

1
2

3 Analysis of putative cis-regulatory elements regulating blood pressure

4 variation

5
6
7 Priyanka Nandakumar¹, Dongwon Lee^{1,2}, Thomas J. Hoffmann^{3,4}, Georg B. Ehret^{1,2,5}, Dan
8 Arking¹, Dilrini Ranatunga⁶, Man Li⁷, Megan L. Grove⁸, Eric Boerwinkle⁸, Catherine Schaefer⁶,
9 Pui-Yan Kwok⁴, Carlos Iribarren⁶, Neil Risch^{3,4,6}, Aravinda Chakravarti^{1,2}

10

11

¹² ¹ McKusick-Nathans Institute of Genetic Medicine, Baltimore, MD, USA.

13 ² Center for Human Genetics and Genomics, NYU School of Medicine, New York, NY, USA.

15 ³ Department of Epidemiology and Biostatistics, University of California San Francisco, San
16 Francisco, CA, USA.

¹⁷
¹⁸ ⁴ Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA.

19
20 5 Cardiology, Department of Specialties of Internal Medicine, University of Geneva, Geneva,
21 Switzerland.

²² 23 ⁶ Kaiser Permanente Northern California Division of Research, Oakland, California, USA.

25 ⁷ Division of Nephrology and Department of Human Genetics, University of Utah, Salt Lake
26 City, Utah, USA.

27
28 ⁸ Human Genetics Center, University of Texas Health Science Center, Houston, Texas, USA.
29

30 * Corresponding author

31 E-mail: aravinda.chakravarti@nvulangone.org (AC)

32 Abstract

33 Hundreds of loci have been associated with blood pressure traits from many genome-
34 wide association studies. We identified an enrichment of these loci in aorta and tibial artery
35 expression quantitative trait loci in our previous work in ~100,000 Genetic Epidemiology
36 Research on Aging (GERA) study participants. In the present study, we subsequently focused on
37 determining putative regulatory regions for these and other tissues of relevance to blood
38 pressure, to both fine-map these loci by pinpointing genes and variants of functional interest
39 within them, and to identify any novel genes.

40 We constructed maps of putative cis-regulatory elements using publicly available open
41 chromatin data for the heart, aorta and tibial arteries, and multiple kidney cell types. Sequence
42 variants within these regions may be evaluated quantitatively for their tissue- or cell-type-
43 specific regulatory impact using deltaSVM functional scores, as described in our previous work.
44 In order to identify genes of interest, we aggregate these variants in these putative cis-regulatory
45 elements within 50Kb of the start or end of genes considered as “expressed” in these tissues or
46 cell types using publicly available gene expression data, and use the deltaSVM scores as weights
47 in the well-known group-wise sequence kernel association test (SKAT). We test for association
48 with both blood pressure traits as well as expression within these tissues or cell types of interest,
49 and identify several genes, including *MTHFR*, *C10orf32*, *CSK*, *NOV*, *ULK4*, *SDCCAG8*,
50 *SCAMP5*, *RPP25*, *HDGFRP3*, *VPS37B*, and *PPCDC*. Although our study centers on blood
51 pressure traits, we additionally examined two known genes, *SCN5A* and *NOS1AP* involved in the
52 cardiac trait QT interval, in the Atherosclerosis Risk in Communities Study (ARIC), as a positive
53 control, and observed an expected heart-specific effect. Thus, our method may be used to

54 identify variants and genes for further functional testing using tissue- or cell-type-specific
55 putative regulatory information.

56

57 **Author Summary**

58 Sequence change in genes (“variants”) are linked to the presence and severity of different
59 traits or diseases. However, as genes may be expressed in different tissues and at different times
60 and degrees, using this information is expected to more accurately identify genes of interest.

61 Variants within the genes are essential, but also in the sequences (“regulatory elements”) that
62 control the genes’ expression in different tissues or cell types. In this study, we aim to use this
63 information about expression and variants potentially involved in gene expression regulation to
64 better pinpoint genes and variants in regulatory elements of interest for blood pressure
65 regulation. We do so by taking advantage of such data that are publicly available, and use
66 methods to combine information about variants in aggregate within a gene’s putative regulatory
67 elements in tissues thought to be relevant for blood pressure, and identify several genes, meant to
68 enable experimental follow-up.

69

70 **Introduction**

71 Genetic studies of complex disorders have identified hundreds to thousands of sequence
72 variants in the human non-coding genome. However, despite significant mapping progress, we
73 do not yet know the identity of most of the underlying genes and variants, nor have a mechanistic
74 understanding of how these genes, individually and together, contribute to a phenotype. Thus, we
75 need to consider how such genomic studies can improve our knowledge of trait physiology. One
76 approach would be to focus study genetic analyses by organs and tissues of interest.

77 Pritchard and colleagues have hypothesized that the majority of genome-wide association
78 study (GWAS) signals may be functionally spurious and arise from genes peripheral to the core
79 functions affected in a trait or disease [1]. These false positives dominate because most genes in
80 a cell-type are connected by gene expression to one another through very shallow functional
81 networks, a working hypothesis that fails to explain the stability of network perturbations
82 (robustness) or their specificity (phenotypic effects) [2–4]. To resolve this question, connecting
83 genotypes to phenotypes through gene expression variation is of primary importance since
84 eQTLs (expression quantitative trait loci) are identifiable causal factors [5,6]. However, utilizing
85 gene expression in trait-related tissues is necessary [7], as genes exert their activities in the
86 context of a core genetic network with intrinsic (cell autonomous) and extrinsic (non-
87 autonomous) feedback [8].

88 Transcription within mammalian genomes is locally regulated within ~400 kilobase (kb)
89 chromatin segments called topological associating domains (TADs), largely invariant across cell
90 types [9]. TADs contain numerous dispersed spatiotemporal expression cis-regulatory elements
91 (CREs or enhancers) that are brought together by DNA looping to allow binding of various
92 transcription factors (TF) to enable gene expression control [10]. Many enhancers are recognized
93 by their DNaseI hyper-sensitivity (DHS), ATAC-seq (Assay for Transposase-Accessible
94 Chromatin using sequencing) assays [11], or adjacent histone (H3K4me1, H3K4me3, H3K27ac)
95 modifications [12,13]. Their phenotypic importance is evident from the fact that only 2.6% of the
96 genome comprises DHS and histone marks [14] but explains ~30% of the heritability of traits
97 [15]. Thus, trait variation is from sequence changes within TFs, their binding sites (TFBS) and
98 CREs, all detectable through epigenomic marks in cell lines and tissues. In this study, we

99 propose an approach wherein these types of epigenomic data are used to identify genes within a
100 GWAS locus in tissues of interest.

101 The analyses we propose are enabled by numerous public genomic resources. The
102 Encyclopedia of DNA Elements (ENCODE) Project (<https://www.encodeproject.org/>) has
103 generated open chromatin, RNA and DNA sequencing, genotyping, and histone modification
104 data, among other data types. The Genotype-Tissue Expression (GTEx) Project
105 (<https://www.gtexportal.org/>) includes genotype and expression data across 53 tissues and is
106 useful as a reference transcriptome and eQTL dataset. These public resources also enable the
107 development of an annotation score, deltaSVM [16], in which the quantitative impact of a non-
108 coding variant on tissue or cell type specific gene regulation is predicted, based on a reference
109 training set of regulatory regions. In this study, we exemplify this reverse genetic approach by
110 focusing on blood pressure (BP) and QT interval variation.

111 Although the roles of the kidney and adrenal gland are well established in blood pressure
112 regulation and syndromes [17–19], our previous work in the Kaiser Permanente Research
113 Program on Genes, Environment and Health (RPGEH) Genetic Epidemiology Research on Adult
114 Health and Aging (GERA) [20,21] study demonstrated that associated variants at BP GWAS loci
115 were enriched in eQTLs specific to the aorta and tibial arteries. Expanding on this work in this
116 study, we aimed to connect groups of proximal putative regulatory variants within and around
117 each gene to both the gene's expression and also to BP traits, inferring that the gene's expression
118 in a potentially relevant tissue affected the regulation of BP. To accomplish this, within each
119 artery dataset, we identified putative CREs, and by extension, putative CRE variants, for every
120 gene, and tested these variants in aggregate for association with BP in the GERA study, as well
121 as with expression in the GTEx study. We used the sequence kernel association test (SKAT) [22]

122 for these association analyses, with each variant weighted by their deltaSVM score, to up-weight
123 variants with greater predicted effects on gene regulatory activity. We supplemented our
124 expression analyses with the software MetaXcan [23] to test whether the predicted expression of
125 genes in each individual could be associated with BP. Prior to the novel BP gene discovery
126 analyses of tissue involvement, and as a positive control, we first examined genes for the cardiac
127 trait QT interval for which there is strong functional evidence of primarily heart involvement,
128 using data from the Atherosclerosis Risk in Communities (ARIC) [24,25] study. Finally, we
129 examined the effects of putative regulatory variation for monogenic BP syndrome genes, all
130 known to be renal or adrenal disorders, in four available kidney cell types to test for a group
131 effect on BP.

132 Our results demonstrate the feasibility of identifying BP genes by tissue, which we expect
133 will facilitate more comprehensive functional analyses of BP genes and BP control mechanisms.
134

135 **Results**

136 We conducted several tissue-specific analyses to identify tissues and genes of interest for
137 BP regulation using the GERA study. We initially focused on identifying tissues relevant to BP
138 GWAS loci, and subsequently expanded on this by using tissue-specific information to analyze
139 putative CRE variation of genes in these tissues. The aim was to identify specific genes and
140 variants of interest at these GWAS loci. We also studied putative regulatory variation at 20
141 monogenic syndromic hypertension and hypotension genes in several kidney cell types. To
142 begin, our study also includes an analysis of QT interval as a positive control to demonstrate the
143 identification of well-characterized genes for that trait.

144

145 **Partitioned heritability of BP**

146 We examined heritability for SBP and DBP using 80,792 GERA EUR subjects with
147 stratified LD score regression (LDSC) across several functional categories [15], to identify
148 functional categories in which BP heritability was enriched. We found that the top-ranked
149 enriched categories were enhancer-associated histone marks H3K27ac, H3K4me1, and the Hnisz
150 “super-enhancer” category (Tables S1-S2). This is in accordance with a previous study in which
151 BP heritability was determined to be mostly from within DNaseI hypersensitivity sites [26], and,
152 taken together with the results of the eQTL enrichment analyses, supports the study of regulatory
153 elements in specific tissues of interest for BP.

154

155 **Constructing CRE maps**

156 With knowledge of tissues highly relevant to characterizing BP GWAS loci, our next aim
157 was to test each gene’s putative cis-regulatory variation for association with both gene
158 expression and BP, in a tissue-specific context. This is expected to assist in identifying novel
159 genes of interest, as well as provide tissue- or cell-type-specific information about known genes.

160 We first constructed CRE maps for the aorta and tibial arteries, as well as four kidney cell
161 types (renal cortical epithelial cell, glomerular endothelial cell, epithelial cell of proximal tubule,
162 and glomerular visceral epithelial cell), because of the known involvement of the kidney in blood
163 pressure regulation [17,18], using ENCODE data (Table 1) (though many monogenic forms of
164 blood pressure disorders occur due to an effect of the adrenal gland on renal function [19]).

165 These CRE maps were completed as an extension of the construction of our recent cardiac CRE
166 map [27]. We specifically focused on identifying putative enhancers for the aorta and tibial
167 arteries (see Methods). We subsequently used these maps for training with the software gkm-

168 SVM [28,29] in order to generate deltaSVM functional scores for all non-coding variants from
169 the 1000 Genomes European ancestry sample, to be tested for association on a gene-level basis.
170 The performance for each model is available in Table S3 (AUC range: 0.84-0.96), with the best
171 performance in the renal cell types. A possible reason for the improved performance of the renal
172 cell types is that the data were from individual cell types as opposed to a mixture of cell types
173 comprising the arteries. The magnitude of the deltaSVM score for a variant reflects its predicted
174 impact on regulatory functional activity, while its sign reflects the prediction with respect to the
175 reference allele. Therefore, to represent the predicted impact of each variant irrespective of
176 allele, we show the distributions of the absolute values of the deltaSVM scores for the arteries
177 and kidney cell types in Fig 1.

