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1 Abstract

> Machine learning (ML) modeling of the human microbiome has the potential to identify microbial
s biomarkers and aid in the diagnosis of many diseases such as inflammatory bowel disease,
+ diabetes, and colorectal cancer. Progress has been made towards developing ML models that
s predict health outcomes using bacterial abundances, but inconsistent adoption of training and
s evaluation methods call the validity of these models into question. Furthermore, there appears
7 1o be a preference by many researchers to favor increased model complexity over interpretability.
s 10 overcome these challenges, we trained seven models that used fecal 16S rRNA sequence
s data to predict the presence of colonic screen relevant neoplasias (SRNs; n=490 patients, 261
10 controls and 229 cases). We developed a reusable open-source pipeline to train, validate, and
11 interpret ML models. To show the effect of model selection, we assessed the predictive performance,
12 interpretability, and training time of L2-regularized logistic regression, L1 and L2-regularized support
13 vector machines (SVM) with linear and radial basis function kernels, decision trees, random forest,
12 and gradient boosted trees (XGBoost). The random forest model performed best at detecting SRNs
15 with an AUROC of 0.695 [IQR 0.651-0.739] but was slow to train (83.2 h) and not immediately
16 interpretable. Despite its simplicity, L2-regularized logistic regression followed random forest in
17 predictive performance with an AUROC of 0.680 [IQR 0.625-0.735], trained faster (12 min), and was
18 inherently interpretable. Our analysis highlights the importance of choosing an ML approach based

19 on the goal of the study, as the choice will inform expectations of performance and interpretability.
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2 Importance

21 Prediction of health outcomes using machine learning (ML) is rapidly being adopted in microbiome
22 studies. However, the estimated performance associated with these ML models is likely
23 over-optimistic. Moreover, there is a trend towards using black box models without a discussion of
24 the difficulty of interpreting such models when trying to identify microbial biomarkers of disease.
25 This work represents a step towards developing more reproducible ML practices in applying ML
26 to microbiome research. We implement a rigorous pipeline and emphasize the importance of
27 selecting ML models that reflect the goal of the study. These concepts are not particular to the

28 study of health outcomes but can also be applied to environmental microbiology studies.
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2 Background

s As the number of people represented in human microbiome datasets grow, there is an increasing
31 desire to use microbiome data to diagnose disease. However, the structure of the human
32 microbiome is remarkably variable among individuals to the point where it is often difficult to
ss identify the bacterial populations that are associated with diseases using traditional statistical
s« models. This variation is likely due to the ability of many bacterial populations to fill the same niche
35 such that different populations cause the same disease in different individuals. Furthermore, a
s growing number of studies have shown that it is rare for a single bacterial species to be associated
37 with a disease. Instead, subsets of the microbiome account for differences in health. Traditional
ss statistical approaches do not adequately account for the variation in the human microbiome and
39 typically consider the protective or risk effects of each bacterial population separately (1). Recently,
40 machine learning (ML) models have grown in popularity among microbiome researchers as our
41 ability to sample large numbers of individuals has grown; such models can effectively account for

42 the interpersonal microbiome variation and the ecology of disease.

43 ML models can be used to increase our understanding of the variation in the structure of existing
4 data and in making predictions about new data. Researchers have used ML models to diagnose and
45 understand the ecological basis of diseases such as liver cirrhosis, colorectal cancer, inflammatory
46 bowel diseases, obesity, and type 2 diabetes (2—19). The task of diagnosing an individual relies on
47 arigorously validated model. However, there are common methodological and reporting problems
s that arise when applying ML to such data, that need to be addressed for the field to progress. These
49 problems include a lack of transparency in which methods are used and how these methods are
so implemented; evaluating models without separate held-out test data; unreported variation between
st the predictive performance on different folds of cross-validation; and unreported variation between
s2 cross-validation and testing performances. Though the microbiome field is making progress to
s3 avoid some of these pitfalls including validating their models on independent datasets (8, 19, 20)
s« and introducing ways to better use ML tools (21-24), more work is needed to improve reproducibility

ss further and minimize overestimating for model performance.

ss Among microbiome researchers, the lack of justification when selecting a modeling approach has
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57 often been due to an implicit assumption that more complex models are better. This has resulted
ss in a trend towards using non-linear models such as random forest and deep neural networks
s9 (3, 12, 25-27) over simpler models such as logistic regression or other linear models (19, 23,
s 28). Although in some cases, complex models may capture important non-linear relationships
st and therefore yield better predictions, they can also result in black boxes that lack interpretability.
s2 Such models require post hoc explanations to quantify the importance of each feature in making
ss predictions. Depending on the goal of the modeling, other approaches may be more appropriate.
s« For example, researchers trying to identify the microbiota associated with disease may desire a
es more interpretable model, whereas clinicians may emphasize predictive performance. Nonetheless,
s it is essential to understand that the benefit of more complex, less interpretable models may be

ez minimal (29, 30). It is important for researchers to justify their choice of modeling approach.

es 10 showcase a rigorous ML pipeline and to shed light on how ML model selection can affect
ss modeling results, we performed an empirical analysis comparing seven modeling approaches with
70 the same dataset and pipeline. We built three linear models with different forms of regularization:
71 L2-regularized logistic regression and L1 and L2-regularized support vector machines (SVM) with
72 alinear kernel. We also trained four non-linear models: SVM with radial basis function kernel, a
73 decision tree, random forest, and gradient boosted trees. We compared their predictive performance,
74 interpretability, and training time. To demonstrate the performance of these modeling approaches
75 and our pipeline, we used data from a previously published study that sought to classify individuals
76 as having healthy colons or colonic lesions based on the 16S rRNA gene sequences collected from
77 fecal samples (4). This dataset was selected because it is a relatively large collection of individuals
78 (N=490) connected to a clinically significant disease where there is ample evidence that the disease
79 is driven by variation in the microbiome (2, 4, 5, 31). With this dataset, we developed an ML pipeline
so that can be used in many different scenarios for training and evaluating models. This framework

st can be easily applied to other host-associated and environmental microbiome datasets.
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2 Results

ss Model selection and pipeline construction. We established a reusable ML pipeline for model
s¢ selection and evaluation, focusing on seven different commonly used supervised learning algorithms

ss [Figure 1, Table 1].

