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Summary

A major challenge in modern biology is to understand how naturally occurring variation in DNA
sequences affects complex organismal traits through networks of intermediate molecular
phenotypes. Here, we performed deep RNA sequencing of 200 Drosophila Genetic Reference
Panel inbred lines with complete genome sequences, and mapped expression quantitative trait
loci for annotated genes, novel transcribed regions (most of which are long noncoding RNAS),
transposable elements and microbial species. We identified host variants that affect expression
of transposable elements, independent of their copy number, as well as microbiome
composition. We constructed sex-specific expression quantitative trait locus regulatory
networks. These networks are enriched for novel transcribed regions and target genes in
heterochromatin and euchromatic regions of reduced recombination, and genes regulating
transposable element expression. This study provides new insights regarding the role of natural
genetic variation in regulating gene expression and generates testable hypotheses for future

functional analyses.
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Introduction

Understanding how naturally occurring genetic variation affects variation in organismal
guantitative traits by modifying underlying molecular networks is a key challenge in modern
biology. Most traits are highly polygenic'™ and associated molecular variants have small
additive effects on trait variation®. Most of these variants are in intergenic regions, up- or down-
stream of coding regions, or in introns, and presumably play a regulatory role in modulating
gene expression.

Systems genetics analysis seeks to determine how naturally occurring molecular
variation gives rise to genetic variation in organismal phenotypes by examining genetic variation
in gene expression (expression quantitative trait loci, or eQTLs) and other intermediate
molecular phenotypes® >3, Polymorphic variants associated with variation in gene expression
are classified as cis- or trans-eQTLs depending on whether they are proximal or distal to the
gene encoding the transcript, respectively. Genetic variation in gene expression is pervasive;
cis-eQTLs can have large effects on gene expression that are detectable in small samples; and
variants associated with human diseases and quantitative traits tend to be enriched for cis-
eQTLs?>*®. eQTLs with both cis- and trans- effects can be assembled into directed
transcriptional networks of regulator and target genes*®*®. Elucidating such regulatory
transcriptional networks will facilitate understanding how the effects of individual variants
propagate through the network, and how multiple variants together regulate gene expression
and affect complex traits**>*2.

Here, we performed deep RNA sequencing of the Drosophila melanogaster Genetic
Reference Panel (DGRP) of inbred lines with complete DNA sequences'®®. We mapped eQTLs
for annotated genes, novel transcribed region (NTRs, which are largely long noncoding RNAS),

transposable elements (TEs) and microbiome composition; constructed de novo cis-trans eQTL
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gene expression networks; and evaluated associations of eQTLs and expression traits with

organismal phenotypes.

Results

We collected and sequenced ribo(-) RNA from replicate pools of young flies from each of 200
DGRP lines, separately for males and females. In total we sequenced 1.94 Terabases of RNA,
of which on average 13.4 million reads per sample uniquely aligned to the D. melanogaster
genome (Table S1). The sequences were processed through a pipeline (Figure S1) that (i)
removes adapter and rRNA sequences; (i) aligns and quantifies expressed TE sequences and
microbial transcripts; (iii) verifies the origin of each sample; and (iv) quantifies known and novel
D. melanogaster transcripts and corrects for potential alignment bias due to line-specific
sequence variation. We then analyzed normalized expression values for endogenous genes,

TEs and microbial species.

Genetic Variation in Gene Expression

We quantified expression levels of all RNA sequences that aligned to the reference genome in
each DGRP line. After elimination of sequences with low expression, we found that 12,806 of
17,097 known D. melanogaster genes (75%) were expressed consistently in young adult males
and/or females (Table S2A). In addition, we identified 4,282 novel transcribed regions (NTRS)
(Table S2B) that showed no overlap with exons on the same strand. A total of 3,846 of the
NTRs were located in introns; 290 were anti-sense to known genes, and 146 were intergenic.
Most (95.6%) of the NTRs are = 200 bp; the majority (4,149 or 96.9%) lack protein coding
potential®* (Table S2C) and thus qualify as long noncoding RNAs (IncRNAs)?*?*. These NTRs in
total represent 5.61 Mb new transcribed mature RNA sequences that eluded prior annotation

efforts. This increase is likely due to the multiple genetic backgrounds profiled in this study.
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Variation in gene expression among the DGRP lines may be confounded by variation in
alignment rate to the reference strain due to variation in DNA sequences between the DGRP
lines and the reference. Indeed, 2,735 genes (2,117 known genes and 618 NTRs) were affected
by alignment bias (Table S2D). We corrected for alignment bias, and partitioned variation in
gene expression between males and females, DGRP lines, the sex by line interaction, and
residual (environmental) terms (Table S2D), using a false discovery rate of FDR < 0.05. Similar

to previous studies®?’

, we found that gene expression is sexually dimorphic: 98% (96%) of
expressed known genes (NTRs) have a significant sex effect (Figure 1A, Table S2D). There is
genetic variation in the magnitude of sex dimorphism: 69% (10%) of expressed known genes
(NTRs) have a significant sex by line interaction (Table S2D). Therefore, we assessed genetic
variation in gene expression separately for males and females (Tables S2D, S2E), and found
that 12,151 genes (10,354 known genes and 1,797 NTRs) were genetically variable in females
(Figure 1B) and 13,819 genes (11,393 known genes and 2,426 NTRs) were genetically variable
in males (Figure 1C). These numbers of genes with significant genetic variation are much higher
than previously reported studies, which used microarrays (4,308 in females and 5,814 in males)
rather than RNA-Seq?’. Relative to tiling arrays, RNA-seq has a higher dynamic range and
greater precision in quantifying gene expression, although the results from both analyses are
positively correlated (Figure S2).

Broad sense heritabilities (proportion of phenotypic variance due to genotype
differences) ranged from H® = 0.148 — 0.986 in females and H* = 0.145 — 0.986 in males
(Figures 1B, 1C). Notably, 472 (514) of the genetically variable genes in females (number of for
males in parenthesis) were located in molecularly defined heterochromatin (2LHet, 2RHet,
3LHet, 3RHet, XHet, and YHet) and chromosome 4. While there are 6.92x (5.52x) as many
annotated genes relative to NTRs in euchromatic regions in females (males); there are 2.21 x

(3.18%) as many NTRs in heterochromatin and chromosome 4 in females (males) (Table S2G).

Thus, NTRs are highly enriched in heterochromatic regions.

5
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We used weighted gene co-expression network analysis (WGCNA)® to assess the
extent to which gene expression levels are genetically correlated in each sex (Figures 1D, 1E,
Table S3). We found 13 (15) co-expression modules in females (males). We assessed the
extent to which each module was significantly enriched® (FDR < 0.05) for gene ontology (GO)
terms and pathway and protein domain annotations (Table S3). For example, female Module 2
(149 genes) is enriched for GO terms involved in ovary function and male Module 6 (365 genes)
is enriched for biological process GO terms involved in male reproduction. Female Module 12
(88 genes) and male Modules 13 (35 genes) and 14 (165 genes) are enriched for GO terms
affecting small molecule metabolism. Female Modules 3 (26 genes), 6 (27 genes), and 7 (21
genes) and male Modules 9 (42 genes) and 12 (44 genes) are enriched for GO terms affecting
innate immunity, and female Module 13 (560 genes) is enriched for GO terms affecting

chemosensation.

