

1 **Immunoglobulin profile and B-cell frequencies are altered with changes in the cellular
2 micro-environment independent of the stimulation conditions**

3

4 Dannielle K Moore¹, Gina R Leisching¹, Candice I Snyders¹, Andrea Gutschmidt¹, Ilana C van
5 Rensburg¹, Andre G Loxton^{1*} and the SU-IRG Consortium

6

7

8 SU-IRG Consortium: Bongani Motaung, Andriette Hiemstra, Stephanus Malherbe, Gerhard Walzl,
9 Belinda Kriel, Marika Flinn, Ayanda Shabangu

10

11 1) DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical
12 Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human
13 Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South
14 Africa, PO Box 241 Cape Town, 8000 South Africa

15 *Andre G Loxton: (Corresponding author): GL2@sun.ac.za

16 Keywords: B cells; *M. tuberculosis*; microenvironment; IgG, PBMC

17 Summary Statement: B-cell behaviour is dependent on the presence of other immunogenic cells.

18

19 **Abstract**

20 B-cells are essential in the defense against *Mycobacterium tuberculosis*. Studies on isolated cells
21 may not accurately reflect the responses that occur *in vivo* due to the presence of other cells. This
22 study elucidated the influence of microenvironment complexity on B-cell polarisation and function
23 in the context of TB disease. B-cell function was tested in whole blood, PBMC's and as isolated
24 cells. The different fractions were stimulated and the B-cell phenotype and immunoglobulin profiles
25 analysed. The immunoglobulin profile and killer B-cell frequencies varied for each of the
26 investigated sample types, while in an isolated cellular environment, secretion of immunoglobulin
27 isotypes IgA, IgG2 and IgG3 was hampered. The differences in the immunoglobulin profile
28 highlight the importance of cell-cell communication for B-cell activation. In contrast, increased
29 frequencies of killer B-cells were observed following cellular isolation, suggesting a biased shift in
30 augmented immune response *in vitro*. This suggests that humoral B-cell function and development
31 was impaired likely due to a lack of co-stimulatory signals from other cell types. Thus, B-cell
32 function should ideally be studied in a PBMC or whole blood fraction.

33

34 **Introduction**

35 Over the past two decades, researchers have increased the use of cell culture and isolated tissue
36 samples for biological research as an alternative to *in vivo* animal studies, due to the large cost
37 and strict regulatory conditions involved (Murphy, 1991; Brown Jr, 1997; Adams and Larson,
38 2007). For this reason, cell culture studies have formed the fundamental basis of a variety of
39 research topics (4). While the information gained from these isolated cell studies provides
40 valuable insight into biological mechanisms under investigation, they do not account for the many
41 factors that control these physiological responses *in vivo*. Numerous studies have illustrated the
42 ability of various cell types to modulate the host immune response under different conditions (Blair
43 *et al.*, 2010b; Carter, Rosser and Mauri, 2012a), and the presence and activation of these cell
44 types may contribute significantly to the function of a cell type of interest, through directing the
45 mounting immune response. As such, absence of these cells during isolated cell studies may

46 result in artificial observations and inaccurate assumptions regarding the role of a cell population
47 during health and disease. The effects of isolation on investigated cellular responses is evident in
48 many studies (Kondo and Magee, 1977; Sanders *et al.*, 1983; Murphy, 1991), in which a particular
49 condition produced a measured immune response in whole organism, while having minimal or no
50 effect on isolated target cells or tissue (vice versa).

51

52 Recent studies investigating the role of B-cells during tuberculosis (TB) revealed impaired B-cell
53 function and decreased B-cell frequencies during active disease (Joosten *et al.*, 2016a; Van
54 Rensburg *et al.*, 2017). A regulatory B-cell (B_{reg}) subtype, killer B-cells, was recently discovered
55 and has been implicated in a variety of immune conditions, including *M.tuberculosis* (Lundy *et al.*,
56 2015; van Rensburg and Loxton, 2018a). Emerging evidence has acknowledged B-cells as
57 essential in the defense against *Mycobacterium tuberculosis* (*M.tb*). Prior to the participation of B-
58 cells in host immune responses, development and migration of precursor cells known as
59 transitional B-cells from the bone marrow to the spleen is required; where they give rise to mature
60 B-cells in response to antigenic stimulation (Paul, 2013; Abbas, Lichtman and Pillai, 2014).
61 Immature transitional 1 (T1) B-cells ($CD19^+CD21^-CD23^-$) form the foundation from which
62 transitional 2 (T2) B-cells ($CD19^+CD21^+CD23^+$) and mature B-cells sequentially derive (Petro *et al.*,
63 2002). However, T2 B-cells have been found to be more receptive to cellular activation and
64 proliferation, in comparison to T1 B-cells (Mackay and Browning, 2002; Chung, Silverman and
65 Monroe, 2003). As such, the presence and regulation of these T2 B-cells dramatically affects the
66 course of the mounted immune responses.

67 Functional analysis of these cells in numerous health settings identified the role of these cells as
68 potential immune modulators responsible for controlling the immune response during disease and
69 infection. (Lundy and Boros, 2002; Matsushita *et al.*, 2008; Lundy, 2009; Chesneau *et al.*, 2013;
70 Lundy, Klinker and Fox, 2015). A study by van Rensburg and colleagues (van Rensburg *et al.*,
71 2017) investigated the frequency of these killer B_{reg} s during active TB disease and found a
72 decrease in the frequency of these cells during TB diseased individuals when compared to
73 controls. Upon successful TB treatment, these killer B-cell frequencies returned to levels

74 comparable to that of healthy controls, suggesting a pivotal role of these B_{regs} in protective anti-TB
75 immunity (van Rensburg *et al.*, 2016; Van Rensburg *et al.*, 2017) .
76 The objective of this study was to elucidate the influence of microenvironment complexity on B-cell
77 polarisation and function in the context of TB disease. Current research findings inferring the role
78 of B-cells during *M.tb* infection utilized isolated B-cell cultures to investigate their functional
79 capacity. Thus we sought to firstly assess and characterize B-cell function in whole blood, PBMCs
80 and as an isolated culture in response to various antigenic stimuli, and secondly to determine the
81 significance of the use of isolated cell culture techniques in studies inferring the role of B-cells
82 during TB disease.

83 **Results**

84 *The B-cell immunoglobulin profile varies considerably according to cellular
85 microenvironment/sample fraction.*

86 The mechanisms employed by B-cells toward facilitating enhanced anti-TB immunity remains
87 unresolved. Subsequently, the effects of microenvironment complexity i.e. the degree of cellular
88 isolation on B-cell function was investigated. This was achieved by examining the immunoglobulin
89 expression patterns within culture supernatants following stimulation of B-cells in various sample
90 fractions (whole blood, PBMCs and isolated B-cells).

91 Altered immunoglobulin profiles were observed across the various sample fractions, regardless of
92 stimulation conditions, however most notable was the observation of increased IgM release from
93 isolated B-cells (Figure 1). A significant difference ($p<0.05$) in the immunoglobulin profile was
94 observed for all isotypes, except IgG4, following isolation of B-cells from whole blood (Figure 2a).