178

179 **Table 1. Summary of datasets for analysis in this study.**

Study/Project	Dataset	Description	Analysis
ENCODE Project			
Artery	Open Chromatin		
	ENCSR000EIH	aortic smooth muscle cell	Aorta SKAT analyses groupings
	ENCSR000EMC	aortic adventitia cell	Aorta SKAT analyses groupings
	ENCSR000EOG	pulmonary artery endothelial cell	Aorta SKAT analyses groupings
	ENCSR000EOH	pulmonary artery fibroblast	Aorta SKAT analyses groupings
	ENCSR630REB	tibial artery	Aorta, Tibial Artery SKAT analyses groupings
	Histone Modification		
	ENCSR519CFV	aorta H3K27Ac	Aorta SKAT analyses groupings
	ENCSR015GFK	aorta H3K27Ac	Aorta SKAT analyses groupings
	ENCSR318HUC	aorta H3K27Ac	Aorta SKAT analyses groupings

	ENCSR069UMW	aorta H3K27Ac	Aorta SKAT analyses groupings
	ENCSR322TJD	aorta H3K27Ac	Aorta SKAT analyses groupings
	ENCSR233LCT	tibial artery H3K4me1	Tibial Artery SKAT analyses groupings
Kidney	Open Chromatin		
	ENCSR000EOK	renal cortical epithelial cell	Kidney SKAT analyses groupings
	ENCSR000EOM	glomerular endothelial cell	Kidney SKAT analyses groupings
	ENCSR000EPW	proximal tubule epithelial cell	Kidney SKAT analyses groupings
	ENCSR785BDQ	glomerular visceral epithelial cell (3yo)	Kidney SKAT analyses groupings
GERA	Genotypes, BP phenotype	71404 European-Ancestry individuals	SKAT, BP traits
	Summary statistics	80,792 European-Ancestry individuals	Partitioned heritability analyses, MetaXcan
ARIC	Genotypes, QT interval	9,083 European-Ancestry individuals	SKAT, QT interval
	Summary statistics	9,083 European-Ancestry individuals	Partitioned heritability analyses, MetaXcan
GTEX	Genotypes, Expression		
	Aorta	197 samples	SKAT, expression (for BP)
	Tibial Artery	285 samples	SKAT, expression (for BP)
	Heart Atrial Appendage	159 samples	SKAT, expression (for QT)
	Heart Left Ventricle	190 samples	SKAT, expression (for QT)

180

181 **Fig 1. Distributions of deltaSVM scores for each tissue or cell type.**

182

183 **Tissue-specific gene identification**

184 As our emphasis in this section is to connect a gene's putative CRE variants to both a

185 phenotype of interest and to its expression in relevant tissues (Fig 2), we first describe the overall

186 analysis scheme as applied to a general phenotype of interest. We then describe how we applied

187 these analyses, first to the QT interval in the ARIC study, as proof of principle to demonstrate
188 the utility of these analyses, and then to our BP traits of interest in the GERA study.

189

190 **Fig 2. Overview of CRE SKAT analysis.**

191

192 We defined a gene's "cis"-regulatory variants in this analysis as those variants falling in
193 putative CREs within 50Kb of the gene's start and end. We tested their aggregate effect for each
194 gene using SKAT [22], for association tests with the phenotype(s) of interest in the relevant
195 population, SBP and DBP in the GERA study, and QT interval in the ARIC study. SKAT is a
196 test that has generally been used to study groups of variants together and is useful when variants
197 can have bidirectional effects; rare variants are more highly weighted than common variants by
198 default. In addition to the default weights, we ran the analysis using equal weights for all
199 variants. We finally used the tissue- or cell-type-specific deltaSVM scores for the analyzed
200 variants as weights for a customized SKAT test; the score scaling with the effect of the variant
201 on functional regulatory activity.

202 We then tested these groupings with expression data from GTEx v6p in the tissues of
203 interest to link variants in the genes of interest to their gene expression. The groupings tested in
204 the GTEx data with expression were not always identical to the groupings tested in the GERA or
205 ARIC studies because of differences in imputation quality score filtering, missingness of
206 genotypes from genotype probabilities to hard call conversion, and variants present in the
207 reference populations studied. However, this analysis still connects a given gene to its expression
208 and to the phenotype via a highly overlapping set of CRE variants, and was completed this way
209 to test the most complete set of variants available meeting our criteria. In addition to testing

210 putative regulatory variants with gene expression in GTEx, we used the recently developed
211 MetaXcan [23] software to augment SKAT to identify any new associations by this method.
212 This software predicts the association of gene expression with a phenotype, given genotypes for
213 the population of interest based on training from reference genotypes and expression data.

214

215 **Analysis of CREs in QT interval**

216 As mentioned earlier, we considered the cardiac trait QT interval first to
217 demonstrate proof of concept for tissue-specific gene identification. The QT interval is the time
218 in ms between the onset of the Q wave and the end of the T wave in the surface 12-lead
219 electrocardiogram [30], which has ~30% heritability [31–34]. In our recent work, we have
220 demonstrated that a significant proportion of the heritability is explained by predicted cardiac
221 regulatory variants [27]. We analyzed the genes at previously published QT interval GWAS loci
222 to determine whether or not a heart-specific effect could be observed. Two of the genes with
223 major effects in a GWAS and functionally validated in QT interval heritability are *NOS1AP* [34–
224 36] and *SCN5A* [36,37]. The full results are presented in the Text S1 results, Table S4, and Figs
225 S1 and S2; to summarize here briefly, we aimed to discover if a heart-specific effect could be
226 revealed for each of these two genes. We observed a heart-specificity for *SCN5A*; *NOS1AP*
227 showed signal across all the cell types in the equal-weighted analyses, though considerably
228 attenuated in some of the deltaSVM-weighted non-heart tissues. Considering both sets of effects,
229 certainly variants with detectable signals present in open chromatin regions specific to the
230 relevant tissue/cell types will allow the detection of a tissue-specific signal, as for *SCN5A*. It also
231 appears, however, that gene-level signals may be captured by analyses in which all variants are
232 weighted equally, and when local open chromatin boundaries across tissues/cell types overlap

233 considerably, especially when variants with strong signals are present within these shared
234 regions. In this situation, we will not necessarily be able to differentiate between different
235 tissue/cell types. Weighting with the tissue-specific deltaSVM scores introduces an additional
236 tier of tissue specificity and is based on global open chromatin differences, and is also not
237 expected to be impacted by linkage disequilibrium (LD) in the ways that the other two weighting
238 schemes are, as the generation of the scores are only dependent on sequence context. Finally,
239 using the default weights shows least concordance with the other two sets of results, indicating
240 that for this analysis, rare variants are not driving the signal as compared to common variants.
241 This is as expected, as we prioritized non-coding variation for these analyses, and the rare
242 variants with larger effects expected to make a detectable contribution are more likely to be in
243 the exome.

244

245 **Analysis of CREs at GWAS loci for BP regulation**

246 We then applied these analyses to the tissues of interest for BP regulation, namely aorta,
247 tibial artery, and four kidney cell types, in a subset of 71,404 unrelated GERA EUR individuals.
248 We tested 14,548 genes expressed at $RPKM \geq 0.3$ in 197 aorta GTEx samples and 13,963 genes
249 expressed at $RPKM \geq 0.3$ in 285 tibial artery GTEx samples for the SKAT analyses. We used
250 summary statistics available from 80,792 individuals[38] to maximize the sample size for which
251 the MetaXcan analyses were run, for the aorta and tibial arteries. Results for each of the arteries
252 are presented in Tables 2-5. In some cases, shared variants drive the positive signal for multiple
253 genes at the same locus; expression in the relevant tissue or cell type may pinpoint a specific
254 gene. However, it may be noted that the genes *CERS5*, *COX14*, and *RP4-605O3.4* are all present
255 at the same locus in the arteries (Tables 2-5), but evidence of expression association is present

256 for many of these genes; this may be indicative of proximal variants affecting different genes, or
257 pleiotropy of single variants affecting expression of multiple genes.

258

259

Table 2. Aorta SBP SKAT and MetaXcan results.

Gene	N.sbp p	p.sbp.ds svm	p.sbp.eq	p.sbp.de f	N.GTEx	p.GTEx. ds v m	p.GTEx. eq	p.GTEx. def	N.MetX	p.MetX	previous
<i>NR3C1</i>	8	5.44 x 10 ⁻⁶	7.19 x 10 ⁻⁶	0.064	7	0.002	0.001	0.529	-	-	FALSE
<i>WBP1L</i>	39	6.66 x 10 ⁻⁶	5.91 x 10 ⁻⁷	0.085	37	2.72 x 10 ⁻⁴	4.76 x 10 ⁻⁴	0.137	21	1.35 x 10 ⁻⁵	FALSE
<i>SBF2</i>	34	9.27 x 10 ⁻⁶	7.60 x 10 ⁻⁶	2.58 x 10 ⁻⁵	34	0.003	4.71 x 10 ⁻⁴	0.022	17	2.01 x 10 ⁻⁵	TRUE
<i>CLCN6</i>	28	1.07 x 10 ⁻⁵	1.73 x 10 ⁻⁸	2.32 x 10 ⁻⁶	34	0.014	0.003	2.63 x 10 ⁻⁴	19	0.028	TRUE
<i>MTHFR</i>	29	1.08 x 10 ⁻⁵	3.35 x 10 ⁻⁸	4.22 x 10 ⁻⁶	35	1.85 x 10 ⁻⁵	3.15 x 10 ⁻⁵	0.015	2	0.001	TRUE
<i>C10orf32</i>	17	1.68 x 10 ⁻⁵	5.41 x 10 ⁻⁷	0.026	15	4.63 x 10 ⁻¹⁵	7.10 x 10 ⁻¹³	0.059	-	-	TRUE
<i>RP4-605O3.4</i>	7	4.51 x 10 ⁻⁵	3.47 x 10 ⁻⁴	0.069	5	0.016	5.11 x 10 ⁻⁴	0.425	-	-	FALSE
<i>COX14</i>	6	4.51 x 10 ⁻⁵	1.47 x 10 ⁻⁴	0.069	4	7.64 x 10 ⁻⁴	5.97 x 10 ⁻⁵	0.338	5	0.034	TRUE
<i>CSK</i>	3	6.34 x 10 ⁻⁵	5.65 x 10 ⁻⁵	0.110	3	3.18 x 10 ⁻⁵	2.49 x 10 ⁻⁵	0.579	17	1.24 x 10 ⁻⁴	TRUE
<i>ULK3</i>	2	6.34 x 10 ⁻⁵	6.42 x 10 ⁻⁵	0.952	3	0.001	7.02 x 10 ⁻⁴	0.164	9	9.14 x 10 ⁻⁴	TRUE

260 N.sbp, number of variants analyzed in SKAT analysis of SBP in GERA; p.sbp.*, p-values from SKAT analysis of BP in GERA with
 261 deltasvm (ds v m), eq (equal), or default (def) weights; N.GTEx, number of variants analyzed in SKAT analysis of expression in GTEx
 262 p.GTEx.*, p-values from SKAT analysis of expression in GTEx with deltasvm (ds v m), eq (equal), or default (def) weights; N.MetX,
 263 number of variants used in MetaXcan prediction results; p.MetX, MetaXcan p-value; previous, TRUE if found at a previously
 264 identified GWAS locus from the UKB list, FALSE otherwise

265

266 **Table 3. Aorta DBP SKAT and MetaXcan results.**

Gene	N.db p	p.dbp.ds vm	p.dbp.eq	p.dbp.def	N.GTE x	p.GTEx.d svm	p.GTEx.eq	p.GTEx.d ef	N.Me tX	p.Met X	previous
<i>NOV</i>	10	1.40 x 10 ⁻⁸	1.98 x 10 ⁻⁸	0.664	7	4.26 x 10 ⁻⁵	4.04 x 10 ⁻⁵	1	99	0.102	TRUE
<i>ULK4</i>	5	1.75 x 10 ⁻⁸	5.04 x 10 ⁻⁸	0.001	5	2.49 x 10 ⁻²²	2.95 x 10 ⁻²²	0.094	42	2.95 x 10 ⁻¹⁰	TRUE
<i>COX14</i>	6	1.35 x 10 ⁻⁷	7.49 x 10 ⁻⁷	0.138	4	7.64 x 10 ⁻⁴	5.97 x 10 ⁻⁵	0.338	5	0.003	TRUE
<i>IGFBP3</i>	4	3.41 x 10 ⁻⁷	7.67 x 10 ⁻⁸	0.006	3	0.011	0.014	0.842	-	-	FALSE
<i>SDCCAG8</i>	10	6.92 x 10 ⁻⁷	1.74 x 10 ⁻⁶	0.359	10	5.57 x 10 ⁻⁶	2.26 x 10 ⁻⁸	0.481	9	2.95 x 10 ⁻⁹	TRUE
<i>CEP170</i>	6	7.06 x 10 ⁻⁷	1.49 x 10 ⁻⁶	8.44 x 10 ⁻⁷	7	2.52 x 10 ⁻⁴	1.72 x 10 ⁻⁴	3.59 x 10 ⁻⁴	19	0.002	TRUE
<i>CSK</i>	3	9.93 x 10 ⁻⁷	8.91 x 10 ⁻⁷	0.068	3	3.18 x 10 ⁻⁵	2.49 x 10 ⁻⁵	0.579	17	7.93 x 10 ⁻⁵	TRUE
<i>ULK3</i>	2	9.93 x 10 ⁻⁷	9.76 x 10 ⁻⁷	0.826	3	0.001	7.02 x 10 ⁻⁴	0.164	9	2.09 x 10 ⁻⁴	TRUE
<i>SCAMP5</i>	15	3.98 x 10 ⁻⁶	1.23 x 10 ⁻⁵	0.009	13	6.70 x 10 ⁻⁸	2.97 x 10 ⁻¹¹	4.15 x 10 ⁻¹⁰	14	1.93 x 10 ⁻⁵	FALSE
<i>RPP25</i>	3	4.67 x 10 ⁻⁶	4.76 x 10 ⁻⁶	0.928	2	3.58 x 10 ⁻¹⁷	3.93 x 10 ⁻¹⁷	4.79 x 10 ⁻⁹	-	-	FALSE ^a
<i>HDGFRP3</i>	3	1.52 x 10 ⁻⁵	1.21 x 10 ⁻⁵	0.578	3	3.90 x 10 ⁻⁷	1.35 x 10 ⁻⁶	0.042	48	0.001	TRUE
<i>COX4I2</i>	31	2.12 x 10 ⁻⁵	1.36 x 10 ⁻⁵	0.003	7	0.002	8.86 x 10 ⁻⁴	0.729	-	-	FALSE
<i>SBF2</i>	34	2.27 x 10 ⁻⁵	1.37 x 10 ⁻⁵	0.004	34	0.003	4.71 x 10 ⁻⁴	0.022	17	7.41 x 10 ⁻⁴	TRUE
<i>RNF40</i>	6	2.39 x	3.72 x	0.242	5	2.74 x 10 ⁻	2.50 x 10 ⁻⁴	0.338	-	-	TRUE

