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Abstract

Hundreds of loci have been associated with blood pressure traits from many genome-
wide association studies. We identified an enrichment of these loci in aortaand tibial artery
expression quantitative trait loci in our previous work in ~100,000 Genetic Epidemiology
Research on Aging (GERA) study participants. In the present study, we subsequently focused on
determining putative regulatory regions for these and other tissues of relevance to blood
pressure, to both fine-map these loci by pinpointing genes and variants of functional interest
within them, and to identify any novel genes.

We constructed maps of putative cis-regulatory e ements using publicly available open
chromatin data for the heart, aortaand tibial arteries, and multiple kidney cell types. Sequence
variants within these regions may be evaluated quantitatively for their tissue- or cell-type-
specific regulatory impact using deltaSVM functional scores, as described in our previous work.
In order to identify genes of interest, we aggregate these variants in these putative cis-regulatory
elements within 50Kb of the start or end of genes considered as “expressed” in these tissues or
cdl types using publicly available gene expression data, and use the deltaSVM scores as weights
in the well-known group-wise sequence kernel association test (SKAT). We test for association
with both blood pressure traits as well as expression within these tissues or cell types of interest,
and identify several genes, including MTHFR, C100rf32, CSK, NOV, ULK4, SDCCAGS,
SCAMP5, RPP25, HDGFRP3, VPS37B, and PPCDC. Although our study centers on blood
pressure traits, we additionally examined two known genes, SCNSA and NOSLAP involved in the
cardiac trait QT interval, in the Atherosclerosis Risk in Communities Study (ARIC), as apositive

control, and observed an expected heart-specific effect. Thus, our method may be used to
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identify variants and genes for further functional testing using tissue- or cell-type-specific

putative regulatory information.

Author Summary

Sequence change in genes (“variants’) are linked to the presence and severity of different
traits or diseases. However, as genes may be expressed in different tissues and at different times
and degrees, using thisinformation is expected to more accurately identify genes of interest.
Variants within the genes are essential, but also in the sequences (“regulatory elements’) that
control the genes' expression in different tissues or cell types. In this study, we aim to use this
information about expression and variants potentially involved in gene expression regulation to
better pinpoint genes and variantsin regulatory elements of interest for blood pressure
regulation. We do so by taking advantage of such datathat are publicly available, and use
methods to combine information about variants in aggregate within a gen€' s putative regulatory
elements in tissues thought to be relevant for blood pressure, and identify several genes, meant to

enable experimental follow-up.

I ntroduction

Genetic studies of complex disorders have identified hundreds to thousands of sequence
variants in the human non-coding genome. However, despite significant mapping progress, we
do not yet know the identity of most of the underlying genes and variants, nor have a mechanistic
understanding of how these genes, individually and together, contribute to a phenotype. Thus, we
need to consider how such genomic studies can improve our knowledge of trait physiology. One

approach would be to focus study genetic analyses by organs and tissues of interest.
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Pritchard and colleagues have hypothesized that the majority of genome-wide association
study (GWAYS) signals may be functionally spurious and arise from genes peripheral to the core
functions affected in atrait or disease[1]. These false positives dominate because most genesin
a cell-type are connected by gene expression to one another through very shallow functional
networks, a working hypothesis that fails to explain the stability of network perturbations
(robustness) or their specificity (phenotypic effects) [2—4]. To resolve this question, connecting
genotypes to phenotypes through gene expression variation is of primary importance since
eQTLs (expression quantitative trait loci) are identifiable causal factors[5,6]. However, utilizing
gene expression in trait-related tissues is necessary [ 7], as genes exert their activitiesin the
context of a core genetic network with intrinsic (cell autonomous) and extrinsic (non-
autonomous) feedback [8].

Transcription within mammalian genomesislocally regulated within ~400 kilobase (kb)
chromatin segments called topological associating domains (TADS), largely invariant across cell
types [9]. TADs contain numerous dispersed spatiotemporal expression cis-regulatory elements
(CREs or enhancers) that are are brought together by DNA looping to allow binding of various
transcription factors (TF) to enable gene expression control [10]. Many enhancers are recognized
by their DNasel hyper-sensitivity (DHS), ATAC-seq (Assay for Transposase-Accessible
Chromatin using sequencing) assays [11], or adjacent histone (H3K4mel, H3K4me3, H3K27ac)
modifications[12,13]. Their phenotypic importance is evident from the fact that only 2.6% of the
genome comprises DHS and histone marks [14] but explains ~30% of the heritability of traits
[15]. Thus, trait variation is from sequence changes within TFs, their binding sites (TFBS) and

CREs, all detectable through epigenomic marksin cell lines and tissues. In this study, we
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propose an approach wherein these types of epigenomic data are used to identify genes within a
GWAS locus in tissues of interest.
The analyses we propose are enabled by numerous public genomic resources. The

Encyclopedia of DNA Elements (ENCODE) Project (https://www.encodeproject.org/) has

generated open chromatin, RNA and DNA sequencing, genotyping, and histone modification
data, among other data types. The Genotype-Tissue Expression (GTEX) Project

(https://www.gtexportal.org/) includes genotype and expression data across 53 tissues and is

useful as areference transcriptome and eQTL dataset. These public resources also enable the
development of an annotation score, deltaSVM [16], in which the quantitative impact of anon-
coding variant on tissue or cell type specific gene regulation is predicted, based on areference
training set of regulatory regions. In this study, we exemplify this reverse genetic approach by
focusing on blood pressure (BP) and QT interval variation.

Although the roles of the kidney and adrenal gland are well established in blood pressure
regulation and syndromes [17-19], our previous work in the Kaiser Permanente Research
Program on Genes, Environment and Health (RPGEH) Genetic Epidemiology Research on Adult
Health and Aging (GERA) [20,21] study demonstrated that associated variants at BP GWAS loci
were enriched in eQTLs specific to the aorta and tibial arteries. Expanding on thiswork in this
study, we aimed to connect groups of proximal putative regulatory variants within and around
each gene to both the gene's expression and also to BP traits, inferring that the gene’' s expression
in a potentially relevant tissue affected the regulation of BP. To accomplish this, within each
artery dataset, we identified putative CRES, and by extension, putative CRE variants, for every
gene, and tested these variants in aggregate for association with BP in the GERA study, as well

aswith expression in the GTEx study. We used the sequence kernel association test (SKAT) [22]
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for these association analyses, with each variant weighted by their deltaSVM score, to up-weight
variants with greater predicted effects on gene regulatory activity. We supplemented our
expression analyses with the software MetaX can [23] to test whether the predicted expression of
genesin each individual could be associated with BP. Prior to the novel BP gene discovery
analyses of tissue involvement, and as a positive control, we first examined genes for the cardiac
trait QT interval for which there is strong functional evidence of primarily heart involvement,
using data from the Atherosclerosis Risk in Communities (ARIC) [24,25] study. Finaly, we
examined the effects of putative regulatory variation for monogenic BP syndrome genes, all
known to be renal or adrenal disorders, in four available kidney cell typesto test for a group
effect on BP.

Our results demonstrate the feasibility of identifying BP genes by tissue, which we expect

will facilitate more comprehensive functional analyses of BP genes and BP control mechanisms.

Results

We conducted several tissue-specific analyses to identify tissues and genes of interest for
BP regulation using the GERA study. We initially focused on identifying tissues relevant to BP
GWAS loci, and subsequently expanded on this by using tissue-specific information to analyze
putative CRE variation of genesin these tissues. The aim was to identify specific genes and
variants of interest at these GWAS loci. We also studied putative regulatory variation at 20
monogenic syndromic hypertension and hypotension genesin several kidney cell types. To
begin, our study also includes an analysis of QT interval as a positive control to demonstrate the

identification of well-characterized genes for that trait.
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145  Partitioned heritability of BP

146 We examined heritability for SBP and DBP using 80,792 GERA EUR subjects with

147  dtratified LD score regression (LDSC) across several functional categories[15], to identify

148  functional categoriesin which BP heritability was enriched. We found that the top-ranked

149  enriched categories were enhancer-associated histone marks H3K27ac, H3K4mel, and the Hnisz
150  “super-enhancer” category (Tables S1-S2). Thisisin accordance with a previous study in which
151 BP heritability was determined to be mostly from within DNasel hypersensitivity sites[26], and,
152  taken together with the results of the eQTL enrichment analyses, supports the study of regulatory
153  elementsin specific tissues of interest for BP.

154

155  Constructing CRE maps

156 With knowledge of tissues highly relevant to characterizing BP GWAS loci, our next aim
157 wasto test each gen€e's putative cis-regulatory variation for association with both gene

158  expression and BP, in atissue-specific context. Thisis expected to assist in identifying novel

159  genesof interest, aswell as provide tissue- or cell-type-specific information about known genes.
160 We first constructed CRE maps for the aorta and tibial arteries, as well as four kidney cell
161 types(renal cortical epithelia cell, glomerular endothelial cell, epithelial cell of proximal tubule,
162  and glomerular visceral epithelial cell), because of the known involvement of the kidney in blood
163  pressureregulation [17,18], using ENCODE data (Table 1) (though many monogenic forms of
164  blood pressure disorders occur dueto an effect of the adrenal gland on renal function [19]).

165  These CRE maps were completed as an extension of the construction of our recent cardiac CRE
166 map [27]. We specifically focused on identifying putative enhancers for the aorta and tibial

167  arteries (see Methods). We subsequently used these maps for training with the software gkm-
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SVM [28,29] in order to generate deltaSVM functional scores for all non-coding variants from
the 1000 Genomes European ancestry sample, to be tested for association on a gene-level basis.
The performance for each model is available in Table S3 (AUC range: 0.84-0.96), with the best
performance in the renal cell types. A possible reason for the improved performance of the renal
cell typesisthat the data were from individual cell types as opposed to a mixture of cell types
comprising the arteries. The magnitude of the deltaSVM score for a variant reflects its predicted
impact on regulatory functional activity, while its sign reflects the prediction with respect to the
reference allele. Therefore, to represent the predicted impact of each variant irrespective of
allele, we show the distributions of the absolute values of the deltaSVM scores for the arteries

and kidney cell typesin Fig 1.

Table 1. Summary of datasetsfor analysisin this study.