95 In some instances, the relative abundance of an isotype within a given sample set, such as IgE
96 ($p=0.0001$), IgG3 ($p=0.0000$) and IgA (ns, $p>0.05$), was observed to increase following PBMC
97 isolation. However, in majority of cases a decrease in the relative abundance of an immunoglobulin
98 isotype, specifically IgG1 ($p = 0.0000$), IgG2 (ns, $p>0.05$) IgG4 (ns, $p>0.05$) and IgM (ns, $p>0.05$),
99 within a given sample set was observed following PBMC isolation. A significant decrease in the
100 relative abundance of most isotypes, including IgA ($p=0.0000$), IgG1 ($p=0.0000$) and IgG2
101 ($p=0.0000$), was observed following isolation of B-cells compared to whole blood, whilst an
102 increase in the relative abundance of IgE ($p=0.0004$) and IgM ($p=0.0000$) was found. Likewise, a
103 substantial decrease in the relative abundance of most isotypes, IgA ($p=0.0000$), IgG1($p=0.0001$),
104 IgG2 ($p=0.0000$) and IgG3 ($p=0.0000$), was observed following isolation of B-cells compared to the
105 PBMC sample fraction, whereas an increase in the relative abundance of IgM ($p=0.0000$) was
106 found. Incidentally, the effect of sample type on the abundance of the various immunoglobulin
107 isotypes was investigated to discern the effect of cellular isolation on the magnitude of subsequent
108 B-cell responses. A significant difference in quantified immunoglobulin levels was observed for all
109 isotypes following each successive isolation procedure (data not shown). To account for the
110 limitations involved in comparing plasma supernatants to culture supernatants, only differences
111 between PBMCs and isolated B-cells were considered. Here, significant decreases in the observed

112 concentration of all immunoglobulin isotypes were observed for isolated B-cell culture supernatants
113 compared to those of PBMC samples.
114 Additionally, the effects of QFN status and stimulation condition on immunoglobulin profiles were
115 investigated. We investigated whether or not *M.tb*-exposed (QFN positive) individuals with immune
116 memory would respond differently to *M.tb* challenge compared to QFN negative individuals. In all
117 instances, QFN status was found to have no effect on the relative abundance of the various
118 immunoglobulin isotypes (Fig. 2B). To conclude, the impact of stimulation condition on
119 immunoglobulin profiles were investigated to determine the effect of *M.tb* infection on B-cell
120 performance. For the majority of immunoglobulin isotypes, stimulation with different antigens had
121 no effect on the measured immunoglobulin abundance (Fig. 2C). However, a significant decrease
122 in IgA levels were observed following TLR9 stimulation for all sample types compared to
123 unstimulated controls ($p=0.0038$) and H37Rv stimulated ($p=0.0292$) samples. Conversely, an
124 increase in IgG3 levels were observed following TLR9 stimulation for all sample types compared to
125 unstimulated controls ($p=0.0482$).
126

127 *B-cells isolation results in decreased frequencies of MZ B-cells*
128 In addition to investigating alterations within the immunoglobulin profile of B-cells, variations in the
129 phenotypic frequencies of various B-cell subsets was investigated to evaluate the effect of
130 microenvironment complexity on cell function. The expression of the cell surface receptors CD21
131 and CD23 by B-cells was examined to determine the proportion of B-cells within various
132 developmental stages following antigenic stimulation. Following a 24-hour stimulatory period, cells
133 from all stimulatory conditions for each of the cellular fractions was collected and phenotypic
134 frequencies of the various B-cell population determined using flow cytometry. It is important to note
135 that due to limited cell numbers, isolated B-cell samples (B-cells only) were pooled according to
136 QFN status and stimulatory conditions prior to flow cytometry analysis, prohibiting the assessment
137 of individual sample distribution and statistically significant differences between B-cells only and
138 other microenvironment conditions. Consequently, observations made from the resulting data
139 focus principally on the difference between whole blood and PBMC, while inferring the
140 physiological implications of the trends observed for isolated B-cells. The effect of sample type on

141 B-cell development was investigated, in which no significant difference in T1, T2, MZ and FO B-cell
142 frequencies was observed between whole blood and PBMCs. However, a shared pattern of
143 decreased CD19⁺CD21⁺CD23⁻ (MZ) B-cells, whilst an increase in CD19⁺CD21⁺CD23⁺ (T2) B-cells,
144 CD19⁺CD21⁻CD23⁺ (FO) B-cells and CD19⁺CD21⁻CD23⁻ (T1) B-cells was observed for all sample
145 types following each successive isolation procedure (Fig. 3A). Regrettably, the significance of
146 alterations in these B-cell frequencies for isolated B-cell samples cannot be analyzed, however a
147 sizeable difference in the investigated frequencies is apparent. These results indicate the potential
148 impact that B-cell isolation has on maturation in response to stimulation *in vitro*.
149 Additionally, the effects of QFN status and stimulation conditions on B-cell development was
150 investigated. For majority of the investigated populations, QFN status was found to have no
151 significant effect on the observed B-cell frequencies (Fig. 3B). A general trend of decreased
152 frequencies for all populations was observed for QFN negative individuals compared to QFN
153 positive individuals. In accordance, a significant decrease in the observed frequency of
154 CD19⁺CD21⁺CD23⁺ (T2) B-cells ($p=0.0012$) was observed for QFN negative individuals.
155 Furthermore, the effects of stimulation condition were examined (Fig. 3C). A common shift of
156 increased B-cell frequencies was observed for most of the population subsets investigated
157 following TLR9a stimulation compared to unstimulated controls. A significant increase in the
158 frequency of CD19⁺CD21⁺CD23⁻ (MZ) B-cells was observed following TLR9a stimulation
159 ($p=0.0000$) and *M.tb* infection ($p=0.0000$), compared to unstimulated cells. Similarly, a significant
160 increase in CD19⁺CD21⁺CD23⁺ (T2) B-cells and CD19⁺CD21⁻CD23⁺ (FO) B-cells was observed in
161 response to TLR9a stimulated compare to unstimulated ($p=0.0000$; $p=0.0061$) and H37Rv
162 stimulated ($p=0.0000$; $p=0.0198$) samples, respectively. Contrariwise, a significant decrease in
163 CD19⁺CD21⁻CD23⁻ (T1) B-cells was observed for samples stimulated with either TLR9a
164 ($p=0.0000$) or H37Rv ($p=0.0000$) compared to unstimulated controls.
165

166 **Discussion**

167 The standard application of isolated cell studies for the investigation of cell function have proven to
168 be invaluable, however these studies do not account for the multi-faceted effects that surrounding
169 cells types have on each other *in vivo*. This cellular communication results in physiological events

170 that shape the immune response to various antigenic stimuli. In accordance, the purpose of this
171 pilot study was to determine the effect of microenvironment complexity on B-cell function and to
172 determine the significance of the use of isolated cell culture techniques in studies inferring the role
173 of B-cells during TB disease.