		10^{-5}	10^{-5}			4						
<i>RP11-382A20.2</i>	2	4.82×10^{-5}	4.94×10^{-5}	0.627	2	0.005	0.004	0.066	-	-	FALSE	
<i>RNASEH2C</i>	1	7.50×10^{-5}	7.50×10^{-5}	7.50×10^{-5}	1	0.002	0.002	0.002	11	0.690	TRUE	
<i>SLC25A37</i>	31	1.16×10^{-4}	1.80×10^{-4}	0.121	28	4.01×10^{-4}	2.07×10^{-4}	0.537	13	0.169	FALSE	
<i>SENP2</i>	8	1.36×10^{-4}	1.09×10^{-4}	0.711	7	0.004	0.002	0.202	43	0.050	TRUE	
<i>VPS37B</i>	11	1.46×10^{-4}	2.82×10^{-5}	7.73×10^{-5}	10	8.50×10^{-6}	8.90×10^{-7}	2.03×10^{-4}	16	3.43×10^{-5}	FALSE	
<i>ZNF652</i>	1	1.69×10^{-4}	1.69×10^{-4}	1.69×10^{-4}	1	8.73×10^{-4}	8.73×10^{-4}	8.73×10^{-4}	7	1.53×10^{-5}	TRUE	
<i>NR3C1</i>	8	2.21×10^{-4}	2.14×10^{-4}	0.018	7	0.002	0.001	0.529	-	-	FALSE	
<i>PPCDC</i>	14	2.25×10^{-4}	6.05×10^{-5}	0.009	12	6.68×10^{-8}	4.20×10^{-8}	4.82×10^{-8}	38	0.002	FALSE	

267 N.dbp, number of variants analyzed in SKAT analysis of DBP in GERA; p.dbp.*, p-values from SKAT analysis of DBP in GERA

268 with deltasvm (dsvm), eq (equal), or default (def) weights; N.GTEx, number of variants analyzed in SKAT analysis of expression in

269 GTEx; p.GTex.*, p-values from SKAT analysis of expression in GTEx with deltasvm (dsvm), eq (equal), or default (def) weights;

270 N.MetX, number of variants used in MetaXcan prediction results; p.MetX, MetaXcan p-value; previous, TRUE if found at a

271 previously identified GWAS locus from the UKB list, FALSE otherwise

272 ^a *RPP25* has been previously identified in GWAS, but our method to identify genes at GWAS loci was conservative and missed this

273 gene; see text

274

Table 4. Tibial Artery SBP SKAT and MetaXcan results.

Gene	N.sbp	p.sbp.dsv m	p.sbp.eq	p.sbp.def	N.GTE x	p.GTEx.ds vm	p.GTEx.e q	p.GTEx.d ef	N.Me tX	p.Met X	previous
<i>CLCN6</i>	24	9.65 x 10 ⁻⁹	6.54 x 10 ⁻⁸	2.62 x 10 ⁻⁴	28	5.07 x 10 ⁻⁸	6.14 x 10 ⁻⁸	3.58 x 10 ⁻⁶	10	2.67 x 10 ⁻⁹	TRUE
<i>MTHFR</i>	24	9.65 x 10 ⁻⁹	6.54 x 10 ⁻⁸	2.62 x 10 ⁻⁴	28	8.79 x 10 ⁻⁸	1.13 x 10 ⁻⁵	0.161	35	0.076	TRUE
<i>C10orf32</i>	8	6.98 x 10 ⁻⁸	2.08 x 10 ⁻⁸	0.004	7	3.07 x 10 ⁻¹⁴	2.05 x 10 ⁻¹⁸	7.30 x 10 ⁻⁸	-	-	TRUE
<i>HOXC- AS1</i>	11	4.00 x 10 ⁻⁵	1.42 x 10 ⁻⁴	0.638	14	3.24 x 10 ⁻⁶	6.04 x 10 ⁻⁹	0.194	-	-	FALSE
<i>CCDC6</i>	37	4.49 x 10 ⁻⁵	7.66 x 10 ⁻⁵	0.151	37	3.32 x 10 ⁻⁴	3.81 x 10 ⁻⁴	0.035	30	1.08 x 10 ⁻⁴	FALSE
<i>ATE1</i>	15	5.67 x 10 ⁻⁵	1.06 x 10 ⁻⁴	0.583	17	8.74 x 10 ⁻⁴	2.29 x 10 ⁻⁴	0.086	71	0.816	FALSE
<i>SOX7</i>	20	6.76 x 10 ⁻⁵	6.42 x 10 ⁻⁵	0.036	18	0.007	0.016	0.121	-	-	FALSE
<i>AGT</i>	14	8.29 x 10 ⁻⁵	4.69 x 10 ⁻⁵	0.090	14	0.001	5.87 x 10 ⁻⁷	6.97 x 10 ⁻⁶	24	0.937	TRUE
<i>NT5C2</i>	25	8.75 x 10 ⁻⁵	8.58 x 10 ⁻⁴	1.44 x 10 ⁻⁴	22	0.004	0.008	0.163	7	0.006	TRUE
<i>DHX33</i>	28	9.67 x 10 ⁻⁵	1.34 x 10 ⁻⁴	0.372	29	3.67 x 10 ⁻⁷	5.69 x 10 ⁻⁸	0.033	7	0.277	FALSE
<i>SFMBT1</i>	8	1.15 x 10 ⁻⁴	7.26 x 10 ⁻⁴	0.521	8	0.003	0.023	0.363	13	0.006	FALSE
<i>NPPA</i>	15	1.16 x 10 ⁻⁴	2.86 x 10 ⁻⁷	0.003	16	0.007	0.012	0.025	-	-	TRUE
<i>ERII</i>	29	1.33 x 10 ⁻⁴	2.37 x 10 ⁻⁴	0.280	27	0.001	0.002	0.185	-	-	FALSE
<i>BCL2L2</i>	6	1.59 x 10 ⁻⁴	2.67 x 10 ⁻⁴	0.009	5	5.20 x 10 ⁻⁴	0.006	0.356	-	-	FALSE
<i>BCL2L2-</i>	6	1.59 x 10 ⁻⁴	2.67 x	0.009	6	0.013	0.104	0.717	-	-	FALSE

<i>PABPN1</i>			10^{-1}									
<i>NPPA-AS1</i>	17	1.66×10^{-4}	2.92×10^{-7}	0.003	19	1.89×10^{-23}	5.62×10^{-24}	4.67×10^{-10}	-	-	FALSE	
<i>Clorf132</i>	26	1.74×10^{-4}	5.09×10^{-6}	0.055	26	0.009	1.30×10^{-4}	0.400	-	-	FALSE	
<i>RPAIN</i>	12	1.89×10^{-4}	2.89×10^{-4}	0.627	12	0.003	7.26×10^{-4}	0.479	5	0.546	FALSE	
<i>CTC-524C5.2</i>	12	1.89×10^{-4}	2.89×10^{-4}	0.627	12	27	2.97×10^{-5}	0.301	-	-	FALSE	

276 N.sbp, number of variants analyzed in SKAT analysis of SBP in GERA; p.sbp.*, p-values from SKAT analysis of SBP in GERA with
 277 deltasvm (dsvm), eq (equal), or default (def) weights; N.GTEx, number of variants analyzed in SKAT analysis of expression in GTEx;
 278 p.GTEx.*, p-values from SKAT analysis of expression in GTEx with deltasvm (dsvm), eq (equal), or default (def) weights; N.MetX,
 279 number of variants used in MetaXcan prediction results; p.MetX, MetaXcan p-value; previous, TRUE if found at a previously
 280 identified GWAS locus from the UKB list, FALSE otherwise

281

282 **Table 5. Tibial Artery DBP SKAT and MetaXcan results.**

Gene	N.d bp	p.dbp.dsv m	p.dbp.eq	p.dbp.def	N.GT Ex	p.GTEx.dsv m	p.GTEx.e q	p.GTEx. def	N.Met X	p.Met X	previous
<i>NOV</i>	17	1.70×10^{-8}	1.15×10^{-8}	0.731	16	7.00×10^{-6}	7.95×10^{-6}	0.943	34	1.44×10^{-6}	TRUE
<i>CERS5</i>	6	1.66×10^{-6}	3.75×10^{-6}	0.004	2	3.41×10^{-4}	3.90×10^{-4}	3.55×10^{-4}	33	1.17×10^{-4}	TRUE
<i>COX14</i>	6	1.66×10^{-6}	3.75×10^{-6}	0.004	2	4.26×10^{-5}	1.62×10^{-5}	6.54×10^{-4}	33	0.004	TRUE
<i>RP4-605O3.4</i>	6	1.66×10^{-6}	3.75×10^{-6}	0.004	2	1.57×10^{-7}	1.76×10^{-7}	2.36×10^{-7}	-	-	FALSE

<i>JAG1</i>	37	4.59 x 10 ⁻⁶	6.04 x 10 ⁻⁶	0.032	41	0.018	0.003	0.304	-	-	TRUE
<i>ULK4</i>	12	5.69 x 10 ⁻⁶	2.60 x 10 ⁻¹⁰	0.008	11	2.78 x 10 ⁻¹¹	3.61 x 10 ⁻¹⁹	0.158	50	5.40 x 10 ⁻¹²	TRUE
<i>IPO9</i>	18	6.08 x 10 ⁻⁶	1.65 x 10 ⁻⁴	0.416	17	0.009	5.04 x 10 ⁻⁴	8.59 x 10 ⁻⁴	33	0.952	FALSE
<i>LIMA1</i>	9	1.86 x 10 ⁻⁵	3.60 x 10 ⁻⁵	0.638	6	0.008	0.003	0.926	6	0.120	TRUE
<i>NAVI</i>	44	3.83 x 10 ⁻⁵	7.79 x 10 ⁻⁴	0.554	36	2.64 x 10 ⁻⁴	0.009	0.010	-	-	FALSE
<i>COX4I2</i>	13	3.92 x 10 ⁻⁵	1.88 x 10 ⁻⁵	0.360	4	1.94 x 10 ⁻⁴	1.82 x 10 ⁻⁴	0.656	-	-	FALSE
<i>UBN1</i>	11	4.23 x 10 ⁻⁵	1.10 x 10 ⁻⁵	0.417	10	3.19 x 10 ⁻⁷	1.52 x 10 ⁻⁷	0.299	9	1.51 x 10 ⁻⁵	TRUE
<i>SCAMP5</i>	7	5.29 x 10 ⁻⁵	7.75 x 10 ⁻⁵	0.331	5	4.47 x 10 ⁻¹¹	1.36 x 10 ⁻⁷	5.09 x 10 ⁻⁵	35	8.04 x 10 ⁻⁸	FALSE
<i>RNASEH2C</i>	3	5.88 x 10 ⁻⁵	5.65 x 10 ⁻⁵	0.056	1	0.006	0.006	0.006	10	0.831	TRUE
<i>CEP120</i>	8	6.36 x 10 ⁻⁵	6.87 x 10 ⁻⁷	0.003	8	4.43 x 10 ⁻⁵	3.42 x 10 ⁻⁵	0.123	12	1.63 x 10 ⁻⁵	TRUE
<i>CLCN6</i>	24	7.30 x 10 ⁻⁵	3.87 x 10 ⁻⁵	0.001	28	5.07 x 10 ⁻⁸	6.14 x 10 ⁻⁸	3.58 x 10 ⁻⁶	10	1.16 x 10 ⁻⁵	TRUE
<i>MTHFR</i>	24	7.30 x 10 ⁻⁵	3.87 x 10 ⁻⁵	0.001	28	8.79 x 10 ⁻⁸	1.13 x 10 ⁻⁵	0.161	35	0.086	TRUE
<i>SDCCAG8</i>	6	9.04 x 10 ⁻⁵	5.15 x 10 ⁻⁵	0.130	7	4.55 x 10 ⁻⁵	1.73 x 10 ⁻⁵	0.273	17	8.08 x 10 ⁻⁸	TRUE
<i>ACSF3</i>	9	1.05 x 10 ⁻⁴	2.68 x 10 ⁻⁴	5.00 x 10 ⁻⁴	11	0.003	8.21 x 10 ⁻⁵	0.548	56	0.328	FALSE
<i>RPP25</i>	4	1.11 x 10 ⁻⁴	9.49 x 10 ⁻⁵	0.559	2	4.36 x 10 ⁻¹²	2.56 x 10 ⁻¹²	0.001	-	-	FALSE ^a
<i>COX5A</i>	4	1.11 x 10 ⁻⁴	9.49 x 10 ⁻⁵	0.559	2	0.004	0.004	0.053	-	-	TRUE
<i>MKL2</i>	31	1.12 x	1.34 x	0.031	25	0.017	0.010	0.020	-	-	FALSE

