bioRxiv preprint doi: https://doi.org/10.1101/817908; this version posted October 24, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

. Populations of genetic circuits are unable to find the fittest solution
2 in a multilevel genotype-phenotype map

3 Pablo Cataldn!2* Susanna Manrubia!® and José A. Cuestal:4>:0

4 1Grupo Interdisciplinar de Sistemas Complejos (GISC), Madrid, Spain; 2Bjosciences, College of Life and Envi-
5 ronmental Sciences, University of Exeter, Exeter EX4 4QD, UK; 3Programa de Biologia de Sistemas, Centro
6 Nacional de Biotecnologia (CSIC), Madrid, Spain; 4Dept. de Matemdticas, Universidad Carlos Il de Madrid,
7 Leganés, Madrid, Spain; JInstituto de Biocomputacién y Fisica de Sistemas Complejos (BIFI)

s Universidad de Zaragoza, Spain; 6UC3M-BS Institute of Financial Big Data (IFiBiD), Universidad Carlos Il de
9 Madrid, Getafe, Madrid, Spain.

10 *To whom correspondence should be addressed: pablocatalanfdez@gmail.com (PC)

11 Abstract

12 The evolution of gene regulatory networks (GRNSs) is of great relevance for both evolutionary
13 and synthetic biology. Understanding the relationship between GRN structure and its function can
14 allow us to understand the selective pressures that have shaped a given circuit. This is especially
15 relevant when considering spatiotemporal expression patterns, where GRN models have been shown
16 to be extremely robust and evolvable. However, previous models that studied GRN evolution did
17 not include the evolution of protein and genetic elements that underlie GRN architecture. Here we
18 use toyLIFE, a multilevel genotype-phenotype map, to show that not all GRNs are equally likely in
19 genotype space and that evolution is biased to find the most common GRNs. toyLIFE rules create
20 Boolean GRNs that, embedded in a one-dimensional tissue, develop a variety of spatiotemporal gene
21 expression patterns. Populations of toyLIFE organisms choose the most common GRN out of a set
22 of equally fit alternatives and, most importantly, fail to find a target pattern when it is very rare
23 in genotype space. Indeed, we show that the probability of finding the fittest phenotype increases
24 dramatically with its abundance in genotype space. This phenotypic bias represents a mechanism
25 that can prevent the fixation in the population of the fittest phenotype, one that is inherent to the
26 structure of genotype space and the genotype-phenotype map.
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»» Introduction

25 The evolution of gene regulatory networks (GRNs) is a topic of great relevance [1,2]. Organisms show a
29 plethora of complex regulatory architectures in order to carry out several developmental programs [3] and
30 to integrate signals from the environment [4]. As a result, much work has been devoted to understanding
31 how these architectures have evolved, and to disentangling the relationship between the structure of a
32 GRN and its function [5,6]. The underlying motivation is to understand which regulatory motifs appear
33 as a result of selection for a given function or, conversely, what kind of functionality is attained when the
31 structure of the GRNs is determined by other factors. GRNs are also the object of intense research from
35 the standpoint of synthetic biology, which tries to design circuits to perform pre-defined functions [7].

36 One of regulation’s most interesting outcomes is the generation of spatiotemporal patterns of gene
37 expression that multi-cellular organisms use in their development [8]. Recent work has been devoted to
3s the study of the architecture of GRNs that give rise to different patterns, exploring their robustness and
39 evolvability [9-12]. These studies have found that GRNs can easily evolve to generate new patterns,
10 facilitating the emergence of new developmental programs. The same pattern can be achieved by means
a1 of very different mechanisms [11], which in turn determine the levels of robustness and evolvability of
42 the pattern. However, GRNs are the result of interactions between proteins and genetic elements, and
13 the evolution of GRNs is a direct result of changes in protein folding, binding affinities and promoter or
12 enhancer regions. Due to its enormous complexity, models of GRN evolution rarely incorporate these
45 underlying dynamics, although there are some exceptions [13, 14].

46 Here we use a multilevel computational model of gene regulation to show that some GRN archi-
a7 tectures are easier to build from interacting proteins and genes than others. As a result, there is a
1s  phenotypic bias [15-17] that turns some GRNs into attractors of evolutionary dynamics, even in the
19 absence of fitness differences.

50 We focus on Boolean GRNSs, in which genes can either be ON or OFF [18,19]. Although far from
51 other models of gene expression, where the concentration of proteins can vary continuously [20], Boolean
52 networks have been repeatedly used to model GRN evolution [21,22], and some regulatory functions
53 have been explained best by using Boolean functions [23]. Our Boolean GRNs are also modelled in
52 discrete time, so that the expression of one cell in time #+ 1 is determined by its expression and
55 that of its neighbouring cells in time 7. This formalism transforms GRNs into cellular automata [24].
s6 Connecting several cells in a one-dimensional tissue, and allowing for propagation of gene products

57 between neighbouring cells, we obtain spatiotemporal patterns that are similar to those found in real


https://doi.org/10.1101/817908
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/817908; this version posted October 24, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

empty protB  protA both

a) b) 0 CONENE 9
; B S T e R O o e o
g}g input output L ——— o
oo camr e !::i o - 2
e | 82 B4 5 g " == o - T o
B o 1 e e e e e e N
- = e e e S e cells

Figure 1: toyLIFE is a multilevel genotype-phenotype map. (a) toyLIFE genotypes are binary
strings of length 20n, where n is the number of genes in the genome. The first 4 letters of each gene
represent its promoter region, while the remaining 16 are the coding region. The coding region, when
expressed, turns into a protein that folds into a 4 x 4 lattice (see Supplementary Text Section 1). (b)
Following toyLIFE’s interaction rules, we obtain the corresponding gene regulatory network (GRN),
represented here by its truth table. (c) Each GRN determines, under some propagation rules, a unique
cellular automaton. Given the state of a cell and its neighbours at time ¢, toyLIFE's rules determine
the state of the cell at time 7+ 1, where cells can be empty (white), expressing protein A (orange),
expressing protein B (blue) and expressing both proteins (grey). (d) Under certain initial conditions
(in this case, the expression of protein A in the middle cell of the tissue), the cellular automata give
rise to spatiotemporal patterns of gene expression. In this case, the cellular automaton in c leads to an
alternating pattern in which the tissue expresses protein B and then doesn’t express anything, while in

the centre of the tissue three cells express protein A continuously.

58 organisms.

59 These Boolean GRNs are built on top of a simple model of cellular biology, toyLIFE [25,26]. toyLIFE
60 organisms contain genes, which are translated into proteins that interact with each other to form dimers.
61 Both dimers and proteins alter the expression of genes, thus creating Boolean GRNs like the ones
62 described above. As a consequence, toyLIFE is a multilevel map from binary genomes (genotypes) to
63 Boolean GRNs (first phenotype level) to cellular automata (second phenotype level) to spatiotemporal
64 patterns (third phenotype level) (Figure 1), thus allowing us to study the effects of molecular evolution
65 at different phenotypic levels.