174 Current research findings have signified the importance of B-cells during *M.tb* infection, in which
175 absence or impaired function of this immune cell type has been associated with poor disease
176 prognosis (Achkar et al., 2015; Bénard et al., 2018; Du Plessis et al., 2016a, 2016b; Rao et al.,
177 2015). For decades, the primary function of B-cells was considered to be antibody secretion,
178 forming part of the adaptive humoral response (Abbas et al., 2014; Zabriskie, 2009). These
179 humoral immune responses were considered to be effective in controlling the growth and survival
180 of extracellular invading pathogens exclusively. However, recent investigations analysing the
181 efficiency of antibody-mediated immunity against several intracellular pathogens, including *M.tb*,
182 have since disproven this notion (Achkar and Casadevall, 2013; Chan et al., 2014). In addition,
183 studies have indicated non-humoral B-cell function, such as immune modulation through receptor
184 engagement and cytokine expression, as key mechanisms by which these cells contribute to the
185 successful control of *M.tb* infection (Bénard et al., 2018; Du Plessis et al., 2016b; van Rensburg
186 and Loxton, 2018b). As such, the influence of *in vitro* isolated cell culture studies on B-cell
187 development and function is of great importance, as currently observational findings inferring the
188 physiological role of these cells during TB disease utilize these techniques (Du Plessis, Kleynhans,
189 et al., 2016; van Rensburg and Loxton, 2018b) and form the foundation upon which new TB drugs,
190 host-directed therapies and TB vaccines are based.

191

192 In this study, antibody profiles were assumed to be a direct indication of the relative functional
193 capacity of B-cells within the investigated samples. Notable, the presence of circulating antibody
194 within the plasma samples compromises the inference of B-cell activity within whole blood samples
195 and is a limitation of the study. Considerable changes in the immunoglobulin profile were observed
196 across the different sample types, in which the relative percentage contribution of each of the
197 measured isotypes, with the exception of IgG4, differed significantly (Fig. 1). Sample type, rather
198 than stimulation condition, had a significant effect on the observed immunoglobulin profile. More

199 specifically, a significant decrease in the relative abundant of IgG1 was observed following PBMC
200 isolation compared to whole blood samples, while a significant increase in the relative abundance
201 of IgG3 was found. The same pattern in the immunoglobulin expression was observed when
202 comparing isolated B-cell samples with PBMCs. Importantly, the observed 'increase/decrease' in
203 antibody levels is not equivalent to the concentration of these isotypes within a given sample but
204 rather indicates the relative immunoglobulin diversity within the cellular microenvironment. The
205 physiological implications of altered immunoglobulin production have been extensively reviewed in
206 several disease states, where deficiency has been associated with increased susceptibility to
207 bacterial infection (Franz et al., 1997; Hermans et al., 1976).

208 Immunoglobulins was shown to have a half-life of between 5-21 days (Anderson et al., 2006; Kim
209 et al., 2007). Thus, circulating levels of antibodies were present within the plasma of whole blood
210 samples prior to stimulation, whereas cells within the PBMC and isolated B-cell fraction were
211 incubated in fresh media (Fig. 2A). This may have resulted in possible artefactual observations in
212 the relative reduction in immunoglobulin levels for whole blood samples compared to PBMC and
213 isolated B-cell samples. As such, significance of the observed [Ig] decrease was only considered
214 between PBMCs and isolated B-cells. Collectively, these results illustrated that isolation
215 procedures profoundly hindered the ability of B-cells to secrete several immunoglobulin isotypes;
216 underscoring the fact that the presence of additional cell types is required for augmented B-cell
217 activation and function.

218 Research has implicated IgA and IgG as leaders in protective anti-TB humoral immunity (Balu et
219 al., 2011; Achkar, Chan and Casadevall, 2015; Abebe et al., 2018). The exact mechanisms by
220 which these immunoglobulins achieve the protective effect is still unknown, and further
221 investigation into their cellular targets is needed to better understand the role they play during TB
222 disease (Li et al., 2017).

223 Investigation of isolated cell studies on B-cells at the site of infection may provide valuable insight
224 into anti-TB immunity. Mechanisms by which T-cells and dendritic cell induce this process are,
225 directly through cell-cell interactions with adjacent B-cells and indirectly through the secretion of
226 various soluble molecules (Fayette et al., 1997; Le Bon et al., 2001b). Studies utilising animal
227 models to study anti-TB humoral immunity *in vivo* and *ex vivo* analysis of human samples from

228 healthy and active TB participants has proved that humoral responses do in fact aid in the defence
229 against *M.tb* infection (Achkar and Casadevall, 2013; Achkar et al., 2015; Chan et al., 2014). This
230 further emphasizes the need to validate experimental observations in several independent
231 experiments, utilizing difference techniques in health and disease.

232

233 The effect of sample type of B-cell development was investigated via evaluation of the relative
234 frequencies on T1, T2, MZ and FO B-cells within each sample type following antigenic stimulation
235 (Fig. 3). Interestingly, no significant difference in the frequency of all B-cell subsets was observed
236 between whole blood and PBMCs. The involvement of MZ B-cells in T-independent early adaptive
237 immune responses is well established, in which increased plasma cell differentiation and superior
238 induction of Th1 expansion has been shown by MZ B-cells in comparison to FO B-cells
239 (Attanavanich and Kearney, 2004; Lopes-Carvalho, Foote and Kearney, 2005; Crawford et al.,
240 2006). As such, MZ B-cells are regarded as primarily responsible for protective humoral and
241 effector T-cell immune response. In contrast, activation of FO B-cells occurs via T-cell dependant
242 mechanisms, and is thus involved in late immune responses (Martin, Oliver and Kearney, 2001;
243 Balázs et al., 2002). These results indicate the potential impact of cell isolation on B-cell derived
244 immune responses; in which decreased frequencies of MZ B-cells was found. Thus, impaired B-
245 cell development, as a result of diminished microenvironment complex due to cellular isolation,
246 may result in the manifestation of inappropriate cellular responses to antigenic stimulation *in vitro*.

247

248 The effect of stimulation condition (TLR9 vs H37Rv) on immunoglobulin isotype abundance was
249 investigated. A general pattern of enhanced B-cell development and increase of MZ B-cells was
250 observed following TLR9a stimulation. The observed results are in agreement with previous
251 findings indicates that *M.tb* challenge evokes early non-humoral B-cell responses that may play an
252 importance role in the host defence against *M.tb* infection (Lenert et al., 2005). These results
253 underscore the ability of B-cell to actively respond to *M.tb* challenge and suggest that B-cells may
254 be involved in directing and shaping the immune response during TB disease.

255

256 Our study demonstrates the influence that microenvironment complexity (i.e. sample type) had a
257 profound impact on the activation and function of B-cells. These complex interactions underscore
258 the basis for the use isolated cell studies to investigate cellular function, in an attempt to limit the
259 degree of external factors influencing the observed results. This allows for the assumption, with
260 complete certainty that the measured output for a cell population is in response to a particular drug
261 or stimulus. However, it is important to remember that these isolated interactions are not indicative
262 of whole blood scenarios (Brodin, Duffy and Quintana-Murci, 2019). Composite cellular interactions
263 exist *in vivo* that may drastically influence the function of the (B-) cell type of interest resulting in a
264 different reaction of these cells to the same drug or stimulus in whole organism.

