) of pooled North Sea 737 

stations. Each habitat is further separated into free-living (FL) and particle-associated (PA) 738 

bacterial communities. 739 
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740 

Figure 5: Non-metric multidimensional scaling plot shows distinct clustering of foam (red), SML741 

(blue) and ULW (green) bacterial communities. Further separation according to nucleic acid742 

source (cDNA=squares and DNA=circles) as well as free-living (open symbols) and particle-743 

associated (filled symbols) attachment style has been conducted.744 
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 745 

Figure 6: Heat-map showing the relative abundance of most different foam OTUs compared to 746 

SML and ULW according to the linear discriminant analysis (LDA) effect size (LEfSe) method. 747 
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Table 1: Absolute and relative abundances of prokaryotes, small phototrophs and surface-active substances (SAS) in 

foam (F), SML (S) and ULW (U), NA=not available, Teq=Triton X-100 equivalents 

Foam SML  ULW EF (F/S) EF (F/U) EF (S/U) 
              

Prokaryotes (cells mL-1) Absolute values (106 cells mL-1) Relative values 
NS_St1_210416 4.89 NA 2.56 NA 1.9 NA 
NS_St2_210416 2.63 2.62 2.48 1.0 1.1 1.1 
NS_St1_190516 13.70 3.34 3.23 4.1 4.2 1.0 
NS_St3_190516 46.20 4.57 3.13 10.1 14.8 1.5 
NS_St1_190716 6.61 3.90 3.71 1.7 1.8 1.1 
NS_St2_190716 4.99 3.39 3.48 1.5 1.4 1.0 
TS_St4_151016 9.97 1.77 1.07 5.6 9.3 1.7 
TS_St5b_171016 33.90 NA 1.01 NA 33.6 NA 
TS_St8_191016 5.83 0.98 1.18 5.9 4.9 0.8 

      Small phototrophic cells (cells mL-1) Absolute values (104 cells mL-1) Relative values 
NS_St1_210416 1.85 1.03 1.61 1.8 1.1 0.6 
NS_St2_210416 1.38 1.41 2.24 1.0 0.6 0.6 
NS_St1_190516 29.60 0.85 2.30 34.8 12.9 0.4 
NS_St3_190516 57.10 1.02 1.88 56.0 30.4 0.5 
NS_St1_190716 9.10 3.97 4.17 2.3 2.2 1.0 
NS_St2_190716 4.23 2.49 2.82 1.7 1.5 0.9 
TS_St4_151016 2.14 0.37 0.11 5.8 20.2 3.5 
TS_St5b_171016 10.50 NA 0.13 NA 81.4 NA 
TS_St8_191016 2.73 0.12 0.26 23.7 10.4 0.4 
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SAS (µg Teq L-1) Absolute values Relative values 
NS_St1_210416 NA NA NA NA NA NA 
NS_St2_210416 NA NA NA NA NA NA 
NS_St1_190516 77496 576 213 134.4 364.5 2.7 
NS_St3_190516 148233 1753 223 84.6 665.0 7.9 
NS_St1_190716 900 716 180 1.3 5.0 4.0 
NS_St2_190716 1397 270 133 5.2 10.5 2.0 
TS_St4_151016 69370 240 268 288.9 258.5 0.9 
TS_St5b_171016 67546 66 109 1020.5 618.7 0.6 
TS_St8_191016 28797 255 171 113.1 168.5 1.5 
 748 
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Supporting Information 

 

Marine foams represent compressed sea-surface microlayer with distinctive bacterial 
communities 

 

 

Figure S1: Beta diversity among Gammaproteobacteria in foam, sea-surface microlayer 