66 We show that toyLIFE genomes with two genes are able to generate a wide variety of GRNs and
67 Spatiotemporal patterns. Moreover, not all of these are equally abundant in genotype space: some GRNs

es are mapped by many genotypes, while others are comparatively rare. We find that this phenotypic bias


https://doi.org/10.1101/817908
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/817908; this version posted October 24, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

69 is enough to steer evolving populations towards more abundant GRNs, thus introducing an additional
70 element when trying to explain GRN evolution, one that is not related to function or structure. Fur-
71 thermore, we also show that this phenomenon can result in the inability of the evolutionary search to

72 find some regulatory patterns, even when they are fitter than every other.

» Results

7+ Boolean networks and spatiotemporal patterns

75 In a Boolean GRN, a gene can either be ON (expressed) or OFF (not expressed). The expression state
76 of each gene at time 7+ 1 is a function of the expression states of all the other genes in the network at
77 time ¢, so that each state of the network maps into another state. In a GRN with two genes a and b

7s and corresponding proteins A and B, this mapping can be represented as follows:

A(t) B(t) |A(t+1) B(r+1)
0 0 1 0
0 1 0 1 (1)
1 0 1 0
1 1 0 0

79 This representation is called a truth table, connecting every input state to an output state. In this case,
so the state (0,0) is mapped to (1,0), which means that gene a is expressed constitutively. The next two
s1  rows indicate that both a and b activate their own expression, while the last row shows that both genes
s2 repress each other. The truth table determines the temporal expression patterns of a Boolean GRN,
s3 thus giving us all the information we need to study this system.

84 We want to study the spatiotemporal patterns of two-gene GRNs embedded in a one-dimensional
s5 tissue. First, we define the number of cells in the tissue, which we will consider to be constant. For
s6 our purposes, we choose tissues with 31 cells in a row. The number of cells is arbitrary and it does not
s7 affect our results: the same patterns are generated by the same truth tables under similar regulatory
ss inputs (Supplementary Figure S8), so no phenomenology is lost from restraining our study to this tissue
89 Size.

90 Now we define the connections between different cells in the tissue. We will assume that only protein
91 A can propagate to the adjoining cells (Figure 2). As a result, the input state of cell ¢; in time 7+ 1 will
92 be affected by the output states of cells ¢;_1 and ¢;; in time t —as well as its own. We will further

93 assume that there is enough protein A to stay inside the cell and propagate to the adjoining ones. For
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Figure 2: Pattern-formation phenotype in togyLIFE. We consider a one-dimensional row formed by
31 cells. The figure illustrates one example of how this multicellular phenotype works using toyLIFE for
illustration purposes. When protein A is expressed, it can propagate to neighbouring cells and influence

gene expression there. This way, the spatiotemporal state of the tissue becomes a cellular automaton.

94 the cells at the beginning and end of the tissue, we impose the following boundary condition: cell ¢g will
95 be affected by itself and cell ¢, and cell ¢, will be affected by itself and ¢; | —remember that L = 30
96 throughout.

o7 With these rules, each GRN (defined by a truth table) gives rise to a cellular automaton [24] (Figure
9s 1c) with four states: (0) no protein is expressed (white), (1) protein B is expressed (blue), (2) protein
99 A is expressed (orange) and (3) both proteins are expressed (grey). Cellular automata are compactly
100 described by the output they produce given an input. Because the input of a cell is formed by itself
101 and its adjoining cells, and because each of them can be in 4 states, the number of input states is
102 43 =64. The number of possible cellular automata is, therefore, 4% ~ 3.4 x 108, We will see below
103 that the number of two-gene toyLIFE genotypes, which we use to generate our GRNS, is around 10'2,
104 not enough to explore this vast number.

105 Each cellular automaton, in turn, gives rise to a spatiotemporal pattern that will depend on the
106 initial conditions of the tissue at time r = 0 and the external input received. It is soon evident that the
107 space of these scenarios is hyper-astronomical in size [17], and so we choose to start our dynamics with
108 both genes in every cell in the OFF state, except the cell in the middle of the tissue (c;s), where we
100 will express protein A, modelling a signal received from the exterior of the tissue. We then explore the
110 expression dynamics of the whole tissue for 100 time steps, enough to resolve all patterns.

111 We now explore four relevant GRNs and their resulting patterns (Figure 3). They are (a) a double-
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Figure 3: Some examples of patterns generated by two-gene Boolean GRNs. (a) A double-
negative feedback loop, with self-activation, results in a pattern that expresses protein A (orange) stably
and expanding through the tissue. (b) A double-negative feedback loop with self-activation, where
gene a is expressed constitutively, leads to the whole pattern expressing protein A stably through time.
(c) A double-positive feedback loop with self-activation loops leads to both proteins A and B (grey)
being expressed in the tissue in a stable way, and expanding through the tissue. (d) A double-positive
feedback loop without self-activation leads to an alternating pattern where the tissue expresses first
protein A (orange), then protein B (blue), and so on. Notice how the speed with which the pattern
extends throughout the tissue is half the speed of patterns in a and b. This is because only protein A is
allowed to propagate to the neighbouring cells (see Figure 2), so that the pattern can only extend when

protein A is expressed.

112 negative feedback loop with self-activation, (b) the same as before but with gene a having constitutive
113 expression, (c) a double-positive feedback loop with self-activation and (d) a double-positive feedback
114 loop without self-activation. Figure 3 shows the truth tables associated with these GRNs and the
115 patterns they generate under the conditions mentioned above. The first two patterns result in protein
116 A being expressed in a stable manner in the whole tissue. The difference between them is that in Figure
117 3b protein A is expressed constitutively in every cell, while in Figure 3a that signal must propagate
118 through the tissue. The pattern in Figure 3c is similar to the one in Figure 3a, but both proteins end
119 up expressed in the tissue, as a result of the positive feedback loop. Finally, in Figure 3d the tissue
120 expresses protein A and B in an alternating way.

121 Let us focus on the pattern generated by the network in Figure 3b. There are sixteen GRNs that
122 generate the same pattern under the conditions defined above (Supplementary Figure SO shows the

123 truth tables for all of these). If there were selection pressures to create that particular pattern, we could
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124 expect evolutionary dynamics to choose among these sixteen GRNs with equal probability, everything
125 else being equal. This is certainly what almost every mathematical model of phenotypic evolution
126 (including previous models of GRN evolution) would predict.

