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Abstract 29	

Single-cell technologies are becoming increasingly widespread and have been 30	

revolutionizing our understanding of cell identity, state, diversity and function. However, 31	

current platforms can be slow to apply to large-scale studies and resource-limited 32	

clinical arenas due to a variety of reasons including cost, infrastructure, sample quality 33	
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and requirements. Here we report DNBelab C4 (C4), a negative pressure orchestrated, 1	

portable and cost-effective device that enables high-throughput single-cell 2	

transcriptional profiling. C4 system can efficiently allow discrimination of species-3	

specific cells at high resolution and dissect tissue heterogeneity in different organs, 4	

such as murine lung and cerebral cortex. Finally, we show that the C4 system is 5	

comparable to existing platforms but has huge benefits in cost and portability and, as 6	

such, it will be of great interest for the wider scientific community. 7	

 8	

Introduction 9	

The emergence of single-cell sequencing technologies has offered great promises in 10	

the interrogation of tissue heterogeneity that could not previously be resolved from 11	

measuring the average gene expression of a bulk cell population [1]. During the past 12	

10 years, single-cell genomics technologies have evolved rapidly at scale and power, 13	

enabling the profiling of thousands to tens of thousands single-cells per experiment 14	

[2]. These efforts have enabled a comprehensive characterization of tissue 15	

heterogeneity, developmental trajectories, cellular reprogramming and human 16	

diseases at an unprecedented resolution. 17	

  18	

Current high-throughput single-cell technologies apply droplet and micro-well based 19	

methods, which enable partition and barcoding of single cells inside nano-liter reactors. 20	

Micro-particles coated with barcoded oligos are employed to capture mRNA or DNA 21	

molecules from each cell [3-5]. These methods, in comparison to low-throughput plate-22	

based methods, are robust in cell type classification since profiling higher number of 23	

cells can reduce the negative impact from technical and intrinsic noise [6]. However, 24	

the effectiveness of these methods is limited by lengthy approaches and by the use of 25	

expensive commercial instruments and reagents. Specifically, clinical samples require 26	

to be transported to different laboratories for library preparation because current 27	

microfluidic single-cell platforms are not portable. To address these short-comings, we 28	

have developed DNBelab C4, a hand-held microfluidic device to perform cell 29	

separation before high-throughput single-cell transcriptional profiling. C4 is a vacuum 30	

driven and user-friendly droplet system which offers a cost-effective and portable 31	

single-cell technology for both basic research and clinical purposes. C4 is also an 32	

extensible platform that can be further implemented for a variety of high-throughput 33	
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omics technologies, such as scATAC-seq and scChIP-seq. Here we show that the C4 1	

system is comparable to existing platforms but has benefits in cost and portability. 2	

 3	

Results 4	

A hand-held and cost-effective microfluidic system for single-cell profiling 5	

We have previously developed a hand-held, power-free microfluidic device that can 6	

stably generate mono-dispersion sub-nanoliter size droplets [7]. To further apply this 7	

system to single-cell profiling, we have optimized both the structure of microfluidic chip 8	

and parameters of negative pressure to ensure high compatibility with single-cell RNA 9	

sequecing (scRNA-seq) related reagents. To this end, we developed C4 system (Fig. 10	

1a), which is a low cost device composed of a syringe, a microfluidic chip, and a station. 11	

C4 is a fully manual system and does not have any electronic parts. The syringe is 12	

connected to the chip via connection tubings and placed on the station. After all 13	

reagents and samples are loaded in the inlet reservoirs, the plunger of the syringe is 14	

pulled to generate negative pressure that drives the reagents flowing into the fluidic 15	

passage to form droplets. This single source negative pressure ensures the flows of 16	

all reagents occur simultaneously without any fluctuation or lag in flow rates. The air 17	

volume in the syringe before and after plunger is pulled determines the degree of 18	

vacuum, which follows ideal gas laws. The station holds the plunger in place after it is 19	

pulled so the vacuum is uniformly maintained. To evaluate the uniformity of droplets 20	

size, more than 1.5 million droplets each run were generated independently from 4 21	

