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Abstract11

The evolution of gene regulatory networks (GRNs) is of great relevance for both evolutionary12

and synthetic biology. Understanding the relationship between GRN structure and its function can13

allow us to understand the selective pressures that have shaped a given circuit. This is especially14

relevant when considering spatiotemporal expression patterns, where GRN models have been shown15

to be extremely robust and evolvable. However, previous models that studied GRN evolution did16

not include the evolution of protein and genetic elements that underlie GRN architecture. Here we17

use toyLIFE, a multilevel genotype-phenotype map, to show that not all GRNs are equally likely in18

genotype space and that evolution is biased to find the most common GRNs. toyLIFE rules create19

Boolean GRNs that, embedded in a one-dimensional tissue, develop a variety of spatiotemporal gene20

expression patterns. Populations of toyLIFE organisms choose the most common GRN out of a set21

of equally fit alternatives and, most importantly, fail to find a target pattern when it is very rare22

in genotype space. Indeed, we show that the probability of finding the fittest phenotype increases23

dramatically with its abundance in genotype space. This phenotypic bias represents a mechanism24

that can prevent the fixation in the population of the fittest phenotype, one that is inherent to the25

structure of genotype space and the genotype-phenotype map.26
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Introduction27

The evolution of gene regulatory networks (GRNs) is a topic of great relevance [1,2]. Organisms show a28

plethora of complex regulatory architectures in order to carry out several developmental programs [3] and29

to integrate signals from the environment [4]. As a result, much work has been devoted to understanding30

how these architectures have evolved, and to disentangling the relationship between the structure of a31

GRN and its function [5,6]. The underlying motivation is to understand which regulatory motifs appear32

as a result of selection for a given function or, conversely, what kind of functionality is attained when the33

structure of the GRNs is determined by other factors. GRNs are also the object of intense research from34

the standpoint of synthetic biology, which tries to design circuits to perform pre-defined functions [7].35

One of regulation’s most interesting outcomes is the generation of spatiotemporal patterns of gene36

expression that multi-cellular organisms use in their development [8]. Recent work has been devoted to37

the study of the architecture of GRNs that give rise to different patterns, exploring their robustness and38

evolvability [9–12]. These studies have found that GRNs can easily evolve to generate new patterns,39

facilitating the emergence of new developmental programs. The same pattern can be achieved by means40

of very different mechanisms [11], which in turn determine the levels of robustness and evolvability of41

the pattern. However, GRNs are the result of interactions between proteins and genetic elements, and42

the evolution of GRNs is a direct result of changes in protein folding, binding affinities and promoter or43

enhancer regions. Due to its enormous complexity, models of GRN evolution rarely incorporate these44

underlying dynamics, although there are some exceptions [13, 14].45

Here we use a multilevel computational model of gene regulation to show that some GRN archi-46

tectures are easier to build from interacting proteins and genes than others. As a result, there is a47

phenotypic bias [15–17] that turns some GRNs into attractors of evolutionary dynamics, even in the48

absence of fitness differences.49

We focus on Boolean GRNs, in which genes can either be ON or OFF [18, 19]. Although far from50

other models of gene expression, where the concentration of proteins can vary continuously [20], Boolean51

networks have been repeatedly used to model GRN evolution [21, 22], and some regulatory functions52

have been explained best by using Boolean functions [23]. Our Boolean GRNs are also modelled in53

discrete time, so that the expression of one cell in time t + 1 is determined by its expression and54

that of its neighbouring cells in time t. This formalism transforms GRNs into cellular automata [24].55

Connecting several cells in a one-dimensional tissue, and allowing for propagation of gene products56

between neighbouring cells, we obtain spatiotemporal patterns that are similar to those found in real57
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Figure 1: toyLIFE is a multilevel genotype-phenotype map. (a) toyLIFE genotypes are binary

strings of length 20n, where n is the number of genes in the genome. The first 4 letters of each gene

represent its promoter region, while the remaining 16 are the coding region. The coding region, when

expressed, turns into a protein that folds into a 4×4 lattice (see Supplementary Text Section 1). (b)

Following toyLIFE’s interaction rules, we obtain the corresponding gene regulatory network (GRN),

represented here by its truth table. (c) Each GRN determines, under some propagation rules, a unique

cellular automaton. Given the state of a cell and its neighbours at time t, toyLIFE’s rules determine

the state of the cell at time t + 1, where cells can be empty (white), expressing protein A (orange),

expressing protein B (blue) and expressing both proteins (grey). (d) Under certain initial conditions

(in this case, the expression of protein A in the middle cell of the tissue), the cellular automata give

rise to spatiotemporal patterns of gene expression. In this case, the cellular automaton in c leads to an

alternating pattern in which the tissue expresses protein B and then doesn’t express anything, while in

the centre of the tissue three cells express protein A continuously.

organisms.58

These Boolean GRNs are built on top of a simple model of cellular biology, toyLIFE [25,26]. toyLIFE59

organisms contain genes, which are translated into proteins that interact with each other to form dimers.60

Both dimers and proteins alter the expression of genes, thus creating Boolean GRNs like the ones61

described above. As a consequence, toyLIFE is a multilevel map from binary genomes (genotypes) to62

Boolean GRNs (first phenotype level) to cellular automata (second phenotype level) to spatiotemporal63

patterns (third phenotype level) (Figure 1), thus allowing us to study the effects of molecular evolution64

at different phenotypic levels.65

We show that toyLIFE genomes with two genes are able to generate a wide variety of GRNs and66

spatiotemporal patterns. Moreover, not all of these are equally abundant in genotype space: some GRNs67

are mapped by many genotypes, while others are comparatively rare. We find that this phenotypic bias68
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is enough to steer evolving populations towards more abundant GRNs, thus introducing an additional69

element when trying to explain GRN evolution, one that is not related to function or structure. Fur-70

thermore, we also show that this phenomenon can result in the inability of the evolutionary search to71

find some regulatory patterns, even when they are fitter than every other.72

Results73

Boolean networks and spatiotemporal patterns74

In a Boolean GRN, a gene can either be ON (expressed) or OFF (not expressed). The expression state75

of each gene at time t +1 is a function of the expression states of all the other genes in the network at76

time t, so that each state of the network maps into another state. In a GRN with two genes a and b77

and corresponding proteins A and B, this mapping can be represented as follows:78

A(t) B(t) A(t +1) B(t +1)

0 0 1 0

0 1 0 1

1 0 1 0

1 1 0 0

(1)