127 We performed Wright-Fisher evolutionary simulations with tgyLIFE organisms in a strong selection,
128 weak mutation regime (Methods), and selected the pattern in Figure 3b as the evolutionary target —i.e.
120 we assigned maximal fitness to it, and every other pattern became less fit as it differed more from the
130 target (see Methods for the complete definition of the fitness function). We found that, after 100,000
131 mutations, 93% of simulations ended up finding one particular GRN among all sixteen (GRN Xl in Figure
132 S9, see below), and the network in Figure 3b (GRN V) does not appear as the endpoint of evolutionary
133 dynamics in any of the 1,000 simulations. In order to understand this somewhat unexpected result, we

134 now discuss how Boolean GRNs are obtained from toyLIFE genotypes.

135 Regulation in tgyLIFE

136 We will introduce gene regulation in toyLIFE through an example (for an in-depth discussion of toyLIFE's
137 rules, see Supplementary Text Section 1 and [26]). Consider the genotype in Figure 4a. Proteins A
138 and B, the expression products of genes a and b, respectively, bind together to form dimer AB (Figure
139 4b). Due to toyLIFE's interaction rules, the expression of gene a is activated by protein A, its own
110 expression product. On the other hand, the expression of gene b is activated by the polymerase (it
141 is a constitutively expressed gene), but it is inhibited by both proteins A and B. The dimer does not
142 bind to any promoter (Figure 4c). With this information, we can compute the expression output of this
143 genotype given each input, i.e. its truth table (Figure 4d). When no protein is present, the polymerase
14 (which is always present in the cell) will activate gene b and the output will consist of protein B. The
145 same will happen if dimer AB is present in the cell: because it does not interact with either promoter,
146 the polymerase will activate the expression of gene b again. If protein A is present, it will displace
147 the polymerase and gene b will not be expressed, but A will also activate its own expression. Finally,
148 if protein B is present, it will inhibit its own expression, and nothing will be expressed in the cell. In
119 this way, we map a binary sequence (coding for the genome's two genes) into a Boolean GRN. It is
150 interesting to note that this regulatory function cannot be expressed with an arrow diagram similar to
151 those in Figure 3: there is no way to represent the overriding effect that the dimer has on each protein’s
152 regulatory logic using this kind of diagram.

153 The cellular automaton is now uniquely determined by the GRN once we take into account two

154 additional input states: protein A plus dimer, and protein B plus dimer. These two states can appear
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Figure 4: Regulatory logic in toyLIFE. (a) Example of a two-gene genotype in toyLIFE. These genes
express strings of 16 amino-acids that fold into a 4 x 4 lattice, following the rules of the HP model
(Supplementary Text Section 1). (b) Protein A and protein B can bind together to form dimer AB.
(c) Regulatory logic of genes a and b. Protein A inhibits its own expression. The polymerase activates
the expression of protein B, while both protein A and B inhibit it. The dimer AB does not bind either
promoter. (d) Truth table representing the regulatory logic of this two-gene genotype, obtained from
the information in c. See text for details. (e) Not all GRNs generated by toyLIFE two-gene genotypes
are equally likely in genotype space. In fact, the distribution of abundances (S) follows a log-normal

distribution (R*> =0.94).

155 as a result of protein products propagating from one cell to the next. With this information we can
156 unequivocally compute each genotype’s corresponding cellular automaton.

157 It is worth noting that in the process of defining these phenotypic levels we have already introduced
155 a lot of degeneracy. For instance, there are 2*0 ~ 10!2 genotypes with two genes, but they only give
150 rise to 1,472 different GRNs, which in turn generate only 453 different cellular automata —an average
160 of ~ 2 x 10° genotypes per cellular automata. Not all GRNs are equally probable in genotype space,
161 however: the distribution of abundances of GRNs follows a log-normal distribution (Figure 4e), which
162 has been observed in many other genotype-phenotype models and has been shown to be universal under
163 some very general assumptions [16, 26-28]. The most abundant GRN is mapped by more than 500

164 billion genotypes, while the rarest one is only mapped by 8 genotypes. This phenomenon has been
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165 called phenotypic bias [15, 16], and it is also observed in the distribution of abundances of cellular
166 automata (Supplementary Figure S10a). As a consequence, the sixteen GRNs that generate the pattern
167 in Figure 3b (Supplementary Figure S9) also have varying abundances. The most common one is GRN

16s XI, mapped by 2.017 x 10'! genotypes, roughly 18% of all two-gene genotypes in toyLIFE. Its truth

169 table is
A(t) B(r) |A(t+1) B(t+1)
0 0 1 0
0 1 1 0 ()
1 0 1 0
1 1 1 0

170 This is, admittedly, a very simple Boolean GRN, in which every input state leads to the same output:
171 that of protein A being expressed. Previous work [29] has argued that simpler phenotypes should be more
172 abundant in genotype space, and this is indeed what we observe at all phenotypic levels (Supplementary
173 Figure S11). In comparison, the least abundant Boolean GRN among these sixteen (GRN VIII) is
174 mapped by just 203,641 genotypes, a million times less abundant than GRN XI. Finally, the double-
175 negative feedback loop in Figure 3b that we were searching for originally (GRN V) is mapped by 9.4 x 10°
176 genotypes, which is 5x 107> times less abundant than GRN XI. As a result of this phenotypic bias in
177 the sixteen GRNs, when we evolve populations of toyLIFE organisms to express this simple pattern as
178 described above, populations find GRN XI 93% of the times —although all sixteen are equally fit in this
179 scenario. In fact, the proportion of times our simulations end up in a particular GRN closely reflects
180 its relative abundance in genotype space (Supplementary Figure S12). In other words, introducing an
181 additional level to the GRN-to-pattern genotype-phenotype map causes a bias in the abundances of

152 different GRNs, which in turn affects evolutionary dynamics [30].

153 Pattern formation in tgyLIFE

184 T he differences in abundances in the Boolean GRNs generated by toyLIFE are magnified at the pattern
185 level (Supplementary Figure S10b): some patterns are mapped by billions of genotypes, while others
186 are generated by only hundreds of them. This difference is critical, as we will see now. Suppose an
187 evolutionary scenario where we select for pattern 113, shown in Figure 5a. This pattern is mapped by
18 only 5,312 genotypes, so finding it in genotype space seems hard a priori. However, naive evolutionary
180 predictions would say that, being the fittest phenotype, it should be eventually selected and fixed in the

190 population. When we perform the evolutionary simulations with pattern 113 as the target (Methods),
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Figure 5: Evolving populations are not able to find rare patterns, even when they are fitter. a)
Pattern 113 is rarely found in our evolutionary simulations. b) Pattern 109 is similar to 113, but it is
generated by 1.64 x 10® genotypes —about 10° times commoner. As a result, it appears as the endpoint
of our simulations 84% of the times. c) Pattern 170 also appears as the endpoint of the simulations
8% of the times, even though it is not very similar to pattern 113. This is due to its high abundance
in phenotype space: 1.36 x 10® genotypes are mapped to it. (d) This phenomenon is not restricted to
pattern 113. The probability of finding a target pattern (p) goes to zero as the logarithm of pattern
abundance (S) decreases. Line: p = (1 + (430767/S)"/?)~!, R> =0.58. (e) Even when simulations
do find the fittest pattern, the time to reach it (T') increases as pattern abundance decreases. Line:

log,, T = 4.35—0.05(log;, S —2.93)%, R? = 0.68.

