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Summary 1 

 2 

A major challenge in modern biology is to understand how naturally occurring variation in DNA 3 

sequences affects complex organismal traits through networks of intermediate molecular 4 

phenotypes. Here, we performed deep RNA sequencing of 200 Drosophila Genetic Reference 5 

Panel inbred lines with complete genome sequences, and mapped expression quantitative trait 6 

loci for annotated genes, novel transcribed regions (most of which are long noncoding RNAs), 7 

transposable elements and microbial species. We identified host variants that affect expression 8 

of transposable elements, independent of their copy number, as well as microbiome 9 

composition. We constructed sex-specific expression quantitative trait locus regulatory 10 

networks. These networks are enriched for novel transcribed regions and target genes in 11 

heterochromatin and euchromatic regions of reduced recombination, and genes regulating 12 

transposable element expression. This study provides new insights regarding the role of natural 13 

genetic variation in regulating gene expression and generates testable hypotheses for future 14 

functional analyses.    15 
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Introduction 1 

 2 

Understanding how naturally occurring genetic variation affects variation in organismal 3 

quantitative traits by modifying underlying molecular networks is a key challenge in modern 4 

biology. Most traits are highly polygenic1-3 and associated molecular variants have small 5 

additive effects on trait variation4. Most of these variants are in intergenic regions, up- or down-6 

stream of coding regions, or in introns, and presumably play a regulatory role in modulating 7 

gene expression.  8 

 Systems genetics analysis seeks to determine how naturally occurring molecular 9 

variation gives rise to genetic variation in organismal phenotypes by examining genetic variation 10 

in gene expression (expression quantitative trait loci, or eQTLs) and other intermediate 11 

molecular phenotypes2, 5-13. Polymorphic variants associated with variation in gene expression 12 

are classified as cis- or trans-eQTLs depending on whether they are proximal or distal to the 13 

gene encoding the transcript, respectively. Genetic variation in gene expression is pervasive; 14 

cis-eQTLs can have large effects on gene expression that are detectable in small samples; and 15 

variants associated with human diseases and quantitative traits tend to be enriched for cis-16 

eQTLs2, 5-15. eQTLs with both cis- and trans- effects can be assembled into directed 17 

transcriptional networks of regulator and target genes16-18. Elucidating such regulatory 18 

transcriptional networks will facilitate understanding how the effects of individual variants 19 

propagate through the network, and how multiple variants together regulate gene expression 20 

and affect complex traits15-18.  21 

 Here, we performed deep RNA sequencing of the Drosophila melanogaster Genetic 22 

Reference Panel (DGRP) of inbred lines with complete DNA sequences19,20. We mapped eQTLs 23 

for annotated genes, novel transcribed region (NTRs, which are largely long noncoding RNAs), 24 

transposable elements (TEs) and microbiome composition; constructed de novo cis-trans eQTL 25 
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gene expression networks; and evaluated associations of eQTLs and expression traits with 1 

organismal phenotypes.  2 

 3 

Results 4 

 5 

We collected and sequenced ribo(-) RNA from replicate pools of young flies from each of 200 6 

DGRP lines, separately for males and females. In total we sequenced 1.94 Terabases of RNA, 7 

of which on average 13.4 million reads per sample uniquely aligned to the D. melanogaster 8 

genome (Table S1). The sequences were processed through a pipeline (Figure S1) that (i) 9 

removes adapter and rRNA sequences; (ii) aligns and quantifies expressed TE sequences and 10 

microbial transcripts; (iii) verifies the origin of each sample; and (iv) quantifies known and novel 11 

D. melanogaster transcripts and corrects for potential alignment bias due to line-specific 12 

sequence variation. We then analyzed normalized expression values for endogenous genes, 13 

TEs and microbial species. 14 

 15 

Genetic Variation in Gene Expression 16 

We quantified expression levels of all RNA sequences that aligned to the reference genome in 17 

each DGRP line. After elimination of sequences with low expression, we found that 12,806 of 18 

17,097 known D. melanogaster genes (75%) were expressed consistently in young adult males 19 

and/or females (Table S2A). In addition, we identified 4,282 novel transcribed regions (NTRs) 20 

(Table S2B) that showed no overlap with exons on the same strand. A total of 3,846 of the 21 

NTRs were located in introns; 290 were anti-sense to known genes, and 146 were intergenic. 22 

Most (95.6%) of the NTRs are ≥ 200 bp; the majority (4,149 or 96.9%) lack protein coding 23 

potential21 (Table S2C) and thus qualify as long noncoding RNAs (lncRNAs)22-24. These NTRs in 24 

total represent 5.61 Mb new transcribed mature RNA sequences that eluded prior annotation 25 

efforts. This increase is likely due to the multiple genetic backgrounds profiled in this study. 26 
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 Variation in gene expression among the DGRP lines may be confounded by variation in 1 

alignment rate to the reference strain due to variation in DNA sequences between the DGRP 2 

lines and the reference. Indeed, 2,735 genes (2,117 known genes and 618 NTRs) were affected 3 

by alignment bias (Table S2D). We corrected for alignment bias, and partitioned variation in 4 

gene expression between males and females, DGRP lines, the sex by line interaction, and 5 

residual (environmental) terms (Table S2D), using a false discovery rate of FDR  0.05. Similar 6 

to previous studies25-27, we found that gene expression is sexually dimorphic: 98% (96%) of 7 

expressed known genes (NTRs) have a significant sex effect (Figure 1A, Table S2D). There is 8 

genetic variation in the magnitude of sex dimorphism: 69% (10%) of expressed known genes 9 

(NTRs) have a significant sex by line interaction (Table S2D). Therefore, we assessed genetic 10 

variation in gene expression separately for males and females (Tables S2D, S2E), and found 11 

that 12,151 genes (10,354 known genes and 1,797 NTRs) were genetically variable in females 12 

(Figure 1B) and 13,819 genes (11,393 known genes and 2,426 NTRs) were genetically variable 13 

in males (Figure 1C). These numbers of genes with significant genetic variation are much higher 14 

than previously reported studies, which used microarrays (4,308 in females and 5,814 in males) 15 

rather than RNA-Seq27. Relative to tiling arrays, RNA-seq has a higher dynamic range and 16 

greater precision in quantifying gene expression, although the results from both analyses are 17 

positively correlated (Figure S2).  18 

 Broad sense heritabilities (proportion of phenotypic variance due to genotype 19 

differences) ranged from H2 = 0.148 – 0.986 in females and H2 = 0.145 – 0.986 in males 20 

(Figures 1B, 1C). Notably, 472 (514) of the genetically variable genes in females (number of for 21 

males in parenthesis) were located in molecularly defined heterochromatin (2LHet, 2RHet, 22 

3LHet, 3RHet, XHet, and YHet) and chromosome 4. While there are 6.92× (5.52×) as many 23 

annotated genes relative to NTRs in euchromatic regions in females (males); there are 2.21 × 24 

(3.18×) as many NTRs in heterochromatin and chromosome 4 in females (males) (Table S2G). 25 

Thus, NTRs are highly enriched in heterochromatic regions. 26 
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 We used weighted gene co-expression network analysis (WGCNA)28 to assess the 1 

extent to which gene expression levels are genetically correlated in each sex (Figures 1D, 1E, 2 

Table S3). We found 13 (15) co-expression modules in females (males). We assessed the 3 

extent to which each module was significantly enriched29 (FDR  0.05) for gene ontology (GO) 4 

terms and pathway and protein domain annotations (Table S3). For example, female Module 2 5 

(149 genes) is enriched for GO terms involved in ovary function and male Module 6 (365 genes) 6 

is enriched for biological process GO terms involved in male reproduction. Female Module 12 7 

