

1    **Epigenetic Effects of Assisted Reproductive Technology in Human Offspring**

2

3    Wei Chen<sup>1,2,3,4,†</sup>, Yong Peng<sup>1,2,3,4,†</sup>, Xinyi Ma<sup>1,2,3,4,†</sup>, Siming Kong<sup>1,2,3,4</sup>, Shuangyan Tang<sup>1</sup>, Yuan

4    Wei<sup>1</sup>, Yangyu Zhao<sup>1</sup>, Wenxin Zhang<sup>1</sup>, Yang Wang<sup>1,2,3,\*</sup>, Liying Yan<sup>1,2,3,\*</sup>, Jie Qiao<sup>1,2,3,4,5,\*</sup>

5

6    **Affiliations**

7    <sup>1</sup>Center for Reproductive Medicine, Department of Obstetrics and Gynecology Third Hospital,  
8    Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.

9    <sup>2</sup>Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China.

10    <sup>3</sup>Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology,  
11    Beijing 100191, China.

12    <sup>4</sup>Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China.

13    <sup>5</sup>Beijing Advanced Innovation Center for Genomics, Peking University, Beijing 100871, China.

14    <sup>†</sup>These authors contributed equally to this work.

15    **\*Corresponding      author:**      [yangwang@bjmu.edu.cn](mailto:yangwang@bjmu.edu.cn),      [yanliyingkind@aliyun.com](mailto:yanliyingkind@aliyun.com),  
16    [jie.qiao@263.net](mailto:jie.qiao@263.net)

17

18

19 **Abstract**

20 The births of more than 8 million infants have been enabled globally through assisted  
21 reproductive technologies (ARTs), including conventional in vitro fertilization (IVF) and  
22 intracytoplasmic sperm injection (ICSI) with either fresh embryo transfer (ET) or frozen embryo  
23 transfer (FET). However, the potential for elevated risks of ART-related disorders persists in adult  
24 life, and the underlying epigenetic mechanisms are largely uncharacterized. Here, we recruited 100  
25 nuclear families and profiled the DNA methylomes, genome-wide histone modifications and  
26 transcriptomes to clarify the inherent extra risks attributable to specific ART procedures. We  
27 discovered that IVF-ET seemed to introduce less disturbance into the infant epigenome than IVF-  
28 FET or ICSI-ET did. Furthermore, we noted approximately half of the DNA methylomic changes  
29 in ART-conceived offspring could be explained by parental background biases. Through removal  
30 of the parental effect, we confirmed that ART *per se* would introduce minor DNA methylation  
31 changes locally. More importantly, we found that ART-induced epigenomic alterations were highly  
32 enriched in the processes which might contribute to increased incidence of preeclampsia during  
33 pregnancy and metabolic syndrome in offspring. Overall, our study provides an epigenetic basis  
34 for the potential long-term health risks in ART-conceived offspring that reinforces the need to  
35 review all methods of human ART.

36 **Introduction**

37 Assisted reproductive technology (ART) has become routine in infertile treatment; indeed,  
38 more than eight million ART-conceived infants have been born worldwide<sup>1</sup>. However,  
39 conventional in vitro fertilization and fresh embryo transfer (IVF-ET) will introduce extraordinary  
40 changes in the environment where oocytes mature and the early embryo develops<sup>2</sup>. Moreover,  
41 intracytoplasmic sperm injection (ICSI), which was initially used to address severe male infertility,  
42 has replaced IVF as the most commonly used method for ART-mediated fertilization in many  
43 countries<sup>3</sup>. This more invasive fertilization procedure introduces additional mechanical damage,  
44 bypasses the complicated process of sperm-egg recognition and alters a series of downstream  
45 reactions<sup>4</sup>. Embryo cryopreservation enables embryos to be preserved for further transplantation,  
46 but both cryogens and freeze-thawing operation may cause damage to embryos<sup>5</sup>. All those  
47 unfavorable factors have raised concerns regarding the long-term health of ART-conceived  
48 children in recent years<sup>6</sup>. Despite claims to the contrary<sup>7-9</sup>, accumulating evidences have linked  
49 ART with potentially increased risks of neurodevelopmental disorders, cardiovascular dysfunction  
50 and metabolic abnormality in offspring and preeclampsia during pregnancy<sup>10,11</sup>.

51 Epigenetic modifications, such as DNA methylation and histone modifications, play key roles  
52 in regulating gene expression and are relatively sensitive to environmental factors<sup>12</sup>.  
53 Preimplantation embryos undergo dramatic genome-wide epigenetic reprogramming<sup>13,14</sup> that  
54 coincides with the time frame of ART treatments. Thus, ART-associated perturbations may disturb  
55 the establishment and maintenance of epigenomic patterns and increase the relevant health risks  
56 of ART-conceived children in later life<sup>15</sup>. Notwithstanding, published researches on the association

57 between ART and DNA methylation in offspring are limited to either specific genes<sup>16,17</sup> or repeated  
58 sequences<sup>18</sup> and restricted by methods<sup>19-23</sup>. Meanwhile, few studies have parsed the parental  
59 inheritance bias where considerable reports have revealed that parental genetic backgrounds,  
60 health situations, nutritional conditions and living habits have potential impacts on the epigenomes  
61 of neonates<sup>24,25</sup>. In addition, genome-wide changes in histone modifications of ART-conceived  
62 infants have not been reported and the effects of each specific ART procedure have not been fully  
63 elucidated so far.

64 Here, we integrated genome-wide maps of DNA methylation, four histone modifications  
65 associated with promoter/enhancer function (H3K4me1, H3K4me3, H3K27ac and H3K27me3),  
66 and gene expression for nuclear families to investigate the specific multilayer effects of various  
67 ART procedures on epigenomes in offspring. We found that various ART treatment would not  
68 dramatically disturb the global epigenome of neonates but subtly induced local and functional  
69 changes. Our comprehensive analysis not only accords with the findings in previous epidemiology  
70 studies but also reveals unexplored healthy risks in offspring from epigenomic aspect, and may  
71 serve as a valuable resource for researchers on the epigenetic influences of ART procedures.

72

### 73 **Results**

#### 74 ***Global epigenomic profiles in ART-conceived neonates***

75 To systematically study the DNA methylomic effects of different types of ARTs on offspring,  
76 we performed reduced-representation bisulfite sequencing (RRBS) on 137 umbilical cord blood  
77 (UCB) samples and 158 parental peripheral blood (PPB) samples from nuclear families with either

78      singletons or twins (Fig. 1a, Supplementary Figure. 1a and Supplementary Table 1). The samples  
79      were classified into five groups based on the mode of conception: spontaneous (CTRL), IVF-ET,  
80      IVF-FET, ICSI-ET and ICSI-FET. There were no significant differences in the clinical features of  
81      the neonates among the different groups; in addition, maternal ages were under 35 years old and  
82      parental body mass index (BMI) values were comparable in general (Supplementary Table 2). In  
83      addition, we performed chromatin immunoprecipitation sequencing (ChIP-seq) on 33 UCB  
84      samples to examine histone modifications (H3K4me1, H3K4me3, H3K27ac, and H3K27me3) and  
85      mRNA sequencing (mRNA-seq) on 32 UCB samples to examine the transcriptomes of neonates  
86      (Fig. 1a; Supplementary Figure. 1a and Supplementary Table 1).

87      The results showed that the global DNA methylation levels, histone modifications, and  
88      transcriptomes of individual neonates were overall similar among the CTRL and four ART groups  
89      (Supplementary Figure. 1b-d). There were also no noticeable differences in global DNA  
90      methylation on various functional genomic regions, such as promoters, enhancers and repeats  
91      (Supplementary Figure. 1e). Unsupervised clustering of each layer of the reference epigenome  
92      showed no obvious subgroups but rather showed broadly distributed patterns among neonates,  
93      except for H3K4me3 in the IVF-FET and ICSI-ET groups (Fig. 1b and Supplementary Figure. 2a).  
94      These observations were further verified in hierarchical clustering analyses of the CTRL group  
95      versus specific ART subtype groups or ARTs as a whole; the accuracies in these analyses were  
96      close to a completely random value (50%) for binary classification but were markedly higher with  
97      regard to H3K4me3 in the IVF-FET and ICSI-ET groups (Fig. 1c and Supplementary Figure. 2b-  
98      h). These results suggested that ART processes do not dramatically disturb the overall epigenomes

99 and transcriptomes of neonates in general but that H3K4me3 might be exceptionally sensitive to  
100 disturbance by specific ART procedures.