Study/Project | Dataset Description Analysis
ENCODE
Project
Artery Open Chromatin
aortic smooth muscle Aorta SKAT analyses
ENCSRO00EIH cell groupings
Aorta SKAT analyses
ENCSROOOEMC | aortic adventitia cell groupings
pulmonary artery Aorta SKAT analyses
ENCSROOOEOG | endothélial cell groupings
pulmonary artery Aorta SKAT analyses
ENCSROOOEOH | fibroblast groupings
Aorta, Tibial Artery SKAT
ENCSR630REB | tibial artery analyses groupings
Histone
Modification
Aorta SKAT analyses
ENCSR519CFV | aorta H3K27Ac groupings
Aorta SKAT analyses
ENCSRO15GFK | aorta H3K27Ac groupings
Aorta SKAT analyses
ENCSR318HUC | aorta H3K27Ac groupings
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Aorta SKAT analyses
ENCSRO69UMW | aorta H3K27Ac groupings
Aorta SKAT analyses
ENCSR322TJD aorta H3K27Ac groupings
Tibial Artery SKAT analyses
ENCSR233LCT | tibial artery H3K4mel | groupings
Kidney Open Chromatin
renal cortical epithelial | Kidney SKAT analyses
ENCSRO0OEOK | cdll groupings
glomerular endothelial | Kidney SKAT analyses
ENCSRO00OEOM | cdll groupings
proximal tubule Kidney SKAT analyses
ENCSROOOEPW | epithelial cell groupings
glomerular visceral Kidney SKAT analyses
ENCSR785BDQ | epithelial cdll (3yo) groupings
Genotypes, BP 71404 European-

GERA phenotype Ancestry individuals SKAT, BP traits
Summary 80,792 European- Partitioned heritability
statistics Ancestry individuals analyses, MetaXcan
Genotypes, QT 9,083 European-

ARIC interval Ancestry individuals SKAT, QT interval
Summary 9,083 European- Partitioned heritability
statistics Ancestry individuals analyses, MetaXcan
Genotypes,

GTEX Expression

Aorta 197 samples SKAT, expression (for BP)
Tibial Artery | 285 samples SKAT, expression (for BP)
Heart Atrial
Appendage 159 samples SKAT, expression (for QT)
Heart Left
Ventricle 190 samples SKAT, expression (for QT)
180
181 Fig 1. Distributions of deltaSVM scoresfor each tissue or cell type.
182
183  Tissue-specific geneidentification
184 As our emphasisin this section is to connect a gene' s putative CRE variantsto both a
185  phenotype of interest and to its expression in relevant tissues (Fig 2), we first describe the overall
186  analysis scheme as applied to a general phenotype of interest. We then describe how we applied
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187  these analyses, first to the QT interval in the ARIC study, as proof of principle to demonstrate
188  theutility of these analyses, and then to our BP traits of interest in the GERA study.

189

190 Fig 2. Overview of CRE SKAT analysis.

191

192 We defined agene' s “cis’-regulatory variantsin this analysis as those variants falling in
193  putative CREs within 50Kb of the gene's start and end. We tested their aggregate effect for each
194 geneusing SKAT [22], for association tests with the phenotype(s) of interest in the relevant

195  population, SBP and DBP in the GERA study, and QT interval in the ARIC study. SKAT isa
196 test that has generally been used to study groups of variants together and is useful when variants
197  can have bidirectional effects; rare variants are more highly weighted than common variants by
198  default. In addition to the default weights, we ran the analysis using equal weights for all

199  variants. Wefinally used the tissue- or cell-type-specific deltaSVM scores for the analyzed

200 variantsasweights for a customized SKAT test; the score scaling with the effect of the variant
201  onfunctional regulatory activity.

202 We then tested these groupings with expression data from GTEX v6p in the tissues of
203  interest to link variantsin the genes of interest to their gene expression. The groupings tested in
204  the GTEx datawith expression were not always identical to the groupings tested in the GERA or
205 ARIC studies because of differences in imputation quality score filtering, missingness of

206  genotypes from genotype probabilities to hard call conversion, and variants present in the

207  reference populations studied. However, this analysis still connects a given geneto its expression
208  andto the phenotype via a highly overlapping set of CRE variants, and was completed this way

209  totest the most complete set of variants available meeting our criteria. In addition to testing
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210  putative regulatory variants with gene expression in GTEX, we used the recently devel oped

211 MetaXcan[23] software to augment SKAT to identify any new associations by this method.
212 This software predicts the association of gene expression with a phenotype, given genotypes for
213  thepopulation of interest based on training from reference genotypes and expression data.

214

215 Analysisof CREsin QT interval

216 As mentioned earlier, we considered the cardiac trait QT interval first to

217  demonstrate proof of concept for tissue-specific gene identification. The QT interval isthetime
218  in msbetween the onset of the Q wave and the end of the T wave in the surface 12-lead

219  eectrocardiogram [30], which has ~30% heritability [31-34]. In our recent work, we have

220  demonstrated that a significant proportion of the heritability is explained by predicted cardiac
221  regulatory variants[27]. We analyzed the genes at previously published QT interval GWAS loci
222  to determine whether or not a heart-specific effect could be observed. Two of the genes with

223  major effectsin aGWAS and functionally validated in QT interval heritability are NOS1AP [34—
224  36] and SCN5A [36,37]. The full results are presented in the Text S1 results, Table $4, and Figs
225 Sl and S2; to summarize here briefly, we aimed to discover if a heart-specific effect could be
226  revealed for each of these two genes. We observed a heart-specificity for SCN5A; NOSLAP

227  showed signal across al the cell types in the equal-weighted analyses, though considerably

228  attenuated in some of the deltaSVM-welghted non-heart tissues. Considering both sets of effects,
229  certainly variants with detectable signals present in open chromatin regions specific to the

230  relevant tissue/cell types will allow the detection of atissue-specific signal, as for SCN5A. It also
231  appears, however, that gene-level signals may be captured by analyses in which all variants are

232  weighted equally, and when local open chromatin boundaries across tissues/cell types overlap

10
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233  considerably, especially when variants with strong signals are present within these shared

234  regions. In this situation, we will not necessarily be able to differentiate between different

235  tissue/cell types. Weighting with the tissue-specific deltaSVM scores introduces an additional
236  tier of tissue specificity and is based on global open chromatin differences, and is also not

237  expected to be impacted by linkage disequilibrium (LD) in the ways that the other two weighting
238 schemes are, asthe generation of the scores are only dependent on sequence context. Finaly,
239  using the default weights shows least concordance with the other two sets of results, indicating
240  that for thisanalysis, rare variants are not driving the signal as compared to common variants.
241  Thisisasexpected, as we prioritized non-coding variation for these analyses, and the rare

242  variants with larger effects expected to make a detectable contribution are more likely to bein
243  theexome.

244

245 Analysisof CREsat GWAS Ioci for BP regulation

246 We then applied these analyses to the tissues of interest for BP regulation, namely aorta,
247  tibial artery, and four kidney cell types, in a subset of 71,404 unrelated GERA EUR individuals.
248  Wetested 14,548 genes expressed at RPKM > 0.3 in 197 aorta GTEx samples and 13,963 genes
249  expressed at RPKM > 0.3in 285 tibia artery GTEx samples for the SKAT analyses. We used
250 summary statistics available from 80,792 individual §[38] to maximize the sample size for which
251 theMetaXcan analyses were run, for the aortaand tibial arteries. Results for each of the arteries
252  arepresented in Tables 2-5. In some cases, shared variants drive the positive signal for multiple
253  genesat the same locus; expression in the relevant tissue or cell type may pinpoint a specific
254  gene. However, it may be noted that the genes CERS5, COX14, and RP4-60503.4 are all present

255  at the samelocusin the arteries (Tables 2-5), but evidence of expression association is present

11


https://doi.org/10.1101/820522
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/820522; this version posted October 27, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

256  for many of these genes; this may be indicative of proximal variants affecting different genes, or

257  pleiotropy of single variants affecting expression of multiple genes.

258

12
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Table2. Aorta SBP SKAT and MetaXcan results.

N.sb p.sbp.de p.GTEX. | p.GTEX. | p.GTEX.

Gene p | p.sbp.dsvm | p.sbp.eq f N.GTEx | dsvm eq def N.MetX | p.MetX | previous
7.19x

NR3C1 8| 5.44x10° 10°® 0.064 7 0.002 0.001 0.529 - -| FALSE
5.91 x 272x| 476X 1.35X

WBP1L 39| 6.66x10° 107 0.085 37 10" 10" 0.137 21 10°| FALSE
760x| 258x 471X 2.01x

SBF2 34| 9.27x10° 10°® 10° 34 0.003 10" 0.022 17 10°| TRUE
1.73x | 232x 2.63x

CLCN6 28| 1.07x10° 10 10°® 34 0.014 0.003 10* 19 0.028| TRUE
335x | 4.22x 1.85x| 3.15x

MTHFR 29| 1.08x 10° 108 10°® 35 10° 10° 0.015 2 0.001| TRUE
541X 463x| 7.10x

C100rf32 17 | 1.68x10° 107 0.026 15 10 103 0.059 - -| TRUE

RP4- 347X 5.11 X

60503.4 7| 451x10° 10" 0.069 5 0.016 10 0.425 - -| FALSE
1.47 X 764x| 597x

COX14 6| 451x10° 10" 0.069 4 10" 10° 0.338 5 0.034| TRUE
5.65 X 3.18x | 249x 1.24 x

CK 3| 6.34x10° 10° 0.110 3 10° 10° 0.579 17 10%| TRUE
6.42 X 7.02 x 9.14 x

ULK3 2| 6.34x 107 10° 0.952 3 0.001 10" 0.164 9 10%| TRUE

N.sbp, number of variants analyzed in SKAT analysis of SBPin GERA; p.sbp.*, p-values from SKAT analysis of BPin GERA with

deltasvm (dsvm), eq (equal), or default (def) weights; N.GTEX, number of variants analyzed in SKAT analysis of expression in GTEX

p.GTex.*, p-values from SKAT analysis of expression in GTEX with deltasvm (dsvm), eq (equal), or default (def) weights, N.MetX,

number of variants used in MetaX can prediction results; p.MetX, MetaX can p-value; previous, TRUE if found at a previously

identified GWAS locus from the UKB list, FALSE otherwise

13
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Table3. Aorta DBP SKAT and MetaXcan results.

N.db | p.dbp.ds N.GTE | p.GTEx.d p.GTEx.d | N.Me | p.Met

Gene p vm p.dop.eq | p.dbp.def X svm p.GTEX.eq ef tX X previous
1.40 x 1.98 x 426 x 10

NOV 10 108 108 0.664 7 >| 404x10° 1 99| 0.102| TRUE
1.75x 5.04 x 249x10 | 295x10 2.95 x

ULK4 5 108 108 0.001 5 2 2 0.094 42| 10| TRUE
1.35x 7.49 X 7.64 x 10

COX14 6 107 107 0.138 4 41 597x10° 0.338 5| 0.003| TRUE
341x 7.67 X

|GFBP3 4 107 108 0.006 3 0.011 0.014 0.842 - -| FALSE
6.92 x 1.74 x 557 x 10 2.95 x

SDCCAGS 10 107 10° 0.359 10 6| 2.26x 10 0.481 9 10°| TRUE
7.06 X 1.49 x 8.44 x 252 x 10 3.59x 10

CEP170 6 107 10°® 107 7 41 1.72x10* 4 19| 0.002| TRUE
9.93 x 8.91 x 3.18 x 10 7.93 x

CK 3 107 107 0.068 3 °| 249x10° 0.579 17 10°| TRUE
9.93 x 9.76 X 2.09 x

ULK3 2 107 107 0.826 3 0.001 | 7.02x10% 0.164 9 10%| TRUE
3.98 x 1.23x 6.70x10 | 297x10 | 4.15x 10 1.93 x

SCAMP5 15 10° 10° 0.009 13 8 1 10 14 10°| FALSE
4.67 X 4.76 X 358x10 | 393x10 | 4.79x 10