(88 genes) and male Modules 13 (35 genes) and 14 (165 genes) are enriched for GO terms 8 

affecting small molecule metabolism. Female Modules 3 (26 genes), 6 (27 genes), and 7 (21 9 

genes) and male Modules 9 (42 genes) and 12 (44 genes) are enriched for GO terms affecting 10 

innate immunity, and female Module 13 (560 genes) is enriched for GO terms affecting 11 

chemosensation.  12 

 13 

Gene Expression QTLs (eQTLs) 14 

We performed genome wide association eQTL analyses for each of the genetically variable 15 

genes in each sex. We used ~1,932,427 million common (minor allele frequency > 0.05) 16 

polymorphisms and accounted for effects of Wolbachia infection, polymorphic inversions and 17 

polygenic relatedness on gene expression20,27. We mapped 90,634 eQTLs in females and 18 

147,412 eQTLs in males (FDR  0.05). A total of 2,053 genes in females (1,818 known genes 19 

and 235 NTRs) and 3,178 genes in males (2,790 known genes and 388 NTRs) were associated 20 

with at least one significant eQTL. We defined potentially cis- and trans-regulatory eQTLs as ≤ 1 21 

kb and > 1 kb of their respective gene bodies. We mapped cis-eQTLs to 1,435 (2,071) genes in 22 

females (males) (Tables S4A, S4B) and trans-eQTLs to 1,527 (2,281) genes in females (males).  23 

 We visualized the significant eQTLs by plotting the polymorphism positions on the X- 24 

axis and the gene positions on the Y-axis such that the diagonal corresponds to cis-eQTLs and 25 
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the off-diagonal to trans-eQTLs (Figure 2A). The eQTLs tend to cluster in LD blocks in 1 

pericentromeric regions, where recombination is suppressed (Table S4C). Many cis-eQTLs are 2 

also trans-eQTLs as indicated by vertical off-diagonal trans-bands. We also observed genes 3 

associated with many eQTLs throughout the genome, visualized as horizontal off-diagonal 4 

trans-bands (Figure 2A). In females (males), 217 (377) genes have 200 or more eQTLs, and 22 5 

(43) genes each have greater than 1,000 eQTLs (Tables S4D, S4E). Genes with 200 or more 6 

eQTLs are more likely to be found in heterochromatin than those with fewer than 200 eQTLs, 7 

and are more likely to be NTRs than annotated genes (Figure 2B, Table S4F). Genes with 200 8 

or more eQTLs that are located in euchromatin are more likely to be located in pericentromeric 9 

regions at the border of heterochromatin where recombination is reduced30 than those with 10 

fewer eQTLs; they are also more likely to be NTRs (Figure 2A, Table S4F). 11 

 12 

eQTL Regulatory Networks 13 

The existence of eQTLs that are cis-eQTL for gene X and also trans-eQTL for gene Y (Tables 14 

S5A, S5B) enables us to construct gene regulatory networks based on multifactorial variation in 15 

a natural population. We identified 408 (794) such regulatory interactions supported by at least 16 

one cis-trans eQTL connecting 257 (471) regulatory genes (cis end) to 251 (447) target genes 17 

(trans end) in females (males) (Tables S5C, S5D). There are two or three large regulatory 18 

networks in each sex, and many smaller networks (Figures S4, S5). The regulatory genes are 19 

largely distinct between the two sexes, although many target genes are in common between 20 

males and females (Figures 3, S3, Table S5E). Genes from the sex-specific regulatory networks 21 

or from the common networks are not enriched for any GO terms. It is not clear from their 22 

anatomical gene expression patterns how the sex-specificity could arise, since the majority of 23 

these genes are expressed in multiple tissues, including the reproductive tissues of both 24 

sexes31.  25 
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 There are more NTRs than expected among genes with cis-trans eQTLs based on the 1 

total number of NTRs with eQTLs among the target genes ( 
 
   29.74, P =4.95E-08 in females; 2 

 
 
   60.54, P = 7.20E-15 in males) but not the regulatory genes ( 

 
   1.54, P = 0.21 in 3 

females;  
 
   1.49, P = 0.22 in males). The regulatory genes tend to be located in 4 

pericentromeric regions of reduced recombination ( 
 
   17.28, P = 3.23E-5 in females;  

 
   5 

120.28, P = 0 in males) and target gene locations are enriched for heterochromatin and 6 

pericentromeric regions of reduced recombination ( 
 
   28.53, P = 9.21E-8 in females;  

 
   7 

147.78, P = 0 in males). Regulatory genes with many target genes thus tend to have multiple 8 

cis-eQTLs in LD near the centromere, and regulate other NTRs both in heterochromatic regions 9 

across the genome and euchromatic regions on other chromosomes (Figures 3, S3, S4, S5). 10 

The smaller networks with fewer regulators and targets tend to consist of genes in euchromatin 11 

in regions of normal recombination (Figures 3, S3, S4, S5; Tables S5C, S5D). Regulatory genes 12 

often have many cis-eQTLs; a single cis-eQTL can regulate multiple target genes; and multiple 13 

cis-eQTLs within a gene can regulate different target genes. Each gene with at least one cis-14 

eQTL may itself be regulated in trans by cis-eQTLs in one or more upstream genes, and the 15 

genes regulated by a focal cis-eQTL may themselves have cis-eQTLs regulating other genes.  16 

 17 

Genetic Variation in TE Expression 18 

A total of 9% of the D. melanogaster genome contains TEs spanning multiple families32. Active 19 

retrotransposon sequences are present in our RNA-seq libraries. We aligned reads to the 20 

RepBase database of known repetitive elements33, and quantified TE RNA levels based on 21 

normalized read counts. Overall, 1.3% of the RNA-seq reads align to RepBase. The most 22 

abundant families of TE sequences were gypsy, copia, BEL, jockey and Mariner/Tc1 elements, 23 

but all TE families represented in RepBase were detected (Figure 4A, Table S6A). 24 
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 Line-specific differences in TE RNA levels can be driven by both differences in 1 

underlying copy number34 and differences in the rate of transcription per genomic copy. We 2 

quantified DNA copy variation for each TE sequence (Table S6B) and used linear models to 3 

estimate the percentage of variation in TE expression that arises from differences in copy 4 

number (Table S6C). We then partitioned the remaining copy number-independent variation in 5 

TE expression between sexes, DGRP lines, the line by sex interaction and residual terms 6 

(Table S6C), using FDR  0.05 as the significance threshold for each term in the analysis. Since 7 

the majority (153, 79%) of TEs had a significant sex by line interaction effect, we assessed 8 

genetic variation in TE expression for each transposon sequence separately for each sex 9 

(Tables S6D, S6E). We observed significant genetic variation in expression for 187 (97%) TE 10 

sequences in females (Figure 4B) and 186 (96%) TE sequences in males (Figure 4C). Broad 11 

sense heritabilities of TE expression ranged from H2 = 0.15 – 0.99 in females and H2 = 0.15 – 12 

0.98 in males (Figures 4B, 4C). Thus, there is host genetic control of expression for most D. 13 

melanogaster TEs. 14 

 We assessed whether different TE sequences had similar patterns of expression across 15 

the DGRP lines28, separately for males and females (Figures 4D, 4E, Tables S6F, S6G). We 16 

found minimal correlation structure in the activity scores of different TEs (Table S6H), with the 17 

strongest correlations between pairs of TE sequences from the same family. This suggests that 18 

host genetic factors independently affect variation in expression of each TE family. 19 

 20 

TE eQTLs 21 

We mapped eQTLs for each of the TEs with genetically variable expression in females and 22 

males (Table S7). We found 54 TEs with significant eQTLs (FDR  0.05), 36 in females and 39 23 

in males. A total of 20 TE sequences were expressed in both males and females; surprisingly, 24 