101 Correlation analysis for the DNA methylomes of twin pairs showed an overall high  
102 correlation coefficient greater than 0.99 (Fig. 1d); the coefficient for monozygotic twins was  
103 significantly higher than that for dizygotic twins in the CTRL group, consistent with previous  
104 studies<sup>26,27</sup>. The relatively lower correlation coefficients in all four ART subgroups than in the  
105 CTRL group implied that ART processes might subtly affect the epigenomes of neonates (Fig. 1d).  
106 Additionally, this phenomenon could also be observed when only same-sex twins were analyzed  
107 or in any two non-twin-pair neonates in each group (with exclusion of twin-pair bias)  
108 (Supplementary Figure. 3a-c). Moreover, the standard deviations of the DNA methylation levels  
109 of all neonates in the different ART groups were slightly but significantly higher than that in the  
110 CTRL group (Fig. 1e). Above results indicated that ART itself might increase heterogeneity in  
111 neonates. Intergroup correlation analysis revealed that the IVF-ET group was the most similar to  
112 the CTRL group with regard to H3K4me1, H3K4me3, H3K27ac, transcriptomes and DNA  
113 methylomes genome-wide or on special elements (Fig. 1f and Supplementary Figure. 3d),  
114 indicating that IVF-ET might have less epigenetic influence on neonates than the other three ART  
115 processes. These findings suggested that imperceptible disturbances might be introduced into  
116 neonates and might vary among different ART subtypes.

117

118 ***Subtle epigenomic changes in ART-conceived offspring***

119 To elucidate the epigenetic effects of ARTs on neonates, we performed pairwise comparisons

120 between groups for DNA methylation, histone modifications, and gene expression. In particular,  
121 to identify differentially methylated regions (DMRs), six comparisons were generated using all  
122 neonates, only singleton neonates, and four groups of neonates from twin cohorts. DMRs in at  
123 least four comparisons were selected for downstream analysis to improve the confidence of the  
124 analysis (Supplementary Figure. 3e, see Methods for more details). The numbers of hyper-/hypo-  
125 DMRs, gain/loss differential histone modifications (differential peaks, DPs), and up-  
126 /downregulated differentially expressed genes (DEGs) among the different comparison groups are  
127 shown in Fig. 1g and Supplementary Table 4 (see Supplementary Table 5-10 for more details). The  
128 difference detected in DMRs was mainly less than 15%, which was relatively moderate  
129 (Supplementary Figure. 4a). Meanwhile, only a few DPs were observed in the comparison between  
130 the IVF-ET and CTRL groups for four histone modifications, suggesting that IVF-ET has little  
131 impact on histone modification (Fig. 1g and Supplementary Table 4). The numbers of H3K4me3  
132 DPs detected in the comparison between the ICSI-ET/IVF-FET and CTRL groups (ICSI-ET: 8352  
133 gain, 205 loss; IVF-FET: 5526 gain, 210 loss) were consistent with the observation in unsupervised  
134 clustering (Fig. 1b and Supplementary Figure. 2a, f-g), while the majority of the increased DPs in  
135 the ICSI-ET/IVF-FET groups were in regions with originally weak signals in the CTRL and IVF-  
136 ET groups (Supplementary Figure. 4b). All of the DEGs, DMRs and DPs for each ART group  
137 versus the CTRL group were further validated at the individual level and broadly distributed on  
138 the genome scale (Supplementary Figure. 4c-e; Supplementary Figure. 5). Together, these results  
139 indicated that ART processes potentially caused subtle epigenetic changes distributed widely  
140 throughout the genome.

141

142 ***Parent-derived and ART-derived DNA methylomic differences in offspring***

143 To evaluate parental influence on the DNA methylomes of progeny, the DNA methylation  
144 levels of DMRs identified in neonates were further analyzed in parents. There were significant  
145 differences between the two groups of fathers or mothers (Fig. 2a; Supplementary Figure. 6a;  
146 p<0.01). In addition, approximately 50% of DMRs identified in neonates significantly overlapped  
147 with DMRs identified in their corresponding parents (Fig. 2b and Supplementary Figure. 6b,  
148 Supplementary Table 14). To investigate the effects of ARTs *per se*, the overlapping DMRs were  
149 removed and the remaining neonatal DMRs were used as the final neonatal DMRs for downstream  
150 analysis (Supplementary Figure. 6c, Supplementary Table 11 and 15). As expected, no significant  
151 differences were observed in the DNA methylation levels of the final neonatal DMRs between the  
152 corresponding parental groups (Supplementary Figure. 6d-e).

153

154 ***Epigenomic alteration of regulatory regions in IVF-ET-conceived offspring***

155 IVF-ET, the most basic process of ART treatment, is generally recommended as a first-line  
156 ART therapy for couples with female infertility<sup>28</sup>. A total of 1703 hyper-DMRs and 2658 hypo-  
157 DMRs were identified in the IVF-ET group compared with the CTRL group (Supplementary Table  
158 11). Gene Ontology (GO) enrichment analysis showed that the associated genes of DMRs were  
159 enriched in a broad range of processes, including processes related to the nervous system,  
160 respiratory system and cardiovascular system, etc. (Fig. 3a; Supplementary Table 16). Human  
161 Phenotype Ontology (HPO) analysis also indicated that alterations in DNA methylome induced by

162 IVF-ET might lead to abnormal phenotypes in ocular, cardiovascular and skeletal system, tooth  
163 morphology and metabolism, etc. (Fig. 3b; Supplementary Table 16).

164 Given the distinct roles of various genomic regions in regulating gene expression, we  
165 performed ChromHMM using four types of histone modifications and identify 12 chromatin states  
166 to investigate the specific impacts of IVF-ET on the DNA methylation of functional elements (Fig.  
167 3c). The regions covered in our DNA methylation data were mainly the regions related with  
168 transcription start site (TSS) (E7 and E8), consistent with the features of highly enriched CpG  
169 regions in RRBS. Notably, a large fraction of DMRs were concentrated on Active enhancer (E2),  
170 Poised enhancers (E4), Active TSS upstream sites (E6) and Bivalent/Poised TSSs (E8), but almost  
171 depleted from Active TSSs (E7) (Fig. 3d). GO analysis for those DMRs in different chromatin  
172 states suggested that those hyper-DMRs in Weak enhancer (E1), Bivalent/Poised TSSs (E8) and  
173 ZNF Genes & Repeats (E9) might be associated with the interference on nervous system, while  
174 hyper-DMRs in Repressed Polycomb (E10) might account for the influence on cardiovascular  
175 system. Meanwhile, hypo-DMRs in Active TSS upstream (E6) and Weak repressed polycomb (E11)  
176 might highly correlated with immune system and skeletal system, respectively (Fig. 3e,  
177 Supplementary Table 16). In fact, the intersection of the DMR associated genes with the DEGs  
178 revealed that the majority of the DMRs were not associated with transcriptional changes in their  
179 associated genes (Fig. 3f, Supplementary Table 17). For DEGs overlapped with hypo-DMRs  
180 associated genes, *MDGA1* was upregulated in the IVF-ET group, while *RGS12* was downregulated;  
181 in the former, the DMRs occurred in promoters, while in the latter they occurred in introns. The  
182 expression of genes associated with hyper-DMRs in introns or distal intergenic regions, such as

183 *KIAA1671* (introns), *DIP2C*, *CCND1* and *CD28*, was decreased (Fig. 3g).  
184 Polymorphisms/mutations in *MDGA1* and *DIP2C* are associated with mental disease, and  
185 dysregulation of *KIAA1671*, *CCND1*, and *DIP2C* has been reported to take part in tumorigenesis;  
186 furthermore, *RGS12* dysfunction contributes to tumorigenesis as well as pathological cardiac  
187 hypertrophy, osteoclast genesis and bone destruction. Together, our findings indicated that DNA  
188 methylomic changes caused by IVF-ET might affect multiple aspects related with neonates' health,  
189 but mainly kept away from active TSS regions.