This representation is called a truth table, connecting every input state to an output state. In this case,79

the state (0,0) is mapped to (1,0), which means that gene a is expressed constitutively. The next two80

rows indicate that both a and b activate their own expression, while the last row shows that both genes81

repress each other. The truth table determines the temporal expression patterns of a Boolean GRN,82

thus giving us all the information we need to study this system.83

We want to study the spatiotemporal patterns of two-gene GRNs embedded in a one-dimensional84

tissue. First, we define the number of cells in the tissue, which we will consider to be constant. For85

our purposes, we choose tissues with 31 cells in a row. The number of cells is arbitrary and it does not86

affect our results: the same patterns are generated by the same truth tables under similar regulatory87

inputs (Supplementary Figure S8), so no phenomenology is lost from restraining our study to this tissue88

size.89

Now we define the connections between different cells in the tissue. We will assume that only protein90

A can propagate to the adjoining cells (Figure 2). As a result, the input state of cell ci in time t +1 will91

be affected by the output states of cells ci−1 and ci+1 in time t —as well as its own. We will further92

assume that there is enough protein A to stay inside the cell and propagate to the adjoining ones. For93
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Figure 2: Pattern-formation phenotype in toyLIFE. We consider a one-dimensional row formed by

31 cells. The figure illustrates one example of how this multicellular phenotype works using toyLIFE for

illustration purposes. When protein A is expressed, it can propagate to neighbouring cells and influence

gene expression there. This way, the spatiotemporal state of the tissue becomes a cellular automaton.

the cells at the beginning and end of the tissue, we impose the following boundary condition: cell c0 will94

be affected by itself and cell c1, and cell cL will be affected by itself and cL−1 —remember that L = 3095

throughout.96

With these rules, each GRN (defined by a truth table) gives rise to a cellular automaton [24] (Figure97

1c) with four states: (0) no protein is expressed (white), (1) protein B is expressed (blue), (2) protein98

A is expressed (orange) and (3) both proteins are expressed (grey). Cellular automata are compactly99

described by the output they produce given an input. Because the input of a cell is formed by itself100

and its adjoining cells, and because each of them can be in 4 states, the number of input states is101

43 = 64. The number of possible cellular automata is, therefore, 464 ≈ 3.4× 1038. We will see below102

that the number of two-gene toyLIFE genotypes, which we use to generate our GRNs, is around 1012,103

not enough to explore this vast number.104

Each cellular automaton, in turn, gives rise to a spatiotemporal pattern that will depend on the105

initial conditions of the tissue at time t = 0 and the external input received. It is soon evident that the106

space of these scenarios is hyper-astronomical in size [17], and so we choose to start our dynamics with107

both genes in every cell in the OFF state, except the cell in the middle of the tissue (c15), where we108

will express protein A, modelling a signal received from the exterior of the tissue. We then explore the109

expression dynamics of the whole tissue for 100 time steps, enough to resolve all patterns.110

We now explore four relevant GRNs and their resulting patterns (Figure 3). They are (a) a double-111
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Figure 3: Some examples of patterns generated by two-gene Boolean GRNs. (a) A double-

negative feedback loop, with self-activation, results in a pattern that expresses protein A (orange) stably

and expanding through the tissue. (b) A double-negative feedback loop with self-activation, where

gene a is expressed constitutively, leads to the whole pattern expressing protein A stably through time.

(c) A double-positive feedback loop with self-activation loops leads to both proteins A and B (grey)

being expressed in the tissue in a stable way, and expanding through the tissue. (d) A double-positive

feedback loop without self-activation leads to an alternating pattern where the tissue expresses first

protein A (orange), then protein B (blue), and so on. Notice how the speed with which the pattern

extends throughout the tissue is half the speed of patterns in a and b. This is because only protein A is

allowed to propagate to the neighbouring cells (see Figure 2), so that the pattern can only extend when

protein A is expressed.

negative feedback loop with self-activation, (b) the same as before but with gene a having constitutive112

expression, (c) a double-positive feedback loop with self-activation and (d) a double-positive feedback113

loop without self-activation. Figure 3 shows the truth tables associated with these GRNs and the114

patterns they generate under the conditions mentioned above. The first two patterns result in protein115

A being expressed in a stable manner in the whole tissue. The difference between them is that in Figure116

3b protein A is expressed constitutively in every cell, while in Figure 3a that signal must propagate117

through the tissue. The pattern in Figure 3c is similar to the one in Figure 3a, but both proteins end118

up expressed in the tissue, as a result of the positive feedback loop. Finally, in Figure 3d the tissue119

expresses protein A and B in an alternating way.120

Let us focus on the pattern generated by the network in Figure 3b. There are sixteen GRNs that121

generate the same pattern under the conditions defined above (Supplementary Figure S9 shows the122

truth tables for all of these). If there were selection pressures to create that particular pattern, we could123
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expect evolutionary dynamics to choose among these sixteen GRNs with equal probability, everything124

else being equal. This is certainly what almost every mathematical model of phenotypic evolution125

(including previous models of GRN evolution) would predict.126

We performed Wright-Fisher evolutionary simulations with toyLIFE organisms in a strong selection,127

weak mutation regime (Methods), and selected the pattern in Figure 3b as the evolutionary target —i.e.128

we assigned maximal fitness to it, and every other pattern became less fit as it differed more from the129

target (see Methods for the complete definition of the fitness function). We found that, after 100,000130

mutations, 93% of simulations ended up finding one particular GRN among all sixteen (GRN XI in Figure131

S9, see below), and the network in Figure 3b (GRN V) does not appear as the endpoint of evolutionary132

dynamics in any of the 1,000 simulations. In order to understand this somewhat unexpected result, we133

now discuss how Boolean GRNs are obtained from toyLIFE genotypes.134

Regulation in toyLIFE135

We will introduce gene regulation in toyLIFE through an example (for an in-depth discussion of toyLIFE’s136

rules, see Supplementary Text Section 1 and [26]). Consider the genotype in Figure 4a. Proteins A137

and B, the expression products of genes a and b, respectively, bind together to form dimer AB (Figure138

4b). Due to toyLIFE’s interaction rules, the expression of gene a is activated by protein A, its own139

expression product. On the other hand, the expression of gene b is activated by the polymerase (it140

is a constitutively expressed gene), but it is inhibited by both proteins A and B. The dimer does not141

bind to any promoter (Figure 4c). With this information, we can compute the expression output of this142

genotype given each input, i.e. its truth table (Figure 4d). When no protein is present, the polymerase143

(which is always present in the cell) will activate gene b and the output will consist of protein B. The144

same will happen if dimer AB is present in the cell: because it does not interact with either promoter,145

the polymerase will activate the expression of gene b again. If protein A is present, it will displace146

the polymerase and gene b will not be expressed, but A will also activate its own expression. Finally,147

if protein B is present, it will inhibit its own expression, and nothing will be expressed in the cell. In148

this way, we map a binary sequence (coding for the genome’s two genes) into a Boolean GRN. It is149

interesting to note that this regulatory function cannot be expressed with an arrow diagram similar to150

those in Figure 3: there is no way to represent the overriding effect that the dimer has on each protein’s151

regulatory logic using this kind of diagram.152

The cellular automaton is now uniquely determined by the GRN once we take into account two153

additional input states: protein A plus dimer, and protein B plus dimer. These two states can appear154
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Figure 4: Regulatory logic in toyLIFE. (a) Example of a two-gene genotype in toyLIFE. These genes

express strings of 16 amino-acids that fold into a 4× 4 lattice, following the rules of the HP model

(Supplementary Text Section 1). (b) Protein A and protein B can bind together to form dimer AB.