16 (18) TE sequences were expressed only in females (males). The number of eQTLs per TE 25 
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sequence ranged from 1-1,020, with on average more eQTL associations for TEs in males than 1 

females (Tables S7A-C). Interestingly, the large numbers of eQTLs associated with some TEs 2 

were located in LD blocks in pericentromeric regions and on the 4th chromosome (Figure S6, 3 

Tables S7D, S7E). Many eQTLs for TEs expressed in both males and females overlapped 4 

between the sexes, but typically additional eQTLs were present in males. Although there was 5 

little clustering of expression patterns of different TE sequences, 202 (1,032) eQTLs were 6 

associated with two or more sequences in females (males) (Tables S7F, S7G).     7 

 Many eQTLs associated with TE expression were within 1 kb of annotated genes and 8 

NTRs. Indeed, 19.8% (17.7%) of TE eQTLs were within 1 kb of NTRs in females (males). 9 

Known genes near TE eQTLs were enriched (FDR < 0.05) for GO categories related to 10 

regulation of gene expression and protein binding (Table S7H). We next asked to what extent 11 

eQTLs associated with gene expression were also associated with expression of TE 12 

sequences. We found 1,206 eQTLs associated with 85 genes (37 known genes and 48 NTRs) 13 

and 23 TEs in females; and 3,656 eQTLs associated with 166 genes (79 known genes and 87 14 

NTRs) and 30 TEs in males (Figure S7, Table S8). We could thus incorporate variation in TE 15 

expression into the cis-trans gene regulatory network via shared eQTLs (Figure 5). These 16 

eQTLs are predominantly located in pericentromeric regions, and the genes they regulate are in 17 

pericentromeric regions as well as heterochromatin. 18 

 19 

Genetic Variation in Microbiome Composition 20 

RNA samples extracted from pools of whole flies contain RNA from gut microbial communities, 21 

and from microbes on their exoskeleton. We assessed the contribution of microbial sequences 22 

to the RNA-seq libraries by aligning reads to a database of candidate microbial genomes (Table 23 

S9). Wolbachia pipientis, a bacterial endosymbiont that infects ~50% of the DGRP lines20, is the 24 

most abundant source of expressed sequence, followed by multiple Acetobacter species and 25 

genome assemblies (Figure 6A, Table S9). We estimated the total gene expression from each 26 
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microbial species in all samples (Table S10A) and partitioned variation in microbial gene 1 

expression between sexes, DGRP lines, the sex by line interaction and residual terms, using 2 

FDR  0.05 as the significance threshold (Table S10B). The H2 of Wolbachia pipientis 3 

abundance is extremely high (H2 = 0.972), as expected. We next assessed whether the sum of 4 

all non-Wolbachia microbial species is genetically variable after accounting for any Wolbachia 5 

effects, and estimated H2 = 0.595 (Figure 6B, Table S10B). The sex by line interaction for total 6 

microbial gene expression was not significant, indicating that total microbial RNA is highly 7 

correlated between males and females. We estimated the heritability of gene expression for the 8 

122 non-Wolbachia microbial species, and found that 84 microbial species had significant 9 

genetic variation in RNA abundance, with broad sense heritabilities ranging from H2 = 0.07 – 10 

0.90 (Figure 6C, Table S10B). Microbial species that are likely to colonize the Drosophila gut 11 

(Acetobacter and Lactobacillus species) were among those with the highest H2.  12 

 We used WGCNA28 to group species with similar abundance patterns based on the 13 

average of male and female line means (Figure 6D, Tables S10C, S10D). We found three 14 

groups of strongly correlated species, consisting primarily of the gut-related microbes 15 

(Acetobacter and Lactobacillus species), and two additional clusters of microbes primarily 16 

consisting of viral and fungal species that are strongly anti-correlated with the abundances of 17 

species in the first three clusters. Thus, there is line-specific variation in the microbial 18 

communities living in and on DGRP flies. Species which most plausibly colonize the Drosophila 19 

gut are largely correlated across lines, with some fluctuation in the relative abundance of 20 

Acetobacter versus Lactobacillus species.  21 

 22 

eQTLs for Microbiome Composition 23 

There was little genetic variation in sexual dimorphism for microbial gene expression; therefore, 24 

we performed eQTL mapping using the average expression of males and females for each 25 

microbial species. Four microbial species and total microbial sequence expression were 26 
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associated with significant eQTLs (FDR  0.05) (Table S11A). The sum of all microbial species 1 

is associated with one eQTL that maps to an NTR; the expression of Borrelia coriaceae, 2 

Acidovorax temperans and Podospora anserine map, respectively, to single eQTLs in CG2616, 3 

CG46301, and to cic and an NTR; and Leuconostoc pseudomesenteroides expression maps to 4 

39 variants in or near GC and nSyb (Table S11A).  5 

 We lowered the significance threshold to P < 10-5 to explore the extent to which common 6 

eQTLs may control the expression of multiple microbial species that cluster together based on 7 

the WGCNA analysis (Figure 6D). At this threshold, 1,455 eQTLs are associated with 88 8 

microbial species and the sum of all species (Table S11B); 268 variants were associated with 9 

expression of more than one microbial species, and five eQTLs were associated with 10 

expression of 10 or more microbial species (Table S11C). These data suggest that there is 11 

genetic variation in host control of microbial gene expression and that some variants have 12 

pleiotropic effects on multiple microbial species.   13 

 We assessed whether the genes to which the eQTLs associated with variation in 14 

microbial gene expression were enriched for GO categories (FDR  0.05). The most highly 15 

enriched Biological Process GO terms were related to development and morphogenesis, 16 

including development and function of the nervous system (Table S11D). 17 

 18 

Gene Expression and Complex Traits  19 

To examine the relationship between variation in gene expression and variation in organismal 20 

quantitative trait phenotypes, we chose 11 quantitative traits with published phenotypic data 21 

(chill coma recovery time and startle response19; starvation resistance20; day and night sleep 22 

bout number, day and night total sleep duration, and total waking activity35; food consumption36; 23 

male aggression37; phototaxis38); and additionally measured five metabolic traits (levels of free 24 

glucose, glycogen, free glycerol, triglyceride and protein) and three metrics of body size (body 25 
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weight, thorax length, thorax width). All traits were quantified in the same laboratory under the 1 

same culture conditions used in this study. The line means for all traits are given in Table S12; 2 

quantitative genetic analyses of the metabolic and body size traits are given in Table S13; and 3 

the most significant associations (P < 10-5) from GWA analyses (separately for males and 4 

females) for these quantitative traits based on the 200 lines for which we have gene expression 5 

data are in Table S14. 6 

 We first assessed whether variants associated with all organismal traits were enriched 7 

for eQTLs, as found in human studies6,7,9,14,15. We found no enrichment of cis-eQTLs (P = 0.13 8 

in females and P = 0.71 in males), trans-eQTLs (P = 0.98 in females and P = 0.28 in males) or 9 

all eQTLs (P = 0.94 in females and P = 0.23 in males) among top GWA hits in either sex. Many 10 

top GWA hits as well as eQTLs map to regions greater than 1kb from any gene, and may 11 

indicate novel regulatory regions.  12 

 We next performed transcriptome wide association studies (TWAS) for individual 13 

genetically variable transcripts for gene expression, TE sequences and microbial species, for 14 

each of the 18 (19) genetically variable organismal phenotypes in females (males). We found 15 

several significant (Benjamini-Hochberg FDR < 0.05) associations of transcripts with organismal 16 

phenotypes (Table S15). These associations include a known noncoding RNA (CR46032) with 17 

male aggression, two NTRs with male waking activity, Gbs-70E with free glucose in both sexes, 18 