s First, we randomly split the data into training and test sets so that the training set consisted of 80%
s7 Of the full dataset, while the test set was composed of the remaining 20% [Figure 1]. To maintain
ss the distribution of controls and cases found in the full dataset, we performed stratified splits. For
s example, our full dataset included 490 individuals. Of these, 261 had healthy colons (53%) and 229
o0 had a screen relevant neoplasia (SRN; 46.7%). A training set included 393 individuals, of which
o1 209 had an SRN (53%), while the test set was composed of 97 individuals, of which 52 had an
o2 SRN (54%). The training data were used to build and select the models, and the test set was used

o3 for evaluating the model.

s« We trained seven different models using the training data [Table 1]. We focused on different
o5 classification algorithms and regularization methods. Regularization helps to prevent overfitting
9% by penalizing a model that fits the training data too well (32). For regularized logistic regression
o7 and SVM with a linear kernel, we used L2-regularization to keep all potentially important features.
98 For comparison, we also trained an L1-regularized SVM with a linear kernel. L1-regularization on
99 microbiome data led to a sparser solution (i.e., forced many coefficients to zero). To explore the
100 potential for non-linear relationships among features to improve classification, we trained tree-based
101 models including, a decision tree, a random forest, and gradient boosted trees (XGBoost) and an

12 SVM with a non-linear kernel.

103 Model selection requires tuning hyperparameters. Hyperparameters are parameters that need
104 to be specified or tuned by the user, in order to train a model for a specific modeling problem.
105 For example, when using regularization, C is a hyperparameter that indicates the penalty for
106 overfitting. Hyperparameters are tuned using the training data to find the best model. We selected
107 hyperparameters by performing repeated five-fold cross-validation (CV) on the training set [Figure

10s 1]. The five-fold CV was also stratified to maintain the overall case and control distribution. We


https://doi.org/10.1101/816090
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/816090; this version posted October 23, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

109 chose the hyperparameter values that led to the best average CV predictive performance using
10 the area under the receiver operating characteristic curve (AUROC) [Figure S1 and S2]. The
111 AUROC ranges from 0, where the model’s predictions are perfectly incorrect, to 1.0, where the
12 model perfectly distinguishes between cases and controls. An AUROC value of 0.5 indicates that
113 the model’s predictions are no different than random. To select hyperparameters, we performed a
114 grid search for hyperparameter settings when training the models. Default hyperparameter settings
115 in developed ML packages available in R, Python, and MATLAB programming languages may be
116 inadequate for effective application of classification algorithms and need to be optimized for each
117 new ML task. For example, L1-regularized SVM with linear kernel showed large variability between
1s different regularization strengths (C) and benefited from tuning as the default C parameter was 1

19 [Figure S1].

120 Once hyperparameters were selected, we trained the model using the full training dataset and
121 applied the final model to the held-out data to evaluate the testing predictive performance of each
122 model. The data-split, hyperparameter selection, training and testing steps were repeated 100
123 times to obtain a robust interpretation of model performance, less likely to be affected by a “lucky”

124 or “unlucky” split [Figure 1].

125 Predictive performance and generalizability of the seven models. We evaluated the predictive
126 performance of the seven models to classify individuals as having healthy colons or SRNs [Figure 2].
127 The predictive performance of random forest model was higher than other ML models with a median
128 0.695 [IQR 0.650-0.739], though not significantly (p=0.5) (Figure S3). Similarly, L2-regularized
129 logistic regression, XGBoost, L2-regularized SVM with linear and radial basis function kernel
130 AUROC values were not significantly different from one another and had median AUROC values
131 of 0.680 [IQR 0.639-0.750], 0.679 [IQR 0.643-0.746], 0.678 [IQR 0.639-0.750] and 0.668 [IQR
132 0.639-0.750], respectively. L1-regularized SVM with linear kernel and decision tree had significantly
133 lower AUROC values than the other ML models with median AUROC of 0.650 [IQR 0.629-0.760]
13« and 0.601 [IQR 0.636-0.753], respectively [Figure 2]. Interestingly, these results demonstrate
135 that the most complex model (XGBoost) did not have the best performance and that the most
136 interpretable models (L2-regularized logistic regression and L2-regularized SVM with linear kernel)

137 performed nearly as well as non-linear models.
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138 10 evaluate the generalizability of each model, we compared the median cross-validation AUROC
139 to the median testing AUROC. If the difference between the cross-validation and testing AUROCs
120 was large, then that could indicate that the models were overfit to the training data. The largest
141 difference in median AUROCs was 0.021 in L1-regularized SVM with linear kernel, followed by SVM
142 with radial basis function kernel and decision tree with a difference of 0.007 and 0.006, respectively
13 [Figure 2]. These differences were relatively small and gave us confidence in our estimate of the

124 generalization performance of the models.

145 To evaluate the variation in the estimated performance, we calculated the range of AUROC values
e for each model using 100 data-splits. The range among the testing AUROC values within each
147 model varied by 0.230 on average across the seven models. If we had only done a single split, then
18 there is a risk that we could have gotten lucky or unlucky in estimating model performance. For
149 instance, the lowest AUROC value of the random forest model was 0.593, whereas the highest was
150 0.810. These results showed that depending on the data-split, the testing performance can vary
151 [Figure 2]. Therefore, it is important to employ multiple data splits when estimating generalization

152 performance.

153 1o show the effect of sample size on model generalizability, we compared cross-validation AUROC
154 values of L2-regularized logistic regression and random forest models when we subsetted our
155 original study design with 490 subjects to 15, 30, 60, 120, and 245 subjects [Figure S4]. The
156 variation in cross-validation performance within both models at smaller sample sizes was larger
157 than when the full collection of samples was used to train and validate the models. Because of the
158 high dimensionality of the microbiome data (6920 OTUSs), large sample sizes can lead to better

159 models.

10 Interpretation of each ML model. Interpretability is related to the degree to which humans can
161 understand the reasons behind a model prediction (33—35). Because we often use ML models
1e2  Not just to predict a health outcome, but also to identify potential biomarkers for disease, model
163 interpretation becomes crucial for microbiome studies. ML models often decrease in interpretability

164 as they increase in complexity. In this study, we used two methods to help interpret our models.