RPP25 3 10° 10°® 0.928 2 17 o o - - | FALSE®
1.52 x 1.21x 3.90x 10

HDGFRP3 3 10° 10° 0.578 3 | 1.35x10° 0.042 48| 0.001| TRUE
2.12 x 1.36 x

COX4l12 31 10° 10° 0.003 7 0.002 | 8.86x 10% 0.729 - -| FALSE
2.27 X 1.37 x 741 x

SBF2 34 10° 10° 0.004 34 0.003 | 4.71x 10™ 0.022 17 10%| TRUE

RNF40 6| 2.39x 3.72x 0.242 5| 274x10 | 250x 10* 0.338 - -1 TRUE
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267

268

269

270

271

272

273

274

107 10° 4

RP11- 482x| 494x

382A20.2 2 10° 10° 0.627 2 0.005 0.004 0.066 - -| FALSE
7.50 x 7.50 x 7.50 x

RNASEH2C 1 10° 10° 10° 1 0.002 0.002 0.002 11| 0690| TRUE
1.16x | 1.80 x 4.01x 10

SL.C25A37 31 10" 10" 0.121 28 41 2.07x10* 0.537 13| 0169| FALSE
1.36 X 1.09 x

SENP2 8 10" 10 0.711 7 0.004 0.002 0.202 43| 0.050| TRUE
1.46 X 2.82x 7.73x 850 x 10° 2.03x 10 3.43x

VPS37B 11 10" 10° 10° 10 6| 8.90x 107 4 16 10°| FALSE
1.69 X 1.69 x 1.69 x 8.73x 10° 8.73x 10° 1.53x

ZNF652 1 10" 10 10 1 41 8.73x10* 4 7 10°| TRUE
2.21x 2.14x

NR3C1 8 10" 10 0.018 7 0.002 0.001 0.529 - -| FALSE
2.25 X 6.05 X 6.68 x 10° 4.82x 10

PPCDC 14 10" 10° 0.009 12 8| 420x 10 8 38| 0.002| FALSE

N.dbp, number of variants analyzed in SKAT analysis of DBP in GERA; p.dbp.*, p-values from SKAT anaysis of DBP in GERA
with deltasvm (dsvm), eq (equal), or default (def) weights; N.GTEX, number of variants analyzed in SKAT analysis of expression in
GTEX; p.GTex.*, p-values from SKAT analysis of expression in GTEx with deltasvm (dsvm), eq (equal), or default (def) weights;
N.MetX, number of variants used in MetaX can prediction results; p.MetX, MetaXcan p-value; previous, TRUE if found at a
previously identified GWAS locus from the UKB list, FALSE otherwise

& RPP25 has been previously identified in GWAS, but our method to identify genes at GWAS loci was conservative and missed this

gene; see text
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Table4. Tibial Artery SBP SKAT and MetaXcan results.

p.sbp.dsv N.GTE | p.GTEx.ds | p.GTEx.e | p.GTEx.d | N.Me | p.Met

Gene N.sbp | m p.sbp.eq | p.sbp.def | x vm q ef tX X previous
6.54 X 2.62 X 6.14x | 358x 10 2.67 X

CLCN6 24 | 9.65 x 10°° 10°® 104 28| 5.07x10% 108 6 10| 10° TRUE
6.54 X 2.62 X 1.13X

MTHFR 24 | 9.65 x 10°° 108 104 28| 8.79x10% 10° 0.161 35| 0.076 TRUE
2.08 x 2.05x | 7.30x 10

C100rf32 8|6.98x 10° 108 0.004 7| 3.07x 10" 108 8 - - TRUE

HOXC- 1.42 X 6.04 X

ASL 11 | 4.00x 10° 10 0.638 14 | 3.24x10° 10° 0.194 - -| FALSE
7.66 X 3.81x 1.08 x

CCDC6 37| 4.49x 10° 10° 0.151 37| 3.32x10* 10" 0.035 30 10%| FALSE
1.06 X 2.29 x

ATE1 15 | 5.67 x 10° 10" 0.583 17 | 8.74x 10* 10" 0.086 71| 0816| FALSE
6.42 X

SOX7 20| 6.76 x 10 10° 0.036 18 0.007 0.016 0.121 - -| FALSE
4.69 x 587 x | 6.97x 10

AGT 14 | 8.29x 10° 10° 0.090 14 0.001 107 6 24 | 0.937 TRUE
8.58 x 1.44 x

NT5C2 25| 8.75x 10° 10 10 22 0.004 0.008 0.163 7| 0.006 TRUE
1.34 X 5.69 x

DHX33 28| 9.67x 10° 10 0.372 29| 3.67x107 108 0.033 7| 0277| FALSE
7.26 X

SFMBT1 8| 1.15x 10* 10 0.521 8 0.003 0.023 0.363 13| 0.006| FALSE
2.86 X

NPPA 15 | 1.16 x 10* 107 0.003 16 0.007 0.012 0.025 - - TRUE
2.37x

ERI1 29| 1.33x 10™ 10 0.280 27 0.001 0.002 0.185 - -| FALSE
2.67 X

BCL2L2 6| 1.59x 10 10 0.009 5| 520x10™ 0.006 0.356 - -| FALSE

BCL2L2- 6| 159x10%| 2.67x 0.009 6 0.013 0.104 0.717 - - FALSE
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276

277

278

279

280

281

282

PABPN1 10

NPPA- 2.92 x 562X | 4.67x 10

ASL 17 | 1.66x 10* 107 0.003 19| 1.89x 102 102 10 - -| FALSE
5.09 X 1.30 X

Clorf132 26 | 1.74x 10™ 10° 0.055 26 0.009 10 0.400 - -| FALSE
2.89 x 7.26 X

RPAIN 12 | 1.89x 10* 10 0.627 12 0.003 10 0.479 5| 0546| FALSE

CTC- 2.89 x 0.0001628 2.97 X

524C5.2 12 | 1.89x 10* 10 0.627 12 27 10° 0.301 FALSE

N.sbp, number of variants analyzed in SKAT analysis of SBPin GERA; p.sbp.*, p-values from SKAT analysis of SBPin GERA with

deltasvm (dsvm), eq (equal), or default (def) weights; N.GTEXx, number of variants analyzed in SKAT analysis of expression in GTEX;

p.GTex.*, p-values from SKAT analysis of expression in GTEX with deltasvm (dsvm), eq (equal), or default (def) weights, N.MetX,

number of variants used in MetaX can prediction results; p.MetX, MetaX can p-value; previous, TRUE if found at a previously

identified GWAS locus from the UKB list, FALSE otherwise

Tableb. Tibial Artery DBP SKAT and MetaXcan results.

N.d | p.dbp.dsv N.GT | p.GTEx.dsv | p.GTEx.e | p.GTEX. | N.Met | p.Met
Gene bp m p.dbp.eq | p.dbp.def | EXx m q def X X previous
1.70 x 1.15x 7.95x 1.44 X
NOV 17 108 108 0.731 16| 7.00x10° 10°® 0.943 34| 10° TRUE
1.66 X 3.75x 3.90 x 3.55 x 1.17 X
CERSS 6 10° 10°® 0.004 2| 341x10* 10" 10 33| 10* TRUE
1.66 x 3.75x 1.62 x 6.54 x
COX14 6 10° 10°® 0.004 2| 426x10° 10° 10" 33| 0.004 TRUE
1.66 x 3.75x 1.76 x 2.36 X
RP4-60503.4 6 10° 10°® 0.004 2| 157x107 107 107 - -| FALSE
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459x | 6.04x

JAG1 37 10° 10° 0.032 41 0.018 0.003 0.304 - - TRUE
5.69 x 2.60 x 3.61x 5.40 x

ULK4 12 10° 10%° 0.008 11| 2.78x10" 10" 0.158 50| 10%| TRUE
6.08 x 1.65x 5.04 x 8.59 x

IPO9 18 10° 10 0.416 17 0.009 10 10 33| 0952| FALSE
1.86 x 3.60 x

LIMAL 9 10° 10° 0.638 6 0.008 0.003 0.926 6| 0120| TRUE
383x| 7.79x

NAV1 44 10° 10* 0.554 36| 264x10* 0.009 0.010 - -| FALSE
3.92 x 1.88 x 1.82 x

COX4I2 13 10° 10° 0.360 4| 194x10* 10* 0.656 - -| FALSE
4.23 X 1.10 x 1.52 x 151 x

UBN1 11 10° 10° 0.417 10| 3.19x10° 107 0.299 9| 10° TRUE
5.29 x 7.75 X 1.36x 5.09 x 8.04 x

SCAMP5 7 10° 10° 0.331 5| 447x10% 107 10° 35| 10%| FALSE
588x | 5.65x

RNASEH2C 3 10° 10° 0.056 1 0.006 0.006 0.006 10| 0.831| TRUE
6.36x | 6.87x 342 x 1.63 x

CEP120 8 10° 107 0.003 8| 4.43x10° 10° 0.123 12| 10° TRUE
730x | 3.87x 6.14 x 3.58 x 1.16 x

CLCN6 24 10° 10° 0.001 28| 5.07x10% 108 10° 10| 10° TRUE
730x| 3.87x 1.13x

MTHFR 24 10° 10° 0.001 28| 8.79x10% 10° 0.161 35| 0086| TRUE
9.04x| 5.15x 1.73x 8.08 x

SDCCAGS 6 10° 10° 0.130 7| 455x10° 10° 0.273 17| 10% TRUE
1.05x | 2.68x 5.00 x 8.21 x

ACSF3 9 10* 10 10 11 0.003 10° 0.548 56| 0.328| FALSE
111x| 9.49x 2.56 X

RPP25 4 10* 10° 0.559 2| 436x10% 10%2 0.001 - -| FALSE?
111x| 9.49x

COX5A 4 10 10° 0.559 2 0.004 0.004 0.053 - - TRUE

MKL2 31 112x | 1.34x 0.031 25 0.017 0.010 0.020 - -| FALSE
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283

284

285

286

287

10 10

1.40 X 5.38 X 1.13x 1.12x

VPS37B 11 10 0.002 10" 9| 208x10% 10 10 37| 0.007| FALSE
1.91x 1.17 X

FAM20B 13 10 0.004 0.690 10| 3.35x10° 10 0.337 17| 0.030| FALSE
2.10 x 2.18 x 4.20 x

PLA2G4B 10 10 10" 1 10| 3.41x107 107 0.320 16| 0.005| FALSE
2.15x 9.05 x 3.91x 1.26 X

ALDH2 3 10 10° 0.658 2| 544x10° 108 10° 8| 0.002| FALSE
2.39 x 157 x

DUSP15 15 10 10" 0.008 4 0.018 0.038 0.923 5| 0.028| FALSE

RP11- 2.40 x 1.88 x

65J21.3 8 10 10" 0.660 5 0.015 0.020 0.382 - -| FALSE
252 x 2.34x 6.34 X

MAPKBP1 8 10 10" 0.077 6| 7.04x10° 10° 0.056 23| 0.019| FALSE
254 x 2.38 x 4.30x 3.34x

JMJID7 7 10 10* 0.077 6| 147x10° 108 0.203 20| 10%| FALSE
2.79 x 243 x

CENPW 3 10 10* 0.075 2 0.004 0.004 0.066 21| 0.002| FALSE
2.81x 3.36 X 5.97 x 9.06 x 2.13x