(c) Regulatory logic of genes a and b. Protein A inhibits its own expression. The polymerase activates

the expression of protein B, while both protein A and B inhibit it. The dimer AB does not bind either

promoter. (d) Truth table representing the regulatory logic of this two-gene genotype, obtained from

the information in c. See text for details. (e) Not all GRNs generated by toyLIFE two-gene genotypes

are equally likely in genotype space. In fact, the distribution of abundances (S) follows a log-normal

distribution (R2 = 0.94).

as a result of protein products propagating from one cell to the next. With this information we can155

unequivocally compute each genotype’s corresponding cellular automaton.156

It is worth noting that in the process of defining these phenotypic levels we have already introduced157

a lot of degeneracy. For instance, there are 240 ≈ 1012 genotypes with two genes, but they only give158

rise to 1,472 different GRNs, which in turn generate only 453 different cellular automata —an average159

of ≈ 2× 109 genotypes per cellular automata. Not all GRNs are equally probable in genotype space,160

however: the distribution of abundances of GRNs follows a log-normal distribution (Figure 4e), which161

has been observed in many other genotype-phenotype models and has been shown to be universal under162

some very general assumptions [16, 26–28]. The most abundant GRN is mapped by more than 500163

billion genotypes, while the rarest one is only mapped by 8 genotypes. This phenomenon has been164
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called phenotypic bias [15, 16], and it is also observed in the distribution of abundances of cellular165

automata (Supplementary Figure S10a). As a consequence, the sixteen GRNs that generate the pattern166

in Figure 3b (Supplementary Figure S9) also have varying abundances. The most common one is GRN167

XI, mapped by 2.017× 1011 genotypes, roughly 18% of all two-gene genotypes in toyLIFE. Its truth168

table is169

A(t) B(t) A(t +1) B(t +1)

0 0 1 0

0 1 1 0

1 0 1 0

1 1 1 0

(2)

This is, admittedly, a very simple Boolean GRN, in which every input state leads to the same output:170

that of protein A being expressed. Previous work [29] has argued that simpler phenotypes should be more171

abundant in genotype space, and this is indeed what we observe at all phenotypic levels (Supplementary172

Figure S11). In comparison, the least abundant Boolean GRN among these sixteen (GRN VIII) is173

mapped by just 203,641 genotypes, a million times less abundant than GRN XI. Finally, the double-174

negative feedback loop in Figure 3b that we were searching for originally (GRN V) is mapped by 9.4×106
175

genotypes, which is 5×10−5 times less abundant than GRN XI. As a result of this phenotypic bias in176

the sixteen GRNs, when we evolve populations of toyLIFE organisms to express this simple pattern as177

described above, populations find GRN XI 93% of the times —although all sixteen are equally fit in this178

scenario. In fact, the proportion of times our simulations end up in a particular GRN closely reflects179

its relative abundance in genotype space (Supplementary Figure S12). In other words, introducing an180

additional level to the GRN-to-pattern genotype-phenotype map causes a bias in the abundances of181

different GRNs, which in turn affects evolutionary dynamics [30].182

Pattern formation in toyLIFE183

The differences in abundances in the Boolean GRNs generated by toyLIFE are magnified at the pattern184

level (Supplementary Figure S10b): some patterns are mapped by billions of genotypes, while others185

are generated by only hundreds of them. This difference is critical, as we will see now. Suppose an186

evolutionary scenario where we select for pattern 113, shown in Figure 5a. This pattern is mapped by187

only 5,312 genotypes, so finding it in genotype space seems hard a priori. However, näıve evolutionary188

predictions would say that, being the fittest phenotype, it should be eventually selected and fixed in the189

population. When we perform the evolutionary simulations with pattern 113 as the target (Methods),190
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e)d)

Figure 5: Evolving populations are not able to find rare patterns, even when they are fitter. a)

Pattern 113 is rarely found in our evolutionary simulations. b) Pattern 109 is similar to 113, but it is

generated by 1.64×108 genotypes —about 105 times commoner. As a result, it appears as the endpoint

of our simulations 84% of the times. c) Pattern 170 also appears as the endpoint of the simulations

8% of the times, even though it is not very similar to pattern 113. This is due to its high abundance

in phenotype space: 1.36×108 genotypes are mapped to it. (d) This phenomenon is not restricted to

pattern 113. The probability of finding a target pattern (p) goes to zero as the logarithm of pattern

abundance (S) decreases. Line: p = (1+(430767/S)1/2)−1, R2 = 0.58. (e) Even when simulations

do find the fittest pattern, the time to reach it (T ) increases as pattern abundance decreases. Line:

log10 T = 4.35−0.05(log10 S−2.93)2, R2 = 0.68.

it appears as the evolutionary endpoint only in 3% of the 1,000 simulations. Instead, the pattern that191

appears in most of the simulations is pattern 109 (Figure 5b), which has a fitness of 0.991 relative to192

that of pattern 113, and is mapped by 1.6×108 genotypes. There are 33,280 mutational paths between193

pattern 109 and pattern 113 (counted as the number of pairs of genotypes mapping to each pattern194

that are one point mutation apart), so populations expressing pattern 109 could eventually find pattern195

113 without having to go through any fitness valley. However, this number represents only 0.0005% of196

all connections from pattern 109 to other phenotypes: finding pattern 113 from pattern 109 is truly like197
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finding a needle in a haystack. In other words: the phenotypic bias towards pattern 109 is enough to198

counteract pattern 113’s fitness benefit. Curiously enough, pattern 170 (Figure 5c), which is not very199

similar to pattern 113, with a fitness of 0.54, also appears frequently as the endpoint of our simulations.200

In this case, there are no mutations from pattern 170 to 113, so it seems that some populations quickly201

find pattern 170 as a suboptimal fitness peak, and then become trapped in it, as there are no mutations202

to fitter alternatives.203

This result means that some patterns will not be reachable by evolution, not because they are less fit,204

but because they are very rare in genotype space. This phenomenon is true for every rare pattern, and205

indeed we see it in simulations where each of the 172 patterns obtained in our system is set as the target206

of evolution. The probability of finding the fittest pattern decreases dramatically with pattern abundance207