190

### 191 ***Identification of altered epigenomic profiles associated with ICSI procedures***

192 To investigate the differences between those two ways of fertilization, we first compared ICSI-  
193 ET with IVF-ET and identified more than 4500 DMRs and 9000 H3K4me3 DPs (Supplementary  
194 Tables 4 and 11; 2365 hyper-DMRs and 2386 hypo-DMRs; 8914 gain DPs and 270 loss DPs).  
195 Although there were no overlapped genomic locations, the changes shared common associated  
196 genes and GO terms (Extended Data Figs. 7a-c), with only a few genes showed consistent changes  
197 in expression with changes in the epigenome (Supplementary Tables 18). Taking the differences  
198 between the ICSI-ET and CTRL groups into account enabled us to determine the abnormal effects  
199 of ICSI *per se*. Thereafter, the DMRs and H3K4me3 DPs of the ICSI-ET group versus the IVF-ET  
200 group were refined, the former based on k-means clustering of DNA methylation levels among the  
201 ICSI-ET, IVF-ET and CTRL groups and the latter based on integrated comparison between DPs  
202 of ICSI-ET vs CTRL (n=8557) and DPs of ICSI-ET vs IVF-ET (n=9184). Six clusters of DMRs  
203 (C1~C3 for hyper-DMRs, C4~C6 for hypo-DMRs) and overlapping H3K4me3 DPs (n=7317) that

204 showed similar change tendencies in the comparison of ICSI-ET vs IVF-ET and ICSI-ET vs CTRL  
205 groups were selected for downstream analysis (Fig. 4a-b; Extended Data Figs. 7d; Supplementary  
206 Tables 19). The associated genes of hyper-DMRs and gain DPs were enriched in processes  
207 involving the development of skeletal system and Wnt signaling morphogenesis, respectively (Fig.  
208 4c; Supplementary Table 20). Meanwhile, HPO annotation of those DMRs also revealed that the  
209 disturbance in those regions might potentially introduce adverse effect on appendage and skeletal  
210 system (Extended Data Figs. 7e; Supplementary Table 20). Though there were only 84 loss DPs  
211 of H3K4me3, they were highly enriched in GO terms of immune system (Fig. 4c; Supplementary  
212 Table 20). Similar to the observation in IVF-ET, the selected DMRs for ICSI also tended to avoid  
213 the active TSSs (Fig. 4d). Associated genes of hyper DMRs in ZNF Genes & Repeats (E9) and  
214 weak repressed polycomb (E11) were enriched in the processes of immune and nervous system,  
215 respectively. Associated genes of hypo-DMRs in Active TSS (E7) and ZNF Genes & Repeats (E9)  
216 were also enriched in the processes of immune and nervous system, respectively (Fig. 4e;  
217 Supplementary Table 20). As expected, H3K4me3 peaks were mainly enriched in regions around  
218 TSSs (E5, E6, E7, E8). However, regions for the selected gain H3K4me3 DPs in CTRL and IVE-  
219 ET group were highly enriched in active enhancer (E2) and poised enhancer (E4) and shifted to  
220 ZNF Genes & Repeats (E9) in ICSI-ET. For loss H3K4me3 DPs, the situation was reversed (Fig.  
221 4d). GO terms for the selected gain H3K4me3 DPs in E2 and E4 were mainly related to the  
222 regulation of leukocytes, cell migration/adhesiveness and the development of several systems (Fig.  
223 4e; Supplementary Table 20). These results suggested that ICSI might alter H3K4me3 at enhancers  
224 and affect multiple processes. Together, the results regarding both the DNA methylome and

225 H3K4me3 modification raise the question of whether ICSI may have a potential impact on health  
226 of offspring, with the skeletal systems and immune system as the representatives.

227

228 ***Specific epigenomic changes induced by freeze-thawing procedure***

229 We then investigated the differences between the IVF-FET and IVF-ET groups and observed  
230 6251 DMRs and 5683 DPs of H3K4me3 (Supplementary Tables 4 and 11; 4191 hyper-DMRs and  
231 2060 hypo-DMRs; 5548 gain DPs and 135 loss DPs). In addition, compared to the number of DPs  
232 in the ICSI-ET group versus the IVF-ET group or the CTRL group, the notably increased numbers  
233 of H3K4me1, H3K27me3 and H3K27ac DPs suggested that the freeze-thawing procedure might  
234 introduce more disturbance of histone modifications than ICSI (Supplementary Figure. 8a;  
235 Supplementary Table4). Moreover, the DMRs and DPs (of H3K4me3 and H3K27ac) shared  
236 common associated genes and GO terms, implying that freeze-thawing procedure might cause  
237 certain functional changes through different epigenetic layers (Fig. 5a and Supplementary Figure.  
238 8b; Supplementary Table 21~22).

239 To further explore the specific effects of freeze-thawing procedure *per se*, we selected six  
240 subgroups of DMRs of IVF-FET vs IVF-ET through k-means clustering of scaled DNA  
241 methylation levels among the IVF-FET, IVF-ET and CTRL groups (Fig. 5b; Supplementary Table  
242 23; cluster C11~13 in hyper-DMRs and cluster C14~C16 in hypo-DMRs), as well as H3K4me3  
243 DPs (n=4999) identified by intersection in the comparison of IVF-FET vs IVF-ET (n=5683) and  
244 IVF-FET vs CTRL (n=5736) (Fig. 5c). The replications of DMRs and DPs for each group were  
245 highly comparable (Supplementary Figure. 8c). The associated genes of selected hyper-DMRs

246 were highly enriched in the processes of neutrophil-mediated immunity and the regulation of  
247 GTPase/Ras (Fig. 5d). The results of HPO analysis further revealed that the selected DMRs might  
248 be related to carcinogenesis (Supplementary Figure. 8d; Supplementary Table 22). The majority  
249 of selected hyper/hypo-DMRs were inclined to evade from Active TSS (Fig. 5e), and the  
250 associated genes of those DMRs in Active enhancer (E2) and Active TSS upstream (E6) were  
251 highly enriched in the processes of immune system, metabolism of purine/carbohydrate, muscle  
252 and skeletal system (Fig. 5f; Supplementary Table 22). Poised enhancer (E4) was the most  
253 overrepresented state for the selected gain H3K4me3 DPs in CTRL/IVF-ET group and became  
254 ZNF Genes & Repeats (E9) in IVF-FET. Associated genes for the selected gain H3K4me3 DPs in  
255 E2 and E4 were enriched in the processes of certain systems (Fig. 5e-f; Supplementary Table 22).  
256 It was also worth mentioning that the genes *PGP*, *PLOD3*, and *STAB1* in the IVF-FET group all  
257 exhibited decreased expression with hyper-DMRs in their promoters. In addition, the expression  
258 level of *SEPT9* also showed decreased tendency in the IVF-FET group, with hyper-DMRs detected  
259 in the TSS upstream region and hypo-DMRs detected in the TSS downstream region  
260 (Supplementary Table 21). Considering that the dysregulation of the *PGP*, *PLOD3*, *STAB1* and  
261 *SEPT9* genes as well as the GTPase signaling pathway is potentially associated with  
262 carcinogenesis<sup>29</sup>, the above results implied that disturbance in the epigenome introduced by  
263 cryopreservation *per se* might potentially affect the immune system and increase the risk of cancer  
264 later in life.

265

266 ***Common epigenetic effects among different ART processes***

267 Since various ART processes share common procedures, we further analyzed the relationship  
268 among DMRs/DPs to investigate the common epigenetic effects of ART treatments. Clearly, the  
269 DMRs identified in seven pairwise comparisons were overlapped significantly in genomic location  
270 and shared many common GO terms (Supplementary Figure. 9a-b; Supplementary Table 24).  
271 Moreover, a considerable number of DMRs showed similar change tendencies in different ART  
272 groups compared with CTRL group through k-means clustering using DMRs from all seven groups  
273 (Fig. 6a; Supplementary Table 25; C22, n=931; C23, n=776). The associated genes of C22 and  
274 C23 were highly enriched in the regulation of GTPase activity, stress-activated MAPK cascade,  
275 cell morphogenesis and neuron projection development in GO analysis (Fig. 6b; Supplementary  
276 Table 24).

277 Interestingly, clusters C21 and C24 seemed to represent regions where ICSI and freeze-  
278 thawing procedure might introduce similar alterations, revealed by the similar change on DNA  
279 methylation levels in the ICSI-ET and IVF-FET groups compared with CTRL and IVF-ET groups  
280 (Fig. 6a, Supplementary Table 25). These DMRs were related to Wnt signaling pathway,  
281 respiratory, cardiovascular and nervous system. Similarly, there were noticeable overlaps between  
282 ICSI- and freeze-thawing-specific gain H3K4me3 DPs (Fig. 6c; Supplementary Table 25; C1-C3  
283 and C11-C13; n=3553), which were mainly involved in immune (B lymphocytopenia,  
284 Abnormality of B cell number, Neutropenia) and skeletal system by HPO analysis (Supplementary  
285 Figure. 9c; Supplementary Table 24). As mentioned previously, those DMRs were also noticeably  
286 absent from Active TSS (E7), with the increased enrichment in ZNF Genes & Repeats (E9) for  
287 DMRs in clusters C21 and C24 (Fig. 6d). Meanwhile, the difference between ICSI-FET and IVF-

288 ET would be expected as a mixed effect of ICSI and freeze-thawing operation, indeed, large  
289 percentage of those DMRs showed similar changes in ICSI-ET or IVF-FET (C31~C33; C35, C36,  
290 C38). However, 13% hyper-DMRs (C34) and 19% hypo-DMRs (C37) were uniquely found in  
291 ICSI-FET groups, implying complex interactions between ICSI and freeze-thawing  
292 (Supplementary Figure. 9d, Supplementary Table 25). The above results together suggested that  
293 in addition to causing their own unique effects, as mentioned previously, distinct ART procedures  
294 also leaded to certain common effects on the epigenomes of offspring.