265

266

267 **Methods**

268 **Ethics Statement**

269 Ethical approval was obtained from the health research ethics committee of Stellenbosch
270 University (N16/05/070) and the City of Cape Town City Health. The study was conducted
271 according to the Helsinki Declaration and International Conference of Harmonization guidelines.
272 Written informed consent was obtained from all study participants.

273

274 **Study Participants**

275 For this pilot study, we recruited 23 healthy individuals (15 individuals with a negative Quantiferon
276 (QFN) status). The positive QFN status was suggestive of exposure to *M.tb*. Recruited participants
277 did not present with any clinical symptoms of TB and had no previous record of active disease. All
278 participants for this study were HIV negative. QFN positive and negative participants were
279 matched according to socio-economic background.

280

281 **B-cell Isolation**

282 Heparinized peripheral blood (18ml) was collected, of which 3mL was set aside for stimulation.
283 From the remaining whole blood, peripheral blood mononuclear cells (PBMCs) were isolated using
284 the ficoll-histopaque (GE Healthcare Life Sciences, USA) density gradient method. A fraction of the

285 PBMC's (3×10^6 cells) was set aside for stimulation. Subsequently, B-cells were negatively isolated
286 from the remaining PBMCs using MACS bead technology, according to the manufacturer's
287 instructions, with the B-cell isolation kit II (Miltenyi Biotec, South Africa). Once all the sample
288 fractions had been collected, the cells were stimulated as described below. Purity of the enriched
289 B-cell samples was confirmed by flow cytometry using anti-human CD19 mAb. All samples with
290 resulting gated purity of above 90% were included in analysis.

291

292 ***In vitro* Stimulation assays**

293 Whole blood (1mL blood/well), PBMC's (1×10^6 cells/well) and isolated B-cells (100 000 cells/well)
294 were stimulated under 3 conditions: unstimulated, H37Rv (1×10^6 CFU) or TLR9a (Sigma, USA) at
295 50 ng/ml. PBMCs and isolated B-cells were cultured in 96-well round-bottom plates in a total of
296 200uL complete media (RPMI plus L/Glutamine (Sigma, USA)) supplemented with 10% Fetal Calf
297 Serum (FCS, Lonza, South Africa). Whole blood samples were incubated in a 24-well flat bottom
298 plate in a total of 1.1mL (stimulants were diluted in complete media and added to 1mL blood). All
299 sample fractions were incubated at 37°C and 5% CO_2 for 24 hours. Following incubation, the
300 plasma (in case of whole blood) and culture supernatants (in the case of PBMCs and isolated B-
301 cells) were harvested, passed through a filter of $0.22\mu\text{m}$ (to remove any bacilli that may be
302 contained within the sample) and stored at -80°C for measurement of immunoglobulin secretion.
303 The cells were then fixed with 4% paraformaldehyde (eBioscience, USA) for 30min at 37°C ,
304 washed with phosphate buffered saline (PBS (Lonza, South Africa) and cryopreserved (90% FCS
305 and 10% Dimethyl sulfoxide (DMSO), Sigma-Aldrich, St, Louis, MO) in liquid nitrogen for future
306 analysis by flow cytometry.

307

308 **Immunoglobulin isotype analysis by Luminex technology**

309 Quantification of immunoglobulins within the plasma and culture supernatant, following the 24-hour
310 stimulation, was determined using the MAGPix and Bioplex platforms (Bio-Rad Laboratories,
311 California, USA). The immunoglobulins included IgA, IgE, IgG1, IgG2, IgG3, IgG4 and IgM. The
312 experiments were performed according to the kit manufacturer's recommendations.

313

314 **Phenotype Analysis by Flow Cytometry**

315 The antibody panel for cell surface receptor analysis consisted of: CD19-BV605, CD21-PE/Dazzle,
316 CD23-BV421, CD5-PerCP/Vio770, CD125 (IL5RA)-PE (All from Biolegend, California), CD3-FITC
317 (BD, Germany) and CD178 (FASL)-APC (Miltenyi Biotec, South Africa). Cells were stained for 1
318 hour at room temperature in the dark, washed and acquired on a BD LSR II (BD Biosciences). The
319 resulting data was analyzed using FlowJo v10 software (Treestar, USA).

320

321 **Statistical Analysis**

322 Quantification of the immunoglobulin isotypes by Luminex was expressed as a percentage of the
323 total immunoglobulin and statistical analysis performed on the relative percentage contribution of
324 each of the isotypes within a sample. Data analysis for all Luminex results was performed using
325 Statistica 12 software (Statsoft, Ohio, USA) and Prism 7 Software (San Diego, CA). Raw data was
326 checked for normality using normality plots. Statistical differences between sample fractions
327 (Whole Blood, PBMC, B-cells), QFN status and culture conditions (unstimulated, TLR9a, H37v)
328 was calculated using a four-way mixed model ANOVA. Comparisons within groups was calculated
329 using the Fishers LSD post-hoc test. A two-way step-up Benjamini, Krieger and Yekutieli False
330 Discovery rate (FDR) approach, with a FDR of 1%, was used to correct for multiple testing.
331 Data analysis of the flow cytometric plots was done using FlowJo V10 (Treestar, USA) and the
332 resulting cell frequencies analyzed using Statistica and Prism 7 Software. Raw data was checked
333 for normality using normality plots and winsorised using the Huber mean and MAD as necessary to
334 reduce the residual distribution into close agreement with a normal distribution. Statistical
335 significance is indicated by an asterisk, in which the $p < 0.05$ (*), $p < 0.01$ (**) and $p < 0.001$ (***) or
336 by letters, in which groups denoted with different letters indicate statistical differences.

337

338

339 **Acknowledgements**

340 We thank the study participants for their participation and the Immunology Research Group
341 laboratory where the assays were performed.

342

343 **Competing interests**

344 No competing interests to declare.

345

346 **Funding**

347 DM received a bursary from the NRF DAAD program. AGL is supported by the NRF-CSUR (Grant
348 Number CSUR60502163639) and TESA II of the EDCTP (#1051-TESAI EDCTP-RegNet-2015).

349 AGL is supported by the Centre for Tuberculosis Research from the South African Medical

350 Research Council. The funders had no role in the study design and manuscript writing.

351

352 **References**

353 Abbas, A. K., Lichtman, A. H. and Pillai, S. (2014) *Basic immunology: functions and disorders*
354 *of the immune system*. Elsevier Health Sciences.

355 Abebe, F. *et al.* (2018) 'IgA and IgG against *Mycobacterium tuberculosis* Rv2031 discriminate
356 between pulmonary tuberculosis patients, *Mycobacterium tuberculosis*-infected and non-
357 infected individuals', *PLoS one*, 13(1), p. e0190989.

358 Achkar, J. M. and Casadevall, A. (2013) 'Antibody-mediated immunity against tuberculosis:
359 implications for vaccine development', *Cell host & microbe*, 13(3), pp. 250–262.