15 First, we interpreted the feature importance of the linear models (L1 and L2-regularized SVM with
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16 linear kernel and L2-regularized logistic regression) using the median rank of absolute feature
167 weights for each OTU [Figure 3]. We also reviewed the signs of feature weights to determine
16 Whether an OTU was associated with classifying a subject as being healthy or having an SRN. It
160 Was encouraging that many of the highest-ranked OTUs were shared across these three models
170 (e.g., OTUs 50, 426, 609, 822, 1239). The benefit of this approach was that the results of the
171 analysis were based on the trained model parameters and provided information regarding the sign
172 and magnitude of the impact of each OTU. However, this approach is limited to linear models or

173 models with prespecified interaction terms.

174 Second, to analyze non-linear models, we interpreted the feature importance using permutation
175 importance (36). Whereas the absolute feature weights were determined from the trained models,
176 here we measured importance using the held-out test data. Permutation importance analysis is a
177 post hoc explanation of the model, in which we randomly permuted groups of perfectly correlated
178 features together and other features individually across the two groups in the held-out test data.
179 We then calculated how much the predictive performance of the model (i.e., testing AUROC values)
180 decreased when each OTU or group of OTUs was randomly permuted. We ranked the OTUs based
181 on how much the median testing AUROC decreased when it was permuted; the OTU with the
1.2 largest decrease ranked highest [Figure 4]. Among the twenty OTUs with the largest impact, there
183 was only one OTU (OTU 822) that was shared among all of the models; however, we found three
18a OTUs (OTUs 58, 110, 367) that were important in each of the tree-based models. Similarly, the
1e5 random forest and XGBoost models shared four of the most important OTUs (OTUs 2, 12, 361,
18 477). Permutation analysis results also revealed that with the exception of the decision tree model,
1s7  removal of any individual OTU had minimal impact on model performance. For example, if OTU
188 367 was permuted across the samples in the decision tree model, the median AUROC dropped
189 from 0.601 to 0.525. In contrast, if the same OTU was permuted in the random forest model, the
190 AUROC only dropped from 0.695 to 0.680, which indicated high degree of collinearity in the dataset.
191 Permutation analysis allowed us to gauge the importance of each OTU in non-linear models and

192 partially account for collinearity by grouping correlated OTUs to determine their impact as a group.

1ea To further highlight the differences between the two interpretation methods, we used permutation

194 importance to interpret the linear models [Figure S5]. When we analyzed the L1-regularized

9
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195 SVM with linear kernel model using feature rankings based on weights [Figure 3] and permutation
196 importance [Figure S5], 17 of the 20 top OTUs (e.g., OTU 609, 822, 1239) were deemed important
197 by both interpretation methods. Similarly, for the L2-regularized SVM and L2-regularized logistic
198 regression, 9 and 12 OTUs, respectively, were shared among the two interpretation methods. These

190 results indicate that both methods are consistent in selecting the most important OTUs.

200 The computational efficiency of each ML model. We compared the training times of the seven
200 ML models. The training times increased with the complexity of the model and the number of
202 potential hyperparameter combinations. Also, the linear models trained faster than non-linear

203 models [Figures S1-S2; Figure 5].

204 Discussion

205 There is a growing awareness that many human diseases and environmental processes are not
206 driven by a single organism but are the product of multiple bacterial populations. Traditional
207 statistical approaches are useful for identifying those cases where a single organism is associated
208 With a process. In contrast, ML methods offer the ability to incorporate the structure of the microbial
200 communities as a whole and identify associations between community structure and disease
210 State. If it is possible to classify communities reliably, then ML methods also offer the ability to
211 identify those microbial populations within the communities that are responsible for the classification.
212 However, the application of ML in microbiome studies is still in its infancy, and the field needs to
213 develop a better understanding of different ML methods, their strengths and weaknesses, and how

214 to implement them.

215 10 address these needs, we developed an open-sourced framework for ML models. Using
216 this pipeline, we benchmarked seven ML models and showed that the tradeoff between model
217 complexity and performance may be less severe than originally hypothesized. In terms of predictive
218 performance, the random forest model had the best AUROC compared to the other six models.
219 However, the second-best model was L2-regularized logistic regression with a median AUROC

220 difference of less than 0.015 compared to random forest. While our implementation of random

10
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221 forest took 83.2 hours to train, our L2-regularized logistic regression trained in 12 minutes. In terms
222 Of interpretability, random forest is a non-linear ML model, while L2-regularized logistic regression,
223 a linear model, is easily interpreted according to the feature weights. Comparing many different
224 models showed us that the most complex model was not necessarily the best model for our ML

205 task.

26  We established a pipeline that can be generalized to any modeling method that predicts a binary
227 health outcome. We performed a random data-split to create a training set (80% of the data) and
28 a held-out test set (20% of the data), which we used to evaluate predictive performance. We
229 used the AUROC metric to evaluate predictive performance as it is a clinically relevant evaluation
230 Mmetric for our study. We repeated this data-split 100 times to measure the possible variation in
231 predictive performance. During training, we tuned the model hyperparameters with a repeated
232 five-fold cross-validation. Despite the high number of features microbiome datasets typically have,

233 the models we built with this pipeline generalized to the held-out test sets.

232 We highlighted the importance of model interpretation to gain greater biological insights into
235 Microbiota-associated diseases. In this study, we showcased two different interpretation methods:
236 ranking each OTU by (i) their absolute weights in the trained models and (ii) their impact on
237 the predictive performance based on permutation importance. Human-associated microbial
238 communities have complex correlation structures that create collinearity in the datasets. This
239 can hinder our ability to reliably interpret models because the feature weights of correlated OTUs
2¢0 are influenced by one another (37). To capture all important features, once we identify highly
241 ranked OTUs, we should review their relationships with other OTUs. These relationships will
242 help us generate new hypotheses about the ecology of the disease and test them with follow-up
243 experiments. When we used permutation importance, we partially accounted for collinearity by
244 grouping correlated OTUs to determine their impact as a group. We grouped OTUs that had a
245 perfect correlation with each other; however, we could reduce the correlation threshold to further
26 investigate the relationships among correlated features. It is important to know the correlation
247 structures of the data to avoid misinterpreting the models. This is likely to be a particular problem
245 With shotgun metagenomic datasets where collinearity will be more pronounced due to many genes

2e9  being correlated with one another because they come from the same chromosome. To identify the

11
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250 true underlying microbial factors of a disease, it is crucial to follow up on any correlation analyses

251 with further hypothesis testing and experimentation for biological validation.