Gene Expression QTLs (eQTLS)
We performed genome wide association eQTL analyses for each of the genetically variable
genes in each sex. We used ~1,932,427 million common (minor allele frequency > 0.05)
polymorphisms and accounted for effects of Wolbachia infection, polymorphic inversions and
polygenic relatedness on gene expression®®?’. We mapped 90,634 eQTLs in females and
147,412 eQTLs in males (FDR < 0.05). A total of 2,053 genes in females (1,818 known genes
and 235 NTRs) and 3,178 genes in males (2,790 known genes and 388 NTRs) were associated
with at least one significant eQTL. We defined potentially cis- and trans-regulatory eQTLs as < 1
kb and > 1 kb of their respective gene bodies. We mapped cis-eQTLs to 1,435 (2,071) genes in
females (males) (Tables S4A, S4B) and trans-eQTLs to 1,527 (2,281) genes in females (males).
We visualized the significant eQTLs by plotting the polymorphism positions on the X-

axis and the gene positions on the Y-axis such that the diagonal corresponds to cis-eQTLs and
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the off-diagonal to trans-eQTLs (Figure 2A). The eQTLs tend to cluster in LD blocks in
pericentromeric regions, where recombination is suppressed (Table S4C). Many cis-eQTLs are
also trans-eQTLs as indicated by vertical off-diagonal trans-bands. We also observed genes
associated with many eQTLs throughout the genome, visualized as horizontal off-diagonal
trans-bands (Figure 2A). In females (males), 217 (377) genes have 200 or more eQTLs, and 22
(43) genes each have greater than 1,000 eQTLs (Tables S4D, S4E). Genes with 200 or more
eQTLs are more likely to be found in heterochromatin than those with fewer than 200 eQTLs,
and are more likely to be NTRs than annotated genes (Figure 2B, Table S4F). Genes with 200
or more eQTLs that are located in euchromatin are more likely to be located in pericentromeric
regions at the border of heterochromatin where recombination is reduced® than those with

fewer eQTLs; they are also more likely to be NTRs (Figure 2A, Table S4F).

eQTL Regulatory Networks

The existence of eQTLs that are cis-eQTL for gene X and also trans-eQTL for gene Y (Tables
S5A, S5B) enables us to construct gene regulatory networks based on multifactorial variation in
a natural population. We identified 408 (794) such regulatory interactions supported by at least
one cis-trans eQTL connecting 257 (471) regulatory genes (cis end) to 251 (447) target genes
(trans end) in females (males) (Tables S5C, S5D). There are two or three large regulatory
networks in each sex, and many smaller networks (Figures S4, S5). The regulatory genes are
largely distinct between the two sexes, although many target genes are in common between
males and females (Figures 3, S3, Table S5E). Genes from the sex-specific regulatory networks
or from the common networks are not enriched for any GO terms. It is not clear from their
anatomical gene expression patterns how the sex-specificity could arise, since the majority of
these genes are expressed in multiple tissues, including the reproductive tissues of both

sexes®!,
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There are more NTRs than expected among genes with cis-trans eQTLs based on the

total number of NTRs with eQTLs among the target genes (;(f = 29.74, P =4.95E-08 in females;
;ﬁ = 60.54, P = 7.20E-15 in males) but not the regulatory genes (;gf =154,P=0.21In
females; z2 = 1.49, P = 0.22 in males). The regulatory genes tend to be located in
pericentromeric regions of reduced recombination (;(f = 17.28, P = 3.23E-5 in females; ;{f =

120.28, P = 0 in males) and target gene locations are enriched for heterochromatin and

pericentromeric regions of reduced recombination (;(f = 28.53, P = 9.21E-8 in females; ;{f =

147.78, P = 0 in males). Regulatory genes with many target genes thus tend to have multiple
cis-eQTLs in LD near the centromere, and regulate other NTRs both in heterochromatic regions
across the genome and euchromatic regions on other chromosomes (Figures 3, S3, S4, S5).
The smaller networks with fewer regulators and targets tend to consist of genes in euchromatin
in regions of normal recombination (Figures 3, S3, S4, S5; Tables S5C, S5D). Regulatory genes
often have many cis-eQTLs; a single cis-eQTL can regulate multiple target genes; and multiple
cis-eQTLs within a gene can regulate different target genes. Each gene with at least one cis-
eQTL may itself be regulated in trans by cis-eQTLs in one or more upstream genes, and the

genes regulated by a focal cis-eQTL may themselves have cis-eQTLs regulating other genes.

Genetic Variation in TE Expression

A total of 9% of the D. melanogaster genome contains TEs spanning multiple families®. Active
retrotransposon sequences are present in our RNA-seq libraries. We aligned reads to the
RepBase database of known repetitive elements®, and quantified TE RNA levels based on
normalized read counts. Overall, 1.3% of the RNA-seq reads align to RepBase. The most
abundant families of TE sequences were gypsy, copia, BEL, jockey and Mariner/Tcl elements,

but all TE families represented in RepBase were detected (Figure 4A, Table S6A).
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Line-specific differences in TE RNA levels can be driven by both differences in
underlying copy number® and differences in the rate of transcription per genomic copy. We
guantified DNA copy variation for each TE sequence (Table S6B) and used linear models to
estimate the percentage of variation in TE expression that arises from differences in copy
number (Table S6C). We then partitioned the remaining copy number-independent variation in
TE expression between sexes, DGRP lines, the line by sex interaction and residual terms
(Table S6C), using FDR < 0.05 as the significance threshold for each term in the analysis. Since
the majority (153, 79%) of TEs had a significant sex by line interaction effect, we assessed
genetic variation in TE expression for each transposon sequence separately for each sex
(Tables S6D, S6E). We observed significant genetic variation in expression for 187 (97%) TE
sequences in females (Figure 4B) and 186 (96%) TE sequences in males (Figure 4C). Broad
sense heritabilities of TE expression ranged from H? = 0.15 — 0.99 in females and H? = 0.15 —
0.98 in males (Figures 4B, 4C). Thus, there is host genetic control of expression for most D.
melanogaster TEs.

We assessed whether different TE sequences had similar patterns of expression across
the DGRP lines®, separately for males and females (Figures 4D, 4E, Tables S6F, S6G). We
found minimal correlation structure in the activity scores of different TEs (Table S6H), with the
strongest correlations between pairs of TE sequences from the same family. This suggests that

host genetic factors independently affect variation in expression of each TE family.