users using 14 chips; we observed an average size of 55.9 μm with a standard 22	

deviation of 2.4 μm (Fig 1b, n = 14,000), revealing high reproducibility and stability of 23	

the negative pressure-driven system in generating large numbers of droplets. 24	

 25	

Massively parallel scRNA-seq using C4 system 26	

We next developed an entire workflow for scRNA-seq using C4 system (Fig 1a). Cells, 27	

functionalized beads and lysis buffer were encapsulated into emulsion droplets, where 28	

each cell was lysed and mRNA transcripts were captured by bead-linked single-strand 29	

oligonucleotides consisting of sequencing adaptor, cell barcode, unique molecular 30	

identifier (UMI) and oligo-dT. Emulsion droplets were then transferred into a 31	

membrane filter (pore size: 8 μm), where emulsion was broken and filtered by either 32	

negative pressure or centrifugation. Reverse transcription of mRNA transcripts was 33	

conducted on pooled beads, resulting in cDNA molecules containing both cell barcode 34	
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and UMIs. Subsequently, the cDNA molecules were amplified and sheared for short-1	

read based sequencing library preparation. 2	

 3	

To assess the technical performance of C4 system in single-cell transcriptional 4	

sequencing, we profiled cells from a mixture of 50% human (HEK293T) and 50% 5	

mouse (NIH3T3) cells at the concentration of 1,000 cells/μl. A total of 548 million 6	

quality-filtered reads were obtained and then assigned to each cell barcode and were 7	

mapped to reference genomes. 61% of the reads mapped to exonic regions 8	

(Supplementary Fig. 1a), revealing high library quality. One library contained an 9	

estimated 2,897 cells based on the distribution of the number of UMIs per barcode 10	

(Fig. 1c). A discrimination between mouse and human UMI revealed only a small 11	

percentage  (roughly 2%) of cells that contain high fraction of both human and mouse 12	

reads (Fig. 1d). In addition, an average of 43,719 and 39,767 UMI-tagged transcripts 13	

(assigned to  6,618 and 5,847 genes) were detected in human and mouse cells, 14	

respectively (Fig. 1e). These data demonstrate that C4 system shows minimal collision 15	

rate and high gene capture efficiency. We performed an independent cross-species 16	

experiment and observed similar results (Supplementary Fig. 1b-d) and strong 17	

correlations between replicates (Pearson correlation = 0.998, Supplementary Fig. 2), 18	

thus strenghening the effectiveness of our approach. 19	

 20	

Unsupervised taxonomy of cellular states 21	

To examine the ability of C4 system to resolve cell populations in complex primary 22	

tissues, we isolated nuclei, an extensively adopted type of input sample [7-9], from 23	

mouse lung tissue to generate single-nucleus RNA sequecing (snRNA-seq) libraries. 24	

After sequencing and read alignment, we collected a total of 3,241 cells based on the 25	

UMI distribution (data not shown). Unsupervised clustering identified 9 distinct 26	

subpopulations, suggesting high heterogeneity within this tissue (Fig. 2a). Differential 27	

gene expression analysis identified genes that were specifically expressed in each 28	

subpopulation (Fig. 2b), resulting in the characterization of cell types including 29	

epithelial cells such as alveolar type 1 (AT1, expressing Ager) and type 2 (AT2, 30	

expressing Sftpb) cells, endothelial cells (Pecam1), fibroblast cells (Igfbp5 and Fn1), 31	

and immune cells (Ptprc) (Fig. 2a, Supplementary Fig. 3). Interestingly, 4 sub-types of 32	

cells can be further identified within immune cells including 3 types of macrophages 33	

and one type of B lymphocytes, while endothelial cell population can also be further 34	
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sub-classified into those of vascular and lymphocyte of origin, respectively (Fig. 2a). 1	