295

## 296 **Discussion**

297 Safety concerns regarding ARTs are as old as ARTs themselves<sup>30</sup>. Although a number of  
298 studies suggest that ART may have adverse effects on the long-term health on offspring, the  
299 underlying mechanisms remain to be elucidated. We systematically explored the influences of  
300 fertilization procedures and freeze-thawing operation on descendant genome-wide DNA  
301 methylation, histone modifications and gene expression. Recruitment of nuclear families with  
302 twins provided us with perfect biological replicates in each family and enabled us to eliminate  
303 ART-irrelevant parental impacts as much as possible. Our study illustrates that the epigenomes of  
304 neonates conceived by ART are overall similar to those of naturally conceived children, which  
305 may partially explain why most ART offspring are generally healthy. However, ART do increase  
306 the heterogeneity of the DNA methylome within twin pairs and induce local subtle changes in  
307 different epigenetic layers, supporting the theory that ART increases risks of epigenomic  
308 abnormality<sup>16-18</sup>. We also found that more than half of the DNA methylomic changes in ART

309 offspring were derived from parents, highlighting the necessity of removing parental bias in  
310 assessing the influences of ARTs *per se*. Moreover, we reported the genome-wide impacts of  
311 ARTs on four types of histone modifications in humans for the first time. The epigenomes of  
312 IVF-ET conceived infants seemed to be closer to those of naturally conceived infants than those  
313 of IVF-FET or ICSI-ET conceived infants and showed almost no disturbance in either type of  
314 histone modification, suggesting that ART-inherent procedures, including controlled ovarian  
315 hyperstimulation (COH), in vitro culture, in vitro fertilization, etc., may not increase the risks of  
316 abnormal histone reprogramming; however, ICSI and freeze-thawing operation may do so. What  
317 surprised us was that H3K4me3 was the most profoundly impacted by ICSI and freeze-thawing  
318 compared with the other three types of histone modifications (H3K4me1, H3K27me3 and  
319 H3K27ac), therefore, H3K4me3 might serve as a sensitive histone modification for assessment  
320 of the influences of ARTs.

321 The distributions of epigenetic changes tended to be away from active cis-regulatory elements  
322 and were not largely associated with transcriptional changes in corresponding genes. Functional  
323 enrichment of epigenetic changes suggested that epigenetic disorders caused by ICSI might  
324 interfere the processes associated with skeletal system, which is also highlighted in a recent study  
325 about the potential impact of ART on DNA methylome<sup>31</sup>. Our results also indicated that freeze-  
326 thawing procedure, as well as ICSI, might increase the risks of immune dysfunction in offspring.  
327 Though the risks of hospital admission in FET-conceived children and asthma medication in ART-  
328 conceived children have been reported to be higher than CTRL conceived children<sup>32,33</sup>, direct  
329 evidence regarding the effects of ART on the immune system is lacking so far and long-term

330 follow-up studies are required. Previous studies have revealed elevated rates of preeclampsia in  
331 women who have undergone FET<sup>34</sup>. GTPases, especially Rho kinases, play essential roles in  
332 extravillous trophoblast cell (EVT) invasion<sup>35</sup>, and limited EVT invasion following poor  
333 remodeling of arteries is widely observed in preeclampsia<sup>36</sup>. More interestingly, our results  
334 suggested that freeze-thawing operation might cause dysregulation in the GTPase/Ras signaling  
335 pathway in offspring. Thus, the epigenetic abnormality we report may also possibly explain the  
336 increased risks of preeclampsia in FET compared with fresh ET pregnancies. Our findings  
337 emphasize that it is reasonable to inform patients of potential risks associated with ICSI and  
338 embryo cryopreservation and that it would be wise to reconsider overutilization of ICSI or routine  
339 freezing of all embryos.

340 Apart from the influences for given ART operations, we also revealed the common effects  
341 induced by various ART processes. Further analysis showed that ART-induced DNA methylation  
342 changes were enriched in the processes of cardiovascular system and glucolipid metabolism in the  
343 comparisons of all four ART groups versus CTRL groups. Since the abnormalities in lipid profiles  
344 and higher rates of cardiovascular dysfunction have been reported in ART-achieved children<sup>11,37</sup>,  
345 it implies that the disturbance on epigenome by ART in offspring may increase the risk of  
346 metabolic syndrome<sup>38</sup>. In addition, we identified a considerable number of common DMRs among  
347 different ART groups compared with CTRL group. It is noteworthy that the regulation of GTPase  
348 activity was the most overrepresented terms in GO analysis for those DMRs, which is in line with  
349 those studies suggesting that pregnancies conceiving by ART is related with the increased risk for  
350 certain cancers in offspring and preeclampsia compared with natural pregnancy<sup>39,40</sup>. The common

351 DMRs induced by both ICSI and freeze-thawing procedure were enriched in the processes  
352 involving in neuron, consistent with the concern that these two kinds of aggressive ART operation  
353 might increase the risk of mental disorders in offspring<sup>41</sup>. As suggested by the reports that  
354 improved in vitro culture systems for animals will affect the epigenome less than earlier  
355 versions<sup>42,43</sup>, continuous optimization for ART procedures is urgently needed to simulate the in  
356 vivo environment and reduce potential epigenetic abnormalities in offspring.

357 Our study was mainly focused on the effects of different fertilization methods and freeze-  
358 thawing and only involved newborns after full-term pregnancy, lacking postnatal follow-up data  
359 on the enrolled populations. A larger multicenter randomized controlled trial (RCT) along with  
360 detection of the epigenetic profiles of offspring in later life would be helpful for elucidation of  
361 continued epigenetic change and exploration of the specific epigenetic impacts of other factors in  
362 ART treatment, such as the duration of embryo culture or the composition of the culture system.

363 In conclusion, our results provide an epigenetic basis for the increased long-term health risks  
364 in ART offspring. Our study highlights ART clinical interventions that require particular  
365 surveillance. More effort should be expended to optimize current ART systems, and the choice of  
366 appropriate procedures requires careful evaluation. Since epigenomic changes might be  
367 maintained throughout the human lifespan<sup>44</sup> and can potentially be transmitted to subsequent  
368 generations, long-term follow-up and health evaluation of ART offspring are necessary to provide  
369 more robust clinical evidence.

370

371

372 **Methods**

373 Methods and any associated references are available in the supplemental sections.

374

375 **Acknowledgments**

376 We thank the families participated in this study. We thank Robert Norman for discussion and  
377 reviewing the manuscript. This project is funded by National Natural Science Foundation of China  
378 (81730038; 81521002), National Key Research and Development Program (2018YFC1004000;  
379 2017YFA0103801; 2017YFA0105001) and Strategic Priority Research Program of the Chinese  
380 Academy of Sciences (XDA16020703). Y.W. was supported by Postdoctoral Fellowship of  
381 Peking-Tsinghua Center for Life Science.

382

383 **Author contributions**

384 W.C., X.M., Y.P. and S.K. wrote the manuscript. W.C. and X.M. collected the study materials and  
385 samples and patient data, performed the experiments. Y.Wei., Y.Z., S.T. and W.Z. were helpful for  
386 the recruitment of family and sample collection for this study. Y.P. developed analysis methods  
387 and performed bioinformatic analysis. J.Q., L.Y. and Y.Wang. developed the experimental  
388 conception and designs. All the authors read and approved the final manuscript.