TE eQTLs

We mapped eQTLs for each of the TEs with genetically variable expression in females and
males (Table S7). We found 54 TEs with significant eQTLs (FDR < 0.05), 36 in females and 39
in males. A total of 20 TE sequences were expressed in both males and females; surprisingly,

16 (18) TE sequences were expressed only in females (males). The number of eQTLs per TE
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sequence ranged from 1-1,020, with on average more eQTL associations for TEs in males than
females (Tables S7A-C). Interestingly, the large numbers of eQTLs associated with some TEs
were located in LD blocks in pericentromeric regions and on the 4™ chromosome (Figure S6,
Tables S7D, S7TE). Many eQTLs for TEs expressed in both males and females overlapped
between the sexes, but typically additional eQTLs were present in males. Although there was
little clustering of expression patterns of different TE sequences, 202 (1,032) eQTLs were
associated with two or more sequences in females (males) (Tables S7F, S7G).

Many eQTLs associated with TE expression were within 1 kb of annotated genes and
NTRs. Indeed, 19.8% (17.7%) of TE eQTLs were within 1 kb of NTRs in females (males).
Known genes near TE eQTLs were enriched (FDR < 0.05) for GO categories related to
regulation of gene expression and protein binding (Table S7H). We next asked to what extent
eQTLs associated with gene expression were also associated with expression of TE
sequences. We found 1,206 eQTLs associated with 85 genes (37 known genes and 48 NTRs)
and 23 TEs in females; and 3,656 eQTLs associated with 166 genes (79 known genes and 87
NTRs) and 30 TEs in males (Figure S7, Table S8). We could thus incorporate variation in TE
expression into the cis-trans gene regulatory network via shared eQTLs (Figure 5). These
eQTLs are predominantly located in pericentromeric regions, and the genes they regulate are in

pericentromeric regions as well as heterochromatin.

Genetic Variation in Microbiome Composition

RNA samples extracted from pools of whole flies contain RNA from gut microbial communities,
and from microbes on their exoskeleton. We assessed the contribution of microbial sequences
to the RNA-seq libraries by aligning reads to a database of candidate microbial genomes (Table
S9). Wolbachia pipientis, a bacterial endosymbiont that infects ~50% of the DGRP lines?®, is the
most abundant source of expressed sequence, followed by multiple Acetobacter species and
genome assemblies (Figure 6A, Table S9). We estimated the total gene expression from each

10
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microbial species in all samples (Table S10A) and patrtitioned variation in microbial gene
expression between sexes, DGRP lines, the sex by line interaction and residual terms, using
FDR < 0.05 as the significance threshold (Table S10B). The H? of Wolbachia pipientis
abundance is extremely high (H? = 0.972), as expected. We next assessed whether the sum of
all non-Wolbachia microbial species is genetically variable after accounting for any Wolbachia
effects, and estimated H? = 0.595 (Figure 6B, Table S10B). The sex by line interaction for total
microbial gene expression was not significant, indicating that total microbial RNA is highly
correlated between males and females. We estimated the heritability of gene expression for the
122 non-Wolbachia microbial species, and found that 84 microbial species had significant
genetic variation in RNA abundance, with broad sense heritabilities ranging from H? = 0.07 —
0.90 (Figure 6C, Table S10B). Microbial species that are likely to colonize the Drosophila gut
(Acetobacter and Lactobacillus species) were among those with the highest H?.

We used WGCNAZ? to group species with similar abundance patterns based on the
average of male and female line means (Figure 6D, Tables S10C, S10D). We found three
groups of strongly correlated species, consisting primarily of the gut-related microbes
(Acetobacter and Lactobacillus species), and two additional clusters of microbes primarily
consisting of viral and fungal species that are strongly anti-correlated with the abundances of
species in the first three clusters. Thus, there is line-specific variation in the microbial
communities living in and on DGRP flies. Species which most plausibly colonize the Drosophila
gut are largely correlated across lines, with some fluctuation in the relative abundance of

Acetobacter versus Lactobacillus species.

eQTLs for Microbiome Composition
There was little genetic variation in sexual dimorphism for microbial gene expression; therefore,
we performed eQTL mapping using the average expression of males and females for each

microbial species. Four microbial species and total microbial sequence expression were

11
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associated with significant eQTLs (FDR < 0.05) (Table S11A). The sum of all microbial species
is associated with one eQTL that maps to an NTR; the expression of Borrelia coriaceae,
Acidovorax temperans and Podospora anserine map, respectively, to single eQTLs in CG2616,
CG46301, and to cic and an NTR; and Leuconostoc pseudomesenteroides expression maps to
39 variants in or near GC and nSyb (Table S11A).

We lowered the significance threshold to P < 10 to explore the extent to which common
eQTLs may control the expression of multiple microbial species that cluster together based on
the WGCNA analysis (Figure 6D). At this threshold, 1,455 eQTLs are associated with 88
microbial species and the sum of all species (Table S11B); 268 variants were associated with
expression of more than one microbial species, and five eQTLs were associated with
expression of 10 or more microbial species (Table S11C). These data suggest that there is
genetic variation in host control of microbial gene expression and that some variants have
pleiotropic effects on multiple microbial species.

We assessed whether the genes to which the eQTLs associated with variation in
microbial gene expression were enriched for GO categories (FDR < 0.05). The most highly
enriched Biological Process GO terms were related to development and morphogenesis,

including development and function of the nervous system (Table S11D).

Gene Expression and Complex Traits

To examine the relationship between variation in gene expression and variation in organismal
guantitative trait phenotypes, we chose 11 quantitative traits with published phenotypic data
(chill coma recovery time and startle response®®; starvation resistance?; day and night sleep
bout number, day and night total sleep duration, and total waking activity*>; food consumption®;
male aggression®’; phototaxis®®); and additionally measured five metabolic traits (levels of free

glucose, glycogen, free glycerol, triglyceride and protein) and three metrics of body size (body
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weight, thorax length, thorax width). All traits were quantified in the same laboratory under the
same culture conditions used in this study. The line means for all traits are given in Table S12;
guantitative genetic analyses of the metabolic and body size traits are given in Table S13; and
the most significant associations (P < 10°) from GWA analyses (separately for males and
females) for these quantitative traits based on the 200 lines for which we have gene expression
data are in Table S14.

We first assessed whether variants associated with all organismal traits were enriched
for eQTLs, as found in human studies®”*****. We found no enrichment of cis-eQTLs (P = 0.13
in females and P = 0.71 in males), trans-eQTLs (P = 0.98 in females and P = 0.28 in males) or
all eQTLs (P = 0.94 in females and P = 0.23 in males) among top GWA hits in either sex. Many
top GWA hits as well as eQTLs map to regions greater than 1kb from any gene, and may
indicate novel regulatory regions.

We next performed transcriptome wide association studies (TWAS) for individual
genetically variable transcripts for gene expression, TE sequences and microbial species, for
each of the 18 (19) genetically variable organismal phenotypes in females (males). We found
several significant (Benjamini-Hochberg FDR < 0.05) associations of transcripts with organismal
phenotypes (Table S15). These associations include a known noncoding RNA (CR46032) with
male aggression, two NTRs with male waking activity, Gbs-70E with free glucose in both sexes,
AkhR with starvation resistance in males and females, and Acidovorax temperans with male

aggression (Table S15).