(SML) and underlying water (ULW) samples of cDNA and DNA-based operational 

taxonomic units (OTUs). Each habitat contains further information on free-living (FL) and 

particle-associated (PA) bacterial community composition.
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Figure S2: Beta diversity among Verrucomicrobia in foam, SML and ULW samples of 

cDNA and DNA-based operational taxonomic units (OTUs). Each habitat contains further 

information on free-living (FL) and particle-associated (PA) bacterial community 

composition. 
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Figure S3: Beta diversity among Alphaproteobacteria in foam, SML and ULW samples of 

cDNA and DNA-based operational taxonomic units (OTUs). Each habitat contains further 

information on free-living (FL) and particle-associated (PA) bacterial community 

composition. 
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Figure S4: Beta diversity among Bacteroidetes in foam, SML and ULW samples of cDNA 

and DNA-based operational taxonomic units (OTUs). Each habitat contains further 

information on free-living (FL) and particle-associated (PA) bacterial community 

composition. 
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Figure S5: Heat-map showing the relative abundance of most different foam OTUs compared 

to SML and ULW among free-living (FL) and particle-attached (PA) fractions according to 

the linear discriminant analysis (LDA) effect size (LEfSe) method.
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Table S1: Sampling notes 

 

 

 

 

 

 

Sample 

 

Position Remarks 

   

NS_FO1_210416 53°30.374'N, 08°08.963'E Foam produced by waves 

NS_FO2_210416 53°31.089'N, 08°09.998'E Foam produced by waves 

NS_FO1_190516 53°29.916'N, 08°07.9380'E Slick-associated, probably phytoplankton exudates 

NS_FO3_190516 NA (similar to FO1 190516) Slick-associated, probably phytoplankton exudates 

NS_FO1_190716 53°30.627'N, 08°08.031'E Close to beach, probably phytoplankton exudates 

NS_FO2_190716 53°30.327'N, 08°07.854'E  - 

TS_FO_St4_151016 -12°15.49'S, 126°22.36'E Slick-associated, Trichodesmium bloom, little true foam 

TS_FO_St5b_171016 -12°15.46'S, 125°58.60'E Slick-associated foam, Trichodesmium bloom, SML and ULW no slick area 

TS_FO_St8_191016 -13°41.51'S, 127°31.27'E Trichodesmium bloom, little true foam, sudden rain and squalls during SML and ULW sampling .
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Table S2: Relative abundance (%) of operational taxonomic units as shown in Figure 4. SML=sea-surface microlayer, ULW=underlying water, 

PA=particle-attached, FL=free-living 

 

DNA Foam_PA Foam_FL SML_PA SML_FL ULW_PA ULW_FL 

>Gammaproteobacteria 25.98 22.70 22.85 18.91 24.33 17.05 

>Alphaproteobacteria 12.31 27.65 24.98 39.18 20.56 41.33 

Bacteroidetes 14.26 12.77 16.21 15.85 13.93 15.71 

Verrucomicrobia 24.86 9.09 10.23 5.26 9.99 3.28 

Actinobacteria 4.51 12.70 7.36 9.92 8.92 13.01 

>Deltaproteobacteria 5.80 3.76 5.36 1.22 7.63 1.06 

>Betaproteobacteria 1.04 2.82 2.90 5.30 2.03 4.93 

Planctomycetes 3.96 1.54 3.16 0.64 4.87 0.42 

Cyanobacteria 0.52 1.10 0.67 0.33 0.55 0.25 

Gemmatimonadetes 0.48 0.27 0.47 0.11 0.60 0.08 

other 5.50 5.22 5.40 3.00 6.11 2.57 

unclassified 0.80 0.39 0.40 0.29 0.48 0.32 
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cDNA Foam_PA Foam_FL SML_PA SML_FL ULW_PA ULW_FL 