(Figure 5a). And, even if the pattern is found, the time to find it decreases super-exponentially with208

pattern abundance (Figure 5b).209

Discussion and Conclusions210

The main intention of this work is to show that the complex mapping from DNA sequences to genetic211

circuits in real cells is in all likelihood biased towards some GRNs, so that some of them are much more212

common in genotype space. The results of our computational simulations show that this bias is enough213

to prevent populations from finding the fittest phenotype [15]. Several mechanisms had been previously214

proposed to explain why populations do not reach the fittest solution, such as frequency-dependent215

selection [31] or the fittest vs the flattest [32, 33] —which do not apply here, as our populations are216

always homogeneous. However, phenotypic bias is the first of these mechanisms that arises out of the217

intrinsic structure of the evolutionary search space, and it is completely independent from population218

effects and from the structure or function of the GRN being selected for. In this sense, phenotypic219

bias is playing in evolutionary dynamics the same role that entropy plays in statistical physics. The220

entropy of a macrostate is related to the number of microstates that are consistent with it without221

altering the properties that characterise the system. In statistical physics, macrostates are typically222

described by macroscopical properties such as temperature, pressure or volume, while microstates differ223

in the positions and velocities of individual particles. In evolutionary dynamics, there is a natural224

analogy between microstates and genotypes, on the one hand, and macrostates and phenotypes, on the225

other [34]. The conflict between energy and entropy found in physical systems is the same we have226

found between fitness and phenotypic bias, and the trapping by abundant phenotypes is akin to a glassy227
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dynamics in physical systems [35].228

Our results cannot be explained by phenotypic bias alone, however. In the simulations to find rare229

pattern 113, we found that a non-negligible fraction of simulations ended in pattern 170, that had a230

fitness of 0.54 but an abundance in genotype space that was similar to pattern 109, a fitter alternative.231

The reason populations got stuck in pattern 170 is because genotype space is structured as a complex232

network, and not all paths from one pattern to the other are actually possible. In this case, there are no233

connections between pattern 170 and either pattern 109 or 113, so once the population has found this234

local fitness peak, there is no way it can reach the other, fitter alternatives under our selection regime.235

The effect of networked genotype spaces on evolutionary dynamics is far from trivial and has yet to be236

disentangled [36]. Further work has to be devoted to study its effects in this particular system.237

The consequences of this work are immediate for the evolution of genetic circuits. Our results238

suggest that some ideal solutions could be hard to find in genotype space, and that evolution has had239

to work with more abundant, less efficient alternatives. However, the number of available phenotypes240

grows very quickly with genotype size in many computational genotype-phenotype maps [17, 26, 27],241

and so it is reasonable to expect that evolution could always find alternatives that are, if not optimal,242

at least highly functional. On the other hand, synthetic biologists trying to design a particular circuit243

could be aiming at a particularly rare structure, which would make its a priori evolution very unlikely.244

This would make that circuit very unstable in evolutionary terms, and mutations could easily change it245

into a different circuit, with undesired functions.246

In relation to this, our results also suggest that phenotypic bias will have an effect on both robustness247

and evolvability. Previous models studying these properties in GRNs [11] found that they depended on248

the mechanism by which a GRN generates a pattern. Our results add a new layer, showing that more249

abundant GRNs will generate more robust patterns, independently on their mechanism or structure.250

Thus, understanding which GRNs are more abundant in genotype space is essential to unravel the251

evolution of robustness and evolvability.252

We are aware of the limitations of toyLIFE as a discrete-time Boolean model to model continuous-253

time, stochastic protein concentration dynamics. However, phenotypic bias is not a particular charac-254

teristic of toyLIFE and is rather very common in computational genotype-phenotype maps [15, 16, 29].255

Thus, our main results are not limited to this particular choice of model, and they could be easily256

extended to other, more realistic genotype-phenotype maps. On the other hand, toyLIFE is a very con-257

venient model to study multilevel genotype-phenotype relationships [26], which are complex and largely258

unknown. This model potential to generate complex behaviours is yet to be explored fully.259
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Methods and Materials260

Fitness261

The fitness function for our evolutionary simulations is calculated as follows: each pattern is a string in262

base four of length L = 31 ·100. For every evolutionary scenario, we choose one particular pattern pT263

as the target value, and assign fitness 1 to it. Then we compute the Hamming distance D of a pattern264

p to the target as265

D(p, pT) =
L

∑
i=1

dp(i),pT(i) , (3)

where di, j is Kronecker’s delta, which is equal to 1 if i = j and 0 otherwise, and p(i) is the i-th letter in266

the string p. Fitness is then calculated as267

f (p) = 1− D(p, pref)
L

. (4)

Evolutionary simulations268

We assume a strong selection, weak mutation scenario. In this regime, Wright-Fisher dynamics are269

reduced to a continuous-time random walk in genotype space. We only consider point mutations, which270

arise in the population at constant rate µ, and the fixation rate of a new mutation is given by271

φ( f ,N) = µN
f −1

f N−1
, (5)

where f is the fitness of the current phenotype relative to that of the mutant, and N is population272

size [37]. We assume µ = 1, which is equivalent to counting time in mutations instead of genera-273

tions. Genotypes are binary strings of length 40, which are mapped to a pattern using toyLIFE’s rules274

(Supplementary Material Section 1). We start the simulations choosing a genotype at random, and275

then simulate populations dynamics using Gillespie’s algorithm [38]. We simulated populations of size276

N = 10,000 for T = 100,000 mutations, and repeated this process for R = 1,000 replicates for each of277

the experiments. The choice of population size was made so that deleterious mutations were hardly278

never accepted.279

Phenotypic complexity280

Following [29], we approximate the algorithmic complexity of a binary string x = {x1 . . .xn} as281

Clz(x) =

 log2(n), x = 0n or 1n

log2(n)
1
2 [Nw (x1 . . .xn)+Nw (xn . . .x1)] otherwise

, (6)
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where n = |x| and Nw(x) is the number of words in the dictionary created by the Lempel-Ziv algorithm282

[39]. For each phenotypic level (GRNs, cellular automata and patterns), we translate each base-four283

string identifying the phenotype to binary code, and then compute Clz. So, for instance, string 312011284

would become 110110000101. GRNs are represented as a binary string by reading all the output entries285

in the truth table (GRNII in Supplementary Figure S9 is equivalent to 10001001) and then adding286

the output states of the two additional input states mentioned in the main text: protein A plus dimer,287

and protein B plus dimer. Therefore, GRNs can be univocally represented as binary strings of length288

12. Cellular automata are base-four strings of length 64 that become binary strings of length 128 after289

converting from base four to base two. Finally, patterns are base-four strings of length 3,100 that290

become binary strings of length 6,200.291

Acknowledgments292

PC is supported by a Ramón Areces Postdoctoral Fellowship. This research has been supported by293

Ministerio de Ciencia, Innovación y Universidades/FEDER (Spain/UE) through grant PGC2018-098186-294

B-I00 (BASIC) and and FIS2017-89773-P (MiMevo).295

Code availability296

toyLIFE and all the code used to obtain the results in this paper is freely available at297

https://github.com/pablocatalan/toylife/.298

References299

[1] Chen, K. & Rajewsky, N. The evolution of gene regulation by transcription factors and microRNAs.300