		10^{-4}	10^{-4}									
<i>VPS37B</i>	11	1.40×10^{-4}	0.002	5.38×10^{-4}	9	2.08×10^{-15}	1.13×10^{-14}	1.12×10^{-14}	37	0.007	FALSE	
<i>FAM20B</i>	13	1.91×10^{-4}	0.004	0.690	10	3.35×10^{-5}	1.17×10^{-13}	0.337	17	0.030	FALSE	
<i>PLA2G4B</i>	10	2.10×10^{-4}	2.18×10^{-4}	1	10	3.41×10^{-7}	4.20×10^{-7}	0.320	16	0.005	FALSE	
<i>ALDH2</i>	3	2.15×10^{-4}	9.05×10^{-5}	0.658	2	5.44×10^{-8}	3.91×10^{-8}	1.26×10^{-6}	8	0.002	FALSE	
<i>DUSP15</i>	15	2.39×10^{-4}	1.57×10^{-4}	0.008	4	0.018	0.038	0.923	5	0.028	FALSE	
<i>RP11-65J21.3</i>	8	2.40×10^{-4}	1.88×10^{-4}	0.660	5	0.015	0.020	0.382	-	-	FALSE	
<i>MAPKBPI</i>	8	2.52×10^{-4}	2.34×10^{-4}	0.077	6	7.04×10^{-5}	6.34×10^{-5}	0.056	23	0.019	FALSE	
<i>JMJD7</i>	7	2.54×10^{-4}	2.38×10^{-4}	0.077	6	1.47×10^{-9}	4.30×10^{-8}	0.203	20	3.34×10^{-4}	FALSE	
<i>CENPW</i>	3	2.79×10^{-4}	2.43×10^{-4}	0.075	2	0.004	0.004	0.066	21	0.002	FALSE	
<i>ATF1</i>	6	2.81×10^{-4}	3.36×10^{-4}	0.639	2	4.80×10^{-19}	5.97×10^{-19}	9.06×10^{-5}	14	2.13×10^{-5}	FALSE	

283 N.dbp, number of variants analyzed in SKAT analysis of DBP in GERA; p.dbp.*, p-values from SKAT analysis of DBP in GERA
 284 with deltasvm (dsvm), eq (equal), or default (def) weights; N.GTEx, number of variants analyzed in SKAT analysis of expression in
 285 GTEx; p.GTEx.*, p-values from SKAT analysis of expression in GTEx with deltasvm (dsvm), eq (equal), or default (def) weights;
 286 N.MetX, number of variants used in MetaXcan prediction results; p.MetX, MetaXcan p-value; previous, TRUE if found at a
 287 previously identified GWAS locus from the UKB list, FALSE otherwise

288 ^a *RPP25* has been previously identified in GWAS, but our method to identify genes at GWAS loci was conservative and missed this
289 gene; see text

290

291

292

293 On the whole, the 25 genes reported here across aorta and tibial artery genes have been
294 identified at previous BP loci [39]. While there are several genes in each analysis with interesting
295 associations with BP traits, here we only highlight the genes that have statistical significance of p
296 $< 1 \times 10^{-4}$ for both expression and BP in the aorta analyses (Tables 2-3). In our previous work,
297 the aorta was demonstrated as the greatest outlier in an analysis of eQTL enrichment among
298 GTEx tissues for BP traits [38]. These genes include: *MTHFR*[40,41] (SBP), *C10orf32*[40]
299 (SBP), *CSK* (SBP), *NOV*[42] (DBP), *ULK4*[43] (DBP), *SDCCAG8* (DBP), *SCAMP5* (DBP),
300 *RPP25* (DBP), *HDGFRP3* (DBP), *VPS37B* (DBP), and *PPCDC* (DBP). Most of these genes are
301 present at or near previously replicated BP GWAS loci; *SDCCAG8* was identified as part of
302 Hoffmann et al.[38] It is noteworthy that both *SCAMP5* and *PPCDC* are neighboring genes, but
303 have independent expression support in the same tissue.

304

305 **Analysis of CREs at GWAS loci for monogenic BP genes**

306 We also studied the genes involved in monogenic forms of hypotension or hypertension
307 in four kidney cell types available from the ENCODE project (see earlier). As the expression
308 data available for kidney are insufficient, we studied each cell type individually and carried out
309 only SKAT analyses for these genes; the results are in Tables 6-7. The most notable result is that
310 of *CYP17A1*, which shows an effect ($p \sim 10^{-5} - 10^{-7}$) across all four cell types in the unweighted
311 variants analyses for SBP only, and more specifically, only in the glomerular endothelial cell
312 (ENCSR000EOM) ($p.\text{SKAT.dsvm.ENCSR000EOM} = 3.64 \times 10^{-8}$) in the deltaSVM-weighted
313 results. However, as *C10orf32* is a gene of interest at the same locus, based on the artery results
314 above, we examined and noted that the results are somewhat similar for this gene, although not

315 as striking, due to variant set sharing in the SKAT analyses for these genes (deltaSVM p-values:
316 ENCSR000EOK, 8 variants, $p=1.87 \times 10^{-3}$; ENCSR000EOM, 12 variants, $p=2.87 \times 10^{-5}$;
317 ENCSR000EPW, 10 variants, $p=6.33 \times 10^{-4}$; ENCSR786BDQ, 9 variants, $p=0.031$). The
318 breakdown of individual variants analyzed for these two genes is in Table S5. The variant
319 rs3824754, with an SBP association $p=1.40 \times 10^{-11}$, appears in the groupings of both genes for all
320 four cell types, but has the highest deltaSVM magnitude in the endothelial cell. Additionally,
321 there is a set of four variants with SBP association ($p<1 \times 10^{-4}$; rs284853, rs284854, rs284855,
322 rs284856) which only appear in the ENCSR000EOM groupings. We observed that while
323 *CYP17A1* was similarly associated with, or demonstrated evidence of association with, SBP in
324 the deltaSVM and unweighted variants analysis (aorta deltaSVM $p=2.06 \times 10^{-5}$, 34 variants;
325 tibial artery deltaSVM $p=1.40 \times 10^{-8}$, 15 variants), the analysis of variants in GTEx (33 variants
326 for aorta and 14 variants for tibial artery) did not reflect any significant association ($p>0.01$). In
327 contrast, *C10orf32* demonstrated association with SBP (aorta deltaSVM $p=1.68 \times 10^{-5}$, 17
328 variants; tibial artery deltaSVM $p=6.98 \times 10^{-8}$, 8 variants, Tables 2 and 4) and with expression in
329 GTEx (aorta deltaSVM $p=4.63 \times 10^{-15}$, 15 variants; tibial artery deltaSVM $p=3.07 \times 10^{-14}$, 7
330 variants, Tables 2 and 4). The same four variants unique to the ENCSR000EOM groupings
331 above with strong associations with SBP are also present in the artery groupings. Three of these
332 variants (rs284854, rs284855, rs284856) are eQTLs for *C10orf32* in the aorta and tibial arteries;
333 these variants, however, do not show association with *CYP17A1* expression in these tissues (all p
334 > 0.03 for aorta, all $p > 0.21$ for tibial artery, from eQTL data available from the GTEx portal
335 (<https://www.gtexportal.org/>), accessed 09/08/17). Additionally, as the *CYP17A1* gene primarily
336 demonstrates an adrenal effect in the monogenic disorder [44], we also examined the
337 associations of these three variants in the GTEx portal with adrenal gland expression data for

338 both genes; all have $p > 0.26$ for *CYP17A1* and $p > 0.04$ for *C10orf32*. This may reflect an
339 endothelial-cell-specific effect for *C10orf32* rather than a tissue-type effect, especially as this
340 locus has been identified in several previous BP GWAS studies, [40,43,45–47]; it may also not
341 be very informative for the kidney, though suitable expression data for kidney would be required
342 to assess this.

343

344 **Table 6. Kidney SBP SKAT results.**

Gene	Experiment ^a	N.sbp	p.sbp.dsval	p.sbp.eq	p.sbp.def
<i>BSND</i>	ENCSR000EOK	13	0.836	0.796	0.611
<i>CASR</i>	ENCSR000EOK	21	0.628	0.794	0.605
<i>CLCNKA</i>	ENCSR000EOK	8	0.444	0.502	0.426
<i>CLCNKB</i>	ENCSR000EOK	9	0.475	0.382	0.454
<i>CUL3</i>	ENCSR000EOK	18	0.318	0.388	0.049
<i>CYP11B1</i>	ENCSR000EOK	12	0.020	0.016	0.001
<i>CYP11B2</i>	ENCSR000EOK	10	0.014	0.014	0.003
<i>CYP17A1</i>	ENCSR000EOK	7	0.069	1.11×10^{-6}	0.018
<i>HSD11B2</i>	ENCSR000EOK	4	0.150	0.104	0.248
<i>KCNJ1</i>	ENCSR000EOK	13	0.992	0.958	0.789
<i>KCNJ5</i>	ENCSR000EOK	11	0.550	0.742	0.982
<i>KLHL3</i>	ENCSR000EOK	12	0.573	0.431	0.345
<i>NR3C2</i>	ENCSR000EOK	26	0.375	0.270	0.148
<i>SCNN1A</i>	ENCSR000EOK	7	0.502	0.452	0.767
<i>SCNN1B</i>	ENCSR000EOK	7	0.053	0.310	0.479
<i>SCNN1G</i>	ENCSR000EOK	8	0.170	0.276	1.000
<i>SLC12A1</i>	ENCSR000EOK	6	1.000	0.909	0.713
<i>SLC12A3</i>	ENCSR000EOK	16	0.233	0.168	0.491
<i>WNK1</i>	ENCSR000EOK	11	0.365	0.557	0.637
<i>WNK4</i>	ENCSR000EOK	1	0.010	0.010	0.010
<i>BSND</i>	ENCSR000EOM	12	0.861	0.737	0.562
<i>CASR</i>	ENCSR000EOM	2	0.860	0.790	0.672
<i>CLCNKA</i>	ENCSR000EOM	10	0.688	0.657	0.540
<i>CLCNKB</i>	ENCSR000EOM	10	0.688	0.657	0.540
<i>CUL3</i>	ENCSR000EOM	8	0.081	0.250	0.044
<i>CYP11B1</i>	ENCSR000EOM	4	0.018	0.018	0.281
<i>CYP11B2</i>	ENCSR000EOM	3	0.015	0.015	0.281
<i>CYP17A1</i>	ENCSR000EOM	11	3.64×10^{-8}	2.88×10^{-7}	0.013

<i>HSD11B2</i>	ENCSR000EOM	6	0.024	0.044	0.595
<i>KCNJ1</i>	ENCSR000EOM	9	0.086	0.554	0.060
<i>KCNJ5</i>	ENCSR000EOM	6	0.084	0.150	0.163
<i>KLHL3</i>	ENCSR000EOM	12	0.065	0.012	0.208
<i>NR3C2</i>	ENCSR000EOM	10	0.278	0.126	0.149
<i>SCNN1A</i>	ENCSR000EOM	5	0.517	0.572	0.727
<i>SCNN1B</i>	ENCSR000EOM	5	0.815	0.930	0.873
<i>SCNN1G</i>	ENCSR000EOM	5	0.353	0.298	0.540
<i>SLC12A1</i>	ENCSR000EOM	4	0.742	0.896	0.704
<i>SLC12A3</i>	ENCSR000EOM	12	0.062	0.077	0.245
<i>WNK1</i>	ENCSR000EOM	7	0.151	0.158	0.864
<i>WNK4</i>	ENCSR000EOM	1	0.010	0.010	0.010
<i>BSND</i>	ENCSR000EPW	10	0.649	0.702	0.591
<i>CASR</i>	ENCSR000EPW	11	0.665	0.798	0.335
<i>CLCNKA</i>	ENCSR000EPW	3	0.190	0.203	0.433
<i>CLCNKB</i>	ENCSR000EPW	4	0.268	0.176	0.464
<i>CUL3</i>	ENCSR000EPW	8	0.030	0.195	0.039
<i>CYP11B1</i>	ENCSR000EPW	3	0.015	0.015	0.281
<i>CYP11B2</i>	ENCSR000EPW	5	0.015	0.017	0.488
<i>CYP17A1</i>	ENCSR000EPW	9	0.006	9.92×10^{-7}	0.045
<i>HSD11B2</i>	ENCSR000EPW	1	0.051	0.051	0.051
<i>KCNJ1</i>	ENCSR000EPW	7	0.960	0.954	0.411
<i>KCNJ5</i>	ENCSR000EPW	10	0.519	0.699	0.417
<i>KLHL3</i>	ENCSR000EPW	8	0.380	0.525	0.428
<i>NR3C2</i>	ENCSR000EPW	24	0.264	0.189	0.027
<i>SCNN1A</i>	ENCSR000EPW	6	0.492	0.360	0.767
<i>SCNN1B</i>	ENCSR000EPW	7	0.141	0.181	0.482
<i>SCNN1G</i>	ENCSR000EPW	6	0.778	0.565	1.000
<i>SLC12A1</i>	ENCSR000EPW	4	1.000	0.896	0.704
<i>SLC12A3</i>	ENCSR000EPW	13	0.135	0.116	0.358
<i>WNK1</i>	ENCSR000EPW	11	0.526	0.515	0.054
<i>WNK4</i>	ENCSR000EPW	1	0.010	0.010	0.010
<i>BSND</i>	ENCSR785BDQ	10	0.888	0.854	0.668
<i>CASR</i>	ENCSR785BDQ	1	0.465	0.465	0.465
<i>CLCNKA</i>	ENCSR785BDQ	10	0.466	0.606	0.682
<i>CLCNKB</i>	ENCSR785BDQ	11	0.457	0.476	0.695
<i>CUL3</i>	ENCSR785BDQ	2	0.641	0.314	0.982
<i>CYP11B1</i>	ENCSR785BDQ	4	0.387	0.353	0.026
<i>CYP11B2</i>	ENCSR785BDQ	2	0.025	0.026	0.996
<i>CYP17A1</i>	ENCSR785BDQ	12	0.008	3.93×10^{-5}	0.020
<i>HSD11B2</i>	ENCSR785BDQ	6	0.205	0.067	0.061