Discussion

Deep RNA sequencing gives accurate estimates of gene expression of annotated genes and
can implicate novel non-coding RNAs and their regulatory interactions with annotated genes.
IncRNAs are operationally defined as encoding transcripts > 200 bp with no significant protein-
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coding potential®?*3*%4°. We have identified 4,282 novel transcribed regions, most of which are
likely IncRNAS, increasing the total number of D. melanogaster INcRNAs nearly threefold: from
2,366 to 6,648. These IncRNAs are unlikely to be artifacts since the majority are genetically
variable, and they are not randomly distributed in the genome but are preferentially located in
heterochromatic regions and in pericentromeric euchromatin bordering heterochromatin. Thus,
there is genetic variation in heterochromatic gene expression, thought to be largely
transcriptionally silent*. These heterochromatic and pericentromeric INcRNAs are regulated by
pericentromeric cis-eQTLs as well as a large number of trans-eQTLs dispersed throughout the
euchromatic genome. Genes associated with eQTLs with both cis- and trans- effects form sex-
specific networks of regulator and target genes, the largest of which is enriched for IncRNA
target genes in heterochromatin and regulator and target genes in pericentromeric euchromatin.
The considerable overlap between eQTLs associated with IncRNAs in the large networks and
TE expression recruits TEs to the network. We do not know where the TE sequences with
genetically variable expression are integrated in the genome; however, heterochromatin is
composed of largely silenced TE repeats*, raising the possibility that TEs in heterochromatin
are subject to the same regulation as other heterochromatic genes. Further work is needed to
confirm the regulatory networks derived from naturally occurring genetic variation and determine
the regulatory mechanism(s) through which the IncRNAs act?*?439404243

The first step in systems genetic analysis is to identify eQTLs associated with both gene
expression and organismal quantitative traits, for which variation in gene expression is
correlated with variation in the organismal phenotypes®>2. We did not find any such trios,
although we did find interesting transcript-trait associations. This may be because our sample
size is adequate to detect eQTLs but not QTLs affecting organismal traits, which have smaller
effects; because eQTLs need to be mapped in tissues relevant to the organismal trait; and
because there are non-linear (epistatic) relationships between QTLs for both transcripts and
organismal phenotypes. The complex and highly connected cis-trans regulatory networks
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suggest that higher order interactions need to be accommodated in systems genetic modeling,

at least at the level of gene expression.

Methods

Drosophila lines: We used 200 inbred, sequenced DGRP lines'®?, established by 20
generations of full sib inbreeding from gravid females collected at the Raleigh, NC USA
Farmer’'s Market. Genome sequences of the lines were obtained previously using the Illlumina
platform with an average of coverage of 27x. A total of 4,565,215 molecular variants (3,976,011
single/multiple nucleotide polymorphisms (SNPs/MNPs), 169,053 polymorphic insertions
(relative to the reference genome), 293,363 polymorphic deletions and 125,788 polymorphic

microsatellites) segregate in the DGRP.

Sample collection: All lines were reared on cornmeal-molasses-agar medium at 25°C, 60-75%
relative humidity and a 12-hr light-dark cycle at equal larval densities. We collected two
replicates of 25 females and 30 males per line, for a total of 800 samples. We used a strict
randomized experimental design for sample collection. We collected mated 3-5 day old flies
between 1-3 pm. We transferred the flies into empty culture vials and froze them over ice
supplemented with liquid nitrogen, and sexed the frozen flies. The samples were transferred to

2.0 ml nuclease-free microcentrifuge tubes (Ambion) and stored at -80°C until ready to process.

RNA sequencing: Total RNA was extracted with QIAzol lysis reagent (Qiagen) and the Quick-
RNA MiniPrep Zymo Research Kit (Zymo Research). Ribosomal RNA (rRNA) was depleted
from 5 ug of total RNA using the Ribo-Zero™ Gold Kit (lllumina, Inc). Depleted mRNA was
fragmented and converted to first-strand cDNA using Superscript Il reverse transcriptase
(Invitrogen). During the synthesis of second strand cDNA, dUTP instead of dTTP was

15


https://doi.org/10.1101/816579
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/816579; this version posted October 24, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

aCC-BY-NC-ND 4.0 International license.

incorporated to label the second strand cDNA. cDNA from each RNA sample was used to
produce barcoded cDNA libraries using NEXTflex™ DNA Barcodes (Bioo Scientific, Inc.) with
an lllumina TruSeq compatible protocol. Libraries were size-selected for 250 bp (insert size
~130 bp) using Agencourt Ampure XP Beads (Beckman Coulter, Inc.). Second strand DNA was
digested with Uracil-DNA Glycosylase before amplification to produce directional cDNA libraries.
Libraries were quantified using Qubit dsDNA HS Kits (Life Technologies, Inc.) and Bioanalyzer
(Agilent Technologies, Inc.) to calculate molarity. Libraries were then diluted to equal molarity
and re-quantified. A total of 50 pools of 16 libraries were made, again randomly assigning
samples to each pool. Pooled library samples were quantified again to calculate final molarity
and then denatured and diluted to 14pM. Pooled library samples were clustered on an Illumina
cBot; each pool was sequenced on one lane of lllumina Hiseq2500 using 125 bp single-read v4

chemistry.

RNA sequence analysis: Barcoded sequence reads were demultiplexed using the lllumina
pipeline v1.9. Adapter sequences were trimmed using cutadapt v1.6* and trimmed sequences
shorter than 50bp were discarded from further analysis. Trimmed sequences were then aligned
to multiple target sequence databases in the following order, using BWA v0.7.10 (MEM
algorithm with parameters ‘-v 2 —t 4')**: (1) all trimmed sequences were aligned against a
database containing the complete 5S, 18S-5p8S-2S-28S, mt:IrRNA, and mt:srRNA sequences
to filter out residual rRNA that escaped depletion during library preparation; (2) remaining
sequences were then aligned against a custom database of potential micriobiome component
species (see below) using BWA, (3) sequences that did not align to either the rRNA or
microbiome databases were aligned to all D. melanogaster sequences in RepBase®. The
remaining sequences that did not align to any of the databases above were then aligned to the

D. melanogaster genome (BDGP5) and known transcriptome (FlyBase v5.57) using STAR
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v2.4.0e*. Libraries with fewer than 5 million reads uniquely aligned to the D. melanogaster

reference genome were re-sequenced to achieve sufficient read depth.

Generation of microbiome database: We first performed a preliminary alignment of RNA-seq
reads by filtering only rRNA sequences, and then aligning directly to the D. melanogaster
genome using the tools and parameters described above. Sequences that did not align to the
rRNA database or D. melanogaster reference genome were then analyzed with Trinity v2.1.1 to
perform de novo assembly of longer sequences from the short reads. Assembled sequences >
1kb in length were then searched against the refseq_genomic database (downloaded from
NCBI on 1/27/16) using BLAST. We then compiled a list of all refseq genomes that were found
as a top BLAST hit for at least two assembled sequences. We compiled all fasta files for each of

these refseq genomes into a single database for alignment with BWA.