Nat. Rev. Genet. 8, 93 (2007).301

[2] Payne, J. L., Khalid, F. & Wagner, A. RNA-mediated gene regulation is less evolvable than302

transcriptional regulation. Proc. Natl. Acad. Sci. USA 115, E3481–E3490 (2018).303

[3] Davidson, E. H. The regulatory genome: gene regulatory networks in development and evolution304

(Elsevier, 2010).305

[4] Alon, U. An Introduction to Systems Biology: Design Principles of Biological Circuits (CRC press,306

2006).307

14

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 24, 2019. ; https://doi.org/10.1101/817908doi: bioRxiv preprint 

https://doi.org/10.1101/817908
http://creativecommons.org/licenses/by/4.0/


[5] Payne, J. L. & Wagner, A. Function does not follow form in gene regulatory circuits. Sci. Rep. 5,308

13015 (2015).309

[6] Ahnert, S. E. & Fink, T. M. A. Form and function in gene regulatory networks: the structure310

of network motifs determines fundamental properties of their dynamical state space. J. R. Soc.311

Interface 13, 20160179 (2016).312

[7] Santos-Moreno, J. & Schaerli, Y. Using synthetic biology to engineer spatial patterns. Adv. Biosyst.313

3, 1800280 (2019).314

[8] Salazar-Ciudad, I., Jernvall, J. & Newman, S. A. Mechanisms of pattern formation in development315

and evolution. Development 130, 2027–2037 (2003).316

[9] Cotterell, J. & Sharpe, J. An atlas of gene regulatory networks reveals multiple three-gene mech-317

anisms for interpreting morphogen gradients. Mol. Sys. Biol. 6, 425 (2010).318

[10] Schaerli, Y. et al. A unified design space of synthetic stripe-forming networks. Nat. Comm. 5,319

4905 (2014).320
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Supplementary Text393

1 toyLIFE394

toyLIFE was originally presented in [25]. We give here its main details, with slight modifications in the395

definition of the model, as presented in [26].396

1.1 Building blocks: genes, proteins, metabolites397

The basic building blocks of toyLIFE are toyNucleotides (toyN), toyAminoacids (toyA), and toySugars398

(toyS). Each block comes in two flavors: hydrophobic (H) or polar (P). Random polymers of basic399

blocks constitute toyGenes (formed by 20 toyN units), toyProteins (chains of 16 toyA units), and400

toyMetabolites (sequences of toyS units of arbitrary length). These elements of toyLIFE are defined on401

two-dimensional space (Supplementary Figure S1).402

toyAMINOACIDS

toyNUCLEOTIDES

toySUGARS

toyGENES

toyPROTEINS toyDIMERS

toyPOLYMERASE

toyMETABOLITES

P (polar)

H (hydrophobic)

E( ) = -2.0
E( ) = -0.3
E( ) = 0.0

Supplementary Figure S1: Building blocks and interactions defining toyLIFE. The three basic build-

ing blocks of toyLIFE are toyNucleotides, toyAminoacids, and toySugars. They can be hydrophobic (H,

white) or polar (P, red), and their random polymers constitute toyGenes, toyProteins, and toyMetabo-

lites. The toyPolymerase is a special polymer that will have specific regulatory functions. These polymers

will interact between each other following an extension of the HP model (see text), for which we have

chosen the interaction energies EHH =−2, EHP =−0.3 and EPP = 0 [40].
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toyGenes403

toyGenes are composed of a 4-toyN promoter region followed by a 16-toyN coding region. There are 24
404

different promoters and 216 coding regions, leading to 220 ≈ 106 toyGenes. An ensemble of toyGenes405

forms a genotype. If the toyGene is expressed, it will produce a chain of 16 toyA that represents a406

toyProtein. Translation follows a straightforward rule: H (P) toyN translate into H (P) toyA. Point407

mutations in toyLIFE are easy to implement: they are changes in one of the nucleotides in one of the408

genes in the genotype. If the sequence has a H toyN in that position, then a mutation will change it to409

a P toyN, and vice versa.410

toyProteins411

toyProteins correspond to the minimum energy, maximally compact folded structure of the 16 toyA chain412

arising from a translated toyGene. Their folded configuration is calculated through the hydrophobic-polar413

(HP) protein lattice model [40, 41].414

We only consider maximally compact structures. That is, every toyProtein must fold on a 4× 4415

lattice, following a self-avoiding walk (SAW) on it. After accounting for symmetries —rotations and416

E = -11.5

2 x (-2.0)
5 x (-0.3)
2 x  (0.0)

Supplementary Figure S2: Protein folding in toyLIFE. toyProteins fold on a 4× 4 lattice, following

a self-avoiding walk (SAW). Discarding for symmetries, there are 38 SAWs (left). For each binary

sequence of length 16, we fold it into every SAW and compute its folding energy, following the HP

model. For instance, we fold the sequence PHPPPPPPPPPHHHHP into one of the SAWs and compute

its folding energy (right). There are two HH contacts, five HP contacts and two PP contacts —we only

take into account contacts between non-adjacent toyAminoacids. Summing all this contacts with their

corresponding energies, we obtain a folding energy of −11.5. Repeating this process for every SAW, we

obtain the minimum free structure.
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reflections—, there are only 38 SAWs on that lattice (Supplementary Figure S2).417

The energy of a fold is the sum of all pairwise interaction energies between toyA that are not418

contiguous along the sequence. Pairwise interaction energies are EHH =−2, EHP =−0.3 and EPP = 0,419

following the conditions set in [40] that EPP > EHP > EHH (Supplementary Figure S2). toyProteins420

are identified by their folding energy and their perimeter. If there is more than one fold with the421

same minimum energy, we select the one with fewer H toyAminoacids in the perimeter. If still there is422

more than one fold fulfilling both conditions, we discard that protein by assuming that it is intrinsically423

disordered and thus non-functional. Note, however, that sometimes different folds yield the same folding424

energy and the same perimeter. In those cases, we do not discard the resulting toyProtein.425

Out of 216 = 65,536 possible toyProteins, 12,987 do not yield unique folds. We find 2,710 different426

toyProteins with 379 different perimeters. Not all toyProteins are equally abundant: although every427

toyProtein is coded by 19.4 toyGenes on average, most of them are coded by only a few toyGenes.428

For instance, 1,364 toyProteins —roughly half of them!— are coded by less than 10 toyGenes each.429

On the other hand, only 4 toyProteins are coded by more than 200 toyGenes each, the maximum430

being 235 toyGenes coding for the same toyProtein. The distribution is close to an exponential decay431

(Supplementary Figure S3a). The same happens with the perimeters, although with less skewness: each432

perimeter is mapped by 7.15 toyProteins on average, but the most abundant perimeters correspond to433