AkhR with starvation resistance in males and females, and Acidovorax temperans with male 19 

aggression (Table S15).   20 

 21 

Discussion 22 

 23 

Deep RNA sequencing gives accurate estimates of gene expression of annotated genes and 24 

can implicate novel non-coding RNAs and their regulatory interactions with annotated genes. 25 

lncRNAs are operationally defined as encoding transcripts > 200 bp with no significant protein-26 
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coding potential21-24,39,40. We have identified 4,282 novel transcribed regions, most of which are 1 

likely lncRNAs, increasing the total number of D. melanogaster lncRNAs nearly threefold: from 2 

2,36640 to 6,648. These lncRNAs are unlikely to be artifacts since the majority are genetically 3 

variable, and they are not randomly distributed in the genome but are preferentially located in 4 

heterochromatic regions and in pericentromeric euchromatin bordering heterochromatin. Thus, 5 

there is genetic variation in heterochromatic gene expression, thought to be largely 6 

transcriptionally silent41. These heterochromatic and pericentromeric lncRNAs are regulated by 7 

pericentromeric cis-eQTLs as well as a large number of trans-eQTLs dispersed throughout the 8 

euchromatic genome. Genes associated with eQTLs with both cis- and trans- effects form sex-9 

specific networks of regulator and target genes, the largest of which is enriched for lncRNA 10 

target genes in heterochromatin and regulator and target genes in pericentromeric euchromatin. 11 

The considerable overlap between eQTLs associated with lncRNAs in the large networks and 12 

TE expression recruits TEs to the network. We do not know where the TE sequences with 13 

genetically variable expression are integrated in the genome; however, heterochromatin is 14 

composed of largely silenced TE repeats41, raising the possibility that TEs in heterochromatin 15 

are subject to the same regulation as other heterochromatic genes. Further work is needed to 16 

confirm the regulatory networks derived from naturally occurring genetic variation and determine 17 

the regulatory mechanism(s) through which the lncRNAs act22,24,39,40,42,43.     18 

 The first step in systems genetic analysis is to identify eQTLs associated with both gene 19 

expression and organismal quantitative traits, for which variation in gene expression is 20 

correlated with variation in the organismal phenotypes2,5,8. We did not find any such trios, 21 

although we did find interesting transcript-trait associations. This may be because our sample 22 

size is adequate to detect eQTLs but not QTLs affecting organismal traits, which have smaller 23 

effects; because eQTLs need to be mapped in tissues relevant to the organismal trait; and 24 

because there are non-linear (epistatic) relationships between QTLs for both transcripts and 25 

organismal phenotypes. The complex and highly connected cis-trans regulatory networks 26 
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suggest that higher order interactions need to be accommodated in systems genetic modeling, 1 

at least at the level of gene expression.  2 

 3 

Methods 4 

 5 

Drosophila lines: We used 200 inbred, sequenced DGRP lines19,20, established by 20 6 

generations of full sib inbreeding from gravid females collected at the Raleigh, NC USA 7 

Farmer‟s Market. Genome sequences of the lines were obtained previously using the Illumina 8 

platform with an average of coverage of 27×. A total of 4,565,215 molecular variants (3,976,011 9 

single/multiple nucleotide polymorphisms (SNPs/MNPs), 169,053 polymorphic insertions 10 

(relative to the reference genome), 293,363 polymorphic deletions and 125,788 polymorphic 11 

microsatellites) segregate in the DGRP.    12 

 13 

Sample collection: All lines were reared on cornmeal-molasses-agar medium at 25°C, 60–75% 14 

relative humidity and a 12-hr light-dark cycle at equal larval densities. We collected two 15 

replicates of 25 females and 30 males per line, for a total of 800 samples. We used a strict 16 

randomized experimental design for sample collection. We collected mated 3-5 day old flies 17 

between 1-3 pm. We transferred the flies into empty culture vials and froze them over ice 18 

supplemented with liquid nitrogen, and sexed the frozen flies. The samples were transferred to 19 

2.0 ml nuclease-free microcentrifuge tubes (Ambion) and stored at -80°C until ready to process. 20 

 21 

RNA sequencing: Total RNA was extracted with QIAzol lysis reagent (Qiagen) and the Quick-22 

RNA MiniPrep Zymo Research Kit (Zymo Research). Ribosomal RNA (rRNA) was depleted 23 

from 5 ug of total RNA using the Ribo-ZeroTM Gold Kit (Illumina, Inc). Depleted mRNA was 24 

fragmented and converted to first-strand cDNA using Superscript III reverse transcriptase 25 

(Invitrogen). During the synthesis of second strand cDNA, dUTP instead of dTTP was 26 
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incorporated to label the second strand cDNA. cDNA from each RNA sample was used to 1 

produce barcoded cDNA libraries using NEXTflex™ DNA Barcodes (Bioo Scientific, Inc.) with 2 

an Illumina TruSeq compatible protocol. Libraries were size-selected for 250 bp (insert size 3 

~130 bp) using Agencourt  Ampure XP Beads (Beckman Coulter, Inc.). Second strand DNA was 4 

digested with Uracil-DNA Glycosylase before amplification to produce directional cDNA libraries. 5 

Libraries were quantified using Qubit dsDNA HS Kits (Life Technologies, Inc.) and Bioanalyzer 6 

(Agilent Technologies, Inc.) to calculate molarity. Libraries were then diluted to equal molarity 7 

and re-quantified. A total of 50 pools of 16 libraries were made, again randomly assigning 8 

samples to each pool. Pooled library samples were quantified again to calculate final molarity 9 

and then denatured and diluted to 14pM. Pooled library samples were clustered on an Illumina 10 

cBot; each pool was sequenced on one lane of Illumina Hiseq2500 using 125 bp single-read v4 11 

chemistry. 12 

 13 

RNA sequence analysis: Barcoded sequence reads were demultiplexed using the Illumina 14 

pipeline v1.9. Adapter sequences were trimmed using cutadapt v1.644 and trimmed sequences 15 

shorter than 50bp were discarded from further analysis. Trimmed sequences were then aligned 16 

to multiple target sequence databases in the following order, using BWA v0.7.10 (MEM 17 

algorithm with parameters „-v 2 –t 4‟)45: (1) all trimmed sequences were aligned against a 18 

database containing the complete 5S, 18S-5p8S-2S-28S, mt:lrRNA, and mt:srRNA sequences 19 

to filter out residual rRNA that escaped depletion during library preparation; (2) remaining 20 

sequences were then aligned against a custom database of potential micriobiome component 21 

species (see below) using BWA; (3) sequences that did not align to either the rRNA or 22 

microbiome databases were aligned to all D. melanogaster sequences in RepBase33. The 23 

remaining sequences that did not align to any of the databases above were then aligned to the 24 

D. melanogaster genome (BDGP5) and known transcriptome (FlyBase v5.57) using STAR 25 
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v2.4.0e46. Libraries with fewer than 5 million reads uniquely aligned to the D. melanogaster 1 

reference genome were re-sequenced to achieve sufficient read depth. 2 

 3 

Generation of microbiome database: We first performed a preliminary alignment of RNA-seq 4 

reads by filtering only rRNA sequences, and then aligning directly to the D. melanogaster 5 

genome using the tools and parameters described above. Sequences that did not align to the 6 

rRNA database or D. melanogaster reference genome were then analyzed with Trinity v2.1.1 to 7 

perform de novo assembly of longer sequences from the short reads. Assembled sequences > 8 

1kb in length were then searched against the refseq_genomic database (downloaded from 9 