<i>KCNJ1</i>	ENCSR785BDQ	7	0.961	0.879	0.400
<i>KCNJ5</i>	ENCSR785BDQ	2	1.000	1.000	1.000
<i>KLHL3</i>	ENCSR785BDQ	10	0.498	0.126	0.888
<i>NR3C2</i>	ENCSR785BDQ	9	0.314	0.290	0.037
<i>SCNN1A</i>	ENCSR785BDQ	9	0.521	0.700	0.980
<i>SCNN1B</i>	ENCSR785BDQ	4	1.000	1.000	0.983
<i>SCNN1G</i>	ENCSR785BDQ	6	0.727	0.565	1.000
<i>SLC12A1</i>	ENCSR785BDQ	2	0.848	0.848	0.848
<i>SLC12A3</i>	ENCSR785BDQ	28	0.250	0.440	0.666
<i>WNK1</i>	ENCSR785BDQ	7	0.289	0.414	0.128
<i>WNK4</i>	ENCSR785BDQ	-	-	-	-

345 N.sbp, number of variants analyzed in SKAT analysis of SBP in GERA; p.sbp.*, p-values from

346 SKAT analysis of BP in GERA with deltasvm (dsvm), eq (equal), or default (def) weights

347 ^a Experiments: ENCSR000EOK, renal cortical epithelial cell; ENCSR000EOM, glomerular

348 endothelial cell; ENCSR000EPW, epithelial cell of proximal tubule; ENCSR785BDQ,

349 glomerular visceral epithelial cell

350

351 **Table 7. Kidney DBP SKAT results.**

Gene	Experiment ^a	N.dbp	p.dbp.ds svm	p.dbp.eq	p.dbp.def
<i>BSND</i>	ENCSR000EOK	13	0.938	0.831	0.061
<i>CASR</i>	ENCSR000EOK	21	0.990	0.986	0.856
<i>CLCNKA</i>	ENCSR000EOK	8	0.126	0.283	0.108
<i>CLCNKB</i>	ENCSR000EOK	9	0.131	0.410	0.137
<i>CUL3</i>	ENCSR000EOK	18	0.270	0.183	0.855
<i>CYP11B1</i>	ENCSR000EOK	12	0.102	0.095	0.013
<i>CYP11B2</i>	ENCSR000EOK	10	0.091	0.094	0.023
<i>CYP17A1</i>	ENCSR000EOK	7	0.505	0.189	0.337
<i>HSD11B2</i>	ENCSR000EOK	4	0.045	0.023	0.114
<i>KCNJ1</i>	ENCSR000EOK	13	0.969	0.879	0.398
<i>KCNJ5</i>	ENCSR000EOK	11	0.722	0.598	0.487
<i>KLHL3</i>	ENCSR000EOK	12	0.835	0.922	0.622
<i>NR3C2</i>	ENCSR000EOK	26	0.730	0.766	0.104
<i>SCNN1A</i>	ENCSR000EOK	7	0.751	0.621	0.599
<i>SCNN1B</i>	ENCSR000EOK	7	3.33×10^{-4}	0.012	0.053
<i>SCNN1G</i>	ENCSR000EOK	8	0.074	0.027	0.461
<i>SLC12A1</i>	ENCSR000EOK	6	0.361	0.259	0.860

<i>SLC12A3</i>	ENCSR000EOK	16	0.069	0.072	0.175
<i>WNK1</i>	ENCSR000EOK	11	0.375	0.300	0.442
<i>WNK4</i>	ENCSR000EOK	1	0.828	0.828	0.828
<i>BSND</i>	ENCSR000EOM	12	0.613	0.776	0.052
<i>CASR</i>	ENCSR000EOM	2	0.877	0.825	0.759
<i>CLCNKA</i>	ENCSR000EOM	10	0.349	0.546	0.133
<i>CLCNKB</i>	ENCSR000EOM	10	0.349	0.546	0.133
<i>CUL3</i>	ENCSR000EOM	8	0.290	0.266	0.798
<i>CYP11B1</i>	ENCSR000EOM	4	0.117	0.129	0.689
<i>CYP11B2</i>	ENCSR000EOM	3	0.096	0.105	0.689
<i>CYP17A1</i>	ENCSR000EOM	11	0.053	0.076	0.187
<i>HSD11B2</i>	ENCSR000EOM	6	0.012	0.012	0.387
<i>KCNJ1</i>	ENCSR000EOM	9	0.098	0.317	0.101
<i>KCNJ5</i>	ENCSR000EOM	6	0.106	0.499	0.598
<i>KLHL3</i>	ENCSR000EOM	12	0.897	0.924	0.515
<i>NR3C2</i>	ENCSR000EOM	10	0.671	0.302	0.072
<i>SCNN1A</i>	ENCSR000EOM	5	0.782	0.709	0.547
<i>SCNN1B</i>	ENCSR000EOM	5	0.763	0.907	0.913
<i>SCNN1G</i>	ENCSR000EOM	5	0.167	0.085	0.920
<i>SLC12A1</i>	ENCSR000EOM	4	0.118	0.244	0.865
<i>SLC12A3</i>	ENCSR000EOM	12	0.008	0.044	0.234
<i>WNK1</i>	ENCSR000EOM	7	0.499	0.589	1.000
<i>WNK4</i>	ENCSR000EOM	1	0.828	0.828	0.828
<i>BSND</i>	ENCSR000EPW	10	0.866	0.769	0.062
<i>CASR</i>	ENCSR000EPW	11	0.921	0.845	0.872
<i>CLCNKA</i>	ENCSR000EPW	3	0.431	0.438	0.367
<i>CLCNKB</i>	ENCSR000EPW	4	0.712	0.639	0.413
<i>CUL3</i>	ENCSR000EPW	8	0.239	0.085	0.783
<i>CYP11B1</i>	ENCSR000EPW	3	0.104	0.105	0.689
<i>CYP11B2</i>	ENCSR000EPW	5	0.104	0.102	0.599
<i>CYP17A1</i>	ENCSR000EPW	9	0.360	0.185	0.262
<i>HSD11B2</i>	ENCSR000EPW	1	0.006	0.006	0.006
<i>KCNJ1</i>	ENCSR000EPW	7	0.709	0.873	0.366
<i>KCNJ5</i>	ENCSR000EPW	10	0.680	0.546	0.190
<i>KLHL3</i>	ENCSR000EPW	8	0.817	0.867	0.448
<i>NR3C2</i>	ENCSR000EPW	24	0.489	0.374	0.032
<i>SCNN1A</i>	ENCSR000EPW	6	0.733	0.446	0.599
<i>SCNN1B</i>	ENCSR000EPW	7	0.079	0.017	0.053
<i>SCNN1G</i>	ENCSR000EPW	6	0.647	0.061	0.297
<i>SLC12A1</i>	ENCSR000EPW	4	0.415	0.244	0.865
<i>SLC12A3</i>	ENCSR000EPW	13	0.017	0.050	0.217

<i>WNK1</i>	ENCSR000EPW	11	0.300	0.173	0.031
<i>WNK4</i>	ENCSR000EPW	1	0.828	0.828	0.828
<i>BSND</i>	ENCSR785BDQ	10	0.645	0.492	0.062
<i>CASR</i>	ENCSR785BDQ	1	0.967	0.967	0.967
<i>CLCNKA</i>	ENCSR785BDQ	10	0.291	0.457	0.268
<i>CLCNKB</i>	ENCSR785BDQ	11	0.296	0.568	0.303
<i>CUL3</i>	ENCSR785BDQ	2	0.145	0.040	0.248
<i>CYP11B1</i>	ENCSR785BDQ	4	0.154	0.134	0.003
<i>CYP11B2</i>	ENCSR785BDQ	2	0.105	0.107	0.508
<i>CYP17A1</i>	ENCSR785BDQ	12	0.551	0.218	0.355
<i>HSD11B2</i>	ENCSR785BDQ	6	0.079	0.008	0.003
<i>KCNJ1</i>	ENCSR785BDQ	7	0.848	0.795	0.128
<i>KCNJ5</i>	ENCSR785BDQ	2	1.000	1.000	0.875
<i>KLHL3</i>	ENCSR785BDQ	10	0.802	0.778	0.424
<i>NR3C2</i>	ENCSR785BDQ	9	0.877	0.784	0.019
<i>SCNN1A</i>	ENCSR785BDQ	9	0.789	0.949	0.925
<i>SCNN1B</i>	ENCSR785BDQ	4	0.345	0.445	0.555
<i>SCNN1G</i>	ENCSR785BDQ	6	0.083	0.061	0.297
<i>SLC12A1</i>	ENCSR785BDQ	2	0.282	0.282	0.282
<i>SLC12A3</i>	ENCSR785BDQ	28	0.044	0.415	0.393
<i>WNK1</i>	ENCSR785BDQ	7	0.741	0.416	0.079
<i>WNK4</i>	ENCSR785BDQ	-	-	-	-

352 N.dbp, number of variants analyzed in SKAT analysis of DBP in GERA; p.dbp.*, p-values from

353 SKAT analysis of DBP in GERA with deltasvm (dsvm), eq (equal), or default (def) weights

354 ^a Experiments: ENCSR000EOK, renal cortical epithelial cell; ENCSR000EOM, glomerular

355 endothelial cell; ENCSR000EPW, epithelial cell of proximal tubule; ENCSR785BDQ,

356 glomerular visceral epithelial cell

357

358 Quantile-quantile (QQ) plots are shown in Figs S3-S14 for each of the six tissues and two

359 BP phenotypes, and each of three delta SVM weighting schemes. Although the dsvm weighting

360 scheme demonstrates a greater enrichment of genes than the default weighting scheme, the equal

361 weighting scheme marginally presents the greatest enrichment. In many cases, deltaSVM

362 discriminates between different tissue/cell types while equal-weighted results do not; this is
363 especially clear with the QT interval results.

364 We analyzed the union of genes that met significance in the association analysis with BP,
365 regardless of association of expression, to maximize our gene list for annotation, using DAVID
366 6.8 [48,49]. The results are shown in Table S6.

367

368 **Discussion**

369 Our previous genetic analyses identified the aorta and tibial arteries as relevant to blood
370 pressure regulation [38]. In this study we have now identified several genes with regulatory
371 variants linking significantly to both BP traits and to expression data in these tissues, most at
372 previously replicated BP loci. Although the involvement of the kidney is well established in BP
373 regulation through physiological evidence, we sought to identify genes at any of the hundreds of
374 BP GWAS loci in a broader set of tissues. We examined groupings of multiple proximal and
375 putatively causal variants defined around genes within a single tissue in order to identify specific
376 genes of interest. We also examined QT interval genes at previous GWAS loci to highlight the
377 identification of functionally characterized genes for this trait.

378 We identified several genes of potential interest to the aorta/arteries for BP, mostly at
379 previously identified GWAS loci: *MTHFR*, *C10orf32*, *CSK*, *NOV*, *ULK4*, *SDCCAG8*, *SCAMP5*,
380 *RPP25*, *HDGFRP3*, *VPS37B*, and *PPCDC*. We note here that our method of identifying genes
381 at previous loci was conservative: *RPP25* was not present in this list, but is present just outside
382 the TAD boundary used. In addition to its role in the progression of various cancers, the *NOV*
383 gene has been identified as a player in angiogenesis [50,51] and vascular homeostasis [52]. The
384 *ULK4* gene has been previously associated with DBP [43], and variation in this gene has also

385 been associated with aortic disease and acute aortic dissections [53]. The association of a
386 homozygous variant (C677T) in its neighboring gene, *MTHFR*, has long been associated with BP
387 and vascular disease [54–57]; more generally, this locus has been identified in large BP GWAS
388 [40,41]. The locus including *C10orf32* has been identified previously [40] and neighbors the
389 well-studied *CYP17A1* gene. Though we initially examined only the latter among kidney cell
390 types, because of its known role in monogenic hypertension, we note that both genes show BP
391 association in endothelial contexts as well, but it is *C10orf32* that has strong expression support
392 in the artery datasets in our study, while *CYP17A1* does not [58]. The gene *SDCCAG8* is a
393 centrosomal protein linked with nephronophthisis-related ciliopathies (OMIM: Senior-Loken
394 Syndrome 7, 613615; Bardet-Biedl syndrome-16, 615993, and Airik et al. [59]), and is expressed
395 in the kidney and lung epithelia [59]. The *CSK* gene, encoding a tyrosine kinase, is at a previous
396 BP GWAS locus [60] and has been found to be associated with SBP in young children [61];
397 there is also prior evidence through experiments in mouse aortas that this gene regulates blood
398 pressure through Src [62]. Finally, the *SCAMP5* and *PPCDC* genes (within the same locus) [40],
399 and *RPP25* [43], are previously identified BP genes.