191 it appears as the evolutionary endpoint only in 3% of the 1,000 simulations. Instead, the pattern that
192 appears in most of the simulations is pattern 109 (Figure 5b), which has a fitness of 0.991 relative to
103 that of pattern 113, and is mapped by 1.6 x 10® genotypes. There are 33,280 mutational paths between
194 pattern 109 and pattern 113 (counted as the number of pairs of genotypes mapping to each pattern
195 that are one point mutation apart), so populations expressing pattern 109 could eventually find pattern
196 113 without having to go through any fitness valley. However, this number represents only 0.0005% of

197 all connections from pattern 109 to other phenotypes: finding pattern 113 from pattern 109 is truly like

10
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108 finding a needle in a haystack. In other words: the phenotypic bias towards pattern 109 is enough to
199 counteract pattern 113’s fitness benefit. Curiously enough, pattern 170 (Figure 5¢c), which is not very
200 similar to pattern 113, with a fitness of 0.54, also appears frequently as the endpoint of our simulations.
201 In this case, there are no mutations from pattern 170 to 113, so it seems that some populations quickly
202 find pattern 170 as a suboptimal fitness peak, and then become trapped in it, as there are no mutations
203 to fitter alternatives.

204 This result means that some patterns will not be reachable by evolution, not because they are less fit,
205 but because they are very rare in genotype space. This phenomenon is true for every rare pattern, and
206 indeed we see it in simulations where each of the 172 patterns obtained in our system is set as the target
207 of evolution. The probability of finding the fittest pattern decreases dramatically with pattern abundance
20s  (Figure 5a). And, even if the pattern is found, the time to find it decreases super-exponentially with

200 pattern abundance (Figure 5b).

.10 Discussion and Conclusions

211 The main intention of this work is to show that the complex mapping from DNA sequences to genetic
212 circuits in real cells is in all likelihood biased towards some GRNs, so that some of them are much more
213 common in genotype space. The results of our computational simulations show that this bias is enough
214 to prevent populations from finding the fittest phenotype [15]. Several mechanisms had been previously
215 proposed to explain why populations do not reach the fittest solution, such as frequency-dependent
216 selection [31] or the fittest vs the flattest [32,33] —which do not apply here, as our populations are
217 always homogeneous. However, phenotypic bias is the first of these mechanisms that arises out of the
218 intrinsic structure of the evolutionary search space, and it is completely independent from population
210 effects and from the structure or function of the GRN being selected for. In this sense, phenotypic
220 bias is playing in evolutionary dynamics the same role that entropy plays in statistical physics. The
221 entropy of a macrostate is related to the number of microstates that are consistent with it without
220 altering the properties that characterise the system. In statistical physics, macrostates are typically
223 described by macroscopical properties such as temperature, pressure or volume, while microstates differ
224 in the positions and velocities of individual particles. In evolutionary dynamics, there is a natural
225 analogy between microstates and genotypes, on the one hand, and macrostates and phenotypes, on the
226 other [34]. The conflict between energy and entropy found in physical systems is the same we have

227 found between fitness and phenotypic bias, and the trapping by abundant phenotypes is akin to a glassy

11
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228 dynamics in physical systems [35].

229 Our results cannot be explained by phenotypic bias alone, however. In the simulations to find rare
230 pattern 113, we found that a non-negligible fraction of simulations ended in pattern 170, that had a
231 fitness of 0.54 but an abundance in genotype space that was similar to pattern 109, a fitter alternative.
232 I he reason populations got stuck in pattern 170 is because genotype space is structured as a complex
233 network, and not all paths from one pattern to the other are actually possible. In this case, there are no
234 connections between pattern 170 and either pattern 109 or 113, so once the population has found this
235 local fitness peak, there is no way it can reach the other, fitter alternatives under our selection regime.
236 1| he effect of networked genotype spaces on evolutionary dynamics is far from trivial and has yet to be
237 disentangled [36]. Further work has to be devoted to study its effects in this particular system.

238 The consequences of this work are immediate for the evolution of genetic circuits. Our results
230 suggest that some ideal solutions could be hard to find in genotype space, and that evolution has had
210 to work with more abundant, less efficient alternatives. However, the number of available phenotypes
241 grows very quickly with genotype size in many computational genotype-phenotype maps [17, 26, 27],
242 and so it is reasonable to expect that evolution could always find alternatives that are, if not optimal,
243 at least highly functional. On the other hand, synthetic biologists trying to design a particular circuit
244 could be aiming at a particularly rare structure, which would make its a priori evolution very unlikely.
245 1 his would make that circuit very unstable in evolutionary terms, and mutations could easily change it
246 into a different circuit, with undesired functions.

247 In relation to this, our results also suggest that phenotypic bias will have an effect on both robustness
245 and evolvability. Previous models studying these properties in GRNs [11] found that they depended on
249 the mechanism by which a GRN generates a pattern. Our results add a new layer, showing that more
250 abundant GRNs will generate more robust patterns, independently on their mechanism or structure.
251 1hus, understanding which GRNs are more abundant in genotype space is essential to unravel the
252 evolution of robustness and evolvability.

253 We are aware of the limitations of toyLIFE as a discrete-time Boolean model to model continuous-
254 time, stochastic protein concentration dynamics. However, phenotypic bias is not a particular charac-
255 teristic of toyLIFE and is rather very common in computational genotype-phenotype maps [15, 16, 29].
256 1hus, our main results are not limited to this particular choice of model, and they could be easily
257 extended to other, more realistic genotype-phenotype maps. On the other hand, toyLIFE is a very con-
253 venient model to study multilevel genotype-phenotype relationships [26], which are complex and largely

259 unknown. This model potential to generate complex behaviours is yet to be explored fully.
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0 Methods and Materials

261 Fitness

262 | he fitness function for our evolutionary simulations is calculated as follows: each pattern is a string in
263 base four of length L =31-100. For every evolutionary scenario, we choose one particular pattern pt
264 as the target value, and assign fitness 1 to it. Then we compute the Hamming distance D of a pattern

265 p to the target as

~

D(papT) = dp(i),p-r(,»)a (3)
i=1

266 where d; ; is Kronecker's delta, which is equal to 1 if i = j and 0 otherwise, and p(i) is the i-th letter in

267 the string p. Fitness is then calculated as

f(P) _ I_D(papref)‘ (4)

26s  Evolutionary simulations

260 We assume a strong selection, weak mutation scenario. In this regime, Wright-Fisher dynamics are
270 reduced to a continuous-time random walk in genotype space. We only consider point mutations, which
271 arise in the population at constant rate u, and the fixation rate of a new mutation is given by
J=1
AE