252 In this study, we did not consider all possible modeling approaches. However, the principles
253 highlighted throughout this study apply to other ML modeling tasks with microbiome data. For
25« example, we did not evaluate multicategory classification methods to predict non-binary outcomes.
255 We could have trained models to differentiate between people with healthy colons and those
256 With adenomas or carcinomas (k=3 categories). We did not perform this analysis because the
257 Clinically relevant diagnosis grouping was between patients with healthy colons and those with
258 SRNs. Furthermore, as the number of classes increases, more samples are required for each
259 category to train an accurate model. We also did not use regression-based analyses to predict a
260 Non-categorical outcome. We have previously used such an approach to train random forest models
261 to predict fecal short-chain fatty acid concentrations based on microbiome data (38). Our analysis
262 Was also limited to shallow learning methods and did not explore deep learning methods such as
263 neural networks. Deep learning methods hold promise (12, 39, 40), but microbiome datasets often

264 suffer from having many features and small sample sizes, which result in overfitting.

265 Our framework provides a reproducible structure to investigators wanting to train, evaluate, and
266 interpret their own ML models to generate hypotheses regarding which OTUs might be biologically
267 relevant. However, deploying microbiome-based models to make clinical diagnoses or predictions
26s IS a significantly more challenging and distinct undertaking (41). For example, we currently lack
260 standardized methods to collect patient samples, generate sequence data, and report clinical
270 data. We are also challenged by the practical constraints of OTU-based approaches. The de novo
271 algorithms commonly in use are slow, require considerable memory, and result in different OTU
272 assignments as new data are added (42). Finally, we also need independent validation cohorts to
273 test the performance of a diagnostic model. To realize the potential for using ML approaches with

274 Microbiome data, it is necessary that we direct our efforts to overcome these challenges.

275 Our study highlights the need to make educated choices at every step of developing an ML model
276 With microbiome data. We created an aspirational rubric that researchers can use to identify

277 potential pitfalls when using ML in microbiome studies and ways to avoid them [Table S1]. We

12
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278 have highlighted the trade-offs between model complexity and interpretability, the need for tuning
279 hyperparameters, the utility of held-out test sets for evaluating predictive performance, and the
280 importance of considering correlation structures in datasets for reliable interpretation. Furthermore,
281 we underscored the importance of proper experimental design and methods to help us achieve the

252 level of validity and accountability we want from models built for patient health.

233 Materials and Methods

23« Data collection and study population. The original stool samples described in our analysis
235 were obtained from patients recruited by Great Lakes-New England Early Detection Research
285 Network (5). Stool samples were provided by adults who were undergoing a scheduled screening
257 Or surveillance colonoscopy. Participants were recruited from Toronto (ON, Canada), Boston
288 (MA, USA), Houston (TX, USA), and Ann Arbor (MI, USA). Patients’ colonic health was visually
289 assessed by colonoscopy with bowel preparation and tissue histopathology of all resected lesions.
200 We assigned patients into two classes: those with healthy colons and those with screen relevant
201 neoplasias (SRNs). The healthy class included patients with healthy colons or non-advanced
202 adenomas, whereas the SRN class included patients with advanced adenomas or carcinomas
203 (43). Patients with an adenoma greater than 1 cm, more than three adenomas of any size, or an
20« adenoma with villous histology were classified as having advanced adenomas (43). There were
205 172 patients with normal colonoscopies, 198 with adenomas, and 120 with carcinomas. Of the 198
206 adenomas, 109 were identified as advanced adenomas. Together 261 patients were classified as

207 healthy and 229 patients were classified as having an SRN.

208 16S rRNA gene sequencing data. Stool samples provided by the patients were used for 16S rRNA
209 gene sequencing to measure bacterial population abundances. The sequence data used in our
s0 analyses were originally generated by Baxter et al. (available through NCBI Sequence Read Archive
a0 [SRP062005], (5)). The OTU abundance table was generated by Sze et al (44), who processed the
a2 16S rRNA sequences in mothur (v1.39.3) using the default quality filtering methods, identifying and
33 removing chimeric sequences using VSEARCH, and assigning to OTUs at 97% similarity using the

s« OptiClust algorithm (42, 45, 46); (https://github.com/SchlossLab/Sze_ CRCMetaAnalysis_mBio_

13
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s0s 2018/blob/master/data/process/baxter/baxter.0.03.subsample.shared). These OTU abundances
a6 were the features we used to predict colorectal health of the patients. There were 6920 OTUs. OTU
37 abundances were subsampled to the size of the smallest sample and normalized across samples

a8  such that the highest abundance of each OTU would be 1, and the lowest would be 0.

a9 Model training and evaluation. Models were trained using the caret package (v.6.0.81) in R
a0 (v.3.5.0). We modified the caret code to calculate decision values for models generated using
s L2-regularized SVM with linear kernel and L1-regularized SVM with linear kernel. The code for
sz these changes on L2-regularized SVM with linear kernel and L1-regularized SVM with linear kernel
313 models are available at https://github.com/SchlossLab/Topcuoglu_ML_XXX_2019/blob/master/data/
a4 caret_models/svmLinear3.R and at https://github.com/SchlossLab/Topcuoglu_ML_XXX_2019/blob/

315 master/data/caret_models/svmLinear4.R, respectively.

stie  For hyperparameter selection, we started with a granular grid search. Then we narrowed and
317 fine-tuned the range of each hyperparameter.For L2-regularized logistic regression, L1 and
s1s  L2-regularized SVM with linear and radial basis function kernels, we tuned the cost hyperparameter,
st9  Which controls the regularization strength, where smaller values specify stronger regularization. For
320 SVM with radial basis function kernel, we also tuned the sigma hyperparameter, which determines
221 the reach of a single training instance where, for a high value of sigma, the SVM decision boundary
a2 Will be dependent on the points that are closest to the decision boundary. For the decision tree
323 model, we tuned the depth of the tree where the deeper the tree, the more splits it has. For
324 random forest, we tuned the number of features to consider when looking for the best tree spilit.
a5 For XGBoost, we tuned the learning rate and the fraction of samples used for fitting the individual
326 base learners. Performing a grid search for hyperparameter selection might not be feasible for
327 when there are more than two hyperparameters to tune for. In such cases, it is more efficient to use
s2s random search or recently developed tools such as Hyperband to identify good hyperparameter

329 configurations (47).

s The computational burden during model training due to model complexity was reduced by
331 parallelizing segments of the ML pipeline. We parallelized the training of each data-split. This

a2 allowed the 100 data-splits to be processed through the ML pipeline simultaneously at the
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333 same time for each model. It is possible to further parallelize the cross-validation step for each

s« hyperparameter setting which we have not performed in this study.