NCBI on 1/27/16) using BLAST.  We then compiled a list of all refseq genomes that were found 10 

as a top BLAST hit for at least two assembled sequences. We compiled all fasta files for each of 11 

these refseq genomes into a single database for alignment with BWA. 12 

 13 

Genotype validation: To validate the DGRP line assigned to each RNA-seq sample, we 14 

identified single nucleotide polymorphisms (SNPs) from the RNA-seq reads that aligned to the 15 

D. melanogaster reference genome using STAR as described above. We retained only those 16 

SNP calls covered by at least 3 reads and at least 75% of all reads supporting the major 17 

genotype (note that DGRP lines are inbred and therefore the majority of SNPs are 18 

homozygous). This filtering process produced >400k usable SNPs per sample, primarily located 19 

in transcribed regions of the genome. We then performed two validation tests of the DGRP line 20 

assigned to each sample X by comparing to the previously published genotype calls for each 21 

DGRP line (http://dgrp2.gnets.ncsu.edu/data/website/dgrp2.tgeno20). First, we computed the 22 

“line mean error” (LME) for each line as follows: given the set of homozygous SNPs from line Y 23 

that have sufficient coverage (described above) in sample X, LME(X,Y) = # of mismatching 24 

SNPs / total # of comparable SNPs. We confirmed that for each sample X, the DGRP line Ylab 25 

labeled for that samples produced the minimum value of LME(X,Y) as compared to all other 26 
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possible line assignments Yalt, and further confirmed that LME(X,Ylab) was below 1%. Second, 1 

we performed competitive tests between the labeled line Ylab and each possible alternate line 2 

Yalt. Under this test, we considered only the SNPs that are homozygous for different genotypes 3 

in Ylab and Yalt (i.e., only the segregating SNPs for the two lines) and which have sufficient 4 

coverage in sample X. We then computed the “line error ratio” (LER) = # of SNPs matching Ylab / 5 

# of SNPs matching Yalt. We confirmed that for each sample X, the lowest LER for any Yalt was 6 

> 1 (i.e., the majority of SNP calls always supported the labeled line compared to any alternative 7 

line). 8 

 9 

Inference of novel transcripts: We constructed a de novo transcriptome for each individual 10 

sample by inputting the RNA-seq reads aligned to the D. melanogaster reference genome into 11 

Cufflinks v2.2.147. We also considered the novel transcribed regions (NTRs) identified in a 12 

previous study based on unstranded pooled RNA sequencing of the DGRP lines27. However, 13 

the previously published data do not provide strand-specific signal, while our current RNA-seq 14 

data uses a strand-specific library preparation. Therefore, we reassigned the strand for each of 15 

the previously published NTRs that was supported by the greater number of total aligned reads 16 

across all samples. We then merged all de novo sample transcriptomes and the previously 17 

published NTRs using the cuffmerge tool included with Cufflinks v2.2.1, then removed all 18 

merged transcript models with any exon overlapping on the same strand any exon in the known 19 

D. melanogaster transcriptome. We defined the known transcriptome here as all gene models in 20 

FlyBase v5.57 plus all subsequently added gene models in FlyBase v6.11 to account for 21 

recently discovered lncRNA sequences. Thus, the final output of this analysis was a set of 22 

NTRs constructed from both our current RNA-seq data and previously published pooled RNA-23 

seq data that do not overlap any known gene exons on the same strand. 24 

 25 
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Gene expression estimation: Read counts for individual microbial species were computed as 1 

all reads aligning to any sequence in any genome for any strain of that species. Reads aligning 2 

to multiple species were ignored for individual species read counts. We also aligned 3 

microbiome-aligning reads to the D. melanogaster genome, and removed all reads that aligned 4 

to both microbial and D. melanogaster sequences before computing read counts, to account for 5 

several domains which are highly conserved between microbial and metazoan species. Read 6 

counts were computed for transposon sequences by computing the number of reads uniquely 7 

aligned to each transposon sequence in RepBase. Highly homologous sequences were 8 

grouped together for computing transposon read counts. Read counts were computed for 9 

known and novel gene models using HTSeq-count48 with the „intersection-nonempty‟ 10 

assignment method. Tabulated read counts for each expression feature type (microbiome, 11 

transposon, endogenous genes) were then normalized across all samples using EdgeR49 as 12 

follows. First, genes with low expression overall (<10 aligned reads in >75% of the libraries) 13 

were excluded from the analysis. Library sizes were re-computed as the sum of reads assigned 14 

to the remaining genes, and further normalized using the Trimmed Mean of M-values (TMM) 15 

method50. At this point, we retained only genes (known or novel) whose expression in both 16 

biological replicates was above an empirical threshold in more than 200 line-sex combinations 17 

(400 samples total). This criterion retains genes expressed in only one sex. The threshold was 18 

determined by fitting all log2 transformed FPKM expression data points using a 2-component 19 

Gaussian mixture model and finding the expression value (FPKM = 0.280263) where the 20 

posterior probability of being in the lower expression component is 0.95. Genes on chrU and 21 

chrUextra were also removed. We further adjusted transposon expression estimates to account 22 

for differences in transposon copy number across lines by fitting a linear model: RNA ~ DNA + 23 

ε, where RNA = the normalized log2(RNA-seq read count); and DNA = normalized log2(DNA 24 

read count) derived from the previously published DNA-seq data for each DGRP line20. After 25 

fitting the linear model for each transposon sequence, ε estimates the relative transcription rate 26 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 24, 2019. ; https://doi.org/10.1101/816579doi: bioRxiv preprint 

https://doi.org/10.1101/816579
http://creativecommons.org/licenses/by-nc-nd/4.0/


20 

 

in each line independent of copy number, and was used as the adjusted transposon expression 1 

for all subsequent analysis. We further adjusted endogenous gene expression values by 2 

estimating and removing the effect of alignment bias resulting from higher rates of non-3 

reference variants clustering in some lines. We computed the alignment bias score A(g,L) 4 

defined as the number of non-reference nucleotides per kb in all exons of gene g in DGRP line 5 

L, based on the previous map of genomic variation in the DGRP20. We then fit a linear model for 6 

each endogenous gene: Y = A + ε, where Y is the normalized expression profile for gene g after 7 

the read counting and EdgeR normalization described above. After fitting these linear models, ε 8 

represents the alignment bias-corrected expression, and was used as the normalized gene 9 

expression in all subsequent analysis. 10 

 11 

Genetics of gene expression: For each class of expression features (endogenous genes, 12 

transposons, microbiome), we fit mixed-effect models to the gene expression data 13 

corresponding to: Y = S + W + W×S + L + L×S + ε, where Y is the observed log2(normalized 14 

read count), S is sex, W is Wobachia infection status, W×S is Wolbachia by sex interaction, L is 15 

DGRP line, L×S is the line by sex interaction and ε is the residual error. We also performed 16 

reduced analyses (Y = W + L + ε) independently for males and females. We identified 17 

genetically variable transcripts as those that passed a 5% FDR threshold (based on Benjamini-18 

Hochberg51 corrected P-values) for the L and/or L×S terms. We computed the broad sense 19 

heritabilities (H2) for each gene expression trait separately for males and females as    20 

  
     

     
  , where   

  and   
  are, respectively, the among line and within line variance 21 

components.    22 

 23 

Clustering by genetic correlation: For each feature type (microbiome, transposons, 24 

endogenous genes), we clustered line means using the WGCNA R package v1.5128 as follows. 25 