ATF1 6 10 10* 0.639 2| 480x10%° 10%° 10° 14| 10°| FALSE

N.dbp, number of variants analyzed in SKAT analysis of DBP in GERA; p.dbp.*, p-values from SKAT anaysis of DBP in GERA

with deltasvm (dsvm), eq (equal), or default (def) weights; N.GTEX, number of variants analyzed in SKAT analysis of expression in

GTEXx; p.GTex.*, p-values from SKAT analysis of expression in GTEx with deltasvm (dsvm), eq (equal), or default (def) weights,

N.MetX, number of variants used in MetaX can prediction results; p.MetX, MetaXcan p-value; previous, TRUE if found at a

previously identified GWAS locus from the UKB list, FALSE otherwise
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On the whole, the 25 genes reported here across aorta and tibial artery genes have been
identified at previous BP loci [39]. While there are several genesin each analysis with interesting
associations with BP traits, here we only highlight the genes that have statistical significance of p
< 1 x 10™ for both expression and BP in the aorta analyses (Tables 2-3). In our previous work,
the aorta was demonstrated as the greatest outlier in an analysis of eQTL enrichment among
GTEX tissues for BP traits [38]. These genesinclude: MTHFR[40,41] (SBP), C100rf32[40]
(SBP), CX (SBP), NOV[42] (DBP), ULK4[43] (DBP), SDCCAGS (DBP), SCAMP5 (DBP),
RPP25 (DBP), HDGFRP3 (DBP), VPS37B (DBP), and PPCDC (DBP). Most of these genes are
present at or near previously replicated BP GWAS loci; SDCCAGS8 was identified as part of
Hoffmann et al.[38] It is noteworthy that both SCAMPS and PPCDC are neighboring genes, but

have independent expression support in the same tissue.

Analysisof CREsat GWAS loci for monogenic BP genes

We also studied the genes involved in monogenic forms of hypotension or hypertension
in four kidney cell types available from the ENCODE project (see earlier). Asthe expression
data available for kidney are insufficient, we studied each cell type individually and carried out
only SKAT analyses for these genes; the results arein Tables 6-7. The most notable result is that
of CYP17A1, which shows an effect (p~10°—10") across all four cell typesin the unweighted
variants analyses for SBP only, and more specifically, only in the glomerular endothelial cell
(ENCSROO0EOM) (p.SKAT.dsvm.ENCSRO00EOM=3.64 x 10°®) in the deltaSVM-weighted
results. However, as C100rf32 is a gene of interest at the same locus, based on the artery results

above, we examined and noted that the results are somewhat similar for this gene, although not
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315 asstriking, due to variant set sharing in the SKAT analyses for these genes (deltaSVM p-values:
316 ENCSROO0EOK, 8 variants, p=1.87 x 10°%; ENCSRO00EOM, 12 variants, p=2.87 x 10,

317  ENCSROOOEPW, 10 variants, p=6.33 x 10™; ENCSR786BDQ, 9 variants, p=0.031). The

318  breakdown of individual variants analyzed for these two genesisin Table S5. The variant

319  rs3824754, with an SBP association p=1.40 x 10™, appears in the groupings of both genes for all
320  four cell types, but has the highest deltaSVM magnitude in the endothelial cell. Additionally,
321 thereisaset of four variants with SBP association (p<1 x 10%; rs284853, rs284854, rs284855,
322 rs284856) which only appear in the ENCSROO0OEOM groupings. We observed that while

323  CYP17Al was smilarly associated with, or demonstrated evidence of association with, SBP in
324 theddtaSVM and unweighted variants analysis (aorta deltaSVM p=2.06 x 10, 34 variants;

325 tibial artery deltaSVM p=1.40 x 10, 15 variants), the analysis of variantsin GTEx (33 variants
326  for aortaand 14 variants for tibial artery) did not reflect any significant association (p>0.01). In
327  contrast, C100rf32 demonstrated association with SBP (aorta deltaSVM p=1.68 x 10°°, 17

328  variants; tibial artery deltaSVM p=6.98 x 10°®, 8 variants, Tables 2 and 4) and with expression in
329  GTEx (aortadeltaSVM p=4.63 x 10, 15 variants; tibial artery deltaSVM p=3.07 x 10**, 7

330 variants, Tables 2 and 4). The same four variants unique to the ENCSROO0OEOM groupings

331 abovewith strong associations with SBP are also present in the artery groupings. Three of these
332  variants (rs284854, rs284855, rs284856) are eQTLs for C100rf32 in the aorta and tibial arteries;
333  thesevariants, however, do not show association with CYP17A1 expression in these tissues (all p
334 >0.03for aorta, al p>0.21 for tibial artery, from eQTL data available from the GTEXx portal

335  (https.//www.gtexportal.org/), accessed 09/08/17). Additionally, as the CYP17ALl gene primarily

336  demonstrates an adrenal effect in the monogenic disorder [44], we aso examined the

337  associations of these three variants in the GTEXx portal with adrenal gland expression data for
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both genes; al have p > 0.26 for CYP17A1 and p > 0.04 for C100rf32. Thismay reflect an

endothelial-cell-specific effect for C100rf32 rather than atissue-type effect, especialy asthis

locus has been identified in several previous BP GWAS studies, [40,43,45-47]; it may also not

be very informative for the kidney, though suitable expression data for kidney would be required

to assess this.

Table6. Kidney SBP SKAT results.

Gene Experiment® N.sbp p.sbp.dsvm p.sbp.eq p.sbp.def

BSN\D ENCSRO00EOK 13 0.836 0.796 0.611
CAR ENCSRO00EOK 21 0.628 0.794 0.605
CLCNKA | ENCSRO00EOK 8 0.444 0.502 0.426
CLCNKB | ENCSRO00EOK 9 0.475 0.382 0.454
CUL3 ENCSRO00EOK 18 0.318 0.388 0.049
CYP11B1 | ENCSROO0OEOK 12 0.020 0.016 0.001
CYP11B2 | ENCSRO00EOK 10 0.014 0.014 0.003
CYP17A1 | ENCSROOOEOK 7 0069| 1.11x10° 0.018
HSD11B2 | ENCSRO0O0OEOK 4 0.150 0.104 0.248
KCNJ1 ENCSRO00EOK 13 0.992 0.958 0.789
KCNJ5 ENCSRO00EOK 11 0.550 0.742 0.982
KLHL3 ENCSRO00EOK 12 0573 0.431 0.345
NR3C2 ENCSRO00EOK 26 0.375 0.270 0.148
SCNN1A | ENCSROOOEOK 7 0.502 0.452 0.767
SCNN1B | ENCSROO0EOK 7 0.053 0.310 0.479
SCNN1G | ENCSROOOEOK 8 0.170 0.276 1.000
S.C12A1 | ENCSRO00EOK 6 1.000 0.909 0.713
S.C12A3 | ENCSRO00EOK 16 0.233 0.168 0.491
WNK1 ENCSRO00EOK 11 0.365 0.557 0.637
WNK4 ENCSRO00EOK 1 0.010 0.010 0.010
BS\D ENCSROOOEOM 12 0.861 0.737 0.562
CAR ENCSROO0EOM 2 0.860 0.790 0.672
CLCNKA | ENCSROOOEOM 10 0.688 0.657 0.540
CLCNKB | ENCSROO0EOM 10 0.688 0.657 0.540
CUL3 ENCSROOOEOM 8 0.081 0.250 0.044
CYP11B1 | ENCSROOOEOM 4 0.018 0.018 0.281
CYP11B2 | ENCSROOOEOM 3 0.015 0.015 0.281
CYP17A1 | ENCSROOOEOM 11 364x10%| 2.88x10" 0.013
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HSD11B2 | ENCSROOOEOM 6 0.024 0.044 0.595
KCNJ1 ENCSROO0OEOM 9 0.086 0.5%4 0.060
KCNJ5 ENCSRO0O0EOM 6 0.084 0.150 0.163
KLHL3 ENCSROO0OEOM 12 0.065 0.012 0.208
NR3C2 ENCSROO0OEOM 10 0.278 0.126 0.149
SCNN1A | ENCSROOOEOM 5 0.517 0.572 0.727
SCNN1B | ENCSROOOEOM 5 0.815 0.930 0.873
SCNN1G | ENCSROOOEOM 5 0.353 0.298 0.540
S.C12A1 | ENCSROOOEOM 4 0.742 0.896 0.704
S.C12A3 | ENCSROOOEOM 12 0.062 0.077 0.245
VWNK1 ENCSRO0O0OEOM 7 0.151 0.158 0.864
VWNK4 ENCSRO00OEOM 1 0.010 0.010 0.010
BS\D ENCSRO0OEPW 10 0.649 0.702 0.591
CAR ENCSRO00EPW 11 0.665 0.798 0.335
CLCNKA | ENCSROOOEPW 3 0.190 0.203 0.433
CLCNKB | ENCSROOOEPW 4 0.268 0.176 0.464
CUL3 ENCSRO0OEPW 8 0.030 0.195 0.039
CYP11B1 | ENCSROOOEPW 3 0.015 0.015 0.281
CYP11B2 | ENCSROOOEPW 5 0.015 0.017 0.488
CYP17A1 | ENCSROOOEPW 9 0.006 9.92x 10" 0.045
HSD11B2 | ENCSROOOEPW 1 0.051 0.051 0.051
KCNJ1 ENCSRO00EPW 7 0.960 0.9%4 0411
KCNJ5 ENCSROOOEPW 10 0.519 0.699 0.417
KLHL3 ENCSROOOEPW 8 0.380 0.525 0.428
NR3C2 ENCSROOOEPW 24 0.264 0.189 0.027
SCNN1A | ENCSROOOEPW 6 0.492 0.360 0.767
SCNN1B | ENCSROOOEPW 7 0.141 0.181 0.482
SCNN1G | ENCSROOOEPW 6 0.778 0.565 1.000
S.C12A1 | ENCSROOOEPW 4 1.000 0.896 0.704
S.C12A3 | ENCSROOOEPW 13 0.135 0.116 0.358
WNK1 ENCSRO00OEPW 11 0.526 0.515 0.054
VWNK4 ENCSROOOEPW 1 0.010 0.010 0.010
BSND ENCSR785BDQ 10 0.888 0.8%4 0.668
CAR ENCSR785BDQ 1 0.465 0.465 0.465
CLCNKA | ENCSR785BDQ 10 0.466 0.606 0.682
CLCNKB | ENCSR785BDQ 11 0.457 0.476 0.695
CUL3 ENCSR785BDQ 2 0.641 0.314 0.982
CYP11B1 | ENCSR785BDQ 4 0.387 0.353 0.026
CYP11B2 | ENCSR785BDQ 2 0.025 0.026 0.996
CYP17A1 | ENCSR785BDQ 12 0.008| 3.93x10° 0.020
HSD11B2 | ENCSR785BDQ 6 0.205 0.067 0.061
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KCNJL | ENCSR785BDQ 7 0.961 0.879 0.400
KCNJ5 | ENCSR785BDQ 2 1.000 1.000 1.000
KLHL3 | ENCSR785BDQ 10 0.498 0.126 0.888
NR3C2 | ENCSR785BDQ 9 0.314 0.290 0.037
SCNN1A | ENCSR785BDQ 9 0.521 0.700 0.980
SCNN1B | ENCSR785BDQ 4 1.000 1.000 0.983
SCNNIG | ENCSR785BDQ 6 0.727 0.565 1.000
SLC12A1 | ENCSR785BDQ 2 0.848 0.848 0.848
SLC12A3 | ENCSR785BDQ 28 0.250 0.440 0.666
WNK1 ENCSR785BDQ 7 0.289 0.414 0.128
WNK4 ENCSR785BDQ | -

N.sbp, number of variants analyzed in SKAT analyss of SBPin GERA p.sbp.*, p- val uesfrom

SKAT analysis of BP in GERA with deltasvm (dsvm), eq (equal), or default (def) weights

& Experiments;: ENCSRO00EOK, rend cortical epithelial cell; ENCSROO0EOM, glomerular

endothelial cell; ENCSRO00EPW, epithelial cell of proximal tubule; ENCSR785BDQ),

glomerular visceral epithelial cell

Table 7. Kidney DBP SKAT results.