These data are consistent with previous single-cell analysis of lung tissue from 2	

newborn mice [10], suggesting that C4 system could be faithfully applied into 3	

dissecting complex cell populations at high resolution.  4	

 5	

Comparative analysis of C4 and existing platforms 6	

Two recent benchmarking studies by Ding et al. and Mereu et al. [11, 12] have 7	

systematically and comprehensively compared existing single-cell sequencing 8	

techniques, providing invaluable resource for users to make informed choices. To 9	

compare the technical performance between C4 and these single-cell platforms, we 10	

firstly analyzed the data from HEK293T/NIH3T3 mixture cells in replicates and the 11	

data generated from the same cell types in the study by Ding et al. [11]. We observed 12	

a multiplet rate of 2-2.5% in C4 system, which is quite comparable and acceptable in 13	

comparison with other high-throughput platforms (Fig. 3a). To evaluate the gene 14	

detection sensitivity, we first performed down-sampling analysis and found that a 15	

median number of over 6,000 genes was identified at 100K reads per cell, which 16	

outperforms other platforms (Supplementary Fig. 4). Supporting this, we further 17	

calculated the number of UMIs and genes of all single cells from each platform. As 18	

expected, the plate-based method, Smart-seq2 and CEL-Seq2 showed the highest 19	

capture sensitivity (Fig. 3b, c). Interestingly, when comparing with high-throughput 20	

methods, C4 detected over 6,000 genes in both mouse and human cell lines, which is 21	

much higher than all other platforms (Fig. 3b, c), possibly owing this to the higher 22	

number of capture oligos (theoretical number: 107) on our functionalized micro-23	

particles. 24	

 25	

One of the key biological information obtained from scRNA-seq is the identification 26	

and recovery of different cell types from heterogeneous populations. In their report, 27	

Ding et al. [11] compared the ability of different platforms to resolve cellular 28	

heterogeneity in mouse cortex and human PBMCs. To further compare this facet of 29	

C4 with current platforms, we profiled a total of 6,473 single cells from the nuclei of 30	

mouse cortex, which was disassociated and extracted according to the protocol by 31	

Ding et al. [11]. As expected, we observed slightly higher number of genes in C4 32	

system (Fig. 4a) than all other high-throughput platforms. We next performed 33	

unsupervised clustering for the nuclei data based on gene expression matrices, 34	

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 27, 2019. ; https://doi.org/10.1101/818450doi: bioRxiv preprint 

https://doi.org/10.1101/818450
http://creativecommons.org/licenses/by-nd/4.0/


resulting in 9 subpopulations. Marker gene based annotation revealed recovery of 1	

known cell types in mouse cortex in all methods, e.g., excitatory or inhibitory neurons, 2	

astrocytes and microglia (Fig. 4b). We further calculated the percentage of each 3	

subpopulation and observed successful capture of all major cell types (Fig. 4c). C4 4	

and other droplet-based methods can recover all cell types, whereas the combinatorial 5	

indexing based method, sci-RNA-seq, can not detect cell types such as pericytes, 6	

suggesting potential bias across different strategies. Taken together, these results 7	

strongly indicated that C4 presents high sensitivity in gene detection and comparable 8	

recovery ability with most of the current platforms. 9	

 10	

Discussion 11	

In summary, we have developed a portable, affordable and user friendly microfludic 12	

system that enables scalable single-cell transcriptomics profiling. The portability 13	

feature of C4 system is critical since many samples should be freshly prepared and 14	

immediately loaded to ensure high data quality. C4 is applicable to different tissues 15	

and sample types including viable cells and nuclei, which is important since only nuclei 16	

can be isolated from many archived samples including frozen tissues or dissociated 17	

cells. In addition, we have systematically compared C4 and other 7 single cell 18	

platforms, demonstrating that C4 shows high sensitivity on mRNA molecule detection 19	

and robust ability for recovery of cellular heterogeneity in different tissues, such as 20	

cortex. Apart from good technical performance, C4 system is of extremely low-cost, 21	

making it possible for every life science lab to do single-cell studies without purchasing 22	

expensive instruments. 23	

 24	

One limitation for current high throughput single-cell platforms (such as droplet, 25	

microwell or combinatorial indexing based methods) is that only 3’ or 5’ end exonic 26	

read can be measured on short-read based sequencing platforms. The tag information 27	

can only be used for expression quantification but does not allow transcriptomic 28	