272 where f is the fitness of the current phenotype relative to that of the mutant, and N is population

O(f,N) = uN (5)

273 size [37]. We assume u = 1, which is equivalent to counting time in mutations instead of genera-
274 tions. Genotypes are binary strings of length 40, which are mapped to a pattern using toyLIFE's rules
275 (Supplementary Material Section 1). We start the simulations choosing a genotype at random, and
276 then simulate populations dynamics using Gillespie's algorithm [38]. We simulated populations of size
277 N = 10,000 for T = 100,000 mutations, and repeated this process for R = 1,000 replicates for each of
278 the experiments. The choice of population size was made so that deleterious mutations were hardly

279 never accepted.
2s0  Phenotypic complexity

251 Following [29], we approximate the algorithmic complexity of a binary string x = {x;...x,} as

Cox) = log,(n), x=0"or 1" (6)
z - I
log, (1) 3 [Nw (x1..%,) + Ny (x4...x1)]  otherwise
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282 where n = |x| and N,,(x) is the number of words in the dictionary created by the Lempel-Ziv algorithm
283 [39]. For each phenotypic level (GRNs, cellular automata and patterns), we translate each base-four
284 string identifying the phenotype to binary code, and then compute Ci,. So, for instance, string 312011
285 would become 110110000101. GRNs are represented as a binary string by reading all the output entries
286 in the truth table (GRNII in Supplementary Figure S9 is equivalent to 10001001) and then adding
287 the output states of the two additional input states mentioned in the main text: protein A plus dimer,
2ss  and protein B plus dimer. Therefore, GRNs can be univocally represented as binary strings of length
289 12. Cellular automata are base-four strings of length 64 that become binary strings of length 128 after
200 converting from base four to base two. Finally, patterns are base-four strings of length 3,100 that

201 become binary strings of length 6,200.
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505 Supplementary Text

o1 1 tQILIFE

395 toyLIFE was originally presented in [25]. We give here its main details, with slight modifications in the

o6 definition of the model, as presented in [26].

sor 1.1 Building blocks: genes, proteins, metabolites

s9s  The basic building blocks of toyLIFE are toyNucleotides (toyN), toyAminoacids (toyA), and toySugars
399 (toyS). Each block comes in two flavors: hydrophobic (H) or polar (P). Random polymers of basic
100 blocks constitute toyGenes (formed by 20 toyN units), toyProteins (chains of 16 toyA units), and
101 toyMetabolites (sequences of toyS units of arbitrary length). These elements of toyLIFE are defined on
102 two-dimensional space (Supplementary Figure S1).

B0 tovNUCLEOTIDES

@0 torAMINOACIDS

B v SUGARS
6 H (hydrophobic)

[CHEHEH T HIHEHIHI 1 IO

toy GENES ‘ P (polar)
55 i E(50) =-2.0

toy DIMERS

tor PROTEINS % E(6¢) = -0.3
tay POLYMERASE E(¢g) = 0.0

AT,

toy METABOLITES
Supplementary Figure S1: Building blocks and interactions defining toyLIFE. The three basic build-

ing blocks of toyLIFE are toyNucleotides, toyAminoacids, and toySugars. They can be hydrophobic (H,
white) or polar (P, red), and their random polymers constitute toyGenes, toyProteins, and toyMetabo-
lites. The toyPolymerase is a special polymer that will have specific regulatory functions. These polymers
will interact between each other following an extension of the HP model (see text), for which we have

chosen the interaction energies Eyy = —2, Eyp = —0.3 and Epp =0 [40].

19


https://doi.org/10.1101/817908
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/817908; this version posted October 24, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

103 toyGenes

104 toyGenes are composed of a 4-toyN promoter region followed by a 16-toyN coding region. There are 2*
105 different promoters and 2! coding regions, leading to 2%° ~ 10° toyGenes. An ensemble of toyGenes
106 forms a genotype. If the toyGene is expressed, it will produce a chain of 16 toyA that represents a
107 toyProtein. Translation follows a straightforward rule: H (P) toyN translate into H (P) toyA. Point
40s mutations in toyLIFE are easy to implement: they are changes in one of the nucleotides in one of the
100 genes in the genotype. If the sequence has a H toyN in that position, then a mutation will change it to

410 a P toyN, and vice versa.

111 toyProteins

412 toyProteins correspond to the minimum energy, maximally compact folded structure of the 16 toyA chain
413 arising from a translated toyGene. Their folded configuration is calculated through the hydrophobic-polar
a14 (HP) protein lattice model [40, 41].

415 We only consider maximally compact structures. That is, every toyProtein must fold on a 4 x4

a6 lattice, following a self-avoiding walk (SAW) on it. After accounting for symmetries —rotations and

=] =] fnf Laf I 1] e
2 by Uy i g 5

Supplementary Figure S2: Protein folding in toyLIFE. toyProteins fold on a 4 x 4 lattice, following
a self-avoiding walk (SAW). Discarding for symmetries, there are 38 SAWSs (left). For each binary
sequence of length 16, we fold it into every SAW and compute its folding energy, following the HP
model. For instance, we fold the sequence PHPPPPPPPPPHHHHP into one of the SAWSs and compute
its folding energy (right). There are two HH contacts, five HP contacts and two PP contacts —we only
take into account contacts between non-adjacent toyAminoacids. Summing all this contacts with their
corresponding energies, we obtain a folding energy of —11.5. Repeating this process for every SAW, we

obtain the minimum free structure.

20


https://doi.org/10.1101/817908
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/817908; this version posted October 24, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

a7 reflections—, there are only 38 SAWs on that lattice (Supplementary Figure S2).

418 The energy of a fold is the sum of all pairwise interaction energies between toyA that are not
419 contiguous along the sequence. Pairwise interaction energies are Eyy = —2, Eyp = —0.3 and Epp =0,
120 following the conditions set in [40] that Epp > Enp > Enn (Supplementary Figure S2). toyProteins
421 are identified by their folding energy and their perimeter. If there is more than one fold with the
122 same minimum energy, we select the one with fewer H toyAminoacids in the perimeter. If still there is
423 more than one fold fulfilling both conditions, we discard that protein by assuming that it is intrinsically
424 disordered and thus non-functional. Note, however, that sometimes different folds yield the same folding
425 energy and the same perimeter. In those cases, we do not discard the resulting toyProtein.

126 Out of 2'® = 65,536 possible toyProteins, 12,987 do not yield unique folds. We find 2,710 different
127 toyProteins with 379 different perimeters. Not all toyProteins are equally abundant: although every
428 toyProtein is coded by 19.4 toyGenes on average, most of them are coded by only a few toyGenes.
129 For instance, 1,364 toyProteins —roughly half of them!— are coded by less than 10 toyGenes each.
430 On the other hand, only 4 toyProteins are coded by more than 200 toyGenes each, the maximum
131 being 235 toyGenes coding for the same toyProtein. The distribution is close to an exponential decay
132 (Supplementary Figure S3a). The same happens with the perimeters, although with less skewness: each
433 perimeter is mapped by 7.15 toyProteins on average, but the most abundant perimeters correspond to
432 26 toyProteins, and 100 are mapped by 1 or 2 toyProteins each (Supplementary Figure S3b).