Gene Experiment® N.dbp p.dbp.dsvm p.dbp.eq p.dbp.def

BSND ENCSRO00EOK 13 0.938 0.831 0.061
CASR ENCSROO0EOK 21 0.990 0.986 0.856
CLCNKA | ENCSROOOEOK 8 0.126 0.283 0.108
CLCNKB | ENCSROOOEOK 9 0.131 0.410 0.137
CUL3 ENCSROO0EOK 18 0.270 0.183 0.855
CYP11B1 | ENCSROOOEOK 12 0.102 0.095 0.013
CYP11B2 | ENCSROOOEOK 10 0.091 0.094 0.023
CYP17A1 | ENCSROOOEOK 7 0.505 0.189 0.337
HSD11B2 | ENCSROO0OEOK 4 0.045 0.023 0.114
KCNJ1 ENCSRO0O0EOK 13 0.969 0.879 0.398
KCNJ5 ENCSROO0EOK 11 0.722 0.598 0.487
KLHL3 ENCSROO0EOK 12 0.835 0.922 0.622
NR3C2 ENCSROO0EOK 26 0.730 0.766 0.104
SCNN1A ENCSROO0EOK 7 0.751 0.621 0.599
SCNN1B ENCSROO0EOK 7 3.33x 10" 0.012 0.053
SCNN1G ENCSROO0EOK 8 0.074 0.027 0.461
S.C12A1 | ENCSROOOEOK 6 0.361 0.259 0.860
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S.C12A3 | ENCSROOOEOK 16 0.069 0.072 0.175
VWNK1 ENCSRO00EOK 11 0.375 0.300 0.442
VWNK4 ENCSRO00EOK 1 0.828 0.828 0.828
BS\D ENCSROOOEOM 12 0.613 0.776 0.052
CAR ENCSROOOEOM 2 0.877 0.825 0.759
CLCNKA | ENCSROOOEOM 10 0.349 0.546 0.133
CLCNKB | ENCSROOOEOM 10 0.349 0.546 0.133
CUL3 ENCSROOOEOM 8 0.290 0.266 0.798
CYP11B1 | ENCSROOOEOM 4 0.117 0.129 0.689
CYP11B2 | ENCSROOOEOM 3 0.096 0.105 0.689
CYP17A1 | ENCSROOOEOM 11 0.053 0.076 0.187
HSD11B2 | ENCSROOOEOM 6 0.012 0.012 0.387
KCNJ1 ENCSROOOEOM 9 0.098 0.317 0.101
KCNJ5 ENCSRO00EOM 6 0.106 0.499 0.598
KLHL3 ENCSROOOEOM 12 0.897 0.924 0.515
NR3C2 ENCSRO00EOM 10 0.671 0.302 0.072
SCNNIA ENCSROOOEOM 5 0.782 0.709 0.547
SCNN1B ENCSRO00EOM 5 0.763 0.907 0.913
SCNN1G ENCSROOOEOM 5 0.167 0.085 0.920
S.C12A1 | ENCSROOOEOM 4 0.118 0.244 0.865
S.C12A3 | ENCSROOOEOM 12 0.008 0.044 0.234
WNK1 ENCSROOOEOM 7 0.499 0.589 1.000
VWNK4 ENCSROOOEOM 1 0.828 0.828 0.828
BS\D ENCSROOOEPW 10 0.866 0.769 0.062
CAR ENCSROOOEPW 11 0.921 0.845 0.872
CLCNKA | ENCSROOOEPW 3 0431 0.438 0.367
CLCNKB | ENCSROOOEPW 4 0.712 0.639 0.413
CUL3 ENCSROOOEPW 8 0.239 0.085 0.783
CYP11B1 | ENCSROOOEPW 3 0.104 0.105 0.689
CYP11B2 | ENCSROOOEPW 5 0.104 0.102 0.599
CYP1/A1 | ENCSROOOEPW 9 0.360 0.185 0.262
HSD11B2 | ENCSROOOEPW 1 0.006 0.006 0.006
KCNJ1 ENCSRO00OEPW 7 0.709 0.873 0.366
KCNJ5 ENCSROOOEPW 10 0.680 0.546 0.190
KLHL3 ENCSRO00OEPW 8 0.817 0.867 0.448
NR3C2 ENCSROOOEPW 24 0.489 0.374 0.032
SCNN1A ENCSRO00OEPW 6 0.733 0.446 0.599
SCNN1B ENCSROOOEPW 7 0.079 0.017 0.053
LCNN1G ENCSROOOEPW 6 0.647 0.061 0.297
S.C12A1 | ENCSROOOEPW 4 0.415 0.244 0.865
S.C12A3 | ENCSROOOEPW 13 0.017 0.050 0.217
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WNK1 ENCSRO00OEPW 11 0.300 0.173 0.031
VWNK4 ENCSROOOEPW 1 0.828 0.828 0.828
BS\D ENCSR785BDQ 10 0.645 0.492 0.062
CAR ENCSR785BDQ 1 0.967 0.967 0.967
CLCNKA | ENCSR785BDQ 10 0.291 0.457 0.268
CLCNKB | ENCSR785BDQ 11 0.296 0.568 0.303
CUL3 ENCSR785BDQ 2 0.145 0.040 0.248
CYP11B1 | ENCSR785BDQ 4 0.1%4 0.134 0.003
CYP11B2 | ENCSR785BDQ 2 0.105 0.107 0.508
CYP17A1 | ENCSR785BDQ 12 0.551 0.218 0.355
HSD11B2 | ENCSR785BDQ 6 0.079 0.008 0.003
KCNJ1 ENCSR785BDQ 7 0.848 0.795 0.128
KCNJ5 ENCSR785BDQ 2 1.000 1.000 0.875
KLHL3 ENCSR785BDQ 10 0.802 0.778 0.424
NR3C2 ENCSR785BDQ 9 0.877 0.784 0.019
SCNN1A ENCSR785BDQ 9 0.789 0.949 0.925
SCNN1B ENCSR785BDQ 4 0.345 0.445 0.555
SCNN1G ENCSR785BDQ 6 0.083 0.061 0.297
S.C12A1 | ENCSR785BDQ 2 0.282 0.282 0.282
S.C12A3 | ENCSR785BDQ 28 0.044 0415 0.393
VWNK1 ENCSR785BDQ 7 0.741 0.416 0.079
VWNK4 ENCSR785BDQ

N.dbp, number of variants analyzed in SKAT analysus of DBPin GERA; p.dbp.* p—val ues from

SKAT analysis of DBP in GERA with deltasvm (dsvm), eq (equal), or default (def) weights

& Experiments: ENCSRO00EOK, rend cortical epithelial cell; ENCSROO0EOM, glomerular

endothelial cell; ENCSRO00EPW, epithelial cell of proximal tubule; ENCSR785BDQ),

glomerular visceral epithelial cdll

Quantile-quantile (QQ) plots are shown in Figs S3-S14 for each of the six tissues and two

BP phenotypes, and each of three delta SVM weighting schemes. Although the dsvm weighting

scheme demonstrates a greater enrichment of genes than the default weighting scheme, the equal

weighting scheme marginally presents the greatest enrichment. In many cases, deltaSVM
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discriminates between different tissue/cell types while equal-weighted results do not; thisis
especially clear with the QT interval results.

We analyzed the union of genes that met significance in the association analysis with BP,
regardless of association of expression, to maximize our gene list for annotation, usng DAVID

6.8 [48,49]. The results are shown in Table S6.

Discussion

Our previous genetic analyses identified the aorta and tibial arteries as relevant to blood
pressure regulation [38]. In this study we have now identified several genes with regulatory
variants linking significantly to both BP traits and to expression data in these tissues, most at
previously replicated BP loci. Although the involvement of the kidney iswell established in BP
regulation through physiological evidence, we sought to identify genes at any of the hundreds of
BP GWAS loci in abroader set of tissues. We examined groupings of multiple proximal and
putatively causal variants defined around genes within asingle tissue in order to identify specific
genes of interest. We also examined QT interval genes at previous GWAS loci to highlight the
identification of functionally characterized genes for thistrait.

We identified several genes of potential interest to the aorte/arteries for BP, mostly at
previously identified GWAS loci: MTHFR, C100rf32, CK, NOV, ULK4, SDCCAGS, SCAMP5,
RPP25, HDGFRP3, VPS37B, and PPCDC. We note here that our method of identifying genes
at previous loci was conservative: RPP25 was not present in thislist, but is present just outside
the TAD boundary used. In addition to its role in the progression of various cancers, the NOV
gene has been identified as a player in angiogenesis [50,51] and vascular homeostasis [52]. The

ULK4 gene has been previously associated with DBP [43], and variation in this gene has also
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385  been associated with aortic disease and acute aortic dissections [53]. The association of a

386  homozygous variant (C677T) in its neighboring gene, MTHFR, has long been associated with BP
387  and vascular disease [54-57]; more generally, thislocus has been identified in large BP GWAS
388 [40,41]. Thelocusincluding C100rf32 has been identified previously [40] and neighbors the
389  well-studied CYP17A1 gene. Though we initially examined only the latter among kidney cell
390 types, because of its known role in monogenic hypertension, we note that both genes show BP
391 association in endothelial contexts aswell, but it is C100rf32 that has strong expression support
392 intheartery datasetsin our study, while CYP17A1 does not [58]. The gene SDCCAG8 isa

393  centrosomal protein linked with nephronophthisis-related ciliopathies (OMIM: Senior-Loken
394  Syndrome 7, 613615; Bardet-Biedl syndrome-16, 615993, and Airik et a. [59]), and is expressed
395 inthekidney and lung epithelia[59]. The CSK gene, encoding atyrosine kinase, is at a previous
396 BP GWAS Iocus[60] and has been found to be associated with SBP in young children [61];

397 thereisalso prior evidence through experiments in mouse aortas that this gene regulates blood
398  pressurethrough Src [62]. Finally, the SCAMP5 and PPCDC genes (within the same locus) [40],
399 and RPP25 [43], are previously identified BP genes.