Genotype validation: To validate the DGRP line assigned to each RNA-seq sample, we
identified single nucleotide polymorphisms (SNPs) from the RNA-seq reads that aligned to the
D. melanogaster reference genome using STAR as described above. We retained only those
SNP calls covered by at least 3 reads and at least 75% of all reads supporting the major
genotype (note that DGRP lines are inbred and therefore the majority of SNPs are
homozygous). This filtering process produced >400k usable SNPs per sample, primarily located
in transcribed regions of the genome. We then performed two validation tests of the DGRP line
assigned to each sample X by comparing to the previously published genotype calls for each
DGRP line (http://dgrp2.gnets.ncsu.edu/data/website/dgrp2.tgeno?). First, we computed the
“line mean error” (LME) for each line as follows: given the set of homozygous SNPs from line Y
that have sufficient coverage (described above) in sample X, LME(X,Y) = # of mismatching
SNPs / total # of comparable SNPs. We confirmed that for each sample X, the DGRP line Yy,
labeled for that samples produced the minimum value of LME(X,Y) as compared to all other
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possible line assignments Y, and further confirmed that LME(X,yi.p) Was below 1%. Second,
we performed competitive tests between the labeled line Y4, and each possible alternate line
Yar. Under this test, we considered only the SNPs that are homozygous for different genotypes
in Yap and Yy (i.€., only the segregating SNPs for the two lines) and which have sufficient
coverage in sample X. We then computed the “line error ratio” (LER) = # of SNPs matching Y,/
# of SNPs matching Y. We confirmed that for each sample X, the lowest LER for any Y,; was
> 1 (i.e., the majority of SNP calls always supported the labeled line compared to any alternative

line).

Inference of novel transcripts: We constructed a de novo transcriptome for each individual
sample by inputting the RNA-seq reads alignhed to the D. melanogaster reference genome into
Cufflinks v2.2.1*". We also considered the novel transcribed regions (NTRs) identified in a
previous study based on unstranded pooled RNA sequencing of the DGRP lines?’. However,
the previously published data do not provide strand-specific signal, while our current RNA-seq
data uses a strand-specific library preparation. Therefore, we reassigned the strand for each of
the previously published NTRs that was supported by the greater number of total aligned reads
across all samples. We then merged all de novo sample transcriptomes and the previously
published NTRs using the cuffmerge tool included with Cufflinks v2.2.1, then removed all
merged transcript models with any exon overlapping on the same strand any exon in the known
D. melanogaster transcriptome. We defined the known transcriptome here as all gene models in
FlyBase v5.57 plus all subsequently added gene models in FlyBase v6.11 to account for
recently discovered INCRNA sequences. Thus, the final output of this analysis was a set of
NTRs constructed from both our current RNA-seq data and previously published pooled RNA-

seq data that do not overlap any known gene exons on the same strand.

18


https://doi.org/10.1101/816579
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/816579; this version posted October 24, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

aCC-BY-NC-ND 4.0 International license.

Gene expression estimation: Read counts for individual microbial species were computed as
all reads aligning to any sequence in any genome for any strain of that species. Reads aligning
to multiple species were ignored for individual species read counts. We also aligned
microbiome-aligning reads to the D. melanogaster genome, and removed all reads that aligned
to both microbial and D. melanogaster sequences before computing read counts, to account for
several domains which are highly conserved between microbial and metazoan species. Read
counts were computed for transposon sequences by computing the number of reads uniquely
aligned to each transposon sequence in RepBase. Highly homologous sequences were
grouped together for computing transposon read counts. Read counts were computed for
known and novel gene models using HTSeg-count*® with the ‘intersection-nonempty’
assignment method. Tabulated read counts for each expression feature type (microbiome,
transposon, endogenous genes) were then normalized across all samples using EdgeR*® as
follows. First, genes with low expression overall (<10 aligned reads in >75% of the libraries)
were excluded from the analysis. Library sizes were re-computed as the sum of reads assigned
to the remaining genes, and further normalized using the Trimmed Mean of M-values (TMM)
method®. At this point, we retained only genes (known or novel) whose expression in both
biological replicates was above an empirical threshold in more than 200 line-sex combinations
(400 samples total). This criterion retains genes expressed in only one sex. The threshold was
determined by fitting all log2 transformed FPKM expression data points using a 2-component
Gaussian mixture model and finding the expression value (FPKM = 0.280263) where the
posterior probability of being in the lower expression component is 0.95. Genes on chrU and
chrUextra were also removed. We further adjusted transposon expression estimates to account
for differences in transposon copy number across lines by fitting a linear model: RNA ~ DNA +
€, where RNA = the normalized log2(RNA-seq read count); and DNA = normalized log2(DNA
read count) derived from the previously published DNA-seq data for each DGRP line®™. After
fitting the linear model for each transposon sequence, ¢ estimates the relative transcription rate
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in each line independent of copy humber, and was used as the adjusted transposon expression
for all subsequent analysis. We further adjusted endogenous gene expression values by
estimating and removing the effect of alignment bias resulting from higher rates of non-
reference variants clustering in some lines. We computed the alignment bias score A(g,L)
defined as the number of non-reference nucleotides per kb in all exons of gene g in DGRP line
L, based on the previous map of genomic variation in the DGRP?. We then fit a linear model for
each endogenous gene: Y = A + ¢, where Y is the normalized expression profile for gene g after
the read counting and EdgeR normalization described above. After fitting these linear models, ¢
represents the alignment bias-corrected expression, and was used as the normalized gene

expression in all subsequent analysis.

Genetics of gene expression: For each class of expression features (endogenous genes,
transposons, microbiome), we fit mixed-effect models to the gene expression data
corresponding to: Y =S+ W + WxS + L + LXS + ¢, where Y is the observed log2(normalized
read count), S is sex, W is Wobachia infection status, WxS is Wolbachia by sex interaction, L is
DGRP line, LxS is the line by sex interaction and ¢ is the residual error. We also performed
reduced analyses (Y =W + L + ¢) independently for males and females. We identified
genetically variable transcripts as those that passed a 5% FDR threshold (based on Benjamini-
Hochberg®" corrected P-values) for the L and/or LxS terms. We computed the broad sense
heritabilities (H?) for each gene expression trait separately for males and females as H? =
o?/(cf + ¢2), where o7 and o? are, respectively, the among line and within line variance

components.

Clustering by genetic correlation: For each feature type (microbiome, transposons,
endogenous genes), we clustered line means using the WGCNA R package v1.51? as follows.