400 As mentioned above, one major limitation in our study is the statistical power of the
401 SKAT eQTL analysis, with small sample sizes available for each of the GTEx tissues. The
402 power of implicating effects for a given tissue also depends on its total contribution, and the
403 numbers of eQTLs identified. The requirement in our study that a gene meet significance for
404 both BP and expression therefore produced a more conservative list. However, the QT interval
405 results, especially for the *SCN5A* gene, still illustrate the utility of this method. The availability
406 of additional samples in the future will contribute to the success of this method in identifying
407 genes of interest with greater statistical power. The gene annotation analyses revealed no clear

408 BP-specific pathways or annotation, so these will also benefit from producing more specific and
409 possibly larger gene sets. Additionally, we used hard genotype calls for analysis, necessitating
410 some missing genotype data; the power of our methods could be improved by using imputed
411 probabilities of genotypes.

412 Our attempts to expand findings beyond the known pathogenic coding variation with
413 respect to the 20 genes involved in monogenic forms of hypertension or hypotension were
414 inconclusive. We attribute this to the dearth of publicly available data for the kidney at this time,
415 and expect that the availability of more extensive data will resolve some of the issues in further
416 studies. Additionally, though it is beyond the scope of this study, as the effects of many of these
417 monogenic disorders are likely through the adrenal gland, a full analysis of adrenal gland data
418 will be necessary to assess them.

419 The MetaXcan software has supported most of the genes highlighted here and identified
420 novel associations, although there were some limitations with the availability of the models for
421 all genes. Additionally, our results indicated that deltaSVM weighting might be validly
422 discriminatory between cell types; this is most evident with several QT interval genes, such as
423 *NOS1AP* and *SCN5A*. It is also suggestive of cell-type specificity with the results for *CYP17A1*
424 in the kidney cell types. It may be informative moving forward to characterize these BP genes at
425 the individual cell-type level in the arteries as well.

426 The question of identification of core genes networks may be facilitated by our approach
427 in this study, which includes using eQTL information from tissues or cell types of interest and
428 genotypes to identify potentially relevant genes for a trait. As the expansion of publicly available
429 resources continues, more information may be used for these purposes. Our analysis implicates

430 specific variants that can be functionally tested for their effect on both gene expression and the
431 phenotype.

432

433 **Materials and Methods**

434

435 **Study participants and summary of genotypes, phenotypes, and association results used in**

436 **this study**

437 The full descriptions of the prior underlying studies, phenotypes, and association results
438 for the GERA cohort are in Hoffmann et al. [38] and are briefly recapitulated here. The Genetic
439 Epidemiology Research on Adult Health and Aging (GERA) cohort, part of the Kaiser
440 Permanente Research Program on Genes, Environment, and Health (RPGEH), consists of
441 individuals from five ethnic backgrounds; the majority is non-Hispanic white (EUR), with the
442 remainder including Latino, East Asians, African Americans, and South Asians. A total of
443 99,785 individuals were analyzed, of which 80,792 were EUR individuals. The populations were
444 each genotyped on custom population-specific Affymetrix Axiom SNP genotyping arrays
445 [63,64] and imputed to the 1000 Genomes Phase I Integrated Release Version 3 haplotype panel.
446 Analyses of GERA alone, with the results of the International Consortium for Blood Pressure
447 (ICBP, n=69,396) study [65], and with the ICBP and the UK Biobank (UKB, n=152,081) study
448 [66], identified 316 novel BP loci. Combined with the set of replicated BP GWAS loci available
449 at that time, there were a total of 390 BP loci we considered to be of interest. Of these, 367 had
450 minor allele frequency (MAF) > 0.001 in the GERA EUR study, which was used as the reference
451 population for the eQTL analyses described below.

452 For the purpose of several of the analyses described in this paper, we used these
453 association results, as well as summary statistics available from 80,792 GERA EUR individuals

454 from the Hoffmann et al. [38] study, and genotypes from a subset of 71,404 GERA EUR
455 ‘unrelated’ individuals (third degree or beyond, pruned by the KING software for relationship
456 inference) [67]. We converted genotypes prepared in the Hoffmann et al. [38] study after
457 imputation from IMPUTE2 genotype probabilities format to PLINK ‘hard’ calls (the most likely
458 genotype), setting genotypes with uncertainty greater than 0.25 to missing, and retaining variants
459 with < 10% missing data, a Hardy Weinberg equilibrium test $p < 1 \times 10^{-6}$, and imputation quality
460 score ≥ 0.3 . In order to report univariate summary statistics within the 71,404 individuals, we
461 used the --assoc option for analysis of a quantitative trait (Wald test) with PLINK v1.9 [68]. We
462 analyzed covariate-adjusted longitudinal systolic (SBP) and diastolic (DBP) blood pressure in
463 this study, as also described in Hoffmann et al. [38].

464

465 **ARIC genotypes, phenotypes, and association**

466 The Atherosclerosis Risk in Communities (ARIC) study cohort is a longitudinal
467 population-based study of 15,792 individuals, including 11,478 European-Americans (EUR) and
468 4,266 African-Americans (AA) from four study centers: Washington County, MD; Forsyth
469 County, NC; Jackson, MS; and, Minneapolis, MN [24,25]. The initial examination occurred from
470 1987-1989, with participants aged between 45 and 64 years. Subsequent examinations occurred
471 in 1990-1992, 1993-1995, 1996-1998, and 2011-2013, with the most recent visits (6+) beginning
472 in 2016. We analyzed 9,083 individuals of European ancestry with genotypes and QT interval at
473 baseline. The genotyping of these samples on the Affymetrix genome-wide Human SNP Array
474 6.0, quality control, and imputation to the 1000 Genomes Phase I Integrated Release Version 3
475 haplotype panel are described elsewhere [69,70]. We converted IMPUTE2 genotype
476 probabilities to PLINK ‘hard’ calls, setting genotypes with uncertainty greater than 0.25 to

477 missing, and retaining variants with < 10% missing data, a Hardy Weinberg equilibrium test $p <$
478 1×10^{-6} , and imputation quality score ≥ 0.3 , (as for the GERA study). The phenotypes were
479 analyzed as previously described [71] with QT residuals generated by adjusting raw QT intervals
480 for age, sex and resting heart rate. Summary statistics were generated for single variants using
481 the --assoc option for analysis of a quantitative trait (Wald test) with PLINK v1.9 [68].

482

483 **GTEX genotypes and expression**

484 We analyzed genotypes and expression data from the Genotype-Tissue Expression
485 (GTEx; phs000424.v6.p1) Project [72] v6p for the SKAT analysis (see below) from the aorta,
486 tibial artery, heart left ventricle, and heart atrial appendage tissues. Normalized expression was
487 analyzed for these tissues, with the top three principal components, available PEER factors (15-
488 35, depending on sample size), genotyping array platform, and sex used as covariates, all
489 available from the GTEx portal. We used SNP-gene associations from the associated *
490 .v6p.all_snpgene_pairs.txt.gz files from the authors' eQTL analyses.

491

492 **Partitioned heritability analyses**

493 We used the stratified LD score regression method and software [15] for estimating the
494 heritability of the trait partitioned by genomic element using summary statistics for SBP and
495 DBP from 80,792 GERA EUR individuals [38]. The 'mungestats.py' script was used to format
496 the summary statistics as appropriate, and we analyzed them using the baseline model with 53
497 categories which included coding, UTR, and intronic regions, in addition to various open
498 chromatin and histone modification annotations as described by the authors, as well as the 1000
499 Genomes Phase 3 reference files with the weights from their weights_hm3_no_hla.tgz file,

500 which were provided and described by the authors on their website
501 (<https://github.com/bulik/ldsc/wiki/Partitioned-Heritability>).

502 Generation of putative regulatory element maps and deltaSVM scores are described in the
503 supplementary methods.

504

505 **Gene-based testing with SKAT**

506 We used the sequence-kernel association test (SKAT) [22,73] to test genes with median
507 reads per kilobase of transcript, per million mapped reads (RPKM) ≥ 0.3 in GTEx samples for
508 the aorta (n=197) and tibial (n=285) arteries with their respective variant sets. For each gene, we
509 tested all variants within 50Kb of the gene start or end, inclusive of the entire gene body, per
510 GENCODE v19 annotations (<https://www.gencodegenes.org/releases/19.html>). The weights
511 used were taken as the absolute value of the deltaSVM score for each variant to reflect its
512 predicted impact; for comparison, we also ran SKAT using default weights with beta density
513 parameters (weights.beta=c(1,25), which up-weights rare variants as compared to common
514 variants), as well as equal weights to all variants (weights.beta=c(1,1)). We tested association of
515 each gene with adjusted SBP and DBP phenotype residuals (see above), as well as the GTEx
516 normalized expression data with covariates (release v6p, <https://www.gtexportal.org/>), from the
517 aorta and tibial arteries. We restricted our primary analyses in each of the kidney cell types to the
518 20 monogenic hypertension and hypotension genes. We additionally tested tissue- or cell-type-
519 specific groupings in the ARIC dataset with the adjusted QT interval phenotype using the sets for
520 the heart and heart tissues from GTEx, arteries and kidney cell types, as described above.

521

522 **Prediction of gene expression association with blood pressure**

523 We used the MetaXcan [23] software with prebuilt HapMap training models for the
524 GTEx (<https://www.gtexportal.org/>) tissues aorta and tibial arteries, provided by the authors at
525 <http://predictdb.hakyimlab.org/>, with summary statistics from 80,792 GERA EUR individuals for
526 SBP and DBP. We also used the software with the provided models for heart left ventricle and
527 atrial appendage, for the QT interval analysis using summary statistics from 9,083 ARIC EUR
528 individuals. MetaXcan is an extension of the PrediXcan [74] method, which predicts gene
529 expression from genotypes and tests association of predicted expression with phenotypes using
530 summary association results.

531

532 **Statistical significance**

533 Statistical significance was determined using the Benjamini-Hochberg [75] (BH) method
534 for multiple test correction to adjust for the number of genes within each analysis. We made no
535 additional adjustments for the number of tissues, in part due to the correlation of specific subsets
536 (the arteries, and individual kidney cell types), and as we examined genes across multiple
537 analyses, for phenotype and for expression.

538

539 **Annotation of artery-significant genes**

540 We used DAVID 6.8 [48,49] to annotate the set of genes that met significance in the
541 association analysis with either SBP or DBP. We retained terms that met a BH threshold of $p <$
542 0.05.

543

544 **Acknowledgements and Funding**

545 The Atherosclerosis Risk in Communities Study is carried out as a collaborative study
546 supported by National Heart, Lung, and Blood Institute contracts (HHSN268201100005C,

547 HHSN268201100006C, HHSN268201100007C, HHSN268201100008C,
548 HHSN268201100009C, HHSN268201100010C, HHSN268201100011C, and
549 HHSN268201100012C), R01HL087641, R01HL59367 and R01HL086694; National Human
550 Genome Research Institute contract U01HG004402; and National Institutes of Health contract
551 HHSN268200625226C. The authors thank the staff and participants of the ARIC study for their
552 important contributions. Infrastructure was partly supported by Grant Number UL1RR025005, a
553 component of the National Institutes of Health and NIH Roadmap for Medical Research. The
554 Genotype-Tissue Expression (GTEx) Project was supported by the Common Fund of the Office
555 of the Director of the National Institutes of Health, and by NCI, NHGRI, NHLBI, NIDA, NIMH,
556 and NINDS. The data used for the analyses described in this manuscript were obtained from: the
557 GTEx Portal and dbGaP accession number phs000424.v6.p1. This research was funded by NIH
558 grants HL128782 and HL0-86694 to A.C.

559 We are grateful to the Kaiser Permanente Northern California members who have
560 generously agreed to participate in the Kaiser Permanente Research Program on Genes,
561 Environment, and Health. Support for participant enrollment, survey completion, and
562 biospecimen collection for the RPGEH was provided by the Robert Wood Johnson Foundation,
563 the Wayne and Gladys Valley Foundation, the Ellison Medical Foundation, and Kaiser
564 Permanente Community Benefit Programs. Genotyping of the GERA cohort was funded by a
565 grant from the National Institute on Aging, National Institute of Mental Health, and the National
566 Institute of Health Common Fund (RC2 AG036607 to CAS and NJR). GE receives support from
567 Geneva University Hospitals and The Foundation of Medical Researchers, Geneva.