335 Permutation importance workflow. We calculated a Spearman’s rank-order correlation matrix
s and defined correlated OTUs as having perfect correlation (correlation coefficient = 1 and p < 0.01).
37 OTUs without a perfect correlation to each other were permuted individually, whereas correlated

a8 ones were grouped together and permuted at the same time.

a9 Statistical analysis workflow. Data summaries, statistical analysis, and data visualizations were
a0 performed using R (v.3.5.0) with the tidyverse package (v.1.2.1). We compared the performance of
a1 the models pairwise by calculating the difference between AUROC values from the same data-split
a2 (for 100 data-splits). We determined if the models were significantly different by calculating the
a3 empirical p-value (2 x min(% of AUROC differences > 0, % of AUROC differences < 0) for the

a4 double tail event (e.g., Figure S3).

ss  Code availability. The code for all sequence curation and analysis steps including an Rmarkdown

as  version of this manuscript is available at https://github.com/SchlossLab/Topcuoglu_ML_XXX_2019/.

a7 Acknowledgements. We thank all the study participants of Great Lakes-New England Early
as  Detection Research Network. We would like to thank the members of the Schloss lab for their
a9 valuable feedback. Salary support for MR came from NIH grant 1R01CA215574. Salary support for
350 PDS came from NIH grants P30DK034933 and 1R01CA215574.

15


https://doi.org/10.1101/816090
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/816090; this version posted October 23, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

1 References

2 1. Segata N, lzard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower
s C. 2011.  Metagenomic biomarker discovery and explanation. Genome Biol 12:R60.

s+ d0i:10.1186/gb-2011-12-6-r60.

s 2. Zeller G, Tap J, Voigt AY, Sunagawa S, Kultima JR, Costea Pl, Amiot A, Bohm J, Brunetti
sss  F, Habermann N, Hercog R, Koch M, Luciani A, Mende DR, Schneider MA, Schrotz-King P,
357 Tournigand C, Tran Van Nhieu J, Yamada T, Zimmermann J, Benes V, Kloor M, Ulrich CM,
s Knebel Doeberitz M von, Sobhani I, Bork P. 2014. Potential of fecal microbiota for early-stage

3o detection of colorectal cancer. Mol Syst Biol 10. doi:10.15252/msb.20145645.

0 3. Zackular JP, Rogers MAM, Ruffin MT, Schloss PD. 2014. The human gut microbiome as a
361 screening tool for colorectal cancer. Cancer Prev Res 7:1112—1121. doi:10.1158/1940-6207.CAPR-14-0129.

2 4. Baxter NT, Koumpouras CC, Rogers MAM, Ruffin MT, Schloss PD. 2016. DNA from fecal
33 immunochemical test can replace stool for detection of colonic lesions using a microbiota-based

s« model. Microbiome 4. doi:10.1186/s40168-016-0205-y.

s 5. Baxter NT, Ruffin MT, Rogers MAM, Schloss PD. 2016. Microbiota-based model improves
ss  the sensitivity of fecal immunochemical test for detecting colonic lesions. Genome Medicine 8:37.

s7  doi:10.1186/s13073-016-0290-3.

s 6. Hale VL, Chen J, Johnson S, Harrington SC, Yab TC, Smyrk TC, Nelson H, Boardman
s LA, Druliner BR, Levin TR, Rex DK, Ahnen DJ, Lance P, Ahlquist DA, Chia N. 2017. Shifts
a0 in the fecal microbiota associated with adenomatous polyps. Cancer Epidemiol Biomarkers Prev

st 26:85-94. doi:10.1158/1055-9965.EPI-16-0337.

a2 7. Pasolli E, Truong DT, Malik F, Waldron L, Segata N. 2016. Machine learning meta-analysis
a73 of large metagenomic datasets: Tools and biological insights. PLoS Comput Biol 12.

ar4  doi:10.1371/journal.pcbi.1004977.

a7s 8. Sze MA, Schloss PD. 2016. Looking for a signal in the noise: Revisiting obesity and the

16


https://doi.org/10.1101/816090
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/816090; this version posted October 23, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

s76  microbiome. mBio 7. doi:10.1128/mBio.01018-16.

a7 9. Walters WA, Xu Z, Knight R. 2014. Meta-analyses of human gut microbes associated with
a7s Obesity and IBD. FEBS Lett 588:4223—4233. doi:10.1016/j.febslet.2014.09.039.

79 10. Vazquez-Baeza Y, Gonzalez A, Xu ZZ, Washburne A, Herfarth HH, Sartor RB,
a0 Knight R. 2018.  Guiding longitudinal sampling in IBD cohorts.  Gut 67:1743—-1745.
381 d0i:10.1136/gutjnl-2017-315352.

2 11. Qin N, Yang F, Li A, Prifti E, Chen Y, Shao L, Guo J, Le Chatelier E, Yao J, Wu L, Zhou J,
a3 Ni S, Liu L, Pons N, Batto JM, Kennedy SP, Leonard P, Yuan C, Ding W, Chen Y, Hu X, Zheng
s« B, Qian G, Xu W, Ehrlich SD, Zheng S, Li L. 2014. Alterations of the human gut microbiome in
ass  liver cirrhosis. Nature 513:59—-64. doi:10.1038/nature13568.

sss 12. Geman O, Chiuchisan I, Covasa M, Doloc C, Milici M-R, Milici L-D. 2018. Deep learning
37 tools for human microbiome big data, pp. 265-275. In Balas, VE, Jain, LC, Balas, MM (eds.), Soft

sss  computing applications. Springer International Publishing.