Only genes with sufficient average expression (Log2 FPKM > 0) and genetic variance (line 26 
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mean variance > 0.05) were considered in these analyses. First, the Pearson correlation 1 

coefficient for every pair of line means, the soft-power threshold was computed using the 2 

pickSoftThreshold function, and used to convert the correlation matrix to an adjacency matrix 3 

with approximately scale-free connectivity. The adjacency matrix was then converted to a 4 

dissimilarity matrix based on the topological overlap map28. Expression features were then 5 

clustered using hierarchical clustering (hclust function) based on the dissimilarity matrix, and 6 

split into distinct modules using the cutreeDynamic with deepSplit=4 and minClusterSize=20 (for 7 

endogenous gene expression, minClusterSize=4 was used for microbiome and transposon 8 

clustering). Module eigengenes were computed for each cluster, and highly similar clusters 9 

were combined using the mergeCloseModules function with cutHeight = 0.25. Expression 10 

features assigned to module 0 (insufficient similarity) were discarded. Modules consisting of 11 

>1,000 features were also discarded as insufficiently split into distinct modules. For each 12 

expression feature, the degree was computed as the overage topological overlap with all other 13 

features assigned to the same module. The average degree of each module was computed as 14 

the mean degree across all features in the module. Modules were sorted by average degree, 15 

such that module 1 has the highest average degree in each analysis. 16 

 17 

Gene set enrichment analyses: Lists of known gene IDs (FlyBase FBgn accessions) were 18 

uploaded to FlyMine29 or Panther52 for functional enrichment. For analysis of gene lists from 19 

WGCNA clusters, the list of known genes input to WGCNA was used as the background set, to 20 

correct for any biases inherent to highly heritable expression patterns in general. 21 

 22 

Expression QTL (eQTL) mapping: For each gene expression feature, we performed eQTL 23 

analysis as previously described26. Briefly, we adjusted mean expression values in each sex for 24 

fixed effects of Wolbachia infection status, five major polymorphic inversions (In2L(t), In2R(NS), 25 

In3R(P), In3R(K), In3R(Mo)), and the first 10 principal components of the genetic relatedness 26 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 24, 2019. ; https://doi.org/10.1101/816579doi: bioRxiv preprint 

https://doi.org/10.1101/816579
http://creativecommons.org/licenses/by-nc-nd/4.0/


22 

 

matrix of all DGRP lines using a linear model. We mapped QTLs for the adjusted line means 1 

using PLINK53 against 1,932,427 SNPs with major allele frequency > 0.05 and missing 2 

genotypes in fewer than 25% of the 200 DGRP lines profiled by RNA-seq. We computed FDR of 3 

eQTL calls by comparing observed eQTL P-value distributions to those obtained from running 4 

PLINK on 100 permutations of the observed line means for each expression feature. At any 5 

given P-value cut-off X, the estimated false positive rate of eQTLs for a specific gene 6 

expression feature is the average number of eQTLs with P-value < X across all permutations. 7 

The FDR at the same P-value is then computed as the estimated false positive rate divided by 8 

the number of eQTLs with P-value < X in the observed data. Using this formulation of FDR, we 9 

identified the unadjusted P-value cut-off corresponding to 5% FDR for each gene expression 10 

feature. No further model selection was performed, however we classified eQTLs as being 11 

either cis-eQTLs (within 1kb of the gene body for the associated expression feature) or trans-12 

eQTLs (> 1 kb of the gene body).   13 

 14 

Construction of eQTL networks: We then constructed regulatory eQTL networks based on 15 

individual SNPs which were called as both cis- and trans-eQTLs for multiple expression 16 

features. Specifically, we assign a directed edge X → Y if there is at least one variant that is 17 

both a cis-eQTL for gene X (defined as within 1 kb of gene X) and a trans-eQTL for gene Y at 18 

5% FDR. We then broke all loops in the regulatory network for each sex by dropping the edge in 19 

each loop with the highest minimum P-value from all associated SNPs to create a directed, 20 

acyclic network. 21 

 22 

Quantitative traits: We retrieved phenotypic data documented from previous publications on 23 

the same fly lines for male aggression37; chill coma recovery time and startle response19; food 24 

consumption36; phototaxis38; sleep traits35 (day and night bout number, day and night total sleep 25 

duration, total waking activity); and starvation resistance20.  26 
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 To measure body weight and size, we collected 10 replicates of 10 flies per line and sex 1 

into pre-weighed 1.7 ml tubes, and weighed and flash froze them for downstream analyses. 2 

Virgin flies were used to avoid body weight variation due to variation in egg production. In 3 

addition we measured thorax length and thorax width as metrics for body size. 4 

  Frozen flies were homogenized in 250 μL Dulbecco‟s phosphate-buffered saline, and 5 

after gentle centrifugation supernatants were collected for measurements of free glucose, 6 

glycogen, free glycerol, triglyceride and total protein (further diluted 10 fold). For free glucose 7 

and glycogen, samples were denatured at 95°C for 25 minutes to prevent glycogenolysis. 8 

Measurements were performed following protocols provided by the Glycogen 9 

Colorimetric/Fluorometric Assay Kit (BioVision Inc.). For free glycerol and triglyceride, we used 10 

the Serum Triglyceride Determination Kit (Sigma Aldrich Inc.), and incubated samples with the 11 

Triglyceride Reagent for 1 hour at 37°C.  For total protein measurement, we used the Qubit 12 

Protein Assay Kit (Thermo Fisher Scientific Inc.). 13 

 14 

Quantitative trait genetic parameters: We used mixed model, factorial ANOVAs (Y = S + L + 15 

L×S + Rep(L) + S×Rep(L) + ε, to partition variation of the quantitative traits between sexes (S), 16 

DGRP lines (L) and replicate vials within lines (Rep). Broad sense heritabilities were estimated 17 

as       
      

      
     

    
  , where   

 ,    
  and   

  are, respectively, the among line, sex 18 

by line and within line variance components.  19 

 20 

eQTL-GWA enrichment analysis: We performed GWA analyses for all quantitative traits, 21 

separately for females and males. All phenotypes (line means) were first adjusted for the effect 22 

of Wolbachia infection and major polymorphic inversions using a linear model. The residuals 23 

(plus the intercept) from this analysis were then used as phenotype in a linear mixed model to 24 

test for the effect of each common variant individually, while adjusting for sample structure using 25 

a genomic relationship matrix (GRM), as implemented in GCTA-MLMA55. The GRM was built as 26 
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 where W is a matrix of centered and scaled genotypes for the 200 lines and p is the total 1 

number of genetic variants.  2 

 For each trait and sex, variants with P < 10-5 were retained for downstream analysis. We 3 

then combined the lists of variants associated with each trait, separately for females and males, 4 

to obtain a single list of unique variants (i.e., no duplicates) associated with any of the traits of 5 

interest. The enrichment analysis proceeded as described in Ref. 14, within each sex. Briefly, 6 

GWAS hits were divided into minor allele frequency bins of width equal to 0.05. Then, an equal 7 

number of common variants (which may or may not have included actual GWAS hits) per bin 8 

were sampled at random and the overlap with eQTLs was calculated. This procedure was 9 

repeated 10,000 times and an empirical P-value for the enrichment was calculated as the 10 

number of replicates where the overlap between randomly sampled variants and eQTLs was 11 

greater than or equal to the observed overlap between GWAS hits and eQTLs over the total 12 

number of replicates.  13 

 14 

Association of expression and quantitative traits: A transcriptome-wide association study 15 

(TWAS), i.e., regressing the phenotype on each gene‟s expression level, was performed for 16 

each sex separately for each quantitative trait. We developed a method that accounts for 17 

structure present in the transcriptome due correlations between transcripts. This was achieved 18 

by fitting a linear mixed model of the type:              , where y = n-vector of mean 19 

phenotypic values for n lines,  = fixed population mean effect, w = n-vector of the tested gene‟s 20 

centered and scaled expression level,  = fixed effect of the gene, t = n-vector of random 21 

transcriptomic line effect (t ~N(0, T2
t)), and e = n-vector of random error (e ~N(0, I2

e)).  22 

 The key term in the model that accounts for sample structure is T, the transcriptomic 23 

relationship matrix (TRM). The TRM was computed as 
     

 
, where W- is a matrix of centered 24 

and scaled gene expression levels for the 200 lines, excluding the gene tested to maximize the 25 
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power to find an association54, and p is the total number of genes. The TRM in TWAS has 1 

similar role to the GRM in GWAS. 2 

 The effect of each gene‟s expression level on the phenotype was tested using a Wald 3 

test of the form 
  

(     )
    