Only genes with sufficient average expression (Log2 FPKM > 0) and genetic variance (line
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mean variance > 0.05) were considered in these analyses. First, the Pearson correlation
coefficient for every pair of line means, the soft-power threshold was computed using the
pickSoftThreshold function, and used to convert the correlation matrix to an adjacency matrix
with approximately scale-free connectivity. The adjacency matrix was then converted to a
dissimilarity matrix based on the topological overlap map?®. Expression features were then
clustered using hierarchical clustering (hclust function) based on the dissimilarity matrix, and
split into distinct modules using the cutreeDynamic with deepSplit=4 and minClusterSize=20 (for
endogenous gene expression, minClusterSize=4 was used for microbiome and transposon
clustering). Module eigengenes were computed for each cluster, and highly similar clusters
were combined using the mergeCloseModules function with cutHeight = 0.25. Expression
features assigned to module 0 (insufficient similarity) were discarded. Modules consisting of
>1,000 features were also discarded as insufficiently split into distinct modules. For each
expression feature, the degree was computed as the overage topological overlap with all other
features assigned to the same module. The average degree of each module was computed as
the mean degree across all features in the module. Modules were sorted by average degree,

such that module 1 has the highest average degree in each analysis.

Gene set enrichment analyses: Lists of known gene IDs (FlyBase FBgn accessions) were
uploaded to FlyMine® or Panther® for functional enrichment. For analysis of gene lists from
WGCNA clusters, the list of known genes input to WGCNA was used as the background set, to

correct for any biases inherent to highly heritable expression patterns in general.

Expression QTL (eQTL) mapping: For each gene expression feature, we performed eQTL
analysis as previously described?. Briefly, we adjusted mean expression values in each sex for
fixed effects of Wolbachia infection status, five major polymorphic inversions (In2L(t), In2R(NS),
IN3R(P), In3R(K), In3R(M0)), and the first 10 principal components of the genetic relatedness
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matrix of all DGRP lines using a linear model. We mapped QTLs for the adjusted line means
using PLINK®® against 1,932,427 SNPs with major allele frequency > 0.05 and missing
genotypes in fewer than 25% of the 200 DGRP lines profiled by RNA-seq. We computed FDR of
eQTL calls by comparing observed eQTL P-value distributions to those obtained from running
PLINK on 100 permutations of the observed line means for each expression feature. At any
given P-value cut-off X, the estimated false positive rate of eQTLs for a specific gene
expression feature is the average number of eQTLs with P-value < X across all permutations.
The FDR at the same P-value is then computed as the estimated false positive rate divided by
the number of eQTLs with P-value < X in the observed data. Using this formulation of FDR, we
identified the unadjusted P-value cut-off corresponding to 5% FDR for each gene expression
feature. No further model selection was performed, however we classified eQTLs as being
either cis-eQTLs (within 1kb of the gene body for the associated expression feature) or trans-

eQTLs (> 1 kb of the gene body).

Construction of eQTL networks: We then constructed regulatory eQTL networks based on
individual SNPs which were called as both cis- and trans-eQTLs for multiple expression
features. Specifically, we assign a directed edge X — Y if there is at least one variant that is
both a cis-eQTL for gene X (defined as within 1 kb of gene X) and a trans-eQTL for gene Y at
5% FDR. We then broke all loops in the regulatory network for each sex by dropping the edge in
each loop with the highest minimum P-value from all associated SNPs to create a directed,

acyclic network.

Quantitative traits: We retrieved phenotypic data documented from previous publications on
the same fly lines for male aggression®’; chill coma recovery time and startle response’®; food
consumption®®; phototaxis®; sleep traits®* (day and night bout number, day and night total sleep

duration, total waking activity); and starvation resistance™.
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To measure body weight and size, we collected 10 replicates of 10 flies per line and sex
into pre-weighed 1.7 ml tubes, and weighed and flash froze them for downstream analyses.
Virgin flies were used to avoid body weight variation due to variation in egg production. In
addition we measured thorax length and thorax width as metrics for body size.

Frozen flies were homogenized in 250 uL Dulbecco’s phosphate-buffered saline, and
after gentle centrifugation supernatants were collected for measurements of free glucose,
glycogen, free glycerol, triglyceride and total protein (further diluted 10 fold). For free glucose
and glycogen, samples were denatured at 95°C for 25 minutes to prevent glycogenolysis.
Measurements were performed following protocols provided by the Glycogen
Colorimetric/Fluorometric Assay Kit (BioVision Inc.). For free glycerol and triglyceride, we used
the Serum Triglyceride Determination Kit (Sigma Aldrich Inc.), and incubated samples with the
Triglyceride Reagent for 1 hour at 37°C. For total protein measurement, we used the Qubit

Protein Assay Kit (Thermo Fisher Scientific Inc.).

Quantitative trait genetic parameters: We used mixed model, factorial ANOVAs (Y =S+ L +
LxS + Rep(L) + SxRep(L) + ¢, to partition variation of the quantitative traits between sexes (S),
DGRP lines (L) and replicate vials within lines (Rep). Broad sense heritabilities were estimated
as H? = (o} + 02)/(cf + 0%, + 02), where o7, 0%, and o2 are, respectively, the among line, sex

by line and within line variance components.

eQTL-GWA enrichment analysis: We performed GWA analyses for all quantitative traits,
separately for females and males. All phenotypes (line means) were first adjusted for the effect
of Wolbachia infection and major polymorphic inversions using a linear model. The residuals
(plus the intercept) from this analysis were then used as phenotype in a linear mixed model to
test for the effect of each common variant individually, while adjusting for sample structure using

a genomic relationship matrix (GRM), as implemented in GCTA-MLMA®. The GRM was built as
23
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@ where W is a matrix of centered and scaled genotypes for the 200 lines and p is the total

number of genetic variants.

For each trait and sex, variants with P < 10™ were retained for downstream analysis. We
then combined the lists of variants associated with each trait, separately for females and males,
to obtain a single list of unique variants (i.e., no duplicates) associated with any of the traits of
interest. The enrichment analysis proceeded as described in Ref. 14, within each sex. Briefly,
GWAS hits were divided into minor allele frequency bins of width equal to 0.05. Then, an equal
number of common variants (which may or may not have included actual GWAS hits) per bin
were sampled at random and the overlap with eQTLs was calculated. This procedure was
repeated 10,000 times and an empirical P-value for the enrichment was calculated as the
number of replicates where the overlap between randomly sampled variants and eQTLs was
greater than or equal to the observed overlap between GWAS hits and eQTLs over the total

number of replicates.

Association of expression and quantitative traits: A transcriptome-wide association study
(TWAS), i.e., regressing the phenotype on each gene’s expression level, was performed for
each sex separately for each quantitative trait. We developed a method that accounts for
structure present in the transcriptome due correlations between transcripts. This was achieved
by fitting a linear mixed model of the type: y = 1u + wp + t + e, where y = n-vector of mean
phenotypic values for n lines, x = fixed population mean effect, w = n-vector of the tested gene’s
centered and scaled expression level, g = fixed effect of the gene, t = n-vector of random
transcriptomic line effect (t ~N(0, T¢%)), and e = n-vector of random error (e ~N(0, 16%)).