a9 13. Thaiss CA, Itav S, Rothschild D, Meijer MT, Levy M, Moresi C, Dohnalova L, Braverman
s0 S, Rozin S, Malitsky S, Dori-Bachash M, Kuperman Y, Biton |, Gertler A, Harmelin A, Shapiro
s H, Halpern Z, Aharoni A, Segal E, Elinav E. 2016. Persistent microbiome alterations modulate

392 the rate of post-dieting weight regain. Nature 540:544-551. doi:10.1038/nature20796.

ss 14. Dadkhah E, Sikaroodi M, Korman L, Hardi R, Baybick J, Hanzel D, Kuehn G, Kuehn T,
a4 Gillevet PM. 2019. Gut microbiome identifies risk for colorectal polyps. BMJ Open Gastroenterology

35 6:2000297. doi:10.1136/bmjgast-2019-000297.

sss  15. Flemer B, Warren RD, Barrett MP, Cisek K, Das A, Jeffery IB, Hurley E, O‘Riordain M,
se7 Shanahan F, O‘Toole PW. 2018. The oral microbiota in colorectal cancer is distinctive and

aes  predictive. Gut 67:1454—1463. doi:10.1136/gutjnl-2017-314814.

9 16. Montassier E, Al-Ghalith GA, Ward T, Corvec S, Gastinne T, Potel G, Moreau
a0 P, Cochetiere MF de la, Batard E, Knights D. 2016. Pretreatment gut microbiome predicts

17


https://doi.org/10.1101/816090
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/816090; this version posted October 23, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

a1 chemotherapy-related bloodstream infection. Genome Medicine 8:49. doi:10.1186/s13073-016-0301-4.

w2 17. Ai L, Tian H, Chen Z, Chen H, Xu J, Fang J-Y. 2017. Systematic evaluation of supervised
a3 Classifiers for fecal microbiota-based prediction of colorectal cancer. Oncotarget 8:9546—9556.

a4 d0i:10.18632/0oncotarget.14488.

w05 18. Dai Z, Coker OO, Nakatsu G, Wu WKK, Zhao L, Chen Z, Chan FKL, Kristiansen K,
w06 Sung JJY, Wong SH, Yu J. 2018. Multi-cohort analysis of colorectal cancer metagenome
a7 identified altered bacteria across populations and universal bacterial markers. Microbiome 6:70.

08 d0i:10.1186/s40168-018-0451-2.

w0 19. Mossotto E, Ashton JJ, Coelho T, Beattie RM, MacArthur BD, Ennis S. 2017.
a0 Classification of paediatric inflammatory bowel disease using machine learning. Scientific Reports

a1 7. doi:10.1038/s41598-017-02606-2.

a2 20. Wong SH, Kwong TNY, Chow T-C, Luk AKC, Dai RZW, Nakatsu G, Lam TYT, Zhang L, Wu
s JCY, Chan FKL, Ng SSM, Wong MCS, Ng SC, Wu WKK, Yu J, Sung JJY. 2017. Quantitation
+14  Of faecal fusobacterium improves faecal immunochemical test in detecting advanced colorectal

415 neoplasia. Gut 66:1441-1448. doi:10.1136/gutjnl-2016-312766.

a6 21. Statnikov A, Henaff M, Narendra V, Konganti K, Li Z, Yang L, Pei Z, Blaser MJ, Aliferis
a7 CF, Alekseyenko AV. 2013. A comprehensive evaluation of multicategory classification methods

418 for microbiomic data. Microbiome 1:11. doi:10.1186/2049-2618-1-11.

a9 22. Knights D, Costello EK, Knight R. 2011. Supervised classification of human microbiota.
s20 FEMS Microbiology Reviews 35:343—-359. doi:10.1111/j.1574-6976.2010.00251 .x.

w21 23. Wirbel J, Pyl PT, Kartal E, Zych K, Kashani A, Milanese A, Fleck JS, Voigt AY, Palleja
a2 A, Ponnudurai R, Sunagawa S, Coelho LP, Schrotz-King P, Vogtmann E, Habermann N,
223 Niméus E, Thomas AM, Manghi P, Gandini S, Serrano D, Mizutani S, Shiroma H, Shiba
w24 S, Shibata T, Yachida S, Yamada T, Waldron L, Naccarati A, Segata N, Sinha R, Ulrich
a5 CM, Brenner H, Arumugam M, Bork P, Zeller G. 2019. Meta-analysis of fecal metagenomes

26 reveals global microbial signatures that are specific for colorectal cancer. Nature Medicine 25:679.

18


https://doi.org/10.1101/816090
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/816090; this version posted October 23, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

427 d0i:10.1038/s41591-019-0406-6.

28 24. Vangay P, Hillmann BM, Knights D. 2019. Microbiome learning repo (ML repo):
29 A public repository of microbiome regression and classification tasks. Gigascience 8.

a0 doi:10.1093/gigascience/giz042.

a1 25. Galkin F, Aliper A, Putin E, Kuznetsov |, Gladyshev VN, Zhavoronkov A. 2018. Human
a2 microbiome aging clocks based on deep learning and tandem of permutation feature importance

433 and accumulated local effects. bioRxiv. doi:10.1101/507780.

s34 26. Reiman D, Metwally A, Dai Y. 2017. Using convolutional neural networks to explore the
s35  microbiome, pp. 4269-4272. In 2017 39th annual international conference of the IEEE engineering

a6 In medicine and biology society (EMBC).

w37 27. Fioravanti D, Giarratano Y, Maggio V, Agostinelli C, Chierici M, Jurman G, Furlanello C.

a8 2017. Phylogenetic convolutional neural networks in metagenomics. arXiv:170902268 [cs, g-bio].

w39 28. Thomas AM, Manghi P, Asnicar F, Pasolli E, Armanini F, Zolfo M, Beghini F, Manara
a0 S, Karcher N, Pozzi C, Gandini S, Serrano D, Tarallo S, Francavilla A, Gallo G, Trompetto
w1 M, Ferrero G, Mizutani S, Shiroma H, Shiba S, Shibata T, Yachida S, Yamada T, Wirbel
a2 J, Schrotz-King P, Ulrich CM, Brenner H, Arumugam M, Bork P, Zeller G, Cordero
w3 F, Dias-Neto E, Setubal JC, Tett A, Pardini B, Rescigno M, Waldron L, Naccarati A,
w4 Segata N. 2019. Metagenomic analysis of colorectal cancer datasets identifies cross-cohort
45 microbial diagnostic signatures and a link with choline degradation. Nature Medicine 25:667.