360 Achkar, J. M., Chan, J. and Casadevall, A. (2015) 'B cells and antibodies in the defense
361 against *Mycobacterium tuberculosis* infection', *Immunological Reviews*. (Tuberculosis), 264,
362 pp. 167–181.

363 Adams, B. and Larson, J. (2007) 'Legislative History of the Animal Welfare Act', *Animal*
364 *Welfare Information Center Resource Series*, (41).

365 Anderson, C. L. *et al.* (2006) 'Perspective–FcRn transports albumin: relevance to
366 immunology and medicine', *Trends in immunology*, 27(7), pp. 343–348.

367 Anderson, N. G. and Wilbur, K. M. (1952) 'Studies on Isolated Cell Components: The Effect of
368 Various Solutions on the Isolated Liver Necleus', *The Journal of general physiology*, 35(5),
369 pp. 781–796.

370 Arase, H., Arase, N. and Saito, T. (1995) 'Fas-mediated cytotoxicity by freshly isolated natural
371 killer cells.', *Journal of Experimental Medicine*, 181(3), pp. 1235–1238.

372 Attanavanich, K. and Kearney, J. F. (2004) 'Marginal zone, but not follicular B cells, are
373 potent activators of naive CD4 T cells', *The Journal of Immunology*, 172(2), pp. 803–811.

374 Balázs, M. *et al.* (2002) 'Blood dendritic cells interact with splenic marginal zone B cells to
375 initiate T-independent immune responses', *Immunity*, 17(3), pp. 341–352.

376 Balu, S. *et al.* (2011) 'A novel human IgA monoclonal antibody protects against tuberculosis',
377 *The Journal of Immunology*, p. 1003189.

378 Bénard, A. *et al.* (2018) 'B cells producing type I IFN modulate macrophage polarization in
379 tuberculosis', *American journal of respiratory and critical care medicine*, 197(6), pp. 801–
380 813.

381 Blair, P. A. *et al.* (2010) 'CD19+ CD24hiCD38hi B cells exhibit regulatory capacity in healthy
382 individuals but are functionally impaired in systemic lupus erythematosus patients',
383 *immunity*, 32(1), pp. 129–140.

384 Brodin, P., Duffy, D. and Quintana-Murci, L. (2019) 'A Call for Blood-In Human Immunology',
385 *Immunity*, 50(6), pp. 1335–1336. doi: 10.1016/j.immuni.2019.05.012.

- 386 Brown Jr, G. E. (1997) '30 Years of the Animal Welfare Act', *Animal Welfare Information*
387 *Center Newsletter*, 8, pp. 1–2.
- 388 Buccheri, S. *et al.* (2009) 'Prevention of the post-chemotherapy relapse of tuberculous
389 infection by combined immunotherapy', *Tuberculosis*, 89(1), pp. 91–94.
- 390 Capra, J. D. *et al.* (1999) *Immunobiology: the immune system in health and disease*. Garland
391 Publishing.
- 392 Carter, N. A., Rosser, E. C. and Mauri, C. (2012) 'Interleukin-10 produced by B cells is crucial
393 for the suppression of Th17/Th1 responses, induction of T regulatory type 1 cells and
394 reduction of collagen-induced arthritis', *Arthritis research & therapy*, 14(1), p. R32.
- 395 Casadevall, A. and Pirofski, L. (2006) 'A reappraisal of humoral immunity based on
396 mechanisms of antibody-mediated protection against intracellular pathogens', *Advances in*
397 *immunology*, 91, pp. 1–44.
- 398 Chan, J. *et al.* (2014) 'The role of B cells and humoral immunity in *Mycobacterium*
399 tuberculosis infection', in *Seminars in immunology*. Elsevier, pp. 588–600.
- 400 Chen, X. *et al.* (2007) 'CD4+ CD25+ FoxP3+ regulatory T cells suppress *Mycobacterium*
401 tuberculosis immunity in patients with active disease', *Clinical immunology*, 123(1), pp. 50–
402 59.
- 403 Chesneau, M. *et al.* (2013) 'Regulatory B cells and tolerance in transplantation: from animal
404 models to human', *Frontiers in immunology*, 4, p. 497.
- 405 Chess, L., MacDermott, R. P. and Schlossman, S. F. (1974) 'Immunologic functions of isolated
406 human lymphocyte subpopulations: I. Quantitative isolation of human T and B cells and
407 response to mitogens', *The Journal of Immunology*, 113(4), pp. 1113–1121.
- 408 Chung, J. B., Silverman, M. and Monroe, J. G. (2003) 'Transitional B cells: step by step
409 towards immune competence', *Trends in immunology*, 24(6), pp. 342–348.
- 410 Coffman, R. L., Lebman, D. A. and Rothman, P. (1993) 'Mechanism and regulation of
411 immunoglobulin isotype switching', in *Advances in immunology*. Elsevier, pp. 229–270.
- 412 Cooper, A. M. *et al.* (1997) 'Interleukin 12 (IL-12) is crucial to the development of protective
413 immunity in mice intravenously infected with *Mycobacterium tuberculosis*', *Journal of*
414 *Experimental Medicine*, 186(1), pp. 39–45.
- 415 Crawford, A. *et al.* (2006) 'Primary T cell expansion and differentiation in vivo requires
416 antigen presentation by B cells', *The Journal of Immunology*, 176(6), pp. 3498–3506.
- 417 Dounce, A. L. (1943) 'Enzyme studies on isolated cell nuclei of rat liver.', *Journal of Biological*
418 *Chemistry*, 147, pp. 685–698.
- 419 Du Plessis, W. J., Keyser, A., *et al.* (2016) 'Phenotypic analysis of peripheral B cell
420 populations during *Mycobacterium tuberculosis* infection and disease', *Journal of*
421 *Inflammation*, 13(1), p. 23.