568
569 **References**
570

- 571 1. Boyle EA, Li YI, Pritchard JK. An Expanded View of Complex Traits: From Polygenic to
572 Omnigenic. *Cell*. 2017 Jun 15;169(7):1177–86.
- 573 2. Kirschner MW. The meaning of systems biology. *Cell*. 2005 May 20;121(4):503–4.
- 574 3. Alon U. *An Introduction to Systems Biology: Design Principles of Biological Circuits*. 1st
575 ed. Chapman and Hall/CRC; 2006.
- 576 4. Segal E, Raveh-Sadka T, Schroeder M, Unnerstall U, Gaul U. Predicting expression
577 patterns from regulatory sequence in *Drosophila* segmentation. *Nature*. 2008 Jan
578 31;451(7178):535–40.
- 579 5. Emilsson V, Thorleifsson G, Zhang B, Leonardson AS, Zink F, Zhu J, et al. Genetics of
580 gene expression and its effect on disease. *Nature*. 2008 Mar 27;452(7186):423–8.
- 581 6. Zhong H, Yang X, Kaplan LM, Molony C, Schadt EE. Integrating pathway analysis and
582 genetics of gene expression for genome-wide association studies. *Am J Hum Genet*. 2010
583 Apr 9;86(4):581–91.
- 584 7. Pickrell JK, Marioni JC, Pai AA, Degner JF, Engelhardt BE, Nkadori E, et al.
585 Understanding mechanisms underlying human gene expression variation with RNA
586 sequencing. *Nature*. 2010 Apr 1;464(7289):768–72.
- 587 8. Davidson EH. Emerging properties of animal gene regulatory networks. *Nature*. 2010 Dec
588 16;468(7326):911–20.
- 589 9. Dixon JR, Selvaraj S, Yue F, Kim A, Li Y, Shen Y, et al. Topological domains in
590 mammalian genomes identified by analysis of chromatin interactions. *Nature*. 2012 Apr
591 11;485(7398):376–80.
- 592 10. Phillips-Cremins JE. Unraveling architecture of the pluripotent genome. *Curr Opin Cell
593 Biol*. 2014 Jun;28:96–104.
- 594 11. Buenrostro JD, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ. Transposition of native
595 chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding
596 proteins and nucleosome position. *Nat Methods*. 2013 Dec;10(12):1213–8.
- 597 12. ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human
598 genome. *Nature*. 2012 Sep 6;489(7414):57–74.
- 599 13. Roadmap Epigenomics Consortium, Kundaje A, Meuleman W, Ernst J, Bilenky M, Yen A,
600 et al. Integrative analysis of 111 reference human epigenomes. *Nature*. 2015 Feb
601 19;518(7539):317–30.
- 602 14. Maurano MT, Haugen E, Sandstrom R, Vierstra J, Shafer A, Kaul R, et al. Large-scale
603 identification of sequence variants influencing human transcription factor occupancy in
604 *vivo*. *Nat Genet*. 2015 Dec;47(12):1393–401.

- 605 15. Finucane HK, Bulik-Sullivan B, Gusev A, Trynka G, Reshef Y, Loh P-R, et al. Partitioning
606 heritability by functional annotation using genome-wide association summary statistics. *Nat*
607 *Genet*. 2015 Nov;47(11):1228–35.
- 608 16. Lee D, Gorkin DU, Baker M, Strober BJ, Asoni AL, McCallion AS, et al. A method to
609 predict the impact of regulatory variants from DNA sequence. *Nat Genet*. 2015
610 Aug;47(8):955–61.
- 611 17. Lifton RP. Molecular genetics of human blood pressure variation. *Science*. 1996 May
612 3;272(5262):676–80.
- 613 18. Lifton RP, Gharavi AG, Geller DS. Molecular mechanisms of human hypertension. *Cell*.
614 2001 Feb 23;104(4):545–56.
- 615 19. Choi M, Scholl UI, Yue P, Björklund P, Zhao B, Nelson-Williams C, et al. K⁺ channel
616 mutations in adrenal aldosterone-producing adenomas and hereditary hypertension. *Science*.
617 2011 Feb 11;331(6018):768–72.
- 618 20. Banda Y, Kvale MN, Hoffmann TJ, Hesselson SE, Ranatunga D, Tang H, et al.
619 Characterizing Race/Ethnicity and Genetic Ancestry for 100,000 Subjects in the Genetic
620 Epidemiology Research on Adult Health and Aging (GERA) Cohort. *Genetics*. 2015
621 Aug;200(4):1285–95.
- 622 21. Kvale MN, Hesselson S, Hoffmann TJ, Cao Y, Chan D, Connell S, et al. Genotyping
623 Informatics and Quality Control for 100,000 Subjects in the Genetic Epidemiology
624 Research on Adult Health and Aging (GERA) Cohort. *Genetics*. 2015 Aug;200(4):1051–60.
- 625 22. Wu MC, Lee S, Cai T, Li Y, Boehnke M, Lin X. Rare-variant association testing for
626 sequencing data with the sequence kernel association test. *Am J Hum Genet*. 2011 Jul
627 15;89(1):82–93.
- 628 23. Barbeira A, Shah KP, Torres JM, Wheeler HE, Torstenson ES, Edwards T, et al. MetaXcan:
629 Sum- 537 mary Statistics Based Gene-Level Association Method Infers Accurate
630 PrediXcan Results. *bioRxiv*. 538 2016 mar;Available from:
631 <http://biorxiv.org/content/early/2016/03/23/045260.abstract>.
- 632 24. Atherosclerosis Risk in Communities. [Internet]. [Accessed: 23 October 2015]. Available
633 at: <https://www2.cscc.unc.edu/aric>.
- 634 25. The Atherosclerosis Risk in Communities (ARIC) Study: design and objectives. The ARIC
635 investigators. *Am J Epidemiol*. 1989 Apr;129(4):687–702.
- 636 26. Salfati E, Morrison AC, Boerwinkle E, Chakravarti A. Direct Estimates of the Genomic
637 Contributions to Blood Pressure Heritability within a Population-Based Cohort (ARIC).
638 *PloS One*. 2015;10(7):e0133031.

- 639 27. Lee D, Kapoor A, Safi A, Song L, Halushka MK, Crawford GE, et al. Human cardiac cis-
640 regulatory elements, their cognate transcription factors, and regulatory DNA sequence
641 variants. *Genome Res.* 2018;28(10):1577–88.
- 642 28. Ghandi M, Lee D, Mohammad-Noori M, Beer MA. Enhanced regulatory sequence
643 prediction using gapped k-mer features. *PLoS Comput Biol.* 2014 Jul;10(7):e1003711.
- 644 29. Lee D. LS-GKM: a new gkm-SVM for large-scale datasets. *Bioinforma Oxf Engl.* 2016 Jul
645 15;32(14):2196–8.
- 646 30. Postema PG, Wilde AAM. The measurement of the QT interval. *Curr Cardiol Rev.* 2014
647 Aug;10(3):287–94.
- 648 31. Dekker JM, Crow RS, Hannan PJ, Schouten EG, Folsom AR, ARIC Study. Heart rate-
649 corrected QT interval prolongation predicts risk of coronary heart disease in black and
650 white middle-aged men and women: the ARIC study. *J Am Coll Cardiol.* 2004 Feb
651 18;43(4):565–71.
- 652 32. Newton-Cheh C, Larson MG, Corey DC, Benjamin EJ, Herbert AG, Levy D, et al. QT
653 interval is a heritable quantitative trait with evidence of linkage to chromosome 3 in a
654 genome-wide linkage analysis: The Framingham Heart Study. *Heart Rhythm.* 2005
655 Mar;2(3):277–84.
- 656 33. Busjahn A, Knoblauch H, Faulhaber HD, Boeckel T, Rosenthal M, Uhlmann R, et al. QT
657 interval is linked to 2 long-QT syndrome loci in normal subjects. *Circulation.* 1999 Jun
658 22;99(24):3161–4.
- 659 34. Arking DE, Pfeufer A, Post W, Kao WHL, Newton-Cheh C, Ikeda M, et al. A common
660 genetic variant in the NOS1 regulator NOS1AP modulates cardiac repolarization. *Nat
661 Genet.* 2006 Jun;38(6):644–51.
- 662 35. Tomás M, Napolitano C, De Giuli L, Bloise R, Subirana I, Malovini A, et al.
663 Polymorphisms in the NOS1AP gene modulate QT interval duration and risk of
664 arrhythmias in the long QT syndrome. *J Am Coll Cardiol.* 2010 Jun 15;55(24):2745–52.
- 665 36. Avery CL, Wassel CL, Richard MA, Highland HM, Bien S, Zubair N, et al. Fine mapping
666 of QT interval regions in global populations refines previously identified QT interval loci
667 and identifies signals unique to African and Hispanic descent populations. *Heart Rhythm.*
668 2017 Apr;14(4):572–80.
- 669 37. Arking DE, Pulit SL, Crotti L, van der Harst P, Munroe PB, Koopmann TT, et al. Genetic
670 association study of QT interval highlights role for calcium signaling pathways in
671 myocardial repolarization. *Nat Genet.* 2014 Aug;46(8):826–36.
- 672 38. Hoffmann TJ, Ehret GB, Nandakumar P, Ranatunga D, Schaefer C, Kwok P-Y, et al.
673 Genome-wide association analyses using electronic health records identify new loci
674 influencing blood pressure variation. *Nat Genet.* 2017 Jan;49(1):54–64.

- 675 39. Evangelou E, Warren HR, Mosen-Ansorena D, Mifsud B, Pazoki R, Gao H, et al. Genetic
676 analysis of over one million people identifies 535 novel loci for blood pressure. *bioRxiv*
677 [Internet]. 2017 Jan 1; Available from:
678 <http://biorxiv.org/content/early/2017/10/11/198234.abstract>
- 679 40. Newton-Cheh C, Johnson T, Gateva V, Tobin MD, Bochud M, Coin L, et al. Genome-wide
680 association study identifies eight loci associated with blood pressure. *Nat Genet*. 2009
681 Jun;41(6):666–76.
- 682 41. Johnson T, Gaunt TR, Newhouse SJ, Padmanabhan S, Tomaszewski M, Kumari M, et al.
683 Blood pressure loci identified with a gene-centric array. *Am J Hum Genet*. 2011 Dec
684 9;89(6):688–700.
- 685 42. Wain LV, Verwoert GC, O'Reilly PF, Shi G, Johnson T, Johnson AD, et al. Genome-wide
686 association study identifies six new loci influencing pulse pressure and mean arterial
687 pressure. *Nat Genet*. 2011 Sep 11;43(10):1005–11.
- 688 43. Levy D, Ehret GB, Rice K, Verwoert GC, Launer LJ, Dehghan A, et al. Genome-wide
689 association study of blood pressure and hypertension. *Nat Genet*. 2009 Jun;41(6):677–87.
- 690 44. Goldsmith O, Solomon DH, Horton R. Hypogonadism and mineralocorticoid excess. The
691 17-hydroxylase deficiency syndrome. *N Engl J Med*. 1967 Sep 28;277(13):673–7.
- 692 45. Li Q, Gao T, Yuan Y, Wu Y, Huang Q, Xie F, et al. Association of CYP17A1 Genetic
693 Polymorphisms and Susceptibility to Essential Hypertension in the Southwest Han Chinese
694 Population. *Med Sci Monit Int Med J Exp Clin Res*. 2017 May 24;23:2488–99.
- 695 46. Li C, Kim YK, Dorajoo R, Li H, Lee I-T, Cheng C-Y, et al. Genome-Wide Association
696 Study Meta-Analysis of Long-Term Average Blood Pressure in East Asians. *Circ
697 Cardiovasc Genet*. 2017 Apr;10(2):e001527.
- 698 47. Nguyen K-DH, Pihur V, Ganesh SK, Rakha A, Cooper RS, Hunt SC, et al. Effects of rare
699 and common blood pressure gene variants on essential hypertension: results from the
700 Family Blood Pressure Program, CLUE, and Atherosclerosis Risk in Communities studies.
701 *Circ Res*. 2013 Jan 18;112(2):318–26.
- 702 48. Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene
703 lists using DAVID bioinformatics resources. *Nat Protoc*. 2009;4(1):44–57.
- 704 49. Huang DW, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the
705 comprehensive functional analysis of large gene lists. *Nucleic Acids Res*. 2009
706 Jan;37(1):1–13.
- 707 50. Lin CG, Chen C-C, Leu S-J, Grzeszkiewicz TM, Lau LF. Integrin-dependent functions of
708 the angiogenic inducer NOV (CCN3): implication in wound healing. *J Biol Chem*. 2005
709 Mar 4;280(9):8229–37.