389

390 **Competing interests**

391 The authors declare no competing interests.

392

393 **References**

- 394 1. Fauser, B.C. Towards the global coverage of a unified registry of IVF outcomes. *Reproductive biomedicine online* **38**, 133-137 (2019).
- 395 2. Winston, R.M. & Hardy, K. Are we ignoring potential dangers of *in vitro* fertilization and related treatments? *Nat. Med.* **8**, 14-18 (2002).
- 396 3. Esteves, S.C., Roque, M., Bedoschi, G., Haahr, T. & Humaidan, P. Intracytoplasmic sperm injection for male infertility and consequences for offspring. *Nat. Rev. Urol.* **15**, 535-562 (2018).
- 397 4. Ludwig, M., Schröder, A.K. & Diedrich, K. Impact of intracytoplasmic sperm injection on the activation and fertilization process of oocytes. *Reprod. Biomed. Online* **3**, 230-240 (2001).
- 398 5. Kopeika, J., Thornhill, A. & Khalaf, Y. The effect of cryopreservation on the genome of gametes and embryos: principles of cryobiology and critical appraisal of the evidence. *Human reproduction update* **21**, 209-227 (2014).
- 399 6. Fleming, T.P., *et al.* Origins of lifetime health around the time of conception: causes and consequences. *Lancet* **391**, 1842-1852 (2018).
- 400 7. Fruchter, E., *et al.* Health and functioning of adolescents conceived by assisted reproductive technology. *Fertility and sterility* **107**, 774-780 (2017).
- 401 8. Kuiper, D., *et al.* Cardiovascular health of 9-year-old IVF offspring: no association with ovarian hyperstimulation and the in vitro procedure. *Human Reproduction* **32**, 2540-2548 (2017).
- 402 9. Watanabe, N., *et al.* Is in vitro fertilization associated with preeclampsia? A propensity score matched study. *BMC pregnancy and childbirth* **14**, 69 (2014).
- 403 10. Berntsen, S., *et al.* The health of children conceived by ART: 'the chicken or the egg?'. *Hum. Reprod. Update* **25**, 137-158 (2019).
- 404 11. Scherrer, U., Rexhaj, E., Allemann, Y., Sartori, C. & Rimoldi, S.F. Cardiovascular dysfunction in children conceived by assisted reproductive technologies. *European heart journal* **36**, 1583-1589 (2015).
- 405 12. Feil, R. & Fraga, M.F. Epigenetics and the environment: emerging patterns and implications. *Nat. Rev. Genet.* **13**, 97-109 (2012).
- 406 13. Zhu, P., *et al.* Single-cell DNA methylome sequencing of human preimplantation embryos. *Nat. Genet.* **50**, 12-19 (2018).
- 407 14. Xu, Q. & Xie, W. Epigenome in early mammalian development: inheritance, reprogramming and establishment. *Trends Cell Biol.* **28**, 237-253 (2018).
- 408 15. Gluckman, P.D., Hanson, M.A., Cooper, C. & Thornburg, K.L. Effect of in utero and early-life conditions on adult health and disease. *N. Engl. J. Med.* **359**, 61-73 (2008).
- 409 16. Lazaraviciute, G., Kauser, M., Bhattacharya, S., Haggarty, P. & Bhattacharya, S. A systematic review and meta-analysis of DNA methylation levels and imprinting disorders in children conceived by IVF/ICSI compared with children conceived spontaneously. *Hum. Reprod. Update* **20**, 840-852 (2014).
- 410 17. Song, S., *et al.* DNA methylation differences between *in vitro*-and *in vivo*-conceived children are associated with ART procedures rather than infertility. *Clin. Epigenetics* **7**, 41 (2015).
- 411 18. Ghosh, J., Coutifaris, C., Sapienza, C. & Mainigi, M. Global DNA methylation levels are altered by modifiable clinical manipulations in assisted reproductive technologies. *Clin. Epigenetics* **9**, 14 (2017).
- 412 19. Melamed, N., Choufani, S., Wilkins-Haug, L.E., Koren, G. & Weksberg, R. Comparison of genome-wide and

433 gene-specific DNA methylation between ART and naturally conceived pregnancies. *Epigenetics* **10**, 474-483  
434 (2015).

435 20. Estill, M.S., *et al.* Assisted reproductive technology alters deoxyribonucleic acid methylation profiles in  
436 bloodspots of newborn infants. *Fertility and sterility* **106**, 629-639. e610 (2016).

437 21. El Hajj, N., *et al.* DNA methylation signatures in cord blood of ICSI children. *Human Reproduction* **32**, 1761-  
438 1769 (2017).

439 22. Choufani, S., *et al.* Impact of assisted reproduction, infertility, sex and paternal factors on the placental DNA  
440 methylome. *Human Molecular Genetics* **28**, 372-385 (2018).

441 23. Castillo-Fernandez, J.E., *et al.* DNA methylation changes at infertility genes in newborn twins conceived by  
442 *in vitro* fertilisation. *Genome Med.* **9**, 28 (2017).

443 24. Tobi, E.W., *et al.* DNA methylation signatures link prenatal famine exposure to growth and metabolism. *Nat.*  
444 *Commun.* **5**, 5592 (2014).

445 25. Bauer, T., *et al.* Environment - induced epigenetic reprogramming in genomic regulatory elements in  
446 smoking mothers and their children. *Mol. Syst. Biol.* **12**, 861 (2016).

447 26. Kaminsky, Z.A., *et al.* DNA methylation profiles in monozygotic and dizygotic twins. *Nat. Genet.* **41**, 240-245  
448 (2009).

449 27. Gordon, L., *et al.* Neonatal DNA methylation profile in human twins is specified by a complex interplay  
450 between intrauterine environmental and genetic factors, subject to tissue-specific influence. *Genome Res.*  
451 **22**, 1395-1406 (2012).

452 28. Tournaye, H. Male factor infertility and ART. *Asian J. Androl.* **14**, 103-108 (2012).

453 29. Sahai, E. & Marshall, C.J. RHO-GTPases and cancer. *Nat. Rev. Cancer* **2**, 133-142 (2002).

454 30. Cohen, M.E. The brave new baby and the law: fashioning remedies for the victims of *in vitro* fertilization.  
455 *Am. J. Law Med.* **4**, 319-336 (1978).

456 31. Liu, Y., *et al.* Comparison of Genome-Wide DNA Methylation Profiles of Fetal Tissues Conceived by In Vitro  
457 Fertilization and Natural Conception (October 16, 2018). Available at SSRN:  
458 <https://ssrn.com/abstract=3267672>

459 32. Pelkonen, S., *et al.* Physical health of singleton children born after frozen embryo transfer using slow freezing:  
460 a 3-year follow-up study. *Human Reproduction* **30**, 2411-2418 (2015).

461 33. Kuiper, D.B., *et al.* Asthma and asthma medication use among 4-year-old offspring of subfertile couples—  
462 association with IVF? *Reproductive biomedicine online* **31**, 711-714 (2015).

463 34. Wei, D., *et al.* Frozen versus fresh single blastocyst transfer in ovulatory women: a multicentre, randomised  
464 controlled trial. *The Lancet* **393**, 1310-1318 (2019).

465 35. Saso, J., Shields, S.-K., Zuo, Y. & Chakraborty, C. Role of Rho GTPases in human trophoblast migration induced  
466 by IGFBP1. *Biol. Reprod.* **86**, 1-9 (2012).

467 36. Redman, C.W. & Sargent, I.L. Latest advances in understanding preeclampsia. *Science* **308**, 1592-1594 (2005).

468 37. Guo, X.-Y., *et al.* Cardiovascular and metabolic profiles of offspring conceived by assisted reproductive  
469 technologies: a systematic review and meta-analysis. *Fertility and sterility* **107**, 622-631. e625 (2017).

470 38. Alberti, K.G.M., Zimmet, P. & Shaw, J. The metabolic syndrome—a new worldwide definition. *The Lancet*  
471 **366**, 1059-1062 (2005).

472 39. Chen, X.-K., *et al.* In vitro fertilization is associated with an increased risk for preeclampsia. *Hypertension in*  
473 *pregnancy* **28**, 1-12 (2009).