analyses such as alternative splicing and structural variation in a high-throughput 29	

manner [1]. However, full-length cDNA library can be obtained from these platforms 30	

including C4 system. One potential approach to achieve full-length cDNA sequencing 31	

is to combine long read sequencing techniques such as long fragment read (LFR) 32	

technology [13], which has been widely used for DNA sequencing. Moreover, C4 could 33	

be an extendable platform for efficient profiling of other omics layers, such as 34	
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chromatin accessibility or simultaneous profiling of multi-omics at single-cell resolution, 1	

with specific modifications to oligo on the micro-particles. Overall, C4 is a promising 2	

candidate single-cell system for high-throughput multimodal study of single cells, 3	

paving the way to a thorough assessment of cellular heterogeneity in a variety of basic 4	

research and clinical applications. 5	

 6	

Methods 7	

Cell lines and single cell suspension preparation 8	

293T human embryonic kidney cells (ATCC) and NIH3T3 mouse embryonic fibroblast 9	

cells (ATCC) were cultured in medium containing Dulbecco's Modified Eagle medium 10	

(Gibco) supplemented with 1X penicillin-streptomycin and 10% fetal bovine serum 11	

(Gibco). 12	

 13	

Cells were grown to a confluence of 50-60%. Cells were treated with Trypsin-EDTA 14	

(Thermo Fisher Scientific) for 5 minutes, quenched with equal volume of complete 15	

growth medium, and spun down at 300 x g for 5 minutes. The supernatant was 16	

removed, and cells were washed twice with 1X phosphate buffered saline (PBS). Then 17	

cells were resuspended in 1X PBS containing 0.01% bovine serum albumin (BSA, 18	

BBI), passed through a 40 μm cell strainer (Falcon)  and then centrifuged at 300 x g 19	

for 5 minutes. Cells were resuspended with cell resuspension buffer (MGI) at a 20	

concentration of 1,000 cells/μl. To evaluate the collision rate of C4 system, we mixed 21	

the 293T and NIH3T3 cells at a 1:1 ratio as input sample.   22	

 23	

Mouse tissues dissection and nuclei isolation 24	

Wild-type C57BL/6J male mice were purchased from Guangdong Medical Lab Animal 25	

Center (Guangzhou, China). All experiments in this study were approved by the 26	

Institutional Review Board on Ethics Committee of BGI. We obtained lung and cortex 27	

tissues from 1 month old C57BL/6 male mice. The lung tissue was extracted and cut 28	

into 6 pieces (50-200 mg/piece). For cortex, we dissected the whole cortex out of the 29	

first hemisphere by a midsagittal cut and a cut made between the cerebellum and the 30	

hemisphere. The hippocampus, olfactory bulb, and all basal ganglia were dissected 31	

out as previously described [11]. The cortex and the lung slides were placed in 500 μl 32	

RNAlater (Thermo Fisher Scientific) in 1.5 ml tubes, followed by incubation overnight 33	

at 4 °C before storage at -80 °C. 34	
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We isolated nuclei as previously described [9] with minor modifications. Briefly, frozen 1	

tissues were placed into a 2 ml KIMBLE Dounce tissue grinder set (Sigma) with 2	

homogenization buffer consisted of 20 mM Tris pH 8.0 (Thermo Fisher Scientific), 500 3	

mM sucrose (Sigma), 50 mM KCl (Thermo Fisher Scientific), 10 mM MgCl2 (Thermo 4	

Fisher Scientific), 0.1% NP-40 (Roche), 0.2U/μl RNase inhibitor (MGI), 1X protease 5	

inhibitor cocktail (Roche), 1% nuclease-free BSA, and 0.1 mM DTT. Tissues were then 6	

homogenized by 10 strokes of the loose dounce pestle. Homogenate was then 7	

strained through a 70 μm cell strainer (Falcon) and then homogenized by 10 strokes 8	

of the tight pestle to liberate nuclei. Homogenate was next strained through a 30 μm 9	

cell strainer (Sysmex) and centrifuged at 500 x g for 5 minutes at 4 °C to pellet nuclei. 10	