435 Folding energies range from —18.0 to —0.6, with an average in —9.63. The distribution is unimodal,
436 although very rugged (Supplementary Figure S3c). Note that folding energies are discrete, and that
437 separations between them are not equal. For instance, there are 6 toyProteins that have a folding energy
138 of —18.0, but the next energy level is —16.3, realised by 17 toyProteins, and yet the next level is —16.0,
439 realised by 14 toyProteins. The mode of the distribution is —10.6, realised by 202 toyProteins.

440 We can also study the structure of the toyProtein network (Supplementary Figure S3e, f). The nodes
a1 of this network will be the 2,710 toyProteins. toyProtein 1 and toyProtein 2 will be neighbors if there
412 is a pair of toyGenes that express each toyProtein and whose sequence is equal but for one toyN. The
113 weight of the edge between toyProteinl and 2 will be the sum of such pairs of toyGenes. It is surprising
14 that there are no self-loops in this network —there are no mutations connecting one toyProtein to itself.
415 In other words, although there is a strong degeneracy in the mapping from toyGenes to toyProteins,
a6 there are no connected neutral networks. If we consider just the perimeters, however, the neutrality is
447 somewhat recovered: out of the 379 perimeters, 224 of them have neutral neighbors. So there are many

418 mutations that alter the folding energy of a toyProtein without changing the perimeter. In this sense,
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Supplementary Figure S3: Distributions of toyProteins in toyLIFE. (a) Distribution of toyProtein
abundances —that is, the number of toyGenes that code for them. Most toyProteins are coded by
few toyGenes, but some of them are very abundant: the most abundant toyProtein is coded by 235
toyGenes. (b) Distribution of the perimeters associated with each toyProtein. Again, not all perimeters
are equally abundant, and some of them correspond to as many as 25 toyProteins, while 100 correspond
to 1 or 2 toyProteins. (c) Distribution of folding energies. The range of folding energies goes from
—18.0 to —0.6, with a unimodal, rugged distribution. The mode is —10.6, a folding energy achieved by
202 toyProteins. (d) Degree distribution in the toyProtein network. Two toyProteins are connected if
there are two toyGenes coding for them that have the same sequence, except for one toyN. The average

degree is 32.2. (e) Degree distribution in the perimeter network. Two perimeters are neighbors if the

toyProteins associated to them are neighbors. The average degree is 53.3.

toyLIFE is capturing a complex detail of molecular biology: mutations appear to be neutral from one
point of view —in this case, perimeter— but are rarely entirely neutral. In other words, the value of a
mutation is context and environment-dependent. There are always some small changes in the molecule
—in this case, folding energy— that may affect their function later down the line. Real world examples of
this cryptic effects of mutations on molecules are everywhere [42—-45]. Connections between toyProteins
are scarce too: the average degree in the toyProtein network is 32.2 (with a standard deviation of
25.7), a very small number — on average, each toyProtein is connected to hardly 1% of the rest of
toyProteins! (Supplementary Figure S3e). The maximum degree is 190. This means that mutating
from one toyProtein to another is not easy in general. In terms of perimeters this is more relaxed, as the

average degree in the perimeter network is 53.3 (standard deviation is 38.1), with a maximum degree of
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459 173. On average, every perimeter is connected to 14% of the rest of perimeters: it is a small number,
160 but it is still higher than in the toyProtein case (Supplementary Figure S3f).

461 In the toyLIFE universe, only the folding energy and perimeter of a toyProtein matter to characterise
462 its interactions, so folded chains sharing these two features are indistinguishable. This is a difference
463 With respect to the original HP model, where different inner cores defined different proteins and the
164 composition of the perimeter was not considered as a phenotypic feature. However, subsequent versions
65 of HP had already included additional traits [46].

466 The toyPolymerase (Supplementary Figure S1) is a special toyA polymer, similar to a toyProtein in
467 many aspects, but that is not coded for by any toyGene. It has only one side, with sequence PHPH,

a3 and its folding energy is taken to be —11.0. We will discuss its function and place later on.

w9 1.2 Extending the HP model: interactions

470 toyProteins interact through any of their sides with other toyProteins, with promoters of toyGenes, and
ar1 - with toyMetabolites (see Supplementary Figure S4a). When toyProteins bind to each other, they form
472 a toyDimer, which is the only protein aggregate considered in toyLIFE. The two toyProteins disappear,
473 leaving only the toyDimer. Once formed, toyDimers can also bind to promoters or toyMetabolites
ara  through any of their sides —binding to other toyProteins or toyDimers, however, is not permitted. In all
ars  cases, the interaction energy (Eint) is the sum of pairwise interactions for all HH, HP and PP pairs formed
476 in the contact —these interactions follow the rules of the HP model as well. Bonds can be created only
a7 if the interaction energy between the two molecules Ej.; is lower than a threshold energy Ei,, = —2.6.
a7s Note that a minimum binding energy threshold is necessary to avoid the systematic interaction of any
479 two molecules. Low values of the threshold would lead to many possible interactions, which would
480 increase computation times. High values would lead to very few interactions, and we would obtain a
as1 very dull model. Our choice of Ei,, = —2.6 achieves a balance: the number of interactions is large
482 enough to generate complex behaviours, as we will see later on, while at the same time keeping the
483 universe of interactions small enough to handle computationally. If below threshold, the total energy of
184 the resulting complex is the sum of Ej,: plus the folding energy of all toyProteins involved. The lower
485 the total energy, the more stable the complex. When several toyProteins or toyDimers can bind to the
1s6  same molecule, only the most stable complex is formed. Consistently with the assumptions for protein
487 folding, when this rule does not determine univocally the result, no binding is produced.

188 As the length of toyMetabolites is usually longer than 4 toyS (the length of interacting toyProtein

189 sites), several binding positions between a toyMetabolite and a toyProtein might share the same energy.
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Supplementary Figure S4: Interactions in toyLIFE. (a) Possible interactions between pairs of toyLIFE
elements. toyGenes interact through their promoter region with toyProteins (including the toyPoly-
merase and toyDimers); toyProteins can bind to form toyDimers, and interact with the toyPolymerase
when bound to a promoter; both toyProteins and toyDimers can bind a toyMetabolite at arbitrary re-
gions along its sequence. (b) When a toyDimer or toyProtein binds to a toyMetabolite with the same
energy in many places, we choose the most centered binding position. If two or more binding positions

have the same energy and are equally centered, then no binding occurs.