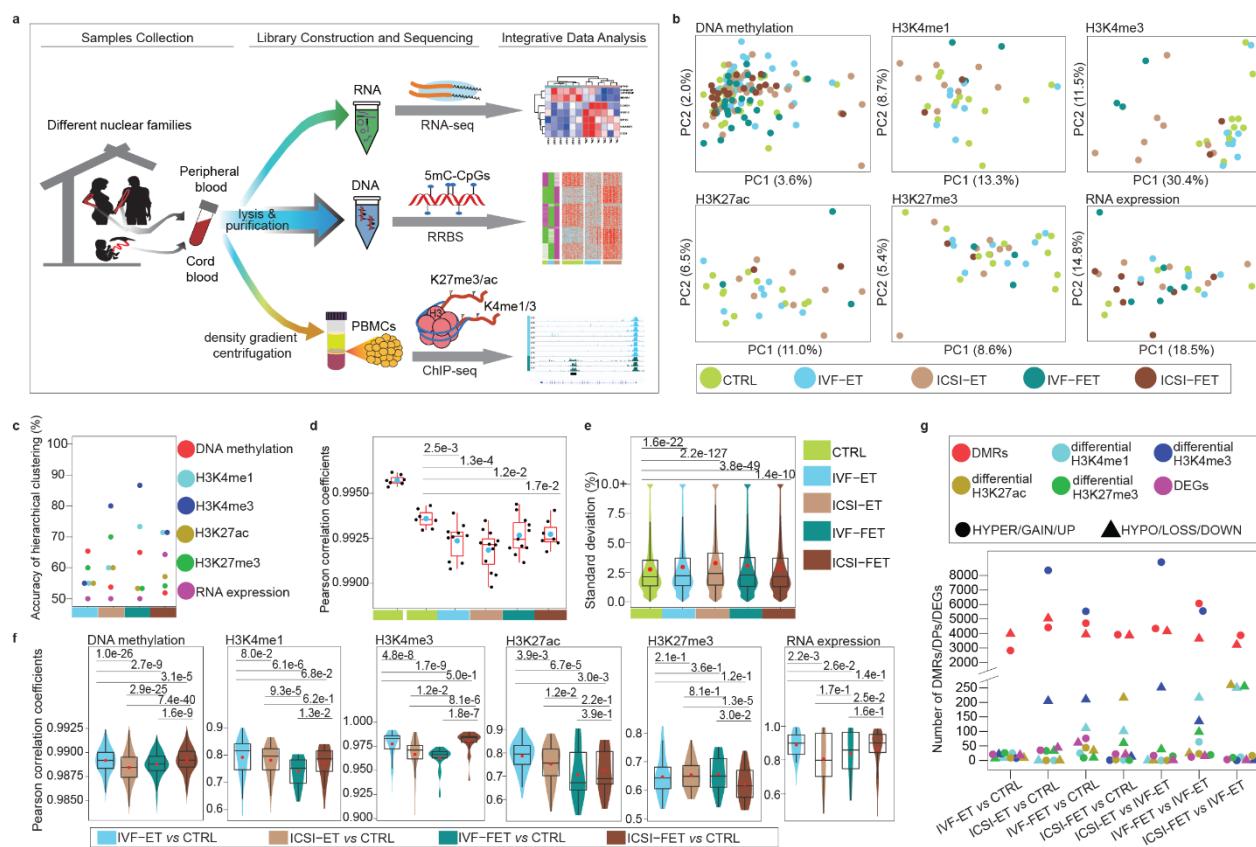
474 40. Williams, C.L., et al. Cancer risk among children born after assisted conception. *New England Journal of*  
 475 *Medicine* **369**, 1819-1827 (2013).

476 41. Sandin, S., Nygren, K.-G., Iliadou, A., Hultman, C.M. & Reichenberg, A. Autism and mental retardation among  
 477 offspring born after in vitro fertilization. *Jama* **310**, 75-84 (2013).

478 42. Canovas, S., et al. DNA methylation and gene expression changes derived from assisted reproductive  
 479 technologies can be decreased by reproductive fluids. *Elife* **6**, e23670 (2017).

480 43. Tan, K., et al. Impaired imprinted X chromosome inactivation is responsible for the skewed sex ratio  
 481 following *in vitro* fertilization. *Proc. Natl. Acad. Sci. U. S. A.* **113**, 3197-3202 (2016).

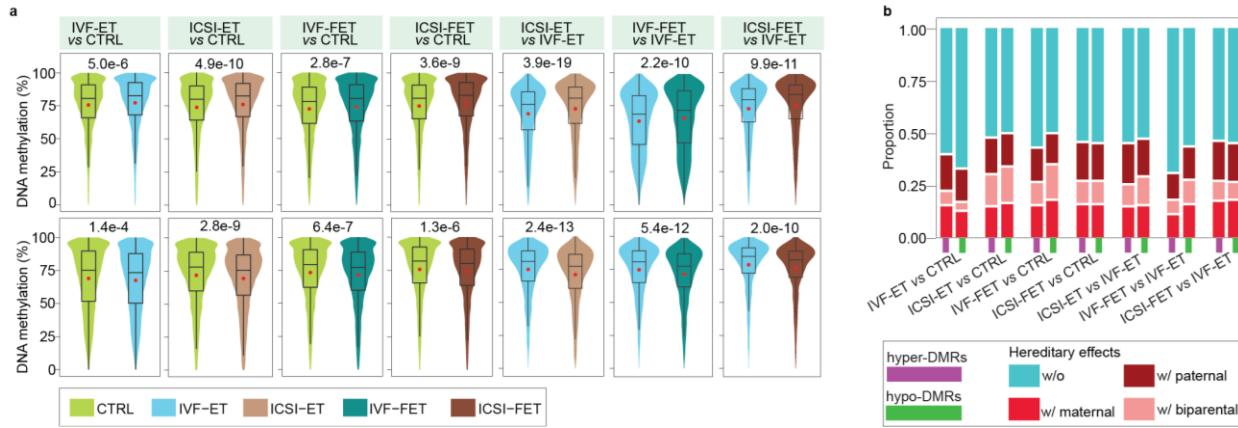
482 44. Dominguez-Salas, P., et al. Maternal nutrition at conception modulates DNA methylation of human  
 483 metastable epialleles. *Nature communications* **5**, 3746 (2014).


484

485

486

487


488 **Major Figures and Figure Legends:**



489

490

491 **Fig. 1, Epigenome profiling in ART-conceived neonates.** **a.** Graphical overview of the study  
492 design. **b.** Principal component analysis (PCA) for all the five groups (CTRL, IVF-ET, ICSI-ET,  
493 IVF-FET, and ICSI-FET) of neonatal samples by using each layer of the reference epigenome and  
494 transcriptome. For DNA methylation, only the 100-bp tiles covered all neonatal samples were used;  
495 ChIP-seq peaks of all neonatal samples for each histone modification were pooled together, then  
496 the overlapping peaks were merged; genes with TPM=0 in all neonatal samples are removed.  
497 Finally, the number of genomic regions for each layer to generate the PCAs: DNA methylation  
498 (467097 100-bp tiles), H3K4me1 (195570 peaks), H3K4me3 (86157 peaks), H3K27ac (324900  
499 peaks), H3K27me3 (257175 peaks), and RNA expression (26326 genes). **c.** The accuracy of  
500 hierarchical clustering for IVF-ET vs CTRL (cyan), ICSI-ET vs CTRL (sienna), IVF-FET vs  
501 CTRL (dark cyan), and ICSI-FET vs CTRL (dark sienna) neonatal samples. Samples and genomic  
502 regions used were the same as in **b.** **d.** Box plots for the distribution of the within-twin-pair Pearson  
503 correlation coefficients for genomewide DNA methylation in each group as in **b**, respectively. Twin  
504 pairs in CTRL group were classified into two subgroups, monozygotic and dizygotic twins. Each  
505 black dot represents the Pearson correlation coefficient and the cyan dots are the arithmetic means.  
506 The p-value between two groups was determined by unpaired and two-tailed t-test. **e.** Violin-box  
507 plots showed the distribution of standard deviations of genomewide DNA methylation for neonatal  
508 samples in each group mentioned in **b**, respectively. The p-value between two groups was  
509 determined by Wilcoxon rank-sum test. **f.** For each layer of the reference epigenome and  
510 transcriptome, violin-box plots showing the distribution of Pearson correlation coefficients  
511 between CTRL and one of the four ART groups. The red dots are the arithmetic means. The p-  
512 value between two groups was determined by Wilcoxon rank-sum test. **g.** The number of DMRs,  
513 DPs of four histone modifications, and DEGs for neonatal samples were shown for seven  
514 comparisons: IVF-ET versus CTRL, ICSI-ET versus CTRL, IVF-FET versus CTRL, ICSI-FET  
515 versus CTRL, ICSI-ET versus IVF-ET, IVF-FET versus IVF-ET, and ICSI-FET versus IVF-ET.  
516