Nuclei were then resuspended with blocking buffer containing 1X PBS supplemented 11	

with 1% BSA and 0.2U/μl RNase inhibitor. Nuclei suspensions were then centrifuged 12	

at 500 x g for 5 minutes and resuspended with cell resuspension buffer (MGI) . We 13	

counted the nuclei and made the final aliquots for snRNA-seq at a concentration of 14	

1,000 nuclei/μl. 15	

 16	

Sequencing library construction using the C4 system  17	

Single-cell RNA-seq libraries were prepared using C4 scRNA-seq kit (MGI). Barcoded 18	

mRNA capture beads, droplet generation oil and the single-cell suspension were 19	

loaded into the corresponding reservoirs on chip for droplet generation. The droplets 20	

were gently removed to the collection vial and placed at room temperature for 20 21	

minutes. Droplets were then broken and collected by the bead filter (MGI). The 22	

supernatant was removed, and the bead pellet was resuspended with 100 μl RT mix. 23	

The mixture was then thermal cycled as follows: 42 °C for 90 minutes, 10 cycles of 24	

50 °C for 2 minutes, 42 °C for 2 minutes. The bead pellet was then resuspended in 25	

200 μl of exonuclease mix and incubated at 37 °C for 45 minutes. Afterward the PCR 26	

master mix was added to the beads pellet and thermal cycled as follows: 95 °C for 3 27	

minutes, 13 cycles (for nuclei 19 cycles) of 98 °C for 20 s, 58 °C for 20 s, 72 °C for 3 28	

minutes, and finally 72 °C for 5 minutes. Amplified cDNA was purified using 60 μl of 29	

AMPure XP beads. The cDNA�was subsequently fragmented to 400-600bp with 30	

NEBNext dsDNA Fragmentase (New England Biolabs) according to the 31	

manufacturer’s protocol. Indexed sequencing libraries were constructed using the 32	

reagents in�the C4 scRNA-seq kit following the steps: (1) post fragmentation size 33	
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selection with AMPure XP beads; (2) end repair and A-tailing; (3) adapter ligation; (4) 1	

post ligation purification with AMPure XP beads; (5) sample index PCR and size 2	

selection with AMPure XP beads. The barcode sequencing libraries were quantified 3	

by Qubit (Invitrogen). All libraries were further prepared based on BGISEQ-500 4	

sequencing platform [14]. The DNA nanoballs (DNBs) were loaded into the patterned 5	

nanoarrays and sequenced on the BGISEQ-500 sequencer using the following read 6	

length: 41 bp for read 1, 100 bp for read 2, and 10 bp for sample index. 7	

 8	

Barcode and UMI assignment, read mapping and transcript counting 9	

For C4 scRNA-seq data, the cell barcodes (base 1 to base 10 and base 17 to base 10	

26) and UMIs (base 32 to 41) are in read 1 and the cDNA reads are in read 2. We 11	

used the merge_fastq function of scumi [11] to extract the cell barcodes and UMI 12	

sequences from read 1, and put them in the header of their corresponding cDNA reads. 13	

	14	
We aligned the reconstructed the FASTQ file to the reference genome using STAR  15	

[15]. For cross-species single-cell data, we used the STAR reference available in the 16	

hg19 and mm10 v2.1.0 Cell Ranger reference. For mouse cortex and lung data, we 17	

used the STAR reference available in the mm10 v1.2.0 Cell Ranger reference. 18	

	19	
To generate a cell x gene UMI count matrix from UMI-based methods. We used the 20	

featureCounts function from the Subread packages [16] to label each alignment with 21	

a gene tag using the following parameter: -M. We then counted the UMI number for 22	

each gene in each cell using the count_umi function of scumi [11]. 23	

	24	

Selecting the cell number  25	

To estimate the number of cells recovered, we used the 50 percentage UMIs of the 26	

top 30th cell barcode as the threshold. The cell barcodes with UMIs greater than the 27	

threshold are considered as cells. For data generated from other platforms, the cells 28	

were selected according to the previous study [11]. 29	

 30	

Multiplets Detection 31	

In the cross-species experiments, the cell barcodes will be considered as the cell 32	