26 toyProteins, and 100 are mapped by 1 or 2 toyProteins each (Supplementary Figure S3b).434

Folding energies range from −18.0 to −0.6, with an average in −9.63. The distribution is unimodal,435

although very rugged (Supplementary Figure S3c). Note that folding energies are discrete, and that436

separations between them are not equal. For instance, there are 6 toyProteins that have a folding energy437

of −18.0, but the next energy level is −16.3, realised by 17 toyProteins, and yet the next level is −16.0,438

realised by 14 toyProteins. The mode of the distribution is −10.6, realised by 202 toyProteins.439

We can also study the structure of the toyProtein network (Supplementary Figure S3e, f). The nodes440

of this network will be the 2,710 toyProteins. toyProtein 1 and toyProtein 2 will be neighbors if there441

is a pair of toyGenes that express each toyProtein and whose sequence is equal but for one toyN. The442

weight of the edge between toyProtein1 and 2 will be the sum of such pairs of toyGenes. It is surprising443

that there are no self-loops in this network —there are no mutations connecting one toyProtein to itself.444

In other words, although there is a strong degeneracy in the mapping from toyGenes to toyProteins,445

there are no connected neutral networks. If we consider just the perimeters, however, the neutrality is446

somewhat recovered: out of the 379 perimeters, 224 of them have neutral neighbors. So there are many447

mutations that alter the folding energy of a toyProtein without changing the perimeter. In this sense,448
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Supplementary Figure S3: Distributions of toyProteins in toyLIFE. (a) Distribution of toyProtein

abundances —that is, the number of toyGenes that code for them. Most toyProteins are coded by

few toyGenes, but some of them are very abundant: the most abundant toyProtein is coded by 235

toyGenes. (b) Distribution of the perimeters associated with each toyProtein. Again, not all perimeters

are equally abundant, and some of them correspond to as many as 25 toyProteins, while 100 correspond

to 1 or 2 toyProteins. (c) Distribution of folding energies. The range of folding energies goes from

−18.0 to −0.6, with a unimodal, rugged distribution. The mode is −10.6, a folding energy achieved by

202 toyProteins. (d) Degree distribution in the toyProtein network. Two toyProteins are connected if

there are two toyGenes coding for them that have the same sequence, except for one toyN. The average

degree is 32.2. (e) Degree distribution in the perimeter network. Two perimeters are neighbors if the

toyProteins associated to them are neighbors. The average degree is 53.3.

toyLIFE is capturing a complex detail of molecular biology: mutations appear to be neutral from one449

point of view —in this case, perimeter— but are rarely entirely neutral. In other words, the value of a450

mutation is context and environment-dependent. There are always some small changes in the molecule451

—in this case, folding energy— that may affect their function later down the line. Real world examples of452

this cryptic effects of mutations on molecules are everywhere [42–45]. Connections between toyProteins453

are scarce too: the average degree in the toyProtein network is 32.2 (with a standard deviation of454

25.7), a very small number — on average, each toyProtein is connected to hardly 1% of the rest of455

toyProteins! (Supplementary Figure S3e). The maximum degree is 190. This means that mutating456

from one toyProtein to another is not easy in general. In terms of perimeters this is more relaxed, as the457

average degree in the perimeter network is 53.3 (standard deviation is 38.1), with a maximum degree of458
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173. On average, every perimeter is connected to 14% of the rest of perimeters: it is a small number,459

but it is still higher than in the toyProtein case (Supplementary Figure S3f).460

In the toyLIFE universe, only the folding energy and perimeter of a toyProtein matter to characterise461

its interactions, so folded chains sharing these two features are indistinguishable. This is a difference462

with respect to the original HP model, where different inner cores defined different proteins and the463

composition of the perimeter was not considered as a phenotypic feature. However, subsequent versions464

of HP had already included additional traits [46].465

The toyPolymerase (Supplementary Figure S1) is a special toyA polymer, similar to a toyProtein in466

many aspects, but that is not coded for by any toyGene. It has only one side, with sequence PHPH,467

and its folding energy is taken to be −11.0. We will discuss its function and place later on.468

1.2 Extending the HP model: interactions469

toyProteins interact through any of their sides with other toyProteins, with promoters of toyGenes, and470

with toyMetabolites (see Supplementary Figure S4a). When toyProteins bind to each other, they form471

a toyDimer, which is the only protein aggregate considered in toyLIFE. The two toyProteins disappear,472

leaving only the toyDimer. Once formed, toyDimers can also bind to promoters or toyMetabolites473

through any of their sides —binding to other toyProteins or toyDimers, however, is not permitted. In all474

cases, the interaction energy (Eint) is the sum of pairwise interactions for all HH, HP and PP pairs formed475

in the contact —these interactions follow the rules of the HP model as well. Bonds can be created only476

if the interaction energy between the two molecules Eint is lower than a threshold energy Ethr =−2.6.477

Note that a minimum binding energy threshold is necessary to avoid the systematic interaction of any478

two molecules. Low values of the threshold would lead to many possible interactions, which would479

increase computation times. High values would lead to very few interactions, and we would obtain a480

very dull model. Our choice of Ethr = −2.6 achieves a balance: the number of interactions is large481

enough to generate complex behaviours, as we will see later on, while at the same time keeping the482

universe of interactions small enough to handle computationally. If below threshold, the total energy of483

the resulting complex is the sum of Eint plus the folding energy of all toyProteins involved. The lower484

the total energy, the more stable the complex. When several toyProteins or toyDimers can bind to the485

same molecule, only the most stable complex is formed. Consistently with the assumptions for protein486

folding, when this rule does not determine univocally the result, no binding is produced.487

As the length of toyMetabolites is usually longer than 4 toyS (the length of interacting toyProtein488

sites), several binding positions between a toyMetabolite and a toyProtein might share the same energy.489
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Supplementary Figure S4: Interactions in toyLIFE. (a) Possible interactions between pairs of toyLIFE

elements. toyGenes interact through their promoter region with toyProteins (including the toyPoly-

merase and toyDimers); toyProteins can bind to form toyDimers, and interact with the toyPolymerase

when bound to a promoter; both toyProteins and toyDimers can bind a toyMetabolite at arbitrary re-

gions along its sequence. (b) When a toyDimer or toyProtein binds to a toyMetabolite with the same

energy in many places, we choose the most centered binding position. If two or more binding positions

have the same energy and are equally centered, then no binding occurs.