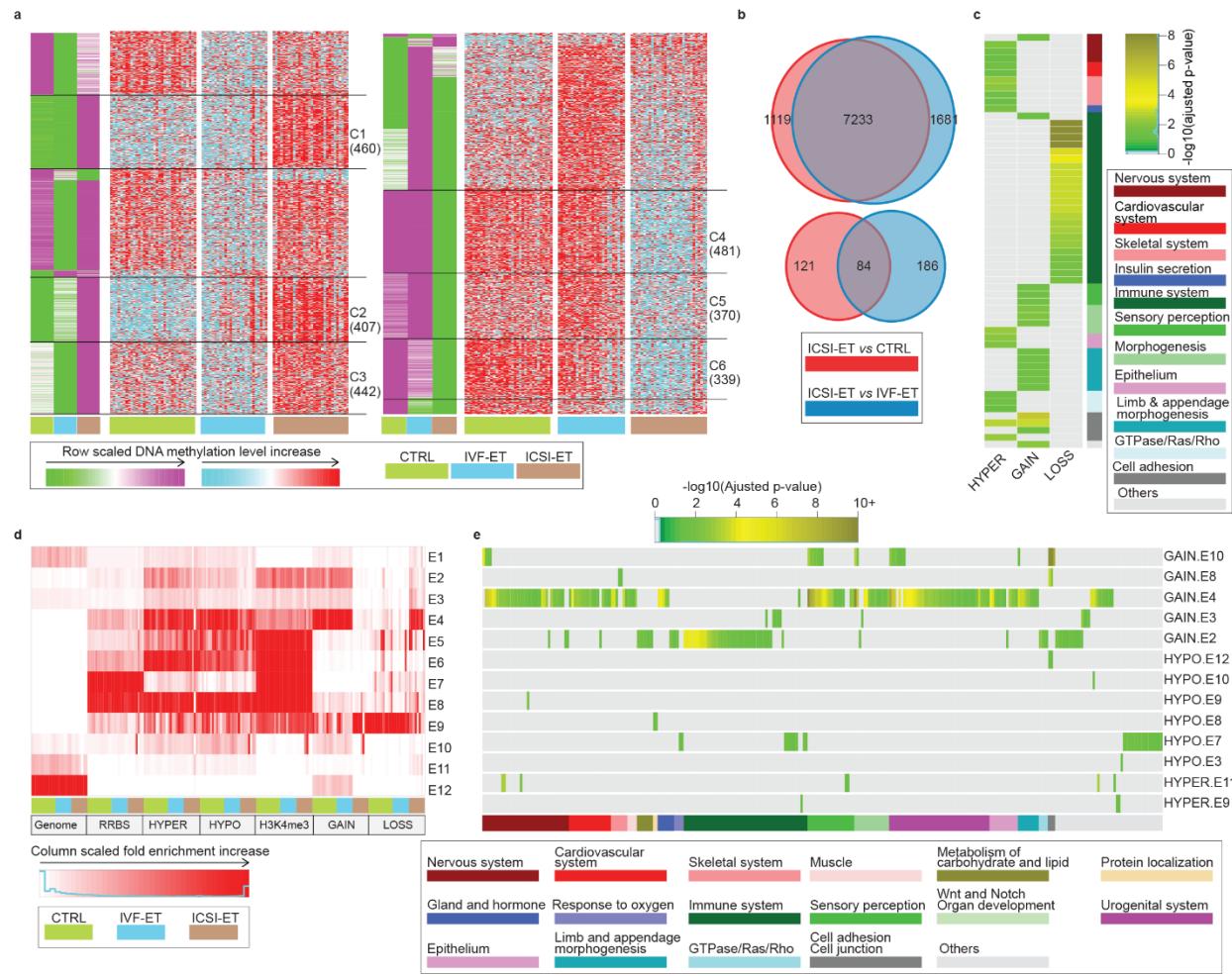
517

518

519 **Fig. 2, Remove the parental effects in neonatal DMRs.** **a.** Violin-box plots displayed the  
520 distribution of DNA methylation level in paternal samples at hyper- (upper) and hypo-DMRs  
521 (lower) of the seven comparisons, IVF-ET versus CTRL, ICSI-ET versus CTRL, IVF-FET versus  
522 CTRL, ICSI-FET versus CTRL, ICSI-ET versus IVF-ET, IVF-FET versus IVF-ET, and ICSI-FET  
523 versus IVF-ET neonatal samples. The p-value between two groups was determined by Wilcoxon  
524 rank-sum test. **b.** Bar graph showed the proportion of DMRs with/without hereditary effects in the  
525 hyper- or hypo-DMRs of each comparison. Any one of the 14 groups of DMRs were classified  
526 into four subgroups, without hereditary effects (w/o), only with paternal hereditary effects  
527 (w/paternal, only overlapped with the DMRs of comparison for the corresponding fathers), only  
528 with maternal hereditary effects (w/ maternal, only overlapped with the DMRs of comparison for  
529 the corresponding mothers), and with biparental hereditary effects (w/ biparental, overlapped with  
530 the DMRs of comparisons for the corresponding fathers and mothers).

531




532

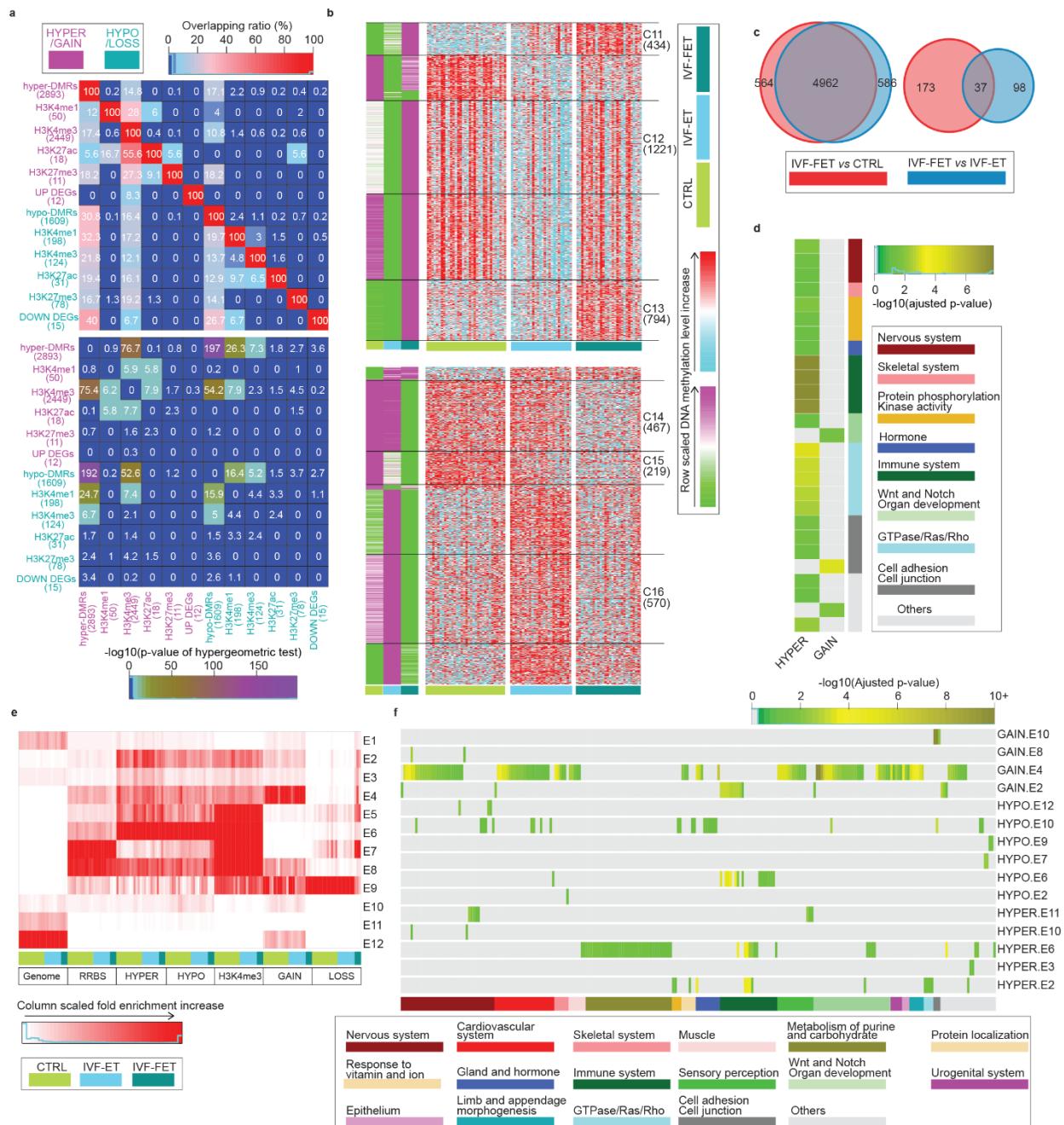
533

534 **Fig. 3, IVF effects on the epigenome of the offspring. a.** Gene ontology (biological process) analysis for the hyper- and hypo-DMRs of IVF-ET versus CTRL, all enrichment terms with adjusted p-value < 0.05 were grouped and shown. **b.** The top 20 enriched ontology terms of human phenotype for hyper- (left) and hypo-DMRs (right). **c.** Based on the four histone modifications in all neonatal samples, 12 chromatin states were defined by chromHMM. Each row of the heatmap corresponds to a specific chromatin state, and each column corresponds to a different histone mark, H3K4me1, H3K4me3, H3K27me3, or H3K27ac. **d.** In each neonatal sample of CTRL and IVF-ET groups, column scaled fold enrichment of the chromatin states at genome-wide regions (Genome), RRBS covered regions (RRBS), hyper- and hypo-DMRs (HYPER and HYPO) was shown. **e.** For each subgroup of DMRs in **d**, its gene ontology (biological process) enrichment analysis results were grouped and shown, if its enrichment terms existed (adjusted p-value < 0.05).

545 **f.** Heatmap showed overlapping ratio among associated genes of DMRs and DEGs for IVF-ET vs  
546 CTRL (upper), and their statistical significances (lower) determined by hypergeometric test. **g.**  
547 Heatmap showed the expression level of DEGs overlapped with the associated genes of DMRs  
548 (PDXDC2P-NPIPBP14P, MDGA1, CCND1, RGS12, DIP2C, KIAA1671, CD28) among neonatal  
549 samples in CTRL and IVF-ET.