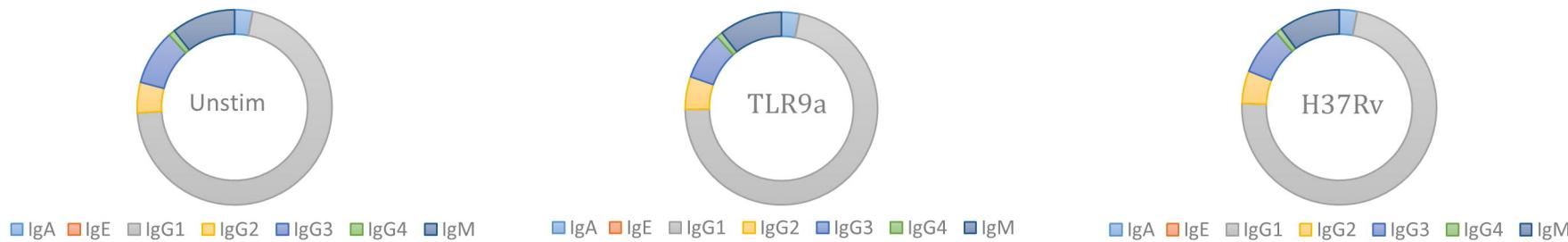
- 422 Du Plessis, W. J., Kleynhans, L., *et al.* (2016) 'The functional response of B Cells to antigenic
423 stimulation: a preliminary report of latent tuberculosis', *PLoS one*, 11(4), p. e0152710.
- 424 Fayette, J. *et al.* (1997) 'Human dendritic cells skew isotype switching of CD40-activated
425 naive B cells towards IgA1 and IgA2', *Journal of Experimental Medicine*, 185(11), pp. 1909–
426 1918.
- 427 Franz, A. *et al.* (1997) 'Mycoplasmal arthritis in patients with primary immunoglobulin
428 deficiency: clinical features and outcome in 18 patients.', *British journal of rheumatology*,
429 36(6), pp. 661–668.
- 430 Hamasur, B. *et al.* (2004) 'A mycobacterial lipoarabinomannan specific monoclonal antibody
431 and its F (ab \square) 2 fragment prolong survival of mice infected with *Mycobacterium*
432 tuberculosis', *Clinical & Experimental Immunology*, 138(1), pp. 30–38.
- 433 Hermans, P. E., Diaz-Buxo, J. A. and Stobo, J. D. (1976) 'Idiopathic late-onset
434 immunoglobulin deficiency: clinical observations in 50 patients', *The American journal of
435 medicine*, 61(2), pp. 221–237.
- 436 Jonuleit, H. *et al.* (2001) 'Identification and functional characterization of human CD4+
437 CD25+ T cells with regulatory properties isolated from peripheral blood', *Journal of
438 Experimental Medicine*, 193(11), pp. 1285–1294.
- 439 Joosten, S. A. *et al.* (2016) 'Patients with tuberculosis have a dysfunctional circulating B-cell
440 compartment, which normalizes following successful treatment', *PLoS pathogens*, 12(6), p.
441 e1005687.
- 442 Kim, J. *et al.* (2007) 'Kinetics of FcRn-mediated recycling of IgG and albumin in human:
443 pathophysiology and therapeutic implications using a simplified mechanism-based model',
444 *Clinical immunology*, 122(2), pp. 146–155.
- 445 Kondo, T. and Magee, D. F. (1977) 'Evidence for antral inhibition of pentagastrin from
446 experiments using mucosal cooling.', *The Journal of physiology*, 270(1), pp. 37–50.
- 447 Le Bon, A. *et al.* (2001) 'Type I interferons potently enhance humoral immunity and can
448 promote isotype switching by stimulating dendritic cells *in vivo*', *Immunity*, 14(4), pp. 461–
449 470.
- 450 Lenert, P. *et al.* (2005) 'TLR-9 activation of marginal zone B cells in lupus mice regulates
451 immunity through increased IL-10 production', *Journal of clinical immunology*, 25(1), pp. 29–
452 40.
- 453 Li, H. *et al.* (2017) 'Latently and uninfected healthcare workers exposed to TB make
454 protective antibodies against *Mycobacterium tuberculosis*', *Proceedings of the National
455 Academy of Sciences*, 114(19), pp. 5023–5028.
- 456 Lopes-Carvalho, T., Foote, J. and Kearney, J. F. (2005) 'Marginal zone B cells in lymphocyte
457 activation and regulation', *Current opinion in immunology*, 17(3), pp. 244–250.

- 458 Lundy, S. K. (2009) 'Killer B lymphocytes: the evidence and the potential', *Inflammation*
459 *Research*, 58(7), p. 345.
- 460 Lundy, S. K. and Boros, D. L. (2002) 'Fas ligand-expressing B-1a lymphocytes mediate CD4+-
461 T-cell apoptosis during schistosomal infection: induction by interleukin 4 (IL-4) and IL-10',
462 *Infection and immunity*, 70(2), pp. 812–819.
- 463 Lundy, S. K., Klinker, M. W. and Fox, D. A. (2015) 'Killer B lymphocytes and their fas ligand
464 positive exosomes as inducers of immune tolerance', *Frontiers in immunology*, 6, p. 122.
- 465 Mackay, F. and Browning, J. L. (2002) 'BAFF: a fundamental survival factor for B cells',
466 *Nature Reviews Immunology*, 2(7), p. 465.
- 467 Maglione, P. J. and Chan, J. (2009) 'How B cells shape the immune response against
468 Mycobacterium tuberculosis', *European journal of immunology*, 39(3), pp. 676–686.
- 469 Martin, F., Oliver, A. M. and Kearney, J. F. (2001) 'Marginal zone and B1 B cells unite in the
470 early response against T-independent blood-borne particulate antigens', *Immunity*, 14(5),
471 pp. 617–629.
- 472 Matsushita, T. *et al.* (2008) 'Regulatory B cells inhibit EAE initiation in mice while other B
473 cells promote disease progression', *The Journal of clinical investigation*, 118(10), pp. 3420–
474 3430.
- 475 Mauri, C. and Bosma, A. (2012) 'Immune regulatory function of B cells', *Annual review of
476 immunology*, 30, pp. 221–241.
- 477 McKenzie, A. N. *et al.* (1993) 'Interleukin 13, a T-cell-derived cytokine that regulates human
478 monocyte and B-cell function.', *Proceedings of the National Academy of Sciences*, 90(8), pp.
479 3735–3739.
- 480 Murphy, H. C. (1991) 'The use of whole animals versus isolated organs or cell culture in
481 research'.
- 482 O'doherty, U. *et al.* (1993) 'Dendritic cells freshly isolated from human blood express CD4
483 and mature into typical immunostimulatory dendritic cells after culture in monocyte-
484 conditioned medium.', *Journal of Experimental Medicine*, 178(3), pp. 1067–1076.
- 485 Paul, W. E. (2013) *Fundamental immunology*. Seventh. Lippincott Williams & Wilkins.
- 486 Petro, J. B. *et al.* (2002) 'Transitional type 1 and 2 B lymphocyte subsets are differentially
487 responsive to antigen receptor signaling', *Journal of Biological Chemistry*.
- 488 Rao, M. *et al.* (2015) 'B in TB: B cells as mediators of clinically relevant immune responses in
489 tuberculosis', *Clinical Infectious Diseases*, 61(suppl_3), pp. S225–S234.
- 490 Sanders, M. J. *et al.* (1983) 'Regulation of pepsinogen release from canine chief cells in
491 primary monolayer culture', *American Journal of Physiology-Gastrointestinal and Liver
492 Physiology*, 245(5), pp. G641–G646.