multiplets when UMIs from human and mouse are greater than 15%. 33	

	34	
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Cell clustering 1	

Seurat [17, 18] was applied to uncover the cell types in the mouse tissue datasets. For 2	

mouse lung dataset, cells with more than 200 detected genes and low than 10% 3	

mitochondrial UMIs were used for clustering. The “FindVariableGenes” function (with 4	

dispersion value higher than 0.5 and normalized expression value between 0.0125 5	

and 3) was applied to find the highly variable genes, followed by principal component 6	

analysis (PCA) based on the highly variable genes. The top 20 PCs were used to 7	

building the k-NN graph by setting the number of neighbors k as 20, and the clusters 8	

were identified using the resolution of 0.8. The top 50 PCs were used to building the 9	

reduction map. The subpopulations of immune cells and endothelial cells were also 10	

identified using Seurat. Each cell cluster was annotated using previously reported 11	

marker genes. 12	

 13	

For mouse cortex dataset, the data generated from other platforms were reported in 14	

Ding et al. [11] and were kindly provided by Dr. Joshua Z. Levin. The data matrices 15	

generated from C4 and all other platfroms were merged for downstream analysis. 16	

Cells with more than 200 detected genes and low than 10% mitochondrial UMIs were 17	

used for clustering. The “FindVariableFeatures” function (selection.methods = “vst” 18	

and nfeatures = 2000) was applied to find the highly variable genes, and the 19	

“FingIntergrationAnchors” function was applied to find the anchors in the all techniques 20	

using the top 50 PCs of canonical correlation analysis (CCA). Then integrated the 21	

different technique datasets according to the anchors, followed by principal 22	

component analysis (PCA) based on the integrated dataset. The top 12 PCs of PCA 23	

were used to building the k-NN graph by setting the number of neighbors k as 20, and 24	

the clusters were identified using the resolution of 2. The top 50 PCs of PCA were 25	

used to building the reduction map. Each cell cluster was annotated using previously 26	

reported marker genes. 27	

 28	

References 29	

1. Chen X, Teichmann SA and Meyer KB. From tissues to cell types and back: 30	
single-cell gene expression analysis of tissue architecture. Annual Review of 31	
Biomedical Data Science. 2018;1:29-51. 32	

2. Svensson V, Vento-Tormo R and Teichmann SA. Exponential scaling of single-33	
cell RNA-seq in the past decade. Nature protocols. 2018;13 4:599. 34	

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 27, 2019. ; https://doi.org/10.1101/818450doi: bioRxiv preprint 

https://doi.org/10.1101/818450
http://creativecommons.org/licenses/by-nd/4.0/


3. Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, et al. Highly 1	
parallel genome-wide expression profiling of individual cells using nanoliter 2	
droplets. Cell. 2015;161 5:1202-14. 3	

4. Klein AM, Mazutis L, Akartuna I, Tallapragada N, Veres A, Li V, et al. Droplet 4	
barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell. 5	
2015;161 5:1187-201. 6	

5. Gierahn TM, Wadsworth II MH, Hughes TK, Bryson BD, Butler A, Satija R, et 7	
al. Seq-Well: portable, low-cost RNA sequencing of single cells at high 8	
throughput. Nature methods. 2017;14 4:395. 9	

6. Luecken MD and Theis FJ. Current best practices in single-cell RNA-seq 10	
analysis: a tutorial. Molecular systems biology. 2019;15 6. 11	

7. Chen I-J, Wu T and Hu S. A hand-held, power-free microfluidic device for 12	
monodisperse droplet generation. MethodsX. 2018;5:984-90. 13	

8. Habib N, Avraham-Davidi I, Basu A, Burks T, Shekhar K, Hofree M, et al. 14	
Massively parallel single-nucleus RNA-seq with DroNc-seq. Nature methods. 15	
2017;14 10:955. 16	

9. Bakken TE, Hodge RD, Miller JA, Yao Z, Nguyen TN, Aevermann B, et al. 17	
Single-nucleus and single-cell transcriptomes compared in matched cortical 18	
cell types. PloS one. 2018;13 12:e0209648. 19	