550




551

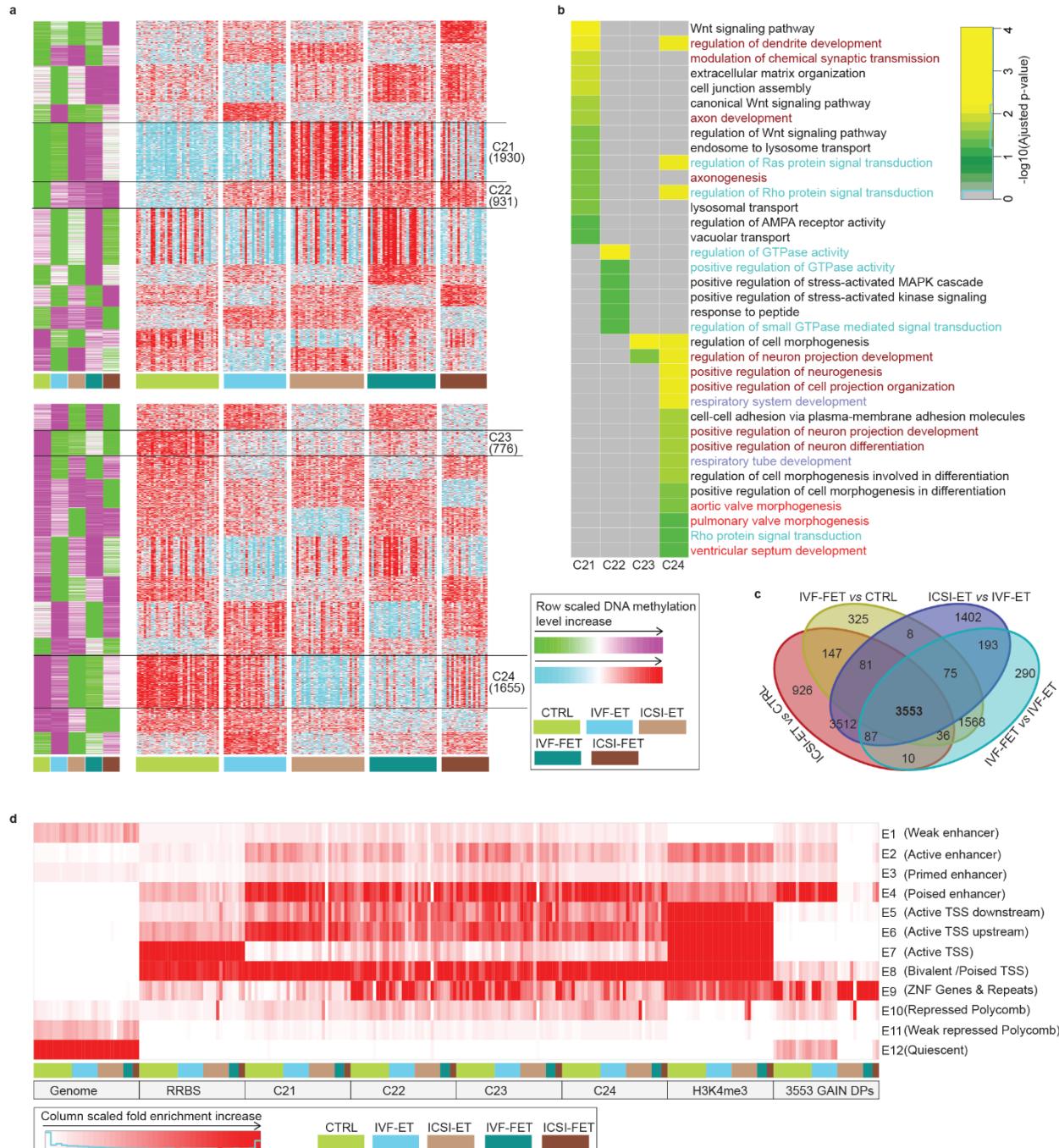
552

553 **Fig. 4, Separate epigenetic effects of ICSI.** **a.** K-means clustering for the hyper- (left) and hypo-  
 554 DMRs (right) between ICSI-ET vs IVF-ET neonatal samples. In green-purple heatmaps, the hyper-  
 555 DMRs (hypo-DMRs) were classified into seven (nine) clusters by k-means clustering on row  
 556 scaled average DNA methylation level. With the same row order, row scaled DNA methylation  
 557 level in each neonatal sample was also shown in cyan-red heatmap. The number of DMRs in the  
 558 selected clusters were also shown. **b.** Venn diagram for the overlap between of the gain (upper)  
 559 and lost (lower) H3K4me3 DPs of ICSI-ET vs CTRL, and ICSI-ET vs IVF-ET neonatal samples.  
 560 **c.** For the selected hyper- (union of cluster C1-C3) and hypo-DMRs (union of cluster C4-C6), gain  
 561 (7233) and loss (84) H3K4me3 DPs, their gene ontology (biological process) enrichment analysis  
 562 results were grouped and shown, if its enrichment terms existed (adjusted p-value < 0.05). **d.** The

563 chromatin states distribution of the selected hyper- and hypo-DMRs and H3K4me3 DPs (7233  
564 GAIN, 84 LOSS) in each neonatal sample of CTRL, IVF-ET, and ICSI-ET. The chromatin states  
565 were defined in **fig. 3c. e.** For DMRs or DPs in different states in **d**, their gene ontology (biological  
566 process) enrichment analysis results were grouped and shown, if the enrichment terms existed  
567 (adjusted p-value < 0.05).

568




569

570

571 **Fig. 5, Separate epigenetic effects of freezing-thaw.** **a.** Overlapping ratio among DEGs,  
572 associated genes of DMRs and DPs for IVF-FET vs IVF-ET neonatal samples (upper), and their  
573 statistical significances (lower) determined by hypergeometric test. **b.** K-means clustering for the  
574 hyper- (upper) and hypo-DMRs (lower) between IVF-FET vs IVF-ET neonatal samples. In green-

575 purple heatmaps, the hyper-DMRs (hypo-DMRs) were classified into six (seven) clusters by k-  
576 means clustering on row scaled average DNA methylation level. With the same row order, row  
577 scaled DNA methylation level in each neonatal sample was also shown in cyan-red heatmap. The  
578 number of DMRs in the selected clusters were also shown. **c.** Venn diagrams displayed the overlap  
579 between the gain (left) and lost (right) H3K4me3 DPs of IVF-FET vs CTRL and that of IVF-FET  
580 vs IVF-ET. **d.** For the selected hyper- (union of cluster C11-C13) and hypo-DMRs (union of cluster  
581 C14-C16), overlapping gain (4962) and loss (37) H3K4me3 DPs, their gene ontology (biological  
582 process) enrichment analysis results were grouped and shown, if the enrichment terms existed  
583 (adjusted p-value < 0.05). **e.** The chromatin states distribution of the selected hyper- and hypo-  
584 DMRs, overlapping 4962 gain and 37 loss H3K4me3 DPs in each neonatal sample of CTRL, IVF-  
585 ET, and IVF-FET. The chromatin states were defined in **fig. 3c**. **f.** For DMRs or DPs in different  
586 states in **e**, all enrichment terms of gene ontology (biological process) with adjusted p-value < 0.05  
587 were grouped and shown.

588



589

590

591 **Fig. 6 Common Epigenetic effect of different ARTs.** **a.** K-means clustering for the all merged  
592 hyper- (up) and hypo-DMRs (down) of the seven comparisons. The hyper- and hypo-DMRs of the  
593 seven comparisons were merged if they have 1-bp common region at least, respectively. In green-  
594 purple heatmaps, DMRs were classified into twelve clusters by k-means clustering on row scaled

595 average DNA methylation level. With the same row order, row scaled DNA methylation level in  
596 each neonatal sample was also shown in cyan-red heatmap. The number of DMRs in the selected  
597 clusters were also shown. **b.** For the selected clusters of hyper-DMRs (C21, C22) and hypo-DMRs  
598 (C23, C24), all enrichment terms of gene ontology (biological process) with adjusted p-value <  
599 0.05 were grouped and shown. **c.** Venn diagrams displayed the overlap of the gain H3K4me3 DPs  
600 for ICSI-ET vs CTRL, IVF-FET vs CTRL, ICSI-ET vs CTRL, and IVF-FET vs IVF-ET. **d.** The  
601 chromatin states distribution in each neonatal sample for the selected DMRs and overlapping gain  
602 H3K4me3 DPs. The chromatin states were defined in **fig. 3c**.