In those cases we select the sites that yield the most centered interaction (Supplementary Figure S4b).490

If ambiguity persists, no bond is formed. Also, no more than one toyProtein / toyDimer is allowed to491

bind to the same toyMetabolite, even if its length would permit it. toyProteins / toyDimers bound to492

toyMetabolites cannot bind to promoters.493

Interaction rules in toyLIFE have been devised to remove any ambiguity. When more than one rule494

could be chosen, we opted for computational simplicity, having made sure that the general properties495

of the model remained unchanged. A detailed list of the specific disambiguation rules implemented in496

the model follows:497

1. Folding rule: if a sequence of toyAminoacids can fold into two (or more) different configurations498

with the same energy and two different perimeters with the same number of H, it is considered499

degenerate and does not fold.500

2. One-side rule: any interaction in which a toyProtein can bind any ligand with two (or more)501
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different sides and the same energy is discarded.502

3. Annihilation rule: if two (or more) toyProteins can bind a ligand with the same energy, the503

binding does not occur. However, if a third toyProtein can bind the ligand with greater (less504

stable) energy than the other two, and does so uniquely, it will bind it.505

4. Identity rule: an exception to the Annihilation rule occurs if the competing toyProteins are the506

same. In this case, one of them binds the ligand and the other(s) remains free.507

5. Stoichiometric rule: an extension of the Identity rule. If two (or more) copies of the same508

toyProtein / toyDimer / toyMetabolite are competing for two (or more) different ligands, there509

will be binding if the number of copies of the toyProtein / toyDimer / toyMetabolite equals the510

number of ligands. For example, say that P1 binds to P2, P3 and P4 with the same energy. Then,511

(a) if P1, P2 and P3 are present, no complex will form; (b) if there are two copies of P1, dimers512

P1-P2 and P1-P3 will both form; but (c) if P4 is added, no complex will form. Conversely, if all513

ligands are copies as well, the Stoichiometry rule does not apply. For example, three copies of P1514

and two copies of P2 will form two copies of dimer P1-P2, and one copy of P1 will remain free.515

1.3 Regulation516

Expression of toyGenes occurs through the interaction with the toyPolymerase, which is a special kind517

of toyProtein (see Supplementary Figure S1). The toyPolymerase only has one interacting side (with518

sequence PHPH) and its folding energy is fixed to value −11.0: it is more stable than more than half519

the toyProteins. It is always present in the system. The toyPolymerase binds to promoters or to the520

right side of a toyProtein / toyDimer already bound to a promoter. When the toyPolymerase binds to a521

promoter, translation is directly activated and the corresponding toyGene is expressed (Supplementary522

Figure S5a). However, a more stable (lower energy) binding of a toyProtein or toyDimer to a promoter523

precludes the binding of the toyPolymerase. This inhibits the expression of the toyGene, except if the524

toyPolymerase binds to the right side of the toyProtein / toyDimer, in which case the toyGene can be525

expressed.526

The minimal interaction rules that define toyLIFE dynamics endow toyProteins with a set of possible527

activities not included a priori in the rules of the model (see Supplementary Figure S5). For example,528

since the 4-toyN interacting site of the toyPolymerase cannot bind to all promoter regions —because529

some of these interactions have Eint > Ethr—, translation mediated by a toyProtein or toyDimer binding530

might allow the expression of genes that would otherwise never be translated. These toyProteins thus531

25

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 24, 2019. ; https://doi.org/10.1101/817908doi: bioRxiv preprint 

https://doi.org/10.1101/817908
http://creativecommons.org/licenses/by/4.0/


Inhibitor

toyPROTEIN
Activator

expression

toyGENE
toyPROTEIN

toyPOLYMERASE
expression
(HP model)

Conditional
activator

Inhibitor

expression

toyPROTEIN

dimerization

Conditional
inhibitors

dimerization

a

b

c

d

e

Supplementary Figure S5: Regulatory functions in toyLIFE. (a) A toyGene is expressed (translated)

when the toyPolymerase binds to its promoter region. The sequence of Ps and Hs of the toyProtein will

be exactly the same as that of the toyGene coding region. (b) If a toyProtein binds to the promoter

region of a toyGene with a lower energy than the toyPolymerase does, it will displace the latter, and

the toyGene will not be expressed. This toyProtein acts as an inhibitor. (c) The toyPolymerase does

not bind to every promoter region. Thus, not all toyGenes are expressed constitutively. However, some

toyProteins will be able to bind to these promoter regions. If, once bound to the promoter, they bind

to the toyPolymerase with their rightmost side, the toyGene will be expressed, and these toyProteins

act as activators. (d) More complex interactions —involving more elements— appear. For example, a

toyProtein that forms a toyDimer with an inhibitor —preventing it from binding to the promoter— will

effectively activate the expression of the toyGene. However, it does neither interact with the promoter

region nor with the toyPolymerase, and its function is carried out only when the inhibitor is present.

We call this kind of toyProteins conditional activators. (e) Two toyProteins can bind together to form

a toyDimer that inhibits the expression of a certain toyGene. As they need each other to perform this

function, we call them conditional inhibitors. As the number of genes increases, this kind of complex

relationships can become very intricate.

26

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 24, 2019. ; https://doi.org/10.1101/817908doi: bioRxiv preprint 

https://doi.org/10.1101/817908
http://creativecommons.org/licenses/by/4.0/


act as activators (Supplementary Figure S5c). This process finds a counterpart in toyProteins that bind532

to promoter regions more stably than the toyPolymerase does, and therefore prevent gene expression —533

this happens if Eint(PROT)+EPROT < Eint(POLY)+EPOLY. They are acting as inhibitors (Supplementary534

Figure S5b). There are two additional functions that could not be foreseen and involve a larger number535

of molecules. A toyProtein that forms a toyDimer with an inhibitor —preventing its binding to the536

promoter— effectively behaves as an activator for the expression of the toyGene. However, it interacts537

neither with the promoter region nor with the toyPolymerase, and its activating function only shows538

up when the inhibitor is present. This toyProtein thus acts as a conditional activator (Supplementary539

Figure S5d). On the other hand, two toyProteins can bind together to form a toyDimer that inhibits540

the expression of a particular toyGene. As the presence of both toyProteins is needed to perform this541

function, they behave as conditional inhibitors (Supplementary Figure S5e). This flexible, context-542

dependent behavior of toyProteins is reminiscent of phenomena observed in real cells [47], and permits543

the construction of complex toyGene Regulatory Networks (toyGRNs).544

1.4 Metabolism545

When a toyDimer is bound to a toyMetabolite, another toyProtein can interact with this complex and546

break it. This reaction will take place if the toyProtein can bind to one of the subunits of the toyDimer547

and the resulting complex has less total energy than the toyDimer. As with the rest of interactions,548

the catabolic reaction will only take place if this binding is unambiguous. As a result of this reaction,549

the toyDimer will be broken in two: one of the pieces will be bound to the toyProtein (forming a new550

toyDimer), and the other one will remain free. The toyMetabolite will break accordingly: the part of551

it that was bound to the first subunit will stay with it, and the other part will stay with the second552

subunit. Note that the toyMetabolite need not be broken symmetrically: this will depend on how the553

toyPROTEIN

toyMETABOLITE

toyDIMER + toyMETABOLITE

toyDIMER

toyMETABOLITE

toyPROTEIN +

Supplementary Figure S6: Metabolism in toyLIFE. A toyDimer is bound to a toyMetabolite when a

new toyProtein comes in. If the new toyProtein binds to one of the two units of the toyDimer, forming

a new toyDimer energetically more stable than the old one, the two toyProteins will unbind and break

the toyMetabolite up into two pieces. We say that the toyMetabolite has been catabolised.
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toyDimer binds to it (Supplementary Figure S6).554