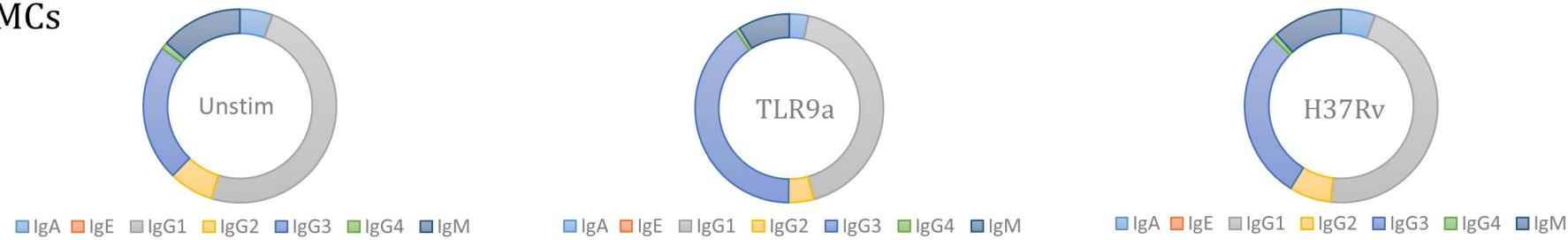
- 493 Shen, P. *et al.* (2014) 'IL-35-producing B cells are critical regulators of immunity during
494 autoimmune and infectious diseases', *Nature*, 507(7492), p. 366.
- 495 Sowa, J. M. *et al.* (2009) 'Platelet influence on T-and B-cell responses', *Archivum
496 immunologiae et therapiae experimentalis*, 57(4), pp. 235–241.
- 497 Stevens, T. L. *et al.* (1988) 'Regulation of antibody isotype secretion by subsets of antigen-
498 specific helper T cells', *Nature*, 334(6179), p. 255.
- 499 Teitelbaum, R. *et al.* (1998) 'A mAb recognizing a surface antigen of *Mycobacterium
500 tuberculosis* enhances host survival', *Proceedings of the National Academy of Sciences*,
501 95(26), pp. 15688–15693.
- 502 Tsuda, T. *et al.* (1974) 'Enzymes in tuberculous lesions hydrolyzing protein, hyaluronic acid
503 and chondroitin sulfate: a study of isolated macrophages and developing and healing rabbit
504 BCG lesions with substrate film techniques; the shift of enzyme pH optima towards
505 neutrality in intact cells and tissues', *RES Journal of the Reticuloendothelial Society*, 16(4),
506 pp. 220–231.
- 507 Twomey, J. J. *et al.* (1969) 'The syndrome of immunoglobulin deficiency and pernicious
508 anemia: A study of ten cases', *The American journal of medicine*, 47(3), pp. 340–350.
- 509 van Rensburg, I. C. *et al.* (2017) 'B-cells with a FasL expressing regulatory phenotype are
510 induced following successful anti-tuberculosis treatment', *Immunity, inflammation and
511 disease*, 5(1), pp. 57–67.
- 512 van Rensburg, I. C. and Loxton, A. G. (2018) 'Killer (FASL regulatory) B cells are present
513 during latent TB and are induced by BCG stimulation in participants with and without latent
514 tuberculosis', *Tuberculosis*, 108, pp. 114–117.
- 515 Van Rensburg, I. C. *et al.* (2017) 'Successful TB treatment induces B-cells expressing FASL
516 and IL5RA mRNA', *Oncotarget*, 8(2), p. 2037.
- 517 Waldmann, T. A. and Strober, W. (1969) 'Metabolism of immunoglobulins', in *Progress in
518 Allergy Vol. 13*. Karger Publishers, pp. 1–110.
- 519 Xu, H. *et al.* (2008) 'The modulatory effects of lipopolysaccharide-stimulated B cells on
520 differential T-cell polarization', *Immunology*, 125(2), pp. 218–228.
- 521 Zabriskie, J. B. (2009) *Essential clinical immunology*. Cambridge University Press.
- 522

523 **Figure Legends**

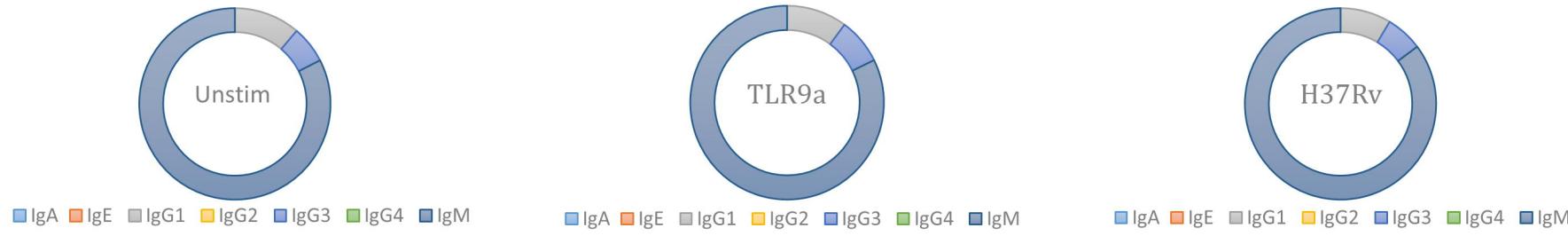
524

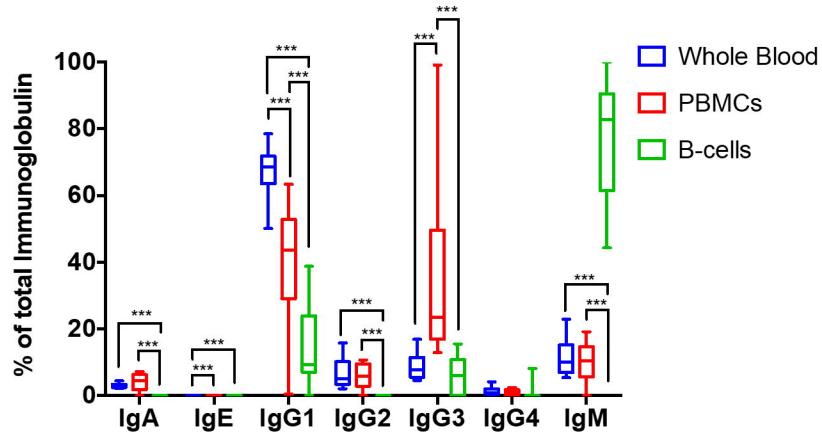

525 **Figure 1. Immunoglobulin profile of supernatants obtained from each of the**
526 **stimulatory conditions of the various cellular fractions.** Following a 24-hour
527 stimulatory period, plasma/culture supernatants of each of the stimulatory conditions
528 for all sample types was collected and the immunoglobulin secretion profile

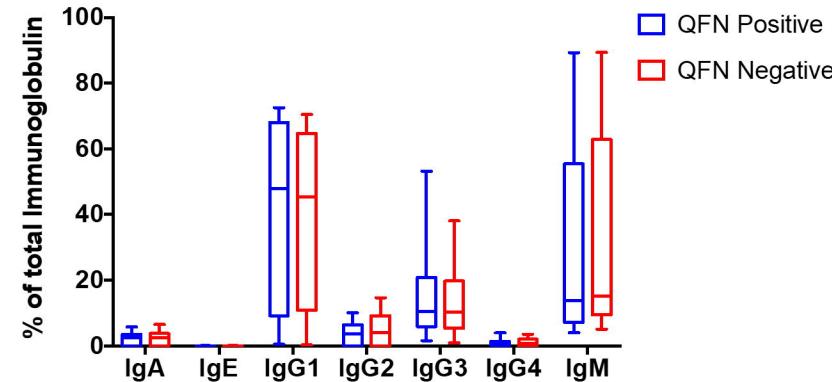
529 determined using Luminex. (a) Representation of the average secretion of each
530 isotype within whole blood for each stimulatory condition (b) Representation of the
531 average secretion of each isotype within the PBMC fraction for each stimulatory
532 condition (c) Representation of the average secretion of each isotype within the
533 isolated B-cell fraction for each stimulatory condition, n=23.
534