400 As mentioned above, one major limitation in our study isthe statistical power of the

401 SKAT eQTL analysis, with small sample sizes available for each of the GTEX tissues. The

402  power of implicating effects for a given tissue also depends on its total contribution, and the
403  numbers of eQTLsidentified. The requirement in our study that a gene meet significance for
404  both BP and expression therefore produced a more conservative list. However, the QT interval
405  results, especially for the SCN5SA gene, till illustrate the utility of this method. The availability
406  of additional samplesin the future will contribute to the success of this method in identifying

407  genesof interest with greater statistical power. The gene annotation analyses revealed no clear
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408  BP-specific pathways or annotation, so these will also benefit from producing more specific and
409 possibly larger gene sets. Additionally, we used hard genotype calls for analysis, necessitating
410  some missing genotype data; the power of our methods could be improved by using imputed
411  probabilities of genotypes.

412 Our attempts to expand findings beyond the known pathogenic coding variation with
413  respect to the 20 genesinvolved in monogenic forms of hypertension or hypotension were

414 inconclusive. We attribute this to the dearth of publicly available data for the kidney at thistime,
415  and expect that the availability of more extensive datawill resolve some of theissuesin further
416  studies. Additionally, though it is beyond the scope of this study, as the effects of many of these
417  monogenic disorders are likely through the adrenal gland, afull analysis of adrenal gland data
418  will be necessary to assess them.

419 The M etaX can software has supported most of the genes highlighted here and identified
420  novel associations, although there were some limitations with the availability of the models for
421  al genes. Additionally, our results indicated that deltaSVM weighting might be validly

42?2  discriminatory between cell types; thisis most evident with several QT interval genes, such as
423  NOSIAP and SCN5A. It is also suggestive of cell-type specificity with the results for CYP17A1
424 inthekidney cell types. It may be informative moving forward to characterize these BP genes at
425  theindividual cell-typelevel in the arteries as well.

426 The question of identification of core genes networks may be facilitated by our approach
427  inthisstudy, whichincludes using eQTL information from tissues or cell types of interest and
428  genotypesto identify potentially relevant genes for atrait. Asthe expansion of publicly available

429  resources continues, more information may be used for these purposes. Our analysis implicates
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430  specific variants that can be functionally tested for their effect on both gene expression and the
431  phenotype.

432

433 Materialsand Methods

434

435  Study participantsand summary of genotypes, phenotypes, and association resultsused in
436  thisstudy

437 The full descriptions of the prior underlying studies, phenotypes, and association results
438 for the GERA cohort are in Hoffmann et al. [38] and are briefly recapitulated here. The Genetic
439  Epidemiology Research on Adult Health and Aging (GERA) cohort, part of the Kaiser

440  Permanente Research Program on Genes, Environment, and Health (RPGEH), consists of

441 individuals from five ethnic backgrounds; the magjority is non-Hispanic white (EUR), with the
442  remainder including Latino, East Asians, African Americans, and South Asians. A total of

443 99,785 individuals were analyzed, of which 80,792 were EUR individuals. The populations were
444  each genotyped on custom population-specific Affymetrix Axiom SNP genotyping arrays

445  [63,64] and imputed to the 1000 Genomes Phase | Integrated Release Version 3 haplotype panel.
446  Analyses of GERA aone, with the results of the International Consortium for Blood Pressure
447  (ICBP, n=69,396) study [65], and with the ICBP and the UK Biobank (UKB, n=152,081) study
448  [66], identified 316 novel BP loci. Combined with the set of replicated BP GWAS loci available
449  at that time, there were atotal of 390 BP loci we considered to be of interest. Of these, 367 had
450  minor alelefrequency (MAF) > 0.001 in the GERA EUR study, which was used as the reference
451  population for the eQTL analyses described below.

452 For the purpose of several of the analyses described in this paper, we used these

453  association results, aswell as summary statistics available from 80,792 GERA EUR individuals
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454  from the Hoffmann et al. [ 38] study, and genotypes from a subset of 71,404 GERA EUR

455  ‘unrelated’ individuals (third degree or beyond, pruned by the KING software for relationship
456 inference) [67]. We converted genotypes prepared in the Hoffmann et al. [38] study after

457  imputation from IMPUTEZ2 genotype probabilities format to PLINK ‘hard’ calls (the most likely
458  genotype), setting genotypes with uncertainty greater than 0.25 to missing, and retaining variants
459  with < 10% missing data, a Hardy Weinberg equilibrium test p < 1x10°®, and imputation quality
460  score> 0.3. In order to report univariate summary statistics within the 71,404 individuals, we
461  used the --assoc option for analysis of a quantitativetrait (Wald test) with PLINK v1.9[68]. We
462  analyzed covariate-adjusted longitudinal systolic (SBP) and diastolic (DBP) blood pressurein
463  thisstudy, as also described in Hoffmann et al. [38].

464

465  ARIC genotypes, phenotypes, and association

466 The Atherosclerosis Risk in Communities (ARIC) study cohort is alongitudinal

467  population-based study of 15,792 individuals, including 11,478 European-Americans (EUR) and
468 4,266 African-Americans (AA) from four study centers. Washington County, MD; Forsyth

469  County, NC; Jackson, MS; and, Minneapolis, MN [24,25]. The initial examination occurred from
470  1987-1989, with participants aged between 45 and 64 years. Subsequent examinations occurred
471  in1990-1992, 1993-1995, 1996-1998, and 2011-2013, with the most recent visits (6+) beginning
472  in 2016. We analyzed 9,083 individuals of European ancestry with genotypes and QT interval at
473  basdine. The genotyping of these samples on the Affymetrix genome-wide Human SNP Array
474 6.0, quality control, and imputation to the 1000 Genomes Phase | Integrated Release Version 3
475  haplotype pandl are described elsewhere [69,70]. We converted IMPUTEZ2 genotype

476  probabilitiesto PLINK *hard’ calls, setting genotypes with uncertainty greater than 0.25 to
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missing, and retaining variants with < 10% missing data, a Hardy Weinberg equilibrium test p <
1x10°®, and imputation quality score> 0.3, (as for the GERA study). The phenotypes were
analyzed as previously described [71] with QT residuals generated by adjusting raw QT intervals
for age, sex and resting heart rate. Summary statistics were generated for single variants using

the --assoc option for analysis of a quantitative trait (Wald test) with PLINK v1.9 [68].

GTEXx genotypesand expression

We analyzed genotypes and expression data from the Genotype-Tissue Expression
(GTEX; phsD00424.v6.pl) Project [72] v6p for the SKAT analysis (see below) from the aorta,
tibial artery, heart left ventricle, and heart atrial appendage tissues. Normalized expression was
analyzed for these tissues, with the top three principal components, available PEER factors (15-
35, depending on sample size), genotyping array platform, and sex used as covariates, all
available from the GTEXx portal. We used SNP-gene associations from the associated *

vep.al_snpgene pairs.txt.gz files from the authors' eQTL analyses.

Partitioned heritability analyses

We used the stratified LD score regression method and software [15] for estimating the
heritability of the trait partitioned by genomic element using summary statistics for SBP and
DBP from 80,792 GERA EUR individuals [38]. The ‘mungestats.py’ script was used to format
the summary statistics as appropriate, and we analyzed them using the baseline mode with 53
categories which included coding, UTR, and intronic regions, in addition to various open
chromatin and histone modification annotations as described by the authors, as well as the 1000

Genomes Phase 3 reference files with the weights from their weights hm3_no_hlatgz file,
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which were provided and described by the authors on their website

(https://github.com/bulik/Idsc/wiki/Partitioned-Heritability).

Generation of putative regulatory element maps and deltaSVM scores are described in the

supplementary methods.

Gene-based testing with SKAT

We used the sequence-kernel association test (SKAT) [22,73] to test genes with median
reads per kilobase of transcript, per million mapped reads (RPKM) > 0.3 in GTEx samples for
the aorta (n=197) and tibial (n=285) arteries with their respective variant sets. For each gene, we
tested all variants within 50Kb of the gene start or end, inclusive of the entire gene body, per

GENCODE v19 annotations (https://www.gencodegenes.org/rel eases/19.html). The weights

used were taken as the absolute value of the deltaSVM score for each variant to reflect its
predicted impact; for comparison, we also ran SKAT using default weights with beta density
parameters (wei ghts.beta=c(1,25), which up-weights rare variants as compared to common
variants), as well as equal weights to all variants (weights.beta=c(1,1)). We tested association of
each gene with adjusted SBP and DBP phenotype residuals (see above), as well as the GTEx

normalized expression data with covariates (release v6p, https.//www.gtexportal.org/), from the

aortaand tibial arteries. We restricted our primary analyses in each of the kidney cell typesto the
20 monogenic hypertension and hypotension genes. We additionally tested tissue- or cell-type-
specific groupings in the ARIC dataset with the adjusted QT interval phenotype using the sets for

the heart and heart tissues from GTEX, arteries and kidney cell types, as described above.

Prediction of gene expression association with blood pressure
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523 We used the MetaX can [23] software with prebuilt HapMap training models for the

524  GTEx (https.//www.gtexportal .org/) tissues aorta and tibial arteries, provided by the authors at

525  http://predictdb.hakyimlab.org/, with summary statistics from 80,792 GERA EUR individuals for

526 SBP and DBP. We also used the software with the provided models for heart |eft ventricle and
527  atria appendage, for the QT interval analysis using summary statistics from 9,083 ARIC EUR
528 individuals. MetaXcan is an extension of the PrediXcan [74] method, which predicts gene

529  expression from genotypes and tests association of predicted expression with phenotypes using
530 summary association results.

531

532 Statistical significance

533 Statistical significance was determined using the Benjamini-Hochberg [75] (BH) method
534  for multiple test correction to adjust for the number of genes within each analysis. We made no
535 additional adjustments for the number of tissues, in part due to the correlation of specific subsets
536 (thearteries, and individual kidney cell types), and as we examined genes across multiple

537  analyses, for phenotype and for expression.

538

539  Annotation of artery-significant genes

540 We used DAVID 6.8 [48,49] to annotate the set of genes that met significance in the
541  association analysis with either SBP or DBP. We retained terms that met a BH threshold of p <
542  0.05.

543
544  Acknowledgements and Funding

545 The Atherosclerosis Risk in Communities Study is carried out as a collaborative study

546  supported by National Heart, Lung, and Blood Institute contracts (HHSN268201100005C,

35


https://doi.org/10.1101/820522
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/820522; this version posted October 27, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

547  HHSN268201100006C, HHSN268201100007C, HHSN268201100008C,

548 HHSN268201100009C, HHSN268201100010C, HHSN268201100011C, and

549 HHSN268201100012C), RO1HL087641, RO1HL59367 and RO1HL086694; National Human
550 Genome Research Institute contract U0O1HG004402; and National Institutes of Health contract
551 HHSN268200625226C. The authors thank the staff and participants of the ARIC study for their
552 important contributions. Infrastructure was partly supported by Grant Number UL1RR025005, a
553  component of the National Institutes of Health and NIH Roadmap for Medical Research. The
554  Genotype-Tissue Expression (GTEX) Project was supported by the Common Fund of the Office
555  of the Director of the National Institutes of Health, and by NCI, NHGRI, NHLBI, NIDA, NIMH,
556 and NINDS. The data used for the anayses described in this manuscript were obtained from: the
557  GTEx Portal and dbGaP accession number phs000424.v6.pl. This research was funded by NIH
558 grants HL128782 and HL0-86694 to A.C.