1.5 Dynamics in toyLIFE555

The dynamics of the model proceeds in discrete time steps and variable molecular concentrations are not556

taken into account. A step-by-step description of toyLIFE dynamics is summarised in Supplementary557

Figure S7. There is an initial set of molecules which results from the previous time step: toyProteins558

t
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Supplementary Figure S7: Dynamics of toyLIFE. Input molecules at time step t are toyProteins (Ps)

(including toyDimers (Ds)) and toyMetabolites, either produced as output at time step t−1 or environ-

mentally supplied (all toyMetabolites denoted Ms). Ps and Ds interact with Ms to produce complexes

P-M and D-M. Next, the remaining Ps and Ds and the toyPolymerase (Pol) interact with toyGenes (G)

at the regulation phase. The most stable complexes with promoters are formed (Pol-G, P-G and D-G),

activating or inhibiting toyGenes. P-Ms and D-Ms do not participate in regulation. Ps and Ds not

in complexes are eliminated and new Ps (dark grey) are formed. These Ps interact with all molecules

present and form Ds, new P-M and D-M complexes, and catabolise old D-M complexes. At the end of

this phase, all Ms not bound to Ps or Ds are returned to the environment, and all Ps and Ds in P-M and

D-M complexes unbind and are degraded. The remaining molecules (Ms just released from complexes,

as well as all free Ps and Ds) go to the input set of time step t +1.
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(including toyDimers and the toyPolymerase) and toyMetabolites, either endogenous or provided by the559

environment. These molecules first interact between them to form possible complexes (see Section 1.2)560

and are then presented to a collection of toyGenes that is kept constant along subsequent iterations.561

Regulation takes place, mediated by a competition for binding the promoters of toyGenes, possibly562

causing their activation and leading to the formation of new toyProteins. Binding to promoters is de-563

cided in sequence. Starting with any of them (the order is irrelevant), it is checked whether any of the564

toyProteins / toyDimers (including the toyPolymerase) available bind to the promoter —remember that565

complexes bound to toyMetabolites are not available for regulation—, and then whether the toyPoly-566

merase can subsequently bind to the complex and express the accompanying coding region. If it does,567

the toyGene is marked as active and the toyProtein / toyDimer is released. Then a second promoter is568

chosen and the process repeated, until all promoters have been evaluated. toyGenes are only expressed569

after all of them have been marked as either active or inactive. Each expressed toyGene produces one570

single toyProtein molecule. There can be more units of the same toyProtein, but only if multiple copies571

of the same toyGene are present.572

toyProteins / toyDimers not bound to any toyMetabolite are eliminated in this phase. Thus, only573

the newly expressed toyProteins and the complexes involving toyMetabolites in the input set remain. All574

these molecules interact yet again, and here is where catabolism can occur. Catabolism happens when,575

once a toyMetabolite-toyDimer complex is formed, an additional toyProtein binds to one of the units576

of the toyDimer with an energy that is lower than that of the initial toyDimer. In this case, the latter577

disassembles in favor of the new toyDimer, and in the process the toyMetabolite is broken, as already578

mentioned in Section 1.4 and Supplementary Figure S6. The two pieces of the broken toyMetabolites579

will contribute to the input set at the next time step, as will free toyProteins / toyDimers. However,580

toyProteins / toyDimers bound to toyMetabolites disappear in this phase —they are degraded—, and581

only the toyMetabolites are kept as input to the next time step. Unbound toyMetabolites are returned582

to the environment. This way, the interaction with the environment happens twice in each time step:583

at the beginning and at the end of the cycle.584
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Supplementary Figures585
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a) 31-cells tissue b) 51-cells tissue

Supplementary Figure S8: The same patterns are observed as we increase tissue size. a) All

patterns generated by toyLIFE genotypes when the tissue size is set to be 31 cells. The two numbers

above each pattern represent the pattern’s id and its abundance in genotype space. b) Same but with

51-cell tissues. The patterns are exactly the same, with the same abundances in genotype space.
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Supplementary Figure S9: There are sixteen GRNs that generate the pattern in Figure 3b. Truth

tables for all GRNs that generate the desired pattern. The number next to the label represents how

many genotypes (binary sequences of length 40) are mapped into that particular GRN. Notice the wide

variation in abundances.
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Supplementary Figure S10: Phenotypic bias is observed in the distribution of abundances at all

phenotypic levels. (a) The distribution of abundances of cellular automata (CA) follows a log-normal

law, just like the distribution of GRNs (R2 = 0.64). (b) Likewise, the distribution of abundances of

patterns can also be fitted by a log-normal distribution, although the fit is rather noisy (R2 = 0.41),

given that we only have 172 patterns to fit.
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Supplementary Figure S11: Simple phenotypes are more common in genotype space. We approxi-

mated the algorithmic complexity (K̃) of GRNs (a), cellular automata (b) and patterns (c) following the

work by Dingle et al. [29] (Methods), and plotted them against phenotype abundance (S). The dispar-

ity in lengths between the string representation of different phenotypic levels explains the difference in

magnitude in the values of K̃. Dingle et al. conjecture that many input-output maps have the property

that simple outputs (as measured by their algorithmic complexity) should be mapped by more inputs.

In our case, this would mean that simple phenotypes are more abundant in genotype space. This figure

confirms this prediction for our three phenotypic levels. Lines represent the upper bound computed

in [29], S = 2−aK̃ , with a≈ log2 N/max K̃, where N is the number of phenotypes and the maximal K̃ is

computed over all possible phenotypes (which is straightforward in our case as we know the complete

maps). GRNs and cellular automata do not always lie below the upper bound. This could be explained

because the results obtained by Dingle et al. rely on asymptotic approximations with long strings, but

the strings coding these two phenotypic levels are not very long, so asymptotic approximations may fail.
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Supplementary Figure S12: Equally fit GRNs appear as the endpoint of evolutionary simulations in

proportion to their relative abundance in genotype space. Although all sixteen GRNs are equally fit

(see main text), evolutionary simulations in which populations undergo Wright-Fisher dynamics do not

find every GRN with equal probability. On the contrary, those GRNs that are more abundant in genotype

space appear more frequently as an endpoint of our simulations, in agreement with Refs. [15, 30]. In

fact, the fraction of times a given GRN is the endpoint of the simulations is almost exactly its abundance

in genotype space relative to that of all sixteen GRNs. Linear fit is approximately y = x (R2 ≈ 1.0).
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