10. Guo M, Du Y, Gokey JJ, Ray S, Bell SM, Adam M, et al. Single cell RNA 20	
analysis identifies cellular heterogeneity and adaptive responses of the lung at 21	
birth. Nature communications. 2019;10 1:37. 22	

11. Ding J, Adiconis X, Simmons SK, Kowalczyk MS, Hession CC, Marjanovic ND, 23	
et al. Systematic comparative analysis of single cell RNA-sequencing methods. 24	
BioRxiv. 2019:632216. 25	

12. Mereu E, Lafzi A, Moutinho C, Ziegenhain C, MacCarthy DJ, Alvarez A, et al. 26	
Benchmarking Single-Cell RNA Sequencing Protocols for Cell Atlas Projects. 27	
BioRxiv. 2019:630087. 28	

13. Wang O, Chin R, Cheng X, Wu MKY, Mao Q, Tang J, et al. Efficient and unique 29	
cobarcoding of second-generation sequencing reads from long DNA molecules 30	
enabling cost-effective and accurate sequencing, haplotyping, and de novo 31	
assembly. Genome research. 2019;29 5:798-808. 32	

14. Huang J, Liang X, Xuan Y, Geng C, Li Y, Lu H, et al. A reference human 33	
genome dataset of the BGISEQ-500 sequencer. GigaScience. 2017;6 5:1-9. 34	
doi:10.1093/gigascience/gix024. 35	

15. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: 36	
ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29 1:15-21. 37	

16. Liao Y, Smyth GK and Shi W. featureCounts: an efficient general purpose 38	
program for assigning sequence reads to genomic features. Bioinformatics. 39	
2013;30 7:923-30. 40	

17. Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck III WM, et al. 41	
Comprehensive Integration of Single-Cell Data. Cell. 2019. 42	

18. Butler A, Hoffman P, Smibert P, Papalexi E and Satija R. Integrating single-cell 43	
transcriptomic data across different conditions, technologies, and species. 44	
Nature biotechnology. 2018;36 5:411. 45	

 46	

Acknowledgements 47	

We thank Dr. Joshua Z. Levin from Broad Institute of MIT & Harvard for kindly 48	

providing raw single-cell sequencing data generated from existing platforms. This work 49	

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 27, 2019. ; https://doi.org/10.1101/818450doi: bioRxiv preprint 

https://doi.org/10.1101/818450
http://creativecommons.org/licenses/by-nd/4.0/


was supported by the National Natural Science Foundation of China (No. 31900466 1	

and No. 31900582), the Science, Technology and Innovation Commission of 2	

Shenzhen Municipality (No. JSGG20170412153009953) and the Strategic Priority 3	

Research Program of the Chinese Academy of Sciences (No. XDA16030502 and No. 4	

XDA16010114). 5	

 6	

Author contributions 7	

L.L. and IJ.C. conceived the idea. C.L. and L.L. designed the experiments. IJ.C., T.W. 8	

and M.J. designed the microfluidic chip and instrument. C.L. and Z.W. designed the 9	

reagents. F.F., O.W., B.A.P. and W.W. designed and optimized the micro-particles. 10	

Y.L., L.W. and W.Wei designed the filter. L.Wu. and L.L. analyzed the data. C.L., Z.W. 11	

and Y.Y. conducted experiments. Y.Yuan., M.W., M.C., J.X., Y.Lai, P.G. and H.Z. 12	

assisted with the experiments. Q.S., X.W., S.L. and Y.Liu assisted with the data 13	

analyses. L.L. and IJ.C. wrote the manuscript. M.A.E., C.W. and G.V. revised the 14	

manuscript. X.X., Y.H., Y.Z., J.B., A.C., Z.S., M.N., W.Z. and M.A.E. provided helpful 15	

comments on this study. All authors reviewed and approved the final manuscript.  16	

 17	

Competing interests 18	

Employees of BGI and Complete Genomics have stock holdings in BGI. 19	

 20	

Figure legends 21	

Figure 1. Massively parallel single-cell transcriptome profiling using C4 system. 22	