The key term in the model that accounts for sample structure is T, the transcriptomic

w-w~'

relationship matrix (TRM). The TRM was computed as , Where W' is a matrix of centered

and scaled gene expression levels for the 200 lines, excluding the gene tested to maximize the
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power to find an association®, and p is the total number of genes. The TRM in TWAS has
similar role to the GRM in GWAS.
The effect of each gene’s expression level on the phenotype was tested using a Wald

[))2
(SE(R))°

test of the form

~x?. Raw P-values and Benjamini-Hochberg FDR-corrected P-values®

were computed.

The phenotypes were adjusted for the effects of Wolbachia and major polymorphic
inversions as described in the previous section. Because the phenotypes were adjusted, we did
not adjust gene expression in this analysis to avoid spurious associations due to adjustment on
both sides of the equation.

We also performed similar associations of quantitative traits with TEs and microbial gene
expression, using the same models as for TWAS but substituting TE and microbial expression
for gene expression levels. Quantitative trait phenotypes were adjusted for the effects of
Wolbachia and major polymorphic inversions but the TE and microbial expression data were
not. The TE analysis was performed for males and females separately, while sex-pooled
microbe expression data was used with female or male quantitative trait phenotypes since

microbial gene expression was not sex-specific.

Data Availability: All RNA sequence data have been deposited in GEO (accession

GSE117850). The DGRP lines are available from the Bloomington Drosophila Stock Center.
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Figure 1| Genetic variation of gene expression in the DGRP. (A) Sexual dimorphism of gene
expression. Red (blue) indicates significant up-regulation in females (males). (B) Distribution of
H? estimates for annotated genes and NTRs in females. (C) Distribution of H? estimates for
annotated genes and NTRs in males. (D) WGCNA modules for annotated genes and NTRs in
females. (E) WGCNA modules for annotated genes and NTRs in males. Heatmaps show the
pairwise correlation of all genes in each module, sorted by average connectivity, with the most
tightly connected module at the top left.
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1 Figure 2| Genomic location of eQTLs for gene expression and genes they regulate. eQTL chromosome positions (bp) are given
2 on the X-axis, and the genes with which they are associated on the Y-axis. Red points denote female-specific eQTLs, blue indicates
3  male-specific eQTLs, and black shows eQTLs shared by males and females. (A) Euchromatic genes. (B) Heterochromatic genes.
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CONOULTPEWN -

Figure 3| Large cis-trans eQTL genetic network in females and males. Node interior colors indicate genomic location of genes
(yellow: euchromatic regions with normal recombination; gray: euchromatic regions with reduced recombination; blue:
heterochomatin). Node border colors denote annotated gene (gray) or NTR (red). Node shape indicates whether a gene is a
regulator and/or target (triangles: regulator only; squares: target only; circles: both regulator and target). The node size indicates the
number of node connections. Arrows on the edges point to the target. Edges are color coded to show female-specific regulation
(red), male-specific regulation (blue) and regulation common to both sexes (black).
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Figure 4| Genetic variation of TE expression in the DGRP. (A) Total signal for each TE
family, summed over all individual transposon sequences and averaged across all DGRP lines,
sex, and replicates. (B) Distribution of copy number independent H? estimates for TE sequences
in females. (C) Distribution of copy number independent H? estimates for TE sequences in
males. (D) WGCNA modules of TEs for females. (E) WGCNA modules of TEs for males.
Heatmaps are depicted as in Figure 1. TE sequences not assigned to any module are included
at the bottom right.
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1  Figure 5| TE genetic regulatory network. Symbols and color-coding are as for Figure 3. Black squares denote TE sequences.
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Figure 6] Genetic variation of microbiome composition. (A) The proportion of microbiome
signal in RNA-seq libraries aligned to species in each genus or viral group. (B) Line means of
total microbial signal (excluding Wolbachia). (C) Distribution of H? estimates for individual
microbe species. (D) WGCNA modules for microbial species. Heatmaps are depicted as in
Figure 1. Species not assigned to any module are included at the bottom right.
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1 Figure S1| Schematic of the bioinformatics pipeline used for RNAseq analysis.
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WN =

Figure S2| Comparison of RNA-seq and tiling arrays. Scatter plots show the broad-sense heritability (H?) estimates from RNA-seq
in this study compared to tiling array data®®. (A) Female gene expression (r = 0.56, P < 1E-15). (B) Male gene expression (r = 0.55, P
= 1E-15).
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Figure S3| Small cis-trans eQTL genetic networks in females and males. Symbols and
color coding are as in Figure 3.
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1  Figure S4| Female cis-trans eQTL genetic network. Symbols and color-coding are as for
2 Figure 3. (A) Network 1 and 2. (B) Other networks.
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Figure S5| Male cis-trans eQTL genetic network. Symbols and color-coding are as for Figure 3. (A) Networks 1-3. (B) Other
networks.
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Figure S6| Genomic location of eQTLs for TE expression and associated TEs. eQTL
chromosome positions (bp) are given on the X-axis, and the TEs with which they are associated
on the Y-axis. Red points denote female-specific eQTLs, blue indicates male-specific eQTLS,
and black shows eQTLs shared by males and females. (A) Chromosome 2. (B) Chromosome 3.
C) Chromosome X. (D) Chromosome 4.
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Figure S7| eQTL overlap between genes and TEs. eQTL positions are given on the X-axes,
and the genes with which they are associated on the Y-axes. Red points denote female-specific
eQTLs, blue indicates male-specific eQTLs, and black shows eQTLs shared by males and

females. (A) Chromosome 2. (B) Chromosome 3. (C) Chromosome 4.
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Supplementary Table Captions

Table S1| Sequencing and alignment statistics for 800 RNA-seq samples. Column legends
are as follows. “Sample Name” format is DGRP Line Number, Sex (F = female, M = male) and
Replicate (1 or 2). “Number of Sequencing Runs” denotes the number of sequencing runs in
which the original sample library was sequenced in order to achieve sufficient sequencing
depth. “Library Barcode” gives the lllumina barcode used for multiplex sequencing. “Total Reads
Sequenced” gives the total reads in the raw fastq file generated by the lllumina Casava pipeline
(after internal quality filtering). “Reads Removed by CutAdapt” and “% Reads Removed by
CutAdapt” give the number and percent, respectively of reads removed by initial filtering with
CutAdapt. “Reads Aligned to rRNA” and “% Reads Aligned to rRNA” give the number and
percent, respectively, of reads identified as rRNA contamination by BWA. “Reads Aligned to
Microbiome” and “% Reads Aligned to Microbiome” give the number and percent, respectively
of reads aligned to the microbiome database by BWA. “Reads Aligned to RepBase” and “%
Reads Aligned to RepBase” give the number and percent, respectively of reads aligned to
RepBase by BWA. “Reads Aligned to D. melanogaster Genome” and “% Reads Aligned to D.
melanogaster Genome” give the number and percent, respectively of reads uniquely aligned to

the D. melanogaster reference genome by STAR.