559 We are grateful to the Kaiser Permanente Northern California members who have

560 generously agreed to participate in the Kaiser Permanente Research Program on Genes,

561  Environment, and Health. Support for participant enrollment, survey completion, and

562  biospecimen collection for the RPGEH was provided by the Robert Wood Johnson Foundation,
563 theWayne and Gladys Valley Foundation, the Ellison Medical Foundation, and Kaiser

564  Permanente Community Benefit Programs. Genotyping of the GERA cohort was funded by a
565  grant from the National Institute on Aging, National Institute of Mental Health, and the National
566 Ingtitute of Health Common Fund (RC2 AG036607 to CAS and NJR). GE receives support from
567  Geneva University Hospitals and The Foundation of Medical Researchers, Geneva.

568

569 References
570

36


https://doi.org/10.1101/820522
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/820522; this version posted October 27, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

571 1. BoyleEA, Li YI, Pritchard K. An Expanded View of Complex Traits. From Polygenic to
572 Omnigenic. Cell. 2017 Jun 15;169(7):1177-86.

573 2. Kirschner MW. The meaning of systems biology. Cell. 2005 May 20;121(4):503-4.

574 3. Alon U. An Introduction to Systems Biology: Design Principles of Biological Circuits. 1st
575 ed. Chapman and Hall/CRC; 2006.

576 4. Segd E, Raveh-Sadka T, Schroeder M, Unnerstall U, Gaul U. Predicting expression

577 patterns from regulatory sequence in Drosophila segmentation. Nature. 2008 Jan

578 31;451(7178):535-40.

579 5. EmilssonV, Thorleifsson G, Zhang B, Leonardson AS, Zink F, Zhu J, et al. Genetics of
580 gene expression and its effect on disease. Nature. 2008 Mar 27;452(7186):423-8.

581 6. ZhongH, Yang X, Kaplan LM, Molony C, Schadt EE. Integrating pathway analysis and
582 genetics of gene expression for genome-wide association studies. Am J Hum Genet. 2010
583 Apr 9;86(4):581-91.

584 7. Pickrdl JK, Marioni JC, Pai AA, Degner JF, Engelhardt BE, Nkadori E, et a.

585 Understanding mechanisms underlying human gene expression variation with RNA

586 sequencing. Nature. 2010 Apr 1;464(7289):768—72.

587 8. Davidson EH. Emerging properties of animal gene regulatory networks. Nature. 2010 Dec
588 16;468(7326):911—20.

589 9. DixonJR, Selvarg S, YueF, KimA, Li Y, ShenY, et a. Topological domainsin
590 mammalian genomes identified by analysis of chromatin interactions. Nature. 2012 Apr
591 11,485(7398):376-80.

592 10. Phillips-Cremins JE. Unraveling architecture of the pluripotent genome. Curr Opin Cell
593 Biol. 2014 Jun;28:96-104.

594 11. Buenrostro JD, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ. Transposition of native

595 chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding
596 proteins and nucleosome position. Nat Methods. 2013 Dec;10(12):1213-8.

597 12. ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human
598 genome. Nature. 2012 Sep 6;489(7414):57-74.

599 13. Roadmap Epigenomics Consortium, Kundaje A, Meuleman W, Ernst J, Bilenky M, Yen A,
600 et a. Integrative analysis of 111 reference human epigenomes. Nature. 2015 Feb

601 19;518(7539):317-30.

602 14. Maurano MT, Haugen E, Sandstrom R, Vierstra J, Shafer A, Kaul R, et al. Large-scale
603 identification of sequence variants influencing human transcription factor occupancy in
604 vivo. Nat Genet. 2015 Dec;47(12):1393-401.

37


https://doi.org/10.1101/820522
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/820522; this version posted October 27, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

605
606
607

608
609
610

611
612

613
614

615
616
617

618
619
620
621

622
623
624

625
626
627

628
629
630
631

632
633

634
635

636
637
638

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

38

aCC-BY-NC-ND 4.0 International license.

Finucane HK, Bulik-Sullivan B, Gusev A, Trynka G, Reshef Y, Loh P-R, et al. Partitioning
heritability by functional annotation using genome-wide association summary statistics. Nat
Genet. 2015 Nov;47(11):1228-35.

Lee D, Gorkin DU, Baker M, Strober BJ, Asoni AL, McCallion AS, et a. A method to
predict the impact of regulatory variants from DNA sequence. Nat Genet. 2015
Aug;47(8):955-61.

Lifton RP. Molecular genetics of human blood pressure variation. Science. 1996 May
3;272(5262):676-80.

Lifton RP, Gharavi AG, Geller DS. Molecular mechanisms of human hypertension. Cell.
2001 Feb 23;104(4):545-56.

Choi M, Scholl Ul, Yue P, Bjérklund P, Zhao B, Nelson-Williams C, et al. K+ channel
mutations in adrenal aldosterone-producing adenomas and hereditary hypertension. Science.
2011 Feb 11;331(6018):768—72.

BandaY, Kvale MN, Hoffmann TJ, Hesselson SE, Ranatunga D, Tang H, et al.
Characterizing Race/Ethnicity and Genetic Ancestry for 100,000 Subjectsin the Genetic
Epidemiology Research on Adult Health and Aging (GERA) Cohort. Genetics. 2015
Aug;200(4):1285-95.

Kvale MN, Hesselson S, Hoffmann TJ, Cao Y, Chan D, Connell S, et al. Genotyping
Informatics and Quality Control for 100,000 Subjectsin the Genetic Epidemiology
Research on Adult Health and Aging (GERA) Cohort. Genetics. 2015 Aug;200(4):1051-60.

WuMC, Lee S, Cai T, Li Y, Boehnke M, Lin X. Rare-variant association testing for
seguencing data with the sequence kernel association test. Am J Hum Genet. 2011 Jul
15;89(1):82-93.

Barbeira A, Shah KP, Torres IM, Wheeler HE, Torstenson ES, Edwards T, et al. MetaX can:
Sum- 537 mary Statistics Based Gene-Level Association Method Infers Accurate

PrediX can Results. bioRxiv. 538 2016 mar;Available from:
http://biorxiv.org/content/early/2016/03/23/045260.abstract.

Atherosclerosis Risk in Communities. [Internet]. [Accessed: 23 October 2015]. Available
at: https://www?2.cscc.unc.edu/aric.

The Atherosclerosis Risk in Communities (ARIC) Study: design and objectives. The ARIC
investigators. Am J Epidemiol. 1989 Apr;129(4):687—702.

Salfati E, Morrison AC, Boerwinkle E, Chakravarti A. Direct Estimates of the Genomic
Contributions to Blood Pressure Heritability within a Population-Based Cohort (ARIC).
oS One. 2015;10(7):e0133031.


https://doi.org/10.1101/820522
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/820522; this version posted October 27, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

639
640
641

642
643

644
645

646
647

648
649
650
651

652
653
654
655

656
657
658

659
660
661

662
663
664

665
666
667
668

669
670
671

672
673
674

27.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

39

aCC-BY-NC-ND 4.0 International license.

Lee D, Kapoor A, Safi A, Song L, Halushka MK, Crawford GE, et al. Human cardiac cis-
regulatory elements, their cognate transcription factors, and regulatory DNA sequence
variants. Genome Res. 2018;28(10):1577-88.

Ghandi M, Lee D, Mohammad-Noori M, Beer MA. Enhanced regulatory sequence
prediction using gapped k-mer features. PLoS Comput Biol. 2014 Jul;10(7):e1003711.

LeeD. LS-GKM: anew gkm-SVM for large-scale datasets. Bioinforma Oxf Engl. 2016 Jul
15;32(14):2196-8.

Postema PG, Wilde AAM. The measurement of the QT interval. Curr Cardiol Rev. 2014
Aug;10(3):287-94.

Dekker IM, Crow RS, Hannan PJ, Schouten EG, Folsom AR, ARIC Study. Heart rate-
corrected QT interval prolongation predicts risk of coronary heart disease in black and
white middle-aged men and women: the ARIC study. J Am Coll Cardiol. 2004 Feb
18;43(4):565-71.

Newton-Cheh C, Larson MG, Corey DC, Benjamin EJ, Herbert AG, Levy D, et al. QT
interval is a heritable quantitative trait with evidence of linkage to chromosome 3in a
genome-wide linkage analysis: The Framingham Heart Study. Heart Rhythm. 2005
Mar;2(3):277-84.

Bugahn A, Knaoblauch H, Faulhaber HD, Boeckel T, Rosenthal M, Uhimann R, et a. QT
interval islinked to 2 long-QT syndrome loci in normal subjects. Circulation. 1999 Jun
22;99(24):3161-4.

Arking DE, Pfeufer A, Post W, Kao WHL, Newton-Cheh C, IkedaM, et al. A common
genetic variant in the NOSL1 regulator NOS1AP modulates cardiac repolarization. Nat
Genet. 2006 Jun;38(6):644-51.

Toméas M, Napolitano C, De Giuli L, Bloise R, Subiranal, Malovini A, et al.
Polymorphisms in the NOS1AP gene modulate QT interval duration and risk of
arrhythmiasin the long QT syndrome. JAm Coll Cardiol. 2010 Jun 15;55(24):2745-52.

Avery CL, Wassdl CL, Richard MA, Highland HM, Bien S, Zubair N, et al. Fine mapping
of QT interval regionsin global populations refines previously identified QT interval loci

and identifies signals unique to African and Hispanic descent populations. Heart Rhythm.
2017 Apr;14(4):572-80.

Arking DE, Pulit SL, Crotti L, van der Harst P, Munroe PB, Koopmann TT, et al. Genetic
association study of QT interval highlightsrole for calcium signaling pathwaysin
myocardial repolarization. Nat Genet. 2014 Aug;46(8):826—36.

Hoffmann TJ, Ehret GB, Nandakumar P, Ranatunga D, Schaefer C, Kwok P-Y, et al.
Genome-wide association analyses using electronic health records identify new loci
influencing blood pressure variation. Nat Genet. 2017 Jan;49(1):54-64.


https://doi.org/10.1101/820522
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/820522; this version posted October 27, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

675
676
677
678

679
680
681

682
683
684

685
686
687

688
689

690
691

692
693
694

695
696
697

698
699
700
701

702
703

704
705
706

707
708
709

39.

40.

41.

42.

45.

46.

47.

48.

49,

50.

40

aCC-BY-NC-ND 4.0 International license.

Evangelou E, Warren HR, Mosen-Ansorena D, Mifsud B, Pazoki R, Gao H, et al. Genetic
analysis of over one million people identifies 535 novel loci for blood pressure. bioRxiv
[Internet]. 2017 Jan 1; Available from:
http://biorxiv.org/content/early/2017/10/11/198234.abstract

Newton-Cheh C, Johnson T, Gateva V, Tobin MD, Bochud M, Coin L, et al. Genome-wide
association study identifies eight loci associated with blood pressure. Nat Genet. 2009
Jun;41(6):666—76.