(a) Schematic representation of the workflow for scRNA-seq using C4 system. (b) 23	

Upper panel: an image of droplets generated by C4 system. Bottom panel: distribution 24	

of the size of droplets generated by different users and from different chips. (c) 25	

Number of UMIs captured in each cell barcode. The cell barcodes are ordered by the 26	

UMIs number. (d) Scatter plot of human and mouse UMI counts detected in a mixture 27	

of 293T and NIH3T3 cells. Cell barcodes containing human reads are colored in red 28	

and termed ‘Human’; cell barcodes with mouse reads are colored in green and termed 29	

‘Mouse’; and cell barcodes with significant human reads are coloured in light grey and 30	

termed ‘Multiplet’. The percentage of multiplets detected in indicated in the panel (2%). 31	

(e) Left panel: number of UMIs per cell for the human and mouse cells. Right panel: 32	

number of genes per cell for the human and mouse cells. 33	

 34	
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Figure 2. C4 can recover diverse cell types from heterogeneous samples. (a) 1	

Unsupervised clustering identified 13 distinct subpopulations in mouse lung, which 2	

were then assigned to cell types based on gene expression, including 4 immune 3	

subtypes and 2 endothelial subtypes. (b) Heatmap showing differential gene 4	

expression analysis result that specifically expressed in each subpopulation. 5	

 6	

Figure 3. Comparative analysis of C4 and existing platforms. (a) Assessment of 7	

multiplet frequency. Cells were ordered based on the number of UMIs. For a given x 8	

value, the plot shows the percent of the top x cells that are multiplets. (b) Violin plots 9	

showing the number of UMIs per cell in each method. (c) Violin plot showing the 10	

number of genes per cell in each method. For (b) and (c), the top panel shows the 11	

results for human cells, and the bottom panel shows the results for mouse cells. 12	

Boxplots denote the medians (labelled on the right) and the interquartile ranges (IQRs). 13	

 14	

Figure 4. Comparative analysis of C4 and existing systems in the recovery of 15	

different cell types within mouse brain cortex. (a) Left panel: Violin plot showing 16	

the number of UMIs per cell from mouse cortex snRNA-seq data. Right panel: Violin 17	

plot showing the number of genes per cell in data generated by each method. (b) Cell 18	

clustering and cell type annotation for data generated by each method. (c) Proportion 19	

of the indicated cell types detected from the data by each method. 20	

 21	

Supplementary Figure 1. Quality metrics of C4 generated scRNA-seq. (a) 22	

Percentages of reads mapped to the indicated regions of the human genome. (b) 23	

Number of UMIs captured in each cell barcode. The cell barcodes are ordered by the 24	

UMIs number. (c) Scatter plot of human and mouse UMI counts detected in a mixture 25	

of 293T and NIH3T3 cells. The percentage of multiplets detected in indicated in the 26	

panel (2.6%). (d) Left panel: number of UMIs per cell for the human and mouse cells. 27	

Right panel: number of genes per cell for the human and mouse cells. 28	

	29	
Supplementary Figure 2. Correlation of pseudo-bulk expression profiles. The 30	

Pearson correlation coefficients between pseudo-bulk profiles of (a) human and (b) 31	

mouse cells generated from C4 system. For each replicate, we compared the log2 32	

transcripts per 10K (log2 [TP10K+1]) for pseudo-bulk from scRNA-seq on a gene by 33	

gene basis. The color of each box in the plane is calculated from the log count of gene. 34	
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Supplementary Figure 3. Expression patterns of the indicated marker genes in each 1	

cell type within the lung tissue. UMAP 2D scatter plot of the transcriptome of each cell. 2	

The expression value is normalized as log2 transcripts per 10K (log2 [TP10K+1]). 3	
	4	
Supplementary Figure 4. Rarefaction curves showing the effect of sequencing depth 5	

on the mean number of detected genes per cell. 6	
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Figure 4
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Supplementary Figure 1
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Supplementary Figure 2
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Supplementary Figure 3
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Supplementary Figure 4
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