 . Raw P-values and Benjamini-Hochberg FDR-corrected P-values51 4 

were computed. 5 

 The phenotypes were adjusted for the effects of Wolbachia and major polymorphic 6 

inversions as described in the previous section. Because the phenotypes were adjusted, we did 7 

not adjust gene expression in this analysis to avoid spurious associations due to adjustment on 8 

both sides of the equation. 9 

 We also performed similar associations of quantitative traits with TEs and microbial gene 10 

expression, using the same models as for TWAS but substituting TE and microbial expression 11 

for gene expression levels. Quantitative trait phenotypes were adjusted for the effects of 12 

Wolbachia and major polymorphic inversions but the TE and microbial expression data were 13 

not. The TE analysis was performed for males and females separately, while sex-pooled 14 

microbe expression data was used with female or male quantitative trait phenotypes since 15 

microbial gene expression was not sex-specific.  16 

 17 

Data Availability: All RNA sequence data have been deposited in GEO (accession 18 

GSE117850). The DGRP lines are available from the Bloomington Drosophila Stock Center. 19 
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Figure 1| Genetic variation of gene expression in the DGRP. (A) Sexual dimorphism of gene 1 
expression. Red (blue) indicates significant up-regulation in females (males). (B) Distribution of 2 
H2 estimates for annotated genes and NTRs in females. (C) Distribution of H2 estimates for 3 
annotated genes and NTRs in males. (D) WGCNA modules for annotated genes and NTRs in 4 
females. (E) WGCNA modules for annotated genes and NTRs in males. Heatmaps show the 5 
pairwise correlation of all genes in each module, sorted by average connectivity, with the most 6 
tightly connected module at the top left.  7 

 8 
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Figure 2| Genomic location of eQTLs for gene expression and genes they regulate. eQTL chromosome positions (bp) are given 1 
on the X-axis, and the genes with which they are associated on the Y-axis. Red points denote female-specific eQTLs, blue indicates 2 
male-specific eQTLs, and black shows eQTLs shared by males and females. (A) Euchromatic genes. (B) Heterochromatic genes.   3 
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Figure 3| Large cis-trans eQTL genetic network in females and males. Node interior colors indicate genomic location of genes 1 
(yellow: euchromatic regions with normal recombination; gray: euchromatic regions with reduced recombination; blue: 2 
heterochomatin). Node border colors denote annotated gene (gray) or NTR (red). Node shape indicates whether a gene is a 3 
regulator and/or target (triangles: regulator only; squares: target only; circles: both regulator and target). The node size indicates the 4 
number of node connections. Arrows on the edges point to the target. Edges are color coded to show female-specific regulation 5 
(red), male-specific regulation (blue) and regulation common to both sexes (black).  6 
 7 
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Figure 4| Genetic variation of TE expression in the DGRP. (A) Total signal for each TE 1 
family, summed over all individual transposon sequences and averaged across all DGRP lines, 2 
sex, and replicates. (B) Distribution of copy number independent H2 estimates for TE sequences 3 
in females. (C) Distribution of copy number independent H2 estimates for TE sequences in 4 
males. (D) WGCNA modules of TEs for females. (E) WGCNA modules of TEs for males. 5 
Heatmaps are depicted as in Figure 1. TE sequences not assigned to any module are included 6 
at the bottom right.   7 
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Figure 5| TE genetic regulatory network. Symbols and color-coding are as for Figure 3. Black squares denote TE sequences.   1 
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Figure 6| Genetic variation of microbiome composition. (A) The proportion of microbiome 1 
signal in RNA-seq libraries aligned to species in each genus or viral group. (B) Line means of 2 
total microbial signal (excluding Wolbachia). (C) Distribution of H2 estimates for individual 3 
microbe species. (D) WGCNA modules for microbial species. Heatmaps are depicted as in 4 
Figure 1. Species not assigned to any module are included at the bottom right.  5 
  6 
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Figure S1| Schematic of the bioinformatics pipeline used for RNAseq analysis.  1 

  2 
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Figure S2| Comparison of RNA-seq and tiling arrays. Scatter plots show the broad-sense heritability (H2) estimates from RNA-seq 1 
in this study compared to tiling array data26. (A) Female gene expression (r = 0.56, P < 1E-15). (B) Male gene expression (r = 0.55, P 2 
= 1E-15).  3 
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Figure S3| Small cis-trans eQTL genetic networks in females and males. Symbols and 1 
color coding are as in Figure 3.  2 
 3 
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Figure S4| Female cis-trans eQTL genetic network. Symbols and color-coding are as for 1 
Figure 3. (A) Network 1 and 2. (B) Other networks.  2 
  3 
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Figure S5| Male cis-trans eQTL genetic network. Symbols and color-coding are as for Figure 3. (A) Networks 1-3. (B) Other 1 
networks.  2 
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Figure S6| Genomic location of eQTLs for TE expression and associated TEs. eQTL 1 
chromosome positions (bp) are given on the X-axis, and the TEs with which they are associated 2 
on the Y-axis. Red points denote female-specific eQTLs, blue indicates male-specific eQTLs, 3 
and black shows eQTLs shared by males and females. (A) Chromosome 2. (B) Chromosome 3. 4 
C) Chromosome X. (D) Chromosome 4.   5 
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Figure S7| eQTL overlap between genes and TEs. eQTL positions are given on the X-axes, 1 
and the genes with which they are associated on the Y-axes. Red points denote female-specific 2 
eQTLs, blue indicates male-specific eQTLs, and black shows eQTLs shared by males and 3 
females. (A) Chromosome 2. (B) Chromosome 3. (C) Chromosome 4. 4 
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Supplementary Table Captions 1 

 2 

Table S1| Sequencing and alignment statistics for 800 RNA-seq samples. Column legends 3 

are as follows. “Sample Name” format is DGRP Line Number, Sex (F = female, M = male) and 4 

Replicate (1 or 2). “Number of Sequencing Runs” denotes the number of sequencing runs in 5 

which the original sample library was sequenced in order to achieve sufficient sequencing 6 

depth. “Library Barcode” gives the Illumina barcode used for multiplex sequencing. “Total Reads 7 

Sequenced” gives the total reads in the raw fastq file generated by the Illumina Casava pipeline 8 

(after internal quality filtering). “Reads Removed by CutAdapt” and “% Reads Removed by 9 

CutAdapt” give the number and percent, respectively of reads removed by initial filtering with 10 

CutAdapt. “Reads Aligned to rRNA” and “% Reads Aligned to rRNA” give the number and 11 

percent, respectively, of reads identified as rRNA contamination by BWA. “Reads Aligned to 12 

Microbiome” and “% Reads Aligned to Microbiome” give the number and percent, respectively 13 

of reads aligned to the microbiome database by BWA. “Reads Aligned to RepBase” and “% 14 

Reads Aligned to RepBase” give the number and percent, respectively of reads aligned to 15 

RepBase by BWA. “Reads Aligned to D. melanogaster Genome” and “% Reads Aligned to D. 16 

melanogaster Genome” give the number and percent, respectively of reads uniquely aligned to 17 

the D. melanogaster reference genome by STAR. 18 

 19 

Table S2| Gene expression analyses. (A) Mean expression (Log2 normalized FPKM values) 20 

for females and males across all DGRP lines for each known gene model from FlyBase. (B) 21 