>Gammaproteobacteria 34.98 37.40 28.59 27.83 30.14 24.94 

>Alphaproteobacteria 16.56 25.00 23.33 33.91 22.31 38.66 

Bacteroidetes 18.38 13.64 16.28 16.93 16.52 19.08 

Verrucomicrobia 3.08 3.91 3.48 2.85 3.81 1.98 

Actinobacteria 1.66 1.94 2.88 3.67 2.77 3.70 

>Deltaproteobacteria 7.95 3.64 7.08 1.76 8.95 1.36 

>Betaproteobacteria 1.48 3.58 3.14 6.18 2.61 4.75 

Planctomycetes 2.27 0.93 1.44 0.45 1.93 0.28 

Cyanobacteria 4.79 3.02 4.55 2.31 1.13 1.67 

Gemmatimonadetes 2.31 1.35 2.28 1.13 2.21 0.78 

other 6.13 5.36 6.38 2.74 7.05 2.32 

unclassified 0.41 0.23 0.56 0.24 0.57 0.49 
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Table S3: Relative abundance (%) of most abundant operational taxonomic units in foam, SML and ULW among free-living (FL) and particle-

attached (PA) fractions from Station 8, Timor Sea. 

DNA Foam_PA Foam_FLSML_PASML_FLULW_PAULW_FL 

Cyanobacteria;Cyanobacteria;SubsectionIII;FamilyI;Trichodesmium; 33.39 2.11 67.96 6.17 23.78 0.02 

Cyanobacteria;Cyanobacteria;SubsectionI;FamilyI;Synechococcus; 3.36 8.71 0.99 15.69 4.19 21.63 

Proteobacteria;Gammaproteobacteria;Alteromonadales;Alteromonadaceae;Alteromonas; 26.40 18.02 1.83 2.30 3.65 2.06 

Proteobacteria;Alphaproteobacteria;Rhizobiales;Rhodobiaceae;Rhodobium; 5.43 10.23 10.97 2.45 8.93 0.80 

Cyanobacteria;Cyanobacteria;SubsectionIII;FamilyI;Oscillatoria; 0.47 0.04 0.46 0.06 26.57 0.00 

Proteobacteria;Alphaproteobacteria;SAR11 clade;Surface 1; 0.26 1.65 0.03 7.57 0.29 8.58 

Cyanobacteria;Cyanobacteria;SubsectionI;FamilyI;Prochlorococcus; 0.30 0.93 0.06 8.10 0.48 7.50 

Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;Saprospira; 4.52 3.36 5.90 0.02 0.99 0.01 

Proteobacteria;Gammaproteobacteria;Oceanospirillales;SAR86 clade; 0.29 1.27 0.03 6.05 0.15 6.05 

Proteobacteria;Alphaproteobacteria;Rickettsiales;SAR116 clade; 0.22 1.19 0.06 5.11 0.64 6.59 

cDNA Foam_PA Foam_FLSML_PASML_FLULW_PA

Cyanobacteria;Cyanobacteria;SubsectionIII;FamilyI;Trichodesmium; 47.44 21.71 85.44 38.84 29.08 

Cyanobacteria;Cyanobacteria;SubsectionIII;FamilyI;Oscillatoria; 0.65 0.49 0.06 0.36 48.15 

Proteobacteria;Alphaproteobacteria;Rhizobiales;Rhodobiaceae;Rhodobium; 7.96 14.44 9.17 7.20 5.77 

Cyanobacteria;Cyanobacteria;SubsectionI;FamilyI;Synechococcus; 8.33 6.44 1.26 16.05 1.92 

Proteobacteria;Gammaproteobacteria;Alteromonadales;Alteromonadaceae;Alteromonas; 17.66 12.63 0.16 1.22 0.57 
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Bacteroidetes;Sphingobacteriia;Sphingobacteriales;Saprospiraceae;Saprospira; 2.88 6.63 2.00 1.37 0.90 

Cyanobacteria;Cyanobacteria;SubsectionI;FamilyI;Prochlorococcus; 0.14 0.85 0.00 8.45 0.05 

Proteobacteria;Alphaproteobacteria;Rickettsiales;SM2D12; 0.67 1.98 0.03 0.93 1.70 

Proteobacteria;Alphaproteobacteria;Rhodobacterales;Rhodobacteraceae;uncultured; 0.22 0.40 0.02 3.08 0.42 

Bacteroidetes;Bacteroidetes Incertae Sedis;Order III;Unknown Family;Balneola; 0.56 2.04 0.35 0.50 0.42 
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