46 d0i:10.1038/s41591-019-0405-7.

w7 29. Rudin C. 2018. Please stop explaining black box models for high stakes decisions.

as arXiv:181110154 [cs, stat].

a9 30. Rudin C, Ustun B. 2018. Optimized scoring systems: Toward trust in machine learning for

a0 healthcare and criminal justice. Interfaces 48:449-466. doi:10.1287/inte.2018.0957.

51 31. Knights D, Parfrey LW, Zaneveld J, Lozupone C, Knight R. 2011. Human-associated

s52 microbial signatures: Examining their predictive value. Cell Host Microbe 10:292—296.

19


https://doi.org/10.1101/816090
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/816090; this version posted October 23, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

43 d0i:10.1016/j.chom.2011.09.003.

a4 32. Ng AY. 2004. Feature selection, 11 vs. 12 regularization, and rotational invariance, pp. 78. In
45 Proceedings of the twenty-first international conference on machine learning. ACM, New York, NY,

s USA.

57 33. Miller T. 2017. Explanation in artificial intelligence: Insights from the social sciences.

ass arXiv:170607269 [cs].

159 34. Ribeiro MT, Singh S, Guestrin C. 2016. “Why should i trust you?”: Explaining the predictions
w0 Of any classifier. arXiv:160204938 [cs, stat].

st 35. Nori H, Jenkins S, Koch P, Caruana R. 2019. InterpretML: A unified framework for machine

se2 learning interpretability. arXiv:190909223 [cs, stat].

w3 36. Altmann A, Tolosi L, Sander O, Lengauer T. 2010. Permutation importance: a corrected

w4 feature importance measure. Bioinformatics 26:1340—1347. doi:10.1093/bioinformatics/btq134.

w5 37. Dormann CF, Elith J, Bacher S, Buchmann C, Carl G, Carré G, Marquéz JRG, Gruber
w6 B, Lafourcade B, Leitdao PJ, Minkemiller T, McClean C, Osborne PE, Reineking B,
w7 Schroder B, Skidmore AK, Zurell D, Lautenbach S. 2013. Collinearity: A review of methods
w8 to deal with it and a simulation study evaluating their performance. Ecography 36:27—46.

a0 doi:10.1111/.1600-0587.2012.07348.x.

a0 38. Sze MA, Topguoglu BD, Lesniak NA, Ruffin MT, Schloss PD. 2019. Fecal short-chain
s fatty acids are not predictive of colonic tumor status and cannot be predicted based on bacterial

a2 community structure. mBio 10:e01454—19. doi:10.1128/mBio.01454-19.

az3 39. Kocheturov A, Pardalos PM, Karakitsiou A. 2019. Massive datasets and machine
a74 learning for computational biomedicine: Trends and challenges. Ann Oper Res 276:5-34.

475 doi:10.1007/s10479-018-2891-2.

a7s 40. Kim M, Oh |, Ahn J. 2018. An improved method for prediction of cancer prognosis by network

20


https://doi.org/10.1101/816090
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/816090; this version posted October 23, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

494

495

496

497

498

499

aCC-BY 4.0 International license.

learning. Genes 9:478. doi:10.3390/genes9100478.

41. Wiens J, Saria S, Sendak M, Ghassemi M, Liu VX, Doshi-Velez F, Jung K, Heller
K, Kale D, Saeed M, Ossorio PN, Thadaney-Israni S, Goldenberg A. 2019. Do no harm:
A roadmap for responsible machine learning for health care. Nat Med 25:1337-1340.

doi:10.1038/s41591-019-0548-6.

42. Westcott SL, Schloss PD. 2017. OptiClust, an Improved Method for Assigning
Amplicon-Based Sequence Data to Operational Taxonomic Units. mSphere 2. doi:10.1128/mSphereDirect.00073-1

43. Redwood DG, Asay ED, Blake ID, Sacco PE, Christensen CM, Sacco FD, Tiesinga JJ,
Devens ME, Alberts SR, Mahoney DW, Yab TC, Foote PH, Smyrk TC, Provost EM, Ahlquist
DA. 2016. Stool DNA testing for screening detection of colorectal neoplasia in alaska native people.

Mayo Clin Proc 91:61-70. doi:10.1016/j.mayocp.2015.10.008.

44. Sze MA, Schloss PD. 2018. Leveraging existing 16S rRNA gene surveys to
identify reproducible biomarkers in individuals with colorectal tumors. mBio 9:e00630-18.

doi:10.1128/mBio.00630-18.

45. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA,
Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber
CF. 2009. Introducing mothur: Open-Source, Platform-Independent, Community-Supported
Software for Describing and Comparing Microbial Communities.  ApplEnvironMicrobiol

75:7537-7541.

46. Rognes T, Flouri T, Nichols B, Quince C, Mahé F. 2016. VSEARCH: A versatile open source
tool for metagenomics. Peerd 4:2584. doi:10.7717/peer].2584.

47. Li L, Jamieson K, DeSalvo G, Rostamizadeh A, Talwalkar A. 2016. Hyperband: A novel
bandit-based approach to hyperparameter optimization. arXiv:160306560 [cs, stat].

21


https://doi.org/10.1101/816090
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/816090; this version posted October 23, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

500 Table 1. Characteristics of the machine learning models in our comparative study.
Model Description Linearity
Logistic A predictive regression analysis when the dependent L

inear

regression variable is binary.
SVM with A classifier that is defined by an optimal linear ,

Linear
linear kernel separating hyperplane that discriminates between labels.
SVM with A classifier that is defined by an optimal non-linear )

Non-linear
radial basis kernel separating hyperplane that discriminates between labels.

501
A classifier that sorts samples down from the root to the

Decision tree leaf node where an attribute is tested to discriminate Non-linear

between labels.

A classifier that is an ensembe of decision trees )
Random forest Non-linear

that grows randomly with subsampled data.