Johnson T, Gaunt TR, Newhouse SJ, Padmanabhan S, Tomaszewski M, Kumari M, et al.
Blood pressure loci identified with a gene-centric array. Am J Hum Genet. 2011 Dec
9;89(6):688—-700.

Wain LV, Verwoert GC, O'Reilly PF, Shi G, Johnson T, Johnson AD, et al. Genome-wide
association study identifies six new loci influencing pulse pressure and mean arterial
pressure. Nat Genet. 2011 Sep 11;43(10):1005-11.

Levy D, Ehret GB, Rice K, Verwoert GC, Launer LJ, Dehghan A, et al. Genome-wide
association study of blood pressure and hypertension. Nat Genet. 2009 Jun;41(6):677-87.

Goldsmith O, Solomon DH, Horton R. Hypogonadism and mineralocorticoid excess. The
17-hydroxylase deficiency syndrome. N Engl JMed. 1967 Sep 28;277(13):673—7.

LiQ GaoT, YuanY,WuY, Huang Q, XieF, et a. Association of CYP17A1 Genetic
Polymorphisms and Susceptibility to Essential Hypertension in the Southwest Han Chinese
Population. Med Sci Monit Int Med J Exp Clin Res. 2017 May 24;23:2488-99.

Li C, KimYK, Dorgoo R, Li H, Leel-T, Cheng C-Y, et a. Genome-Wide Association
Study Meta-Analysis of Long-Term Average Blood Pressurein East Asians. Circ
Cardiovasc Genet. 2017 Apr;10(2):e001527.

Nguyen K-DH, Pihur V, Ganesh SK, Rakha A, Cooper RS, Hunt SC, et al. Effects of rare
and common blood pressure gene variants on essential hypertension: results from the
Family Blood Pressure Program, CLUE, and Atherosclerosis Risk in Communities studies.
Circ Res. 2013 Jan 18;112(2):318-26.

Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene
listsusing DAVID bioinformatics resources. Nat Protoc. 2009;4(1):44-57.

Huang DW, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the
comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009
Jan;37(1):1-13.

Lin CG, Chen C-C, Leu SJ, Grzeszkiewicz TM, Lau LF. Integrin-dependent functions of
the angiogenic inducer NOV (CCN3): implication in wound healing. J Biol Chem. 2005
Mar 4,280(9):8229-37.


https://doi.org/10.1101/820522
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/820522; this version posted October 27, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

710
711
712

713
714
715

716
717
718

719
720
721

722
723
724

725
726
727

728
729
730

731
732
733

734
735
736

737
738
739

740

741
742

743
744
745

ol

52.

53.

4.

55.

56.

S7.

58.

59.

60.

61.
62.

63.

41

aCC-BY-NC-ND 4.0 International license.

Lin CG, Leu SJ, Chen N, Tebeau CM, Lin S-X, Yeung C-Y, et al. CCN3 (NOV) isanove
angiogenic regulator of the CCN protein family. JBiol Chem. 2003 Jun 27;278(26):24200—
8.

Shimoyama T, Hiraoka S, Takemoto M, Koshizaka M, Tokuyama H, Tokuyama T, et al.
CCNB3 inhibits neointimal hyperplasia through modulation of smooth muscle cell growth
and migration. Arterioscler Thromb Vasc Biol. 2010 Apr;30(4):675-82.

Guo D-C, Grove ML, Prakash SK, Eriksson P, Hostetler EM, LeMaire SA, et al. Genetic
Variantsin LRP1 and ULK4 Are Associated with Acute Aortic Dissections. Am J Hum
Genet. 2016 Sep 1;99(3):762-9.

Niu W-Q, You Y-G, Qi Y. Strong association of methylenetetrahydrofolate reductase gene
C677T polymorphism with hypertension and hypertension-in-pregnancy in Chinese: a
meta-analysis. JHum Hypertens. 2012 Apr;26(4):259-67.

Frosst P, Blom HJ, Milos R, Goyette P, Sheppard CA, Matthews RG, et al. A candidate
genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate
reductase. Nat Genet. 1995 May;10(1):111-3.

NakataY, Katsuya T, Takami S, Sato N, Fu Y, IshikawaK, et al.
M ethylenetetrahydrofol ate reductase gene polymorphism: relation to blood pressure and
cerebrovascular disease. Am J Hypertens. 1998 Aug;11(8 Pt 1):1019-23.

Kosmas IP, Tatsioni A, loannidis JPA. Association of C677T polymorphism in the
methyl enetetrahydrofol ate reductase gene with hypertension in pregnancy and pre-
eclampsia: a meta-analysis. J Hypertens. 2004 Sep;22(9):1655-62.

Van Woudenberg M, Shin J, Bernard M, Syme C, Abrahamowicz M, Leonard G, et al.
CYP17A1 and Blood Pressure Reactivity to Stressin Adolescence. Int J Hypertens.
2015;2015:734586.

Airik R, Slaats GG, Guo Z, Weiss A-C, Khan N, Ghosh A, et al. Renal-retinal ciliopathy
gene Sdccag8 regulates DNA damage response signaling. J Am Soc Nephrol JASN. 2014
Nov;25(11):2573-83.

Ganesh SK, Tragante V', Guo W, Guo Y, Lanktree MB, Smith EN, et al. Loci influencing
blood pressure identified using a cardiovascular gene-centric array. Hum Mol Genet. 2013
Apr 15;22(8):1663-78.

Ahn S-Y, Gupta C. Genetic Programming of Hypertension. Front Pediatr. 2017;5:285.

LeeH-J, Kang JO, Kim S-M, J SM, Park S-Y, Kim ME, et a. Gene Silencing and
Haploinsufficiency of Csk Increase Blood Pressure. PloS One. 2016;11(1):€0146841.

Hoffmann TJ, Kvale MN, Hesselson SE, Zhan Y, Aquino C, Cao Y, et al. Next generation
genome-wide association tool: design and coverage of a high-throughput European-
optimized SNP array. Genomics. 2011 Aug;98(2):79-89.


https://doi.org/10.1101/820522
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/820522; this version posted October 27, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

746
747
748
749

750
751
752
753

754
755
756

757
758
759

760
761
762

763
764
765
766

767
768
769

770
771
772

773
774
775
776

777
778
779

780
781
782

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

42

aCC-BY-NC-ND 4.0 International license.

Hoffmann TJ, Zhan Y, Kvale MN, Hesselson SE, Gollub J, Iribarren C, et a. Design and
coverage of high throughput genotyping arrays optimized for individuals of East Asian,
African American, and Latino race/ethnicity using imputation and a novel hybrid SNP
selection algorithm. Genomics. 2011 Dec;98(6):422—30.

International Consortium for Blood Pressure Genome-Wide Association Studies, Ehret GB,
Munroe PB, Rice KM, Bochud M, Johnson AD, et a. Genetic variantsin novel pathways
influence blood pressure and cardiovascular disease risk. Nature. 2011 Sep
11;478(7367):103-9.

Sudlow C, Gallacher J, Allen N, Bera V, Burton P, Danesh J, et al. UK biobank: an open
access resource for identifying the causes of a wide range of complex diseases of middle
and old age. PLoS Med. 2015 Mar;12(3):e1001779.

Manichaikul A, Mychaleckyj JC, Rich SS, Daly K, Sale M, Chen W-M. Robust relationship
inference in genome-wide association studies. Bioinforma Oxf Engl. 2010 Nov
15;26(22):2867—73.

Purcell S, Neale B, Todd-Brown K, Thomas L, FerreiraMAR, Bender D, et al. PLINK: a
tool set for whole-genome association and population-based linkage analyses. Am JHum
Genet. 2007 Sep;81(3):559-75.

Maruthur NM, Li M, Halushka MK, Astor BC, Pankow JS, Boerwinkle E, et al. Genetics of
Plasma Soluble Receptor for Advanced Glycation End-Products and Cardiovascular
Outcomes in a Community-based Population: Results from the Atherosclerosis Risk in
Communities Study. PloS One. 2015;10(6):e0128452.

Li M, Maruthur NM, Loomis SJ, Pietzner M, North KE, Mei H, et al. Genome-wide
association study of 1,5-anhydroglucitol identifies novel genetic loci linked to glucose
metabolism. Sci Rep. 2017 Jun 6;7(1):2812.

Kapoor A, Bakshy K, Xu L, Nandakumar P, Lee D, Boerwinkle E, et a. Rare coding TTN
variants are associated with electrocardiographic QT interval in the general population. Sci
Rep. 2016 Jun 20;6:28356.

GTEx Consortium, Laboratory, Data Analysis & Coordinating Center (LDACC)—Analysis
Working Group, Statistical Methods groups—Analysis Working Group, Enhancing GTEXx
(eGTEX) groups, NIH Common Fund, NIH/NCI, et al. Genetic effects on gene expression
across human tissues. Nature. 2017 11;550(7675):204-13.

Seunggeun Lee, with contributions from Larisa Miropolsky and Michael Wu (2015).
SKAT: SNP-Set (Sequence) Kernel Association Test. R package version 1.1.2.
https://CRAN.R-project.org/package=SKAT.

Gamazon ER, Wheedler HE, Shah KP, Mozaffari SV, Aquino-MichadsK, Carroll RJ, et al.
A gene-based association method for mapping traits using reference transcriptome data. Nat
Genet. 2015 Sep;47(9):1091-8.


https://doi.org/10.1101/820522
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/820522; this version posted October 27, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

783 75. Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful
784 Approach to Multiple Testing. JR Stat Soc Ser B Methodol. 1995;57(1):289-300.

785
786

43


https://doi.org/10.1101/820522
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/820522; this version posted October 27, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

aCC-BY-NC-ND 4.0 International license.

Supporting Information

Fig S1. Comparisons of deltaSVM association P values between the heart and the other
tissuesin thisstudy. hrt, heart.

Fig S2. Comparisons of -logio(P) differences of heart significant genes between deltaSVM
weighting and equal weighting SKAT tests. hrt, heart; X, x-axis; Y, y-axis.

Fig S3. Aorta QQ plots, SBP.

Fig $4. Aorta QQ plots, DBP.

Fig S5. Tibial Artery QQ plots, SBP.

Fig S6. Tibial Artery QQ plots, DBP.

Fig S7. ENCSROO0OEOK QQ plots, SBP.

Fig S8. ENCSRO00EOK QQ plots, DBP.

Fig S9. ENCSRO00EOM QQ plots, SBP.

Fig S10. ENCSROOOEOM QQ plots, DBP.

Fig S11. ENCSRO00EPW QQ plots, SBP.

Fig S12. ENCSRO00EPW QQ plots, DBP.

Fig S13. ENCSR785BDQ QQ plots, SBP.

Fig S14. ENCSR785BDQ QQ plots, DBP.

Table S1. Partitioned heritability results from baseline model for SBP.

Table S2. Partitioned heritability results from baseline model for DBP.

Table S3. deltaSVM performance results.

Table S4. SKAT and MetaXcan resultsfor QT interval.

Table S5. Individual variantsanalyzed in kidney for C10orf32 and CYP17A1.

Table S6. DAVID enrichment analysis of artery-significant genes.
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