190 In those cases we select the sites that yield the most centered interaction (Supplementary Figure S4b).
191 If ambiguity persists, no bond is formed. Also, no more than one toyProtein / toyDimer is allowed to
192 bind to the same toyMetabolite, even if its length would permit it. toyProteins / toyDimers bound to
493 toyMetabolites cannot bind to promoters.

494 Interaction rules in toyLIFE have been devised to remove any ambiguity. When more than one rule
195 could be chosen, we opted for computational simplicity, having made sure that the general properties
196 of the model remained unchanged. A detailed list of the specific disambiguation rules implemented in

197 the model follows:

498 1. Folding rule: if a sequence of toyAminoacids can fold into two (or more) different configurations
499 with the same energy and two different perimeters with the same number of H, it is considered
500 degenerate and does not fold.

501 2. One-side rule: any interaction in which a toyProtein can bind any ligand with two (or more)
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502 different sides and the same energy is discarded.

503 3. Annihilation rule: if two (or more) toyProteins can bind a ligand with the same energy, the
504 binding does not occur. However, if a third toyProtein can bind the ligand with greater (less
505 stable) energy than the other two, and does so uniquely, it will bind it.

506 4. ldentity rule: an exception to the Annihilation rule occurs if the competing toyProteins are the
507 same. In this case, one of them binds the ligand and the other(s) remains free.

508 5. Stoichiometric rule: an extension of the Identity rule. If two (or more) copies of the same
500 toyProtein / toyDimer / toyMetabolite are competing for two (or more) different ligands, there
510 will be binding if the number of copies of the toyProtein / toyDimer / toyMetabolite equals the
511 number of ligands. For example, say that P1 binds to P2, P3 and P4 with the same energy. Then,
512 (a) if P1, P2 and P3 are present, no complex will form; (b) if there are two copies of P1, dimers
513 P1-P2 and P1-P3 will both form; but (c) if P4 is added, no complex will form. Conversely, if all
514 ligands are copies as well, the Stoichiometry rule does not apply. For example, three copies of P1
515 and two copies of P2 will form two copies of dimer P1-P2, and one copy of P1 will remain free.

si6 1.3 Regulation

517 Expression of toyGenes occurs through the interaction with the toyPolymerase, which is a special kind
s1s  of toyProtein (see Supplementary Figure S1). The toyPolymerase only has one interacting side (with
519 sequence PHPH) and its folding energy is fixed to value —11.0: it is more stable than more than half
520 the toyProteins. It is always present in the system. The toyPolymerase binds to promoters or to the
521 right side of a toyProtein / toyDimer already bound to a promoter. When the toyPolymerase binds to a
522 promoter, translation is directly activated and the corresponding toyGene is expressed (Supplementary
523 Figure S5a). However, a more stable (lower energy) binding of a toyProtein or toyDimer to a promoter
524 precludes the binding of the toyPolymerase. This inhibits the expression of the toyGene, except if the
525 toyPolymerase binds to the right side of the toyProtein / toyDimer, in which case the toyGene can be
526 expressed.

527 The minimal interaction rules that define toyLIFE dynamics endow toyProteins with a set of possible
s2s activities not included a priori in the rules of the model (see Supplementary Figure S5). For example,
520 since the 4-toyN interacting site of the toyPolymerase cannot bind to all promoter regions —because
530 some of these interactions have Ej,; > Ei,,—, translation mediated by a toyProtein or toyDimer binding

531 might allow the expression of genes that would otherwise never be translated. These toyProteins thus
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Supplementary Figure S5: Regulatory functions in toyLIFE. (a) A toyGene is expressed (translated)
when the toyPolymerase binds to its promoter region. The sequence of Ps and Hs of the toyProtein will
be exactly the same as that of the toyGene coding region. (b) If a toyProtein binds to the promoter
region of a toyGene with a lower energy than the toyPolymerase does, it will displace the latter, and
the toyGene will not be expressed. This toyProtein acts as an inhibitor. (c) The toyPolymerase does
not bind to every promoter region. Thus, not all toyGenes are expressed constitutively. However, some
toyProteins will be able to bind to these promoter regions. If, once bound to the promoter, they bind
to the toyPolymerase with their rightmost side, the toyGene will be expressed, and these toyProteins
act as activators. (d) More complex interactions —involving more elements— appear. For example, a
toyProtein that forms a toyDimer with an inhibitor —preventing it from binding to the promoter— will
effectively activate the expression of the toyGene. However, it does neither interact with the promoter
region nor with the toyPolymerase, and its function is carried out only when the inhibitor is present.
We call this kind of toyProteins conditional activators. (e) Two toyProteins can bind together to form
a toyDimer that inhibits the expression of a certain toyGene. As they need each other to perform this
function, we call them conditional inhibitors. As the number of genes increases, this kind of complex

relationships can become very intricate.

26


https://doi.org/10.1101/817908
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/817908; this version posted October 24, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

532 act as activators (Supplementary Figure S5c). This process finds a counterpart in toyProteins that bind
533 to promoter regions more stably than the toyPolymerase does, and therefore prevent gene expression —
s3a  this happens if EinyproT) + EPROT < Eint(PoLy) + EpPoLy. They are acting as inhibitors (Supplementary
535 Figure S5b). There are two additional functions that could not be foreseen and involve a larger number
s3s  of molecules. A toyProtein that forms a toyDimer with an inhibitor —preventing its binding to the
537 promoter— effectively behaves as an activator for the expression of the toyGene. However, it interacts
538 neither with the promoter region nor with the toyPolymerase, and its activating function only shows
530 up when the inhibitor is present. This toyProtein thus acts as a conditional activator (Supplementary
s10 Figure S5d). On the other hand, two toyProteins can bind together to form a toyDimer that inhibits
541 the expression of a particular toyGene. As the presence of both toyProteins is needed to perform this
542 function, they behave as conditional inhibitors (Supplementary Figure S5e). This flexible, context-
543 dependent behavior of toyProteins is reminiscent of phenomena observed in real cells [47], and permits

514 the construction of complex toyGene Regulatory Networks (toyGRNs).

sa5s 1.4  Metabolism

56 When a toyDimer is bound to a toyMetabolite, another toyProtein can interact with this complex and
sar  break it. This reaction will take place if the toyProtein can bind to one of the subunits of the toyDimer
sa8  and the resulting complex has less total energy than the toyDimer. As with the rest of interactions,
520 the catabolic reaction will only take place if this binding is unambiguous. As a result of this reaction,
s50 the toyDimer will be broken in two: one of the pieces will be bound to the toyProtein (forming a new
551 toyDimer), and the other one will remain free. The toyMetabolite will break accordingly: the part of
552 it that was bound to the first subunit will stay with it, and the other part will stay with the second

553 subunit. Note that the toyMetabolite need not be broken symmetrically: this will depend on how the

% teDIMER
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Supplementary Figure S6: Metabolism in tgyLIFE. A toyDimer is bound to a toyMetabolite when a
new toyProtein comes in. If the new toyProtein binds to one of the two units of the toyDimer, forming
a new toyDimer energetically more stable than the old one, the two toyProteins will unbind and break

the toyMetabolite up into two pieces. We say that the toyMetabolite has been catabolised.
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554 toyDimer binds to it (Supplementary Figure S6).