Gradient Boosted Trees | A classifier that is an ensembe of decision trees )
Non-linear

(XGBoost) that grows greedily.
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502

s03 Figure 1. Machine learning pipeline. We split the data to create a training (80%) and held-out test
s04 Set (20%). The splits were stratified to maintain the overall class distribution. We performed five-fold
505 Cross-validation on the training data to select the best hyperparameter setting and then used these
so6 hyperparameters to train the models. The model was evaluated on the held-out data set. Abbreviations:

so7  cVAUC, cross-validation area under the receiver operating characteristic curve.
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508

so9 Figure 2. Generalization and classification performance of ML models using AUROC values of all
st0 cross-validation and testing performances. The median AUROC for diagnosing individuals with SRN
511 Using bacterial abundances was higher than chance (depicted by a horizontal line at 0.50) for all the ML
si2 models. The predictive performance of random forest model was higher than other ML models, though not
s13  significantly (p > 0.01). L2-regularized logistic regression, XGBoost, L2-regularized SVM with linear and
514 radial basis function kernel performances were not significantly different from one another. The boxplot
515 shows quartiles at the box ends and the median as the horizontal line in the box. The whiskers show the
s16  farthest points that were not outliers. Outliers were defined as those data points that are not within 1.5 times

517 the interquartile ranges.
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st9  Figure 3. Interpretation of the linear ML models. The ranks of absolute feature weights of (A)
s20 L1-regularized SVM with linear kernel, (B) L2-regularized SVM with linear kernel, and (C) L2-regularized
s21  logistic regression, were ranked from highest rank, 1, to lowest rank, 100, for each data-split. The feature
s22  ranks of the 20 highest ranked OTUs based on their median ranks (median shown in black) are reported
523 here. OTUs that were associated with classifying a subject as being healthy had negative signs and were
s24 shown in blue. OTUs that were associated with classifying a subject having an SRN had positive signs and

525 were shown in red.
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527 Figure 4. Interpretation of the non-linear ML models. (A) SVM with radial basis kernel, (B) decision tree,
s28  (C) random forest, and (D) XGBoost feature importances were explained using permutation importance
529 on the held-out test data set. The gray rectangle and the dashed line show the IQR range and median of
s30  the base testing AUROC without any permutation. The 20 OTUs that caused the largest decrease in the
sst - AUROC when permuted are reported here. The colors of the box plots represent the OTUs that were shared
ss2 among the different models; yellow were OTUs that were shared among all the non-linear models, salmon
sss  were OTUs that were shared among the tree-based models, green were the OTUs shared among SVM with
s34 radial basis kernel, decision tree and XGBoost, pink were the OTUs shared among SVM with radial basis
535 kernel and XGBoost only, red were the OTUs shared among random forest and XGBoost only and blue
sse  were the OTUs shared among decision tree and random forest only. For all of the tree-based models, a

537 Peptostreptococcus species (OTU00367) had the largest impact on predictive performance.
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sso  Figure 5. Training times of seven ML models. The median training time was the highest for XGBoost and

s40  shortest for L2-regularized logistic regression.
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542

Table S1. An aspirational rubric for evaluating the rigor of ML practices applied to microbiome data.

development

No hyperparameter tuning.

settings are explored

on training data.

Practice Poor Good Better
Data do not reflect intended
Data reflect intended
application (e.g., data pertain
Source Data are appropriate use and will persist
to only patients with carcinomas
of data for intended application. (e.g., same OTU assignments
but model is expected to
for new fecal samples).
predict advanced adenomas).
Test data resampled to remove
class imbalance (e.g., test data
Test data are reflective Model tested on multiple
Study resampled to have an equal
of the population which cohorts with potentially
cohort number of patients with carcinomas
the model will be applied. | different class balances.
as patients with healthy colons,
which does not reflect reality.)
Different modeling choices
Model No justification for Model choice is justified
(justified for intended
selection classification method. for intended application.
application) are tested.
Different hyperparameter | Hyperparameter grid search
Model

performed by cross-validation

on the training set.

model performance.

Model Performance reported on the Performance reported on Performance reported on
evaluation data used to train the model. held-out test data. multiple held-out test sets.
Reported performance according to | Reported performance in
a metric that is not appropriate terms of a metric that
Evaluation Reported multiple metrics
for intended application (e.g. when | is appropriate for intended
metrics with confidence intervals.
predicting rare outcome, accuracy application and includes
metric is not reliable). confidence intervals.
Follow-up analyses to Hypotheses based on
Model L .
No model interpretation. determine what is driving | feature importances
interpretation

are generated and tested.
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Figure S1. Hyperparameter setting performances for linear models. (A) L2-regularized logistic
regression, (B) L1-regularized SVM with linear kernel, and (C) L2-regularized SVM with linear kernel mean
cross-validation AUROC values when different hyperparameters were used in training the model. The stars

represent the highest performing hyperparameter setting for each model.
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548
ss9  Figure S2. Hyperparameter setting performances for non-linear models. (A) Decision tree, (B) random
sso forest, (C) SVM with radial basis kernel, and (D) XGBoost mean cross-validation AUROC values when
ss1  different hyperparameters were used in training the model. The stars represent the highest performing
552 hyperparameter setting for the models.
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The difference between random forest and L2-regularized

53 logistic regression AUROC values of each datasplit

s« Figure S3. Histogram of AUROC differences between L2-regularized logistic regression and random
ss5  forest for each of the hundred data-splits. This histogram shows the number of data-splits in each bin. The
ss6  percentage of dataplits where the difference between random forest and L2-regularized logistic regression
ss7 AUROC values was higher than or equal to 0 were 0.75, lower than or equal to 0 were 0.25. The vertical
sss red line highlights the bins where there AUROC difference between the two model is 0. The p-value was

sso  calculated for a double tail event.
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set Figure S4. Classification performance of ML models across cross-validation when trained on a
s62 subset of the dataset. (A) L2-regularized logistic regression and (B) random forest models were trained
se3  Using the original study design with 490 subjects and subsets of it with 15, 30, 60, 120, and 245 subjects.
s+ The range among the cross-validation AUROC values within both models at smaller sample sizes were much
se5 larger than when the full collection of samples was used to train and validate the models but included the

se6 ranges observed with the more complete datasets.
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ses Figure S5. Interpretation of the linear ML models with permutation importance. (A) L1-regularized
se9  SVM with linear kernel, (B) L2-regularized SVM with linear kernel, and (C) L2-regularized logistic regression

s70 were interpreted using permutation importance using held-out test set.
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