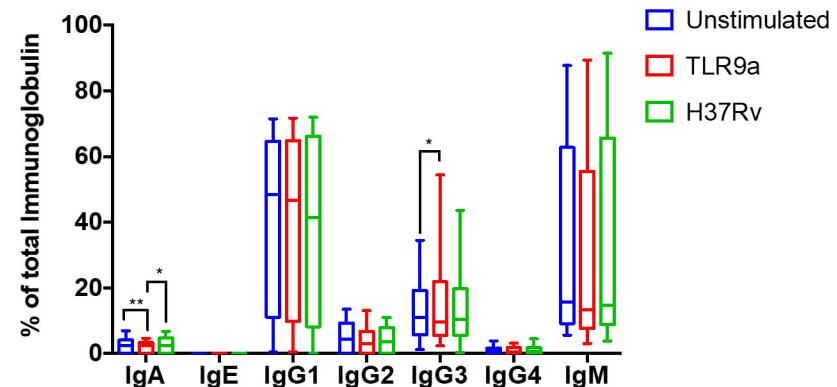

535 **Figure 2. Analysis of developmental B-cell phenotypic frequencies.** Following a
536 24-hour stimulatory period, cells from each of the stimulatory conditions, for all
537 sample types, was collected and the B-cell phenotypic frequencies determined using
538 flow cytometry. Notable, statistical significance was only investigated for whole blood
539 and PBMC sample type as isolated B-cell samples for the respective QFN groups
540 were pooled (according to stimulation condition) prior to flow analysis, due to
541 inadequate cell numbers. Whiskers denote 10-90 percentile. Statistical differences
542 between culture conditions was calculated using a four-way mixed model ANOVA.
543 Comparisons within groups was calculated using the Fishers LSD post-hoc test. A
544 two-way step-up Benjamini, Krieger and Yekutieli False Discovery rate (FDR)
545 approach, with a FDR of 1%, was used to correct for multiple testing. Statistical
546 significance is indicated by an asterisk, in which the $p < 0.05$ (*), $p < 0.01$ (**) and
547 $p < 0.001$ (***) (a) Effects of sample type on the developmental state of B-cells (b)
548 Effects of Quantiferon (QFN) status on the developmental state of B-cells (c) Effects
549 of stimulation condition on the developmental state of B-cells.
550

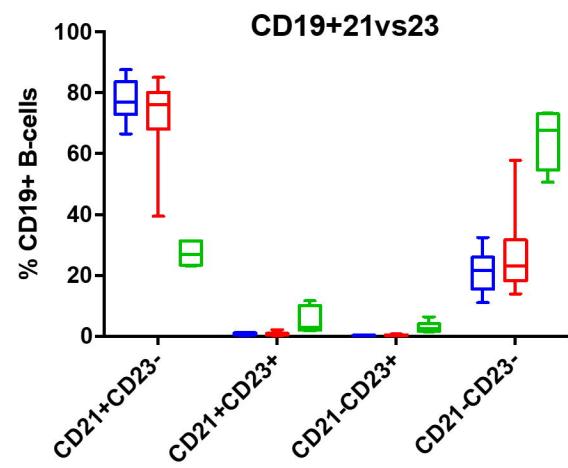
551 **Figure 3. Evaluation of the effect of various experimental factors on B-cell**
552 **immunoglobulin profile.** Following a 24-hour stimulatory period, plasma/culture
553 supernatants of each of the stimulatory conditions for all sample types was collected and the
554 immunoglobulin profile determined using Luminex. The Immunoglobulin isotype levels
555 depicted are reported as a percentage of the total immunoglobulin within a given sample.
556 Median with interquartile range plotted. Statistical differences between culture conditions
557 was calculated using a four-way mixed model ANOVA. Comparisons within groups was
558 calculated using the Fishers LSD post-hoc test. A two-way step-up Benjamini, Krieger and
559 Yekutieli False Discovery rate (FDR) approach, with a FDR of 1%, was used to correct for
560 multiple testing. Statistical significance is indicated by an asterisk, in which the $p < 0.05$ (*),
561 $p < 0.01$ (**) and $p < 0.001$ (***) (a) Effects of sample type i.e. microenvironment complexity
562 on immunoglobulin isotype abundance following antigenic stimulation (b) Effects of
563 Quantiferon (QFN) status on immunoglobulin isotype abundance following antigenic
564 stimulation (c) Effects of stimulatory conditions on immunoglobulin isotype abundance
565 following antigenic stimulation

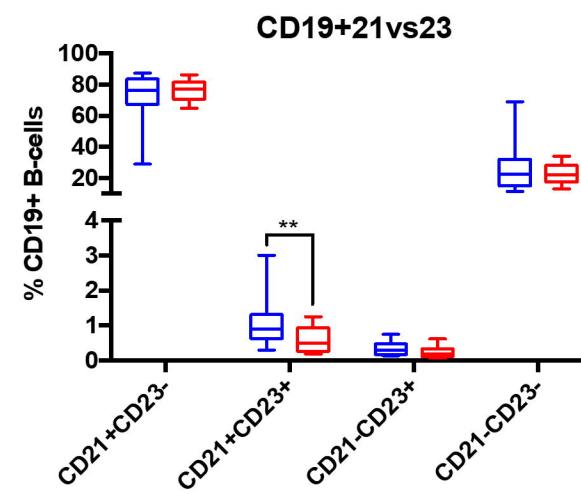

1. A. Whole Blood

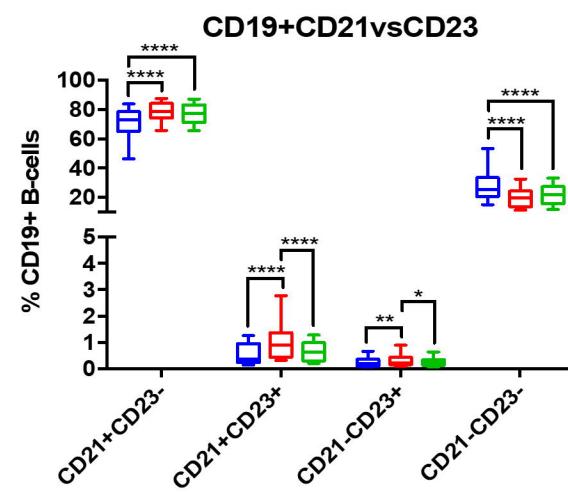

B. PBMCs


C. B-cells


2.A. Effect of Sample Type on Ig secretion


B. Effect of QFN status on Ig secretion


C. Effect of Stimulation on Ig secretion


3.A.

B.

C.

■ Whole Blood
■ PBMC
■ B-cells

■ QFN Positive
■ QFN Negative

■ Unstimulated
■ TLR9a
■ H37Rv