- 710 51. Lin CG, Leu S-J, Chen N, Tebeau CM, Lin S-X, Yeung C-Y, et al. CCN3 (NOV) is a novel
711 angiogenic regulator of the CCN protein family. *J Biol Chem.* 2003 Jun 27;278(26):24200–
712 8.
- 713 52. Shimoyama T, Hiraoka S, Takemoto M, Koshizaka M, Tokuyama H, Tokuyama T, et al.
714 CCN3 inhibits neointimal hyperplasia through modulation of smooth muscle cell growth
715 and migration. *Arterioscler Thromb Vasc Biol.* 2010 Apr;30(4):675–82.
- 716 53. Guo D-C, Grove ML, Prakash SK, Eriksson P, Hostetler EM, LeMaire SA, et al. Genetic
717 Variants in LRP1 and ULK4 Are Associated with Acute Aortic Dissections. *Am J Hum
718 Genet.* 2016 Sep 1;99(3):762–9.
- 719 54. Niu W-Q, You Y-G, Qi Y. Strong association of methylenetetrahydrofolate reductase gene
720 C677T polymorphism with hypertension and hypertension-in-pregnancy in Chinese: a
721 meta-analysis. *J Hum Hypertens.* 2012 Apr;26(4):259–67.
- 722 55. Frosst P, Blom HJ, Milos R, Goyette P, Sheppard CA, Matthews RG, et al. A candidate
723 genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate
724 reductase. *Nat Genet.* 1995 May;10(1):111–3.
- 725 56. Nakata Y, Katsuya T, Takami S, Sato N, Fu Y, Ishikawa K, et al.
726 Methylenetetrahydrofolate reductase gene polymorphism: relation to blood pressure and
727 cerebrovascular disease. *Am J Hypertens.* 1998 Aug;11(8 Pt 1):1019–23.
- 728 57. Kosmas IP, Tatsioni A, Ioannidis JPA. Association of C677T polymorphism in the
729 methylenetetrahydrofolate reductase gene with hypertension in pregnancy and pre-
730 eclampsia: a meta-analysis. *J Hypertens.* 2004 Sep;22(9):1655–62.
- 731 58. Van Woudenberg M, Shin J, Bernard M, Syme C, Abrahamowicz M, Leonard G, et al.
732 CYP17A1 and Blood Pressure Reactivity to Stress in Adolescence. *Int J Hypertens.*
733 2015;2015:734586.
- 734 59. Airik R, Slaats GG, Guo Z, Weiss A-C, Khan N, Ghosh A, et al. Renal-retinal ciliopathy
735 gene Sdccag8 regulates DNA damage response signaling. *J Am Soc Nephrol JASN.* 2014
736 Nov;25(11):2573–83.
- 737 60. Ganesh SK, Tragante V, Guo W, Guo Y, Lanktree MB, Smith EN, et al. Loci influencing
738 blood pressure identified using a cardiovascular gene-centric array. *Hum Mol Genet.* 2013
739 Apr 15;22(8):1663–78.
- 740 61. Ahn S-Y, Gupta C. Genetic Programming of Hypertension. *Front Pediatr.* 2017;5:285.
- 741 62. Lee H-J, Kang J-O, Kim S-M, Ji S-M, Park S-Y, Kim ME, et al. Gene Silencing and
742 Haploinsufficiency of Csk Increase Blood Pressure. *PloS One.* 2016;11(1):e0146841.
- 743 63. Hoffmann TJ, Kvale MN, Hesselson SE, Zhan Y, Aquino C, Cao Y, et al. Next generation
744 genome-wide association tool: design and coverage of a high-throughput European-
745 optimized SNP array. *Genomics.* 2011 Aug;98(2):79–89.

- 746 64. Hoffmann TJ, Zhan Y, Kvale MN, Hesselson SE, Gollub J, Iribarren C, et al. Design and
747 coverage of high throughput genotyping arrays optimized for individuals of East Asian,
748 African American, and Latino race/ethnicity using imputation and a novel hybrid SNP
749 selection algorithm. *Genomics*. 2011 Dec;98(6):422–30.
- 750 65. International Consortium for Blood Pressure Genome-Wide Association Studies, Ehret GB,
751 Munroe PB, Rice KM, Bochud M, Johnson AD, et al. Genetic variants in novel pathways
752 influence blood pressure and cardiovascular disease risk. *Nature*. 2011 Sep
753 11;478(7367):103–9.
- 754 66. Sudlow C, Gallacher J, Allen N, Beral V, Burton P, Danesh J, et al. UK biobank: an open
755 access resource for identifying the causes of a wide range of complex diseases of middle
756 and old age. *PLoS Med*. 2015 Mar;12(3):e1001779.
- 757 67. Manichaikul A, Mychaleckyj JC, Rich SS, Daly K, Sale M, Chen W-M. Robust relationship
758 inference in genome-wide association studies. *Bioinforma Oxf Engl*. 2010 Nov
759 15;26(22):2867–73.
- 760 68. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, et al. PLINK: a
761 tool set for whole-genome association and population-based linkage analyses. *Am J Hum
762 Genet*. 2007 Sep;81(3):559–75.
- 763 69. Maruthur NM, Li M, Halushka MK, Astor BC, Pankow JS, Boerwinkle E, et al. Genetics of
764 Plasma Soluble Receptor for Advanced Glycation End-Products and Cardiovascular
765 Outcomes in a Community-based Population: Results from the Atherosclerosis Risk in
766 Communities Study. *PloS One*. 2015;10(6):e0128452.
- 767 70. Li M, Maruthur NM, Loomis SJ, Pietzner M, North KE, Mei H, et al. Genome-wide
768 association study of 1,5-anhydroglucitol identifies novel genetic loci linked to glucose
769 metabolism. *Sci Rep*. 2017 Jun 6;7(1):2812.
- 770 71. Kapoor A, Bakshy K, Xu L, Nandakumar P, Lee D, Boerwinkle E, et al. Rare coding TTN
771 variants are associated with electrocardiographic QT interval in the general population. *Sci
772 Rep*. 2016 Jun 20;6:28356.
- 773 72. GTEx Consortium, Laboratory, Data Analysis &Coordinating Center (LDACC)—Analysis
774 Working Group, Statistical Methods groups—Analysis Working Group, Enhancing GTEx
775 (eGTEx) groups, NIH Common Fund, NIH/NCI, et al. Genetic effects on gene expression
776 across human tissues. *Nature*. 2017 11;550(7675):204–13.
- 777 73. Seunggeun Lee, with contributions from Larisa Miropolsky and Michael Wu (2015).
778 SKAT: SNP-Set (Sequence) Kernel Association Test. R package version 1.1.2.
779 <https://CRAN.R-project.org/package=SKAT>.
- 780 74. Gamazon ER, Wheeler HE, Shah KP, Mozaffari SV, Aquino-Michaels K, Carroll RJ, et al.
781 A gene-based association method for mapping traits using reference transcriptome data. *Nat
782 Genet*. 2015 Sep;47(9):1091–8.

783 75. Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful
784 Approach to Multiple Testing. *J R Stat Soc Ser B Methodol.* 1995;57(1):289–300.

785
786

787 **Supporting Information**

788 **Fig S1. Comparisons of deltaSVM association *P* values between the heart and the other**
789 **tissues in this study.** hrt, heart.

790 **Fig S2. Comparisons of $-\log_{10}(P)$ differences of heart significant genes between deltaSVM**
791 **weighting and equal weighting SKAT tests.** hrt, heart; X, x-axis; Y, y-axis.

792 **Fig S3. Aorta QQ plots, SBP.**

793 **Fig S4. Aorta QQ plots, DBP.**

794 **Fig S5. Tibial Artery QQ plots, SBP.**

795 **Fig S6. Tibial Artery QQ plots, DBP.**

796 **Fig S7. ENCSR000EOK QQ plots, SBP.**

797 **Fig S8. ENCSR000EOK QQ plots, DBP.**

798 **Fig S9. ENCSR000EOM QQ plots, SBP.**

799 **Fig S10. ENCSR000EOM QQ plots, DBP.**

800 **Fig S11. ENCSR000EPW QQ plots, SBP.**

801 **Fig S12. ENCSR000EPW QQ plots, DBP.**

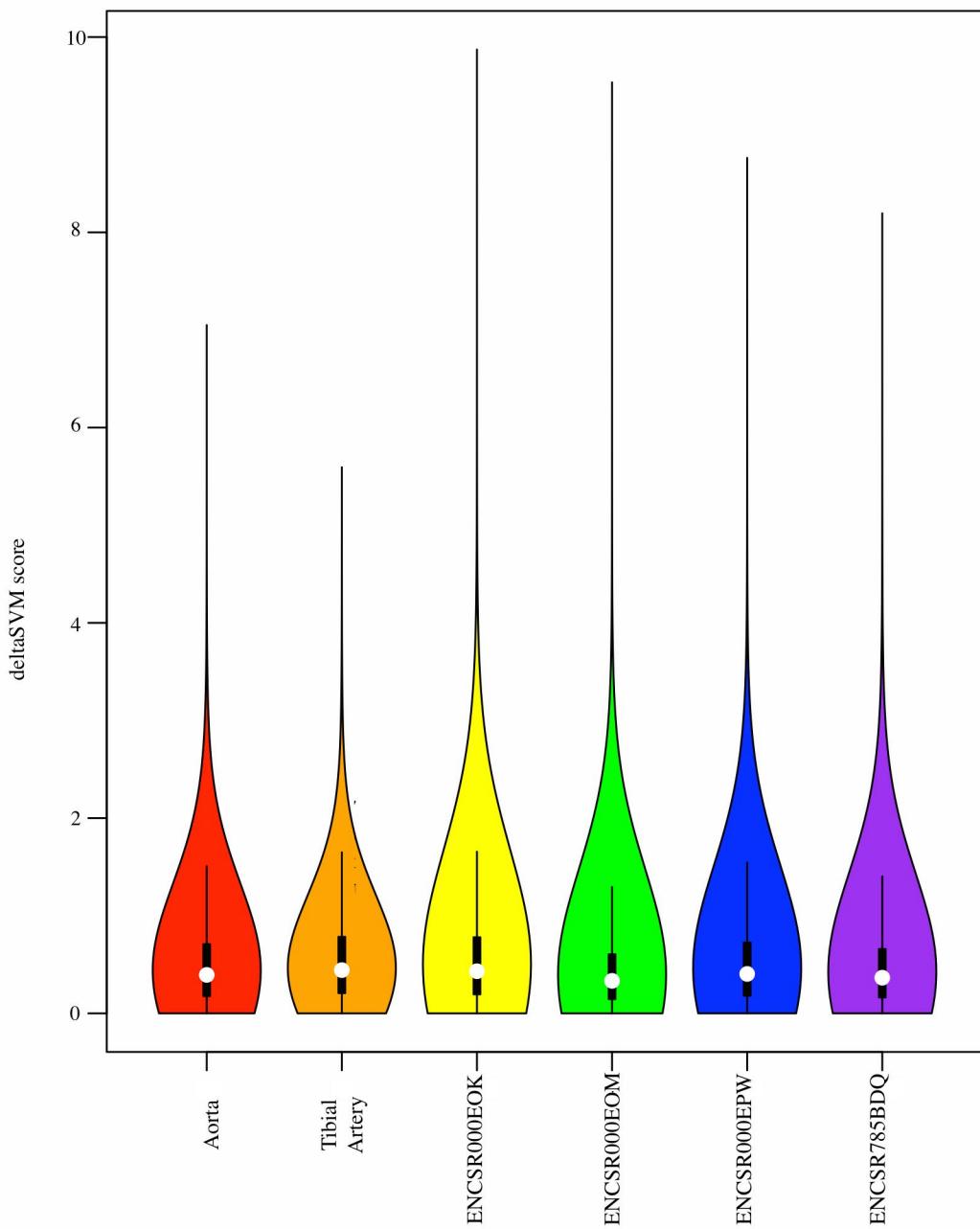
802 **Fig S13. ENCSR785BDQ QQ plots, SBP.**

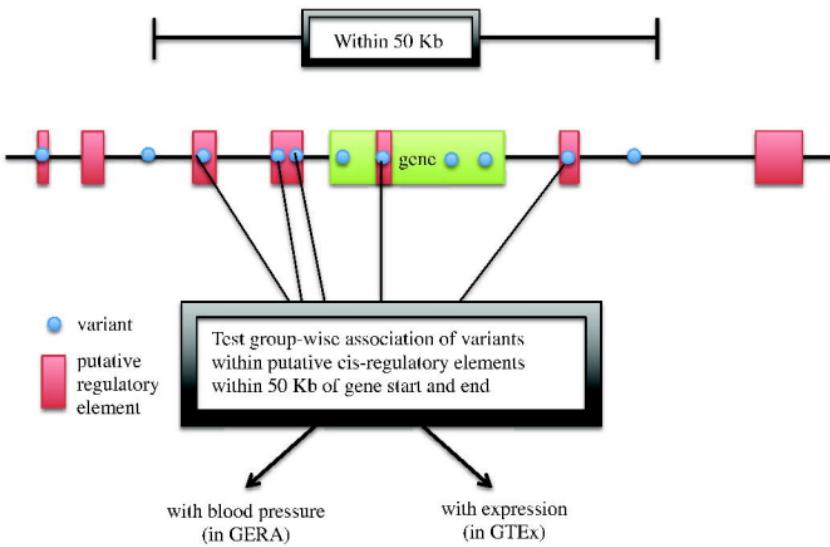
803 **Fig S14. ENCSR785BDQ QQ plots, DBP.**

804 **Table S1. Partitioned heritability results from baseline model for SBP.**

805 **Table S2. Partitioned heritability results from baseline model for DBP.**

806 **Table S3. deltaSVM performance results.**


807 **Table S4. SKAT and MetaXcan results for QT interval.**


808 **Table S5. Individual variants analyzed in kidney for C10orf32 and CYP17A1.**

809 **Table S6. DAVID enrichment analysis of artery-significant genes.**

810 **Text S1. Supplementary methods, results, and references.**

811