Genomic coordinates, classification, and mean expression (Log2 normalized FPKM values) for 22 

females and males across all DGRP lines for each novel transcribed region (NTR). (C) Coding 23 

potential prediction of NTRs. (D) Results of pooled sex mixed-effect models run for all 24 

expressed gene profiles, including alignment bias estimates. (E) Results of female-only mixed-25 

effect models for all expressed gene profiles, including alignment bias estimates. (F) Results of 26 
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male-only mixed-effect models for all expressed gene profiles, including alignment bias 1 

estimates. (G) Chromosomal locations of genetically variable annotated genes (FBgn) and 2 

NTRs (XLOC).   3 

 4 

Table S3| Modules of genetically correlated gene expression. WGCNA modules identified 5 

from within-sex line means of genetically variable gene expression levels, including the number 6 

of NTRs in each module; significantly enriched (5% FDR) Gene Ontology terms; Kegg and 7 

Reactome pathway membership; and Interpro protein domain annotation for known genes in 8 

each module, based on (A) female gene expression line means and (B) male gene expression 9 

line means. 10 

 11 

Table S4| Gene eQTL analyses. (A) Female cis-eQTLs. (B) Male cis-eQTLs. Note that 12 

coordinates are given for Release 5 such that boundaries can be defined according to 13 

recombination map (see C). Release 6 coordinates are given in Table S2A. (C) Statistical tests 14 

for eQTL clustering, by chromosome. “Middle” denotes euchromatic regions with normal 15 

recombination and “edge” denotes euchromatic regions with reduced recombination according 16 

to Fiston-Lavier and Petrov‟s Drosophila melanogaster recombination rate calculator 17 

(http://petrov.stanford.edu/cgi-bin/recombination-rates_updateR5.plPetrov ref). (D). Numbers of 18 

eQTLs per gene (females). (E) Numbers of eQTLs per gene (males). (F) Statistical tests for 19 

enrichment for genes with more than 200 eQTLs and those with 199 or fewer eQTLs.    20 

 21 

Table S5| cis-trans eQTL networks. (A) Female genes with cis- and trans-eQTLs. (B) Male 22 

genes with cis- and trans-eQTLs. (C) Female cis-trans eQTL networks. (D) Male cis-trans eQTL 23 

networks. (E) Overlap of genes in cis-trans eQTLs networks in males and females.  24 

 25 
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Table S6| TE expression analyses. (A) Log2 normalized RPM values for reads from each 1 

DGRP RNA-seq sample (columns) uniquely aligning to each known TE sequence in the D. 2 

melanogaster portion of RepBase. (B) Log2 normalized RPM values for reads from each DGRP 3 

line DNA-seq sample (columns) uniquely aligning to each known TE sequence. (C) Results of 4 

pooled sex mixed-effect models run for all TE sequences profiles in (A), including DNA copy 5 

number effects based on line profiles in (B), and copy number-independent line effects and line 6 

by sex interactions. (D) Results of female-only mixed-effect models for all TE sequences, 7 

including DNA copy number effects and copy number-independent line effects. (E) Results of 8 

male-only mixed-effect models for all TE sequences, including DNA copy number effects and 9 

copy number-independent line effects. (F) Female line means of copy-number independent 10 

effects inferred from the mixed-effect models in (D), for all TE sequences with significant LINE 11 

effects at 5% FDR threshold. (G) Male line means of copy-number independent effects inferred 12 

from the mixed-effect models in (E), for all TE sequences with significant LINE effects at 5% 13 

FDR threshold. (H) Modules of genetically correlated TE sequence expression, based on line 14 

means in (F) and (G), identified by WGCNA.  15 

 16 

Table S7| TE eQTL analyses. (A) Female TE eQTLs. (B) Male TE eQTLs. (C) Summary of 17 

eQTLs by TE sequence. (D) Statistical tests by TE sequence for enrichment of eQTLs in 18 

euchromatic regions of normal recombination (“middle”) and pericentromeric euchromatin in 19 

which recombination is suppressed (“edge”), based on Fiston-Lavier and Petrov‟s Drosophila 20 

melanogaster recombination rate calculator (http://petrov.stanford.edu/cgi-bin/recombination-21 

rates_updateR5.plPetrov ref). (E) Statistical tests by chromosome for enrichment of TE eQTLs 22 

in euchromatic regions of normal recombination (“middle”) and pericentromeric euchromatin in 23 

which recombination is suppressed (“edge”), based on Fiston-Lavier and Petrov‟s Drosophila 24 

melanogaster recombination rate calculator (http://petrov.stanford.edu/cgi-bin/recombination-25 

rates_updateR5.plPetrov ref). (F) Female eQTLs associated with expression of multiple TE 26 
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sequences. (G) Male eQTLs associated with expression of multiple TE sequences. (H) GO 1 

enrichment for genes with eQTLs associated with TE expression. 2 

 3 

Table S8| eQTLs associated with genes and TEs. (A) Females. (B) Males.  4 

 5 

Table S9| Microbial species detected in DGRP RNA-seq libraries. For each individual 6 

species, the genus is noted (where applicable), and the NCBI Taxonomic ID and Refseq 7 

genome assembly accession numbers are given for all genome assemblies included. Note that 8 

for some species there are multiple Taxonomic IDs (multiple known strains) and/or multiple 9 

genome assemblies available. The last column provides the total number of reads uniquely 10 

aligned to each microbial species summed across all DGRP RNA-seq samples, after removing 11 

all reads that align ambiguously to multiple microbial species or align to both microbial genomes 12 

and the assembled chromosomes of the D. melanogaster genome. 13 

 14 

Table S10| Microbial RNA expression analyses. (A) Log2 normalized RPM (reads per million) 15 

values for reads from each DGRP RNA-seq sample (columns) uniquely aligning to each 16 

microbial species (rows). For Aspergillus terreus and Malassezia globosa, the majority of reads 17 

aligned to homologous regions of both species, and therefore these two species were combined 18 

for the purpose of this analysis. (B) Results of pooled sex mixed-effect models run for all 19 

species profiles in (A). For Wolbachia pipientis, a model was run without an additional factor for 20 

known Wolbachia infection status. For all other individual species, P-values were corrected for 21 

multiple testing using the Benjamini-Hochberg method and the corrected P-values are noted in 22 

corresponding FDR columns. (C) Line means, averaged across males and females, inferred 23 

from the mixed-effect models in (B), for all species with significant Line effects at a 5% FDR 24 

threshold. (D) Modules of genetically correlated microbial species, based on line means in (C), 25 

identified by WGCNA. 26 
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 1 

Table S11| eQTLs for microbial species. (A) eQTLs for microbial species (FDR  0.05). (B) 2 

eQTLs for microbial species (P < 10-5). (C) eQTLs associated with multiple microbial species (P 3 

< 10-5). (D) GO enrichment for genes with eQTLs associated (P < 10-5) with microbe expression. 4 

 5 

Table S12| Mean quantitative trait values for each DGRP line. (A) Females. (B) Males. 6 

 7 

Table S13| ANOVA results for metabolic and body size traits.  8 

 9 

Table S14| Most significant (P < 10-5) variants associated with quantitative traits from 10 

GWA analyses. Variants highlighted in green are also eQTLs for gene expression. (A) Males. 11 

(B) Females. 12 

 13 

Table S15| Results of TWAS analyses. Highlighted cells have transcript-trait associations with 14 

FDR  0.05. (A) Male genes (P < 10-3). (B) Female genes (P < 10-3). (C) Male TEs (P < 0.05). 15 

(D) Female TEs (P < 0.05). (E) Male microbial species (P < 0.05). (F) Female microbial species 16 

(P < 0.05). 17 
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