555 1.5 Dynamics in tgyLIFE

556 1 he dynamics of the model proceeds in discrete time steps and variable molecular concentrations are not
557 taken into account. A step-by-step description of toyLIFE dynamics is summarised in Supplementary

sss  Figure S7. There is an initial set of molecules which results from the previous time step: toyProteins
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Supplementary Figure S7: Dynamics of toyLIFE. Input molecules at time step ¢ are toyProteins (Ps)
(including toyDimers (Ds)) and toyMetabolites, either produced as output at time step ¢ — 1 or environ-
mentally supplied (all toyMetabolites denoted Ms). Ps and Ds interact with Ms to produce complexes
P-M and D-M. Next, the remaining Ps and Ds and the toyPolymerase (Pol) interact with toyGenes (G)
at the regulation phase. The most stable complexes with promoters are formed (Pol-G, P-G and D-G),
activating or inhibiting toyGenes. P-Ms and D-Ms do not participate in regulation. Ps and Ds not
in complexes are eliminated and new Ps (dark grey) are formed. These Ps interact with all molecules
present and form Ds, new P-M and D-M complexes, and catabolise old D-M complexes. At the end of
this phase, all Ms not bound to Ps or Ds are returned to the environment, and all Ps and Ds in P-M and
D-M complexes unbind and are degraded. The remaining molecules (Ms just released from complexes,

as well as all free Ps and Ds) go to the input set of time step 7+ 1.
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559  (including toyDimers and the toyPolymerase) and toyMetabolites, either endogenous or provided by the
s60 environment. These molecules first interact between them to form possible complexes (see Section 1.2)
s61 and are then presented to a collection of toyGenes that is kept constant along subsequent iterations.
s62 Regulation takes place, mediated by a competition for binding the promoters of toyGenes, possibly
563 causing their activation and leading to the formation of new toyProteins. Binding to promoters is de-
s6« cided in sequence. Starting with any of them (the order is irrelevant), it is checked whether any of the
s65 toyProteins / toyDimers (including the toyPolymerase) available bind to the promoter —remember that
s66 complexes bound to toyMetabolites are not available for regulation—, and then whether the toyPoly-
s67 merase can subsequently bind to the complex and express the accompanying coding region. If it does,
s6s the toyGene is marked as active and the toyProtein / toyDimer is released. Then a second promoter is
569 chosen and the process repeated, until all promoters have been evaluated. toyGenes are only expressed
s70 after all of them have been marked as either active or inactive. Each expressed toyGene produces one
571 single toyProtein molecule. There can be more units of the same toyProtein, but only if multiple copies
572 of the same toyGene are present.

573 toyProteins / toyDimers not bound to any toyMetabolite are eliminated in this phase. Thus, only
574 the newly expressed toyProteins and the complexes involving toyMetabolites in the input set remain. All

these molecules interact yet again, and here is where catabolism can occur. Catabolism happens when,

ot
3
ot

576 once a toyMetabolite-toyDimer complex is formed, an additional toyProtein binds to one of the units
577 of the toyDimer with an energy that is lower than that of the initial toyDimer. In this case, the latter
sts  disassembles in favor of the new toyDimer, and in the process the toyMetabolite is broken, as already
579 mentioned in Section 1.4 and Supplementary Figure S6. The two pieces of the broken toyMetabolites
sso will contribute to the input set at the next time step, as will free toyProteins / toyDimers. However,
ss1  toyProteins / toyDimers bound to toyMetabolites disappear in this phase —they are degraded—, and
582 only the toyMetabolites are kept as input to the next time step. Unbound toyMetabolites are returned
583 to the environment. This way, the interaction with the environment happens twice in each time step:

581 at the beginning and at the end of the cycle.
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Supplementary Figure S8: The same patterns are observed as we increase tissue size. a) All

patterns generated by toyLIFE genotypes when the tissue size is set to be 31 cells. The two numbers
above each pattern represent the pattern’s id and its abundance in genotype space. b) Same but with

51-cell tissues. The patterns are exactly the same, with the same abundances in genotype space.
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Supplementary Figure S9: There are sixteen GRNs that generate the pattern in Figure 3b. Truth
tables for all GRNs that generate the desired pattern. The number next to the label represents how

many genotypes (binary sequences of length 40) are mapped into that particular GRN. Notice the wide

variation in abundances.
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Supplementary Figure S10: Phenotypic bias is observed in the distribution of abundances at all
phenotypic levels. (a) The distribution of abundances of cellular automata (CA) follows a log-normal
law, just like the distribution of GRNs (R* = 0.64). (b) Likewise, the distribution of abundances of
patterns can also be fitted by a log-normal distribution, although the fit is rather noisy (R*> = 0.41),

given that we only have 172 patterns to fit.
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Supplementary Figure S11: Simple phenotypes are more common in genotype space. We approxi-
mated the algorithmic complexity (K) of GRNs (a), cellular automata (b) and patterns (c) following the
work by Dingle et al. [29] (Methods), and plotted them against phenotype abundance (S). The dispar-
ity in lengths between the string representation of different phenotypic levels explains the difference in
magnitude in the values of K. Dingle et al. conjecture that many input-output maps have the property
that simple outputs (as measured by their algorithmic complexity) should be mapped by more inputs.
In our case, this would mean that simple phenotypes are more abundant in genotype space. This figure
confirms this prediction for our three phenotypic levels. Lines represent the upper bound computed
in [29], $ =2 %K, with a ~log, N/ max K, where N is the number of phenotypes and the maximal K is
computed over all possible phenotypes (which is straightforward in our case as we know the complete
maps). GRNs and cellular automata do not always lie below the upper bound. This could be explained
because the results obtained by Dingle et al. rely on asymptotic approximations with long strings, but

the strings coding these two phenotypic levels are not very long, so asymptotic approximations may fail.
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Supplementary Figure S12: Equally fit GRNs appear as the endpoint of evolutionary simulations in
proportion to their relative abundance in genotype space. Although all sixteen GRNs are equally fit
(see main text), evolutionary simulations in which populations undergo Wright-Fisher dynamics do not
find every GRN with equal probability. On the contrary, those GRNs that are more abundant in genotype
space appear more frequently as an endpoint of our simulations, in agreement with Refs. [15,30]. In
fact, the fraction of times a given GRN is the endpoint of the simulations is almost exactly its abundance

in genotype space relative to that of all sixteen GRNs. Linear fit is approximately y = x (R? ~ 1.0).
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