Table S2| Gene expression analyses. (A) Mean expression (Log2 normalized FPKM values)
for females and males across all DGRP lines for each known gene model from FlyBase. (B)
Genomic coordinates, classification, and mean expression (Log2 normalized FPKM values) for
females and males across all DGRP lines for each novel transcribed region (NTR). (C) Coding
potential prediction of NTRs. (D) Results of pooled sex mixed-effect models run for all
expressed gene profiles, including alignment bias estimates. (E) Results of female-only mixed-
effect models for all expressed gene profiles, including alignment bias estimates. (F) Results of
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male-only mixed-effect models for all expressed gene profiles, including alignment bias
estimates. (G) Chromosomal locations of genetically variable annotated genes (FBgn) and

NTRs (XLOC).

Table S3| Modules of genetically correlated gene expression. WGCNA modules identified
from within-sex line means of genetically variable gene expression levels, including the number
of NTRs in each module; significantly enriched (5% FDR) Gene Ontology terms; Kegg and
Reactome pathway membership; and Interpro protein domain annotation for known genes in
each module, based on (A) female gene expression line means and (B) male gene expression

line means.

Table S4| Gene eQTL analyses. (A) Female cis-eQTLs. (B) Male cis-eQTLs. Note that
coordinates are given for Release 5 such that boundaries can be defined according to
recombination map (see C). Release 6 coordinates are given in Table S2A. (C) Statistical tests
for eQTL clustering, by chromosome. “Middle” denotes euchromatic regions with normal
recombination and “edge” denotes euchromatic regions with reduced recombination according
to Fiston-Lavier and Petrov’s Drosophila melanogaster recombination rate calculator
(http://petrov.stanford.edu/cgi-bin/recombination-rates_updateR5.plPetrov ref). (D). Numbers of
eQTLs per gene (females). (E) Numbers of eQTLs per gene (males). (F) Statistical tests for

enrichment for genes with more than 200 eQTLs and those with 199 or fewer eQTLSs.

Table S5| cis-trans eQTL networks. (A) Female genes with cis- and trans-eQTLs. (B) Male

genes with cis- and trans-eQTLs. (C) Female cis-trans eQTL networks. (D) Male cis-trans eQTL

networks. (E) Overlap of genes in cis-trans eQTLs networks in males and females.
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Table S6| TE expression analyses. (A) Log2 normalized RPM values for reads from each
DGRP RNA-seq sample (columns) uniquely aligning to each known TE sequence in the D.
melanogaster portion of RepBase. (B) Log2 normalized RPM values for reads from each DGRP
line DNA-seq sample (columns) uniquely aligning to each known TE sequence. (C) Results of
pooled sex mixed-effect models run for all TE sequences profiles in (A), including DNA copy
number effects based on line profiles in (B), and copy number-independent line effects and line
by sex interactions. (D) Results of female-only mixed-effect models for all TE sequences,
including DNA copy number effects and copy number-independent line effects. (E) Results of
male-only mixed-effect models for all TE sequences, including DNA copy nhumber effects and
copy number-independent line effects. (F) Female line means of copy-number independent
effects inferred from the mixed-effect models in (D), for all TE sequences with significant LINE
effects at 5% FDR threshold. (G) Male line means of copy-number independent effects inferred
from the mixed-effect models in (E), for all TE sequences with significant LINE effects at 5%
FDR threshold. (H) Modules of genetically correlated TE sequence expression, based on line

means in (F) and (G), identified by WGCNA.

Table S7| TE eQTL analyses. (A) Female TE eQTLs. (B) Male TE eQTLs. (C) Summary of
eQTLs by TE sequence. (D) Statistical tests by TE sequence for enrichment of eQTLs in
euchromatic regions of normal recombination (“middle”) and pericentromeric euchromatin in
which recombination is suppressed (“edge”), based on Fiston-Lavier and Petrov’s Drosophila
melanogaster recombination rate calculator (http://petrov.stanford.edu/cgi-bin/recombination-
rates_updateR5.plPetrov ref). (E) Statistical tests by chromosome for enrichment of TE eQTLsS
in euchromatic regions of normal recombination (“middle”) and pericentromeric euchromatin in
which recombination is suppressed (“edge”), based on Fiston-Lavier and Petrov’s Drosophila
melanogaster recombination rate calculator (http://petrov.stanford.edu/cgi-bin/recombination-
rates_updateR5.plPetrov ref). (F) Female eQTLs associated with expression of multiple TE
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sequences. (G) Male eQTLs associated with expression of multiple TE sequences. (H) GO

enrichment for genes with eQTLs associated with TE expression.

Table S8| eQTLs associated with genes and TEs. (A) Females. (B) Males.

Table S9| Microbial species detected in DGRP RNA-seq libraries. For each individual
species, the genus is noted (where applicable), and the NCBI Taxonomic ID and Refseq
genome assembly accession numbers are given for all genome assemblies included. Note that
for some species there are multiple Taxonomic IDs (multiple known strains) and/or multiple
genome assemblies available. The last column provides the total number of reads uniquely
aligned to each microbial species summed across all DGRP RNA-seq samples, after removing
all reads that align ambiguously to multiple microbial species or align to both microbial genomes

and the assembled chromosomes of the D. melanogaster genome.

Table S10| Microbial RNA expression analyses. (A) Log2 normalized RPM (reads per million)
values for reads from each DGRP RNA-seqg sample (columns) uniquely aligning to each
microbial species (rows). For Aspergillus terreus and Malassezia globosa, the majority of reads
aligned to homologous regions of both species, and therefore these two species were combined
for the purpose of this analysis. (B) Results of pooled sex mixed-effect models run for all
species profiles in (A). For Wolbachia pipientis, a model was run without an additional factor for
known Wolbachia infection status. For all other individual species, P-values were corrected for
multiple testing using the Benjamini-Hochberg method and the corrected P-values are noted in
corresponding FDR columns. (C) Line means, averaged across males and females, inferred
from the mixed-effect models in (B), for all species with significant Line effects at a 5% FDR
threshold. (D) Modules of genetically correlated microbial species, based on line means in (C),
identified by WGCNA.
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Table S11| eQTLs for microbial species. (A) eQTLs for microbial species (FDR < 0.05). (B)
eQTLs for microbial species (P < 10). (C) eQTLs associated with multiple microbial species (P

< 10”®). (D) GO enrichment for genes with eQTLs associated (P < 10®) with microbe expression.

Table S12| Mean quantitative trait values for each DGRP line. (A) Females. (B) Males.

Table S13] ANOVA results for metabolic and body size traits.

Table S14| Most significant (P < 10®) variants associated with quantitative traits from

GWA analyses. Variants highlighted in green are also eQTLs for gene expression. (A) Males.

(B) Females.

Table S15| Results of TWAS analyses. Highlighted cells have transcript-trait associations with
FDR < 0.05. (A) Male genes (P < 10°). (B) Female genes (P < 10°). (C) Male TEs (P < 0.05).
(D) Female TEs (P < 0.05). (E) Male microbial species (P < 0.05). (F) Female microbial species

(P <0.05).
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