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ABSTRACT

During development individuals undergo protracted changes in cortical morphology, which coincide
with changes in cognition. A number of studies have measured the association between brain
structure and cognition in children, however these frequently rely on mass univariate statistics or
ROI-based comparisons and do not always measure cortical morphology relative to global brain
measures. After controlling for global brain measures, we can see a residual regionalisation pattern
indicating the size or thickness of different regions relative to the total cortical surface area or mean
thickness. Individual variability in this regionalisation may be important for predicting between
subject variability in cognitive performance. Here we sought to determine whether the relative
configuration of cortical architecture across the whole cortex was associated with cognition using a
novel multivariate omnibus statistical test (MOSTest). This method is optimally powered to detect
associations that are widely distributed across the cortex. We then used the Polyvertex score (PVS)
to quantify the magnitude of the association between vertex-wise cortical morphology and cognitive
performance. We have determined that the relative pattern of cortical architecture, after removing
the variance associated with global brain measures, predicted unique variance associated with
cognition across different modalities.
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INTRODUCTION

During development there are protracted increases in cortical surface area (which peaks at 9 and 10
years of age) and independent monotonic decreases in cortical thickness (Brown & Jernigan, 2012;
Jernigan & Tallal, 1990; Jernigan, Trauner, Hesselink, & Tallal, 1991; Lyall et al., 2015; Wierenga,
Langen, Oranje, & Durston, 2014) that coincide with rapid cognitive development. However, the
relationship between these distinct neuroanatomical trajectories and cognition is not well
understood in late childhood. This is in part due to methodological differences, which conflate these
independent morphometrics (Brown & Jernigan, 2012). Many studies have looked at regional
associations between brain structure and cognition; however, these do not always partition out the
variance associated with modality-specific global brain measures. However, regional differences in
cortical morphology relative to total cortical surface area (CSA) or mean cortical thickness (CTH) also
appear to be important for predicting behaviour (Curley et al., 2018; Fjell et al., 2012; Newman,
Jernigan, et al., 2016; Newman, Thompson, et al., 2016; Vuoksimaa et al., 2016). This suggests that
individual differences in the regionalisation of the cortex (relative to global brain measures) may be
important for understanding individual variability in cognition. However, previous studies have been
underpowered to detect significant effects of relative cortical configuration across the whole cortex
particularly when using univariate statistics with stringent control for multiple comparisons
(Vuoksimaa et al., 2016).

Brain-behaviour relationships are likely to represent weak diffuse effects across the brain, which are
difficult to detect with small sample sizes. A recent study has highlighted how stringent thresholding
procedures used in neuroimaging can produce variability among study replications and mask small,
but true effects (Cremers, Wager, & Yarkoni, 2017). From genetics research we have discovered that
complex behavioural traits are polygenic and the additive effect of many small effects across the
genome is more predictive of behavioural phenotypes than the effect of stringently thresholded
genome-wide significant single nucleotide polymorphisms (SNPs). The same appears to be true of
the brain. We have recently demonstrated that we can predict more variance in behaviour by taking
into account effect sizes across the whole cortex using novel analysis methods adapted from
genetics research (Zhao et al, in prep). The polyvertex score (PVS), like the polygenic risk score,
allows us to aggregate vertex-wise (or voxel-wise) effects across the cortex to predict behaviour.
Based on this previous research and our understanding of how regionalisation occurs during
development, we may assume that the association between cortical morphology and cognition is
more likely to be widely distributed across the cortex.

In the current study, we hypothesised that the relative configuration of brain morphology
(controlling for global measures) across the whole cortex could explain individual differences in
cognitive task performance. To test this we are using a novel multivariate omnibus statistical test
(MOSTest) for determining an association between vertex-wise imaging data and behaviour. The
MOSTest aggregates effects across the cortex and is therefore optimally powered to detect
distributed associations. This is in contrast to a traditional neuroimaging omnibus test based on the
most significant vertex or voxel, which is alternatively optimally powered for sparse, localised effects
of interest. The MOSTest has three main steps: 1) calculate a multivariate statistic by calculating the
multivariate norm (Mahalanobis distance) across the cortex using the decorrelated mass univariate z
statistics; 2) estimate the distribution of the test statistic under the null hypothesis using an
appropriate permutation scheme and determine statistical significance controlling for a family-wise
error rate at 5%; and 3) fit a gamma cumulative density function to the tail of the permuted
distribution in order to extrapolate a MOSTest theoretical p-value that has greater precision and
reduces the need for a high number of permutations. Van der Meer et al (in prep) have recently
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validated this method in a different context and demonstrated the increased power of the MOSTest
for detecting genome-wide associations with regional imaging phenotypes in UK Biobank. Here we
demonstrate an application of the MOSTest for improving the discoverability of vertex-wise brain-
behaviour associations in the Adolescent Brain and Cognitive Development (ABCD) study.

The large-scale ABCD study uses neuroimaging, genetics and a multi-dimensional battery of
behavioural assessments to investigate the role of biological, environmental, and behavioural factors
on brain, cognitive, and social/emotional development. The baseline data for this longitudinal study
includes 11,875 nine and ten year old children, which allows us to generate a comprehensive cross-
sectional understanding of the relationship between brain structure and cognition. Using the
complete baseline data (release 2.0.1), we determined whether there was an association between
performance on the thirteen cognitive tasks in the neurocognitive battery and the regionalisation of
CSA (controlling for total CSA) and CTH (controlling for mean CTH) using the MOSTest. We then
guantified the magnitude of these relationships using the PVS. We hypothesised that individual
variability in the relative regionalisation of cortical morphology would explain cognitive task
performance above and beyond that predicted by global brain measures.

METHOD

Sample

The ABCD study is a longitudinal study across 21 data acquisition sites following 11,875 children
starting at 9 and 10 years old. This paper analysed the full baseline sample from release 2.0.1 (NDAR
DOI: 10.15154/1504041). The study used specific recruitment strategies to create a population-
based, demographically diverse sample, however it is not necessarily representative of the U.S.
national population (Compton, Dowling, & Garavan, 2019; Garavan et al., 2018). Due to the
inclusion of a wide range of individuals across different races, ethnicities and socioeconomic
backgrounds, it is important to control for effects of self-declared race and ethnicity, household
income and parental education when using this dataset due to potential confounding associations
between these demographic variables and our effects of interest. Sex and age were also used as
covariates in all analyses. Embedded within the sample is a large twin cohort and many siblings,
therefore family relatedness was also controlled for as a random effect in all analyses for using a
restricted exchangeability permutation scheme (see Statistical Analysis 1).

Only subjects who had complete data across all of the measures analysed were included in the
neuroimaging analyses. There was a large number of subjects with missing income data (n=1018),
therefore missing values were imputed by taking the median income value across participants from
the same testing site. The sources of missing data were as follows: incomplete across all
demographic variables (n=189), incomplete across all cognitive measures (n=944), unavailable T1-
weighted MRI scan for reasons outlined in the ABCD release notes (e.g. did not get scanned, motion
artefacts) (n=339) and imaging data that was made available but did not pass the free-surfer QC flag
(n=462). These missing data values are not mutually exclusive. The permutation testing used in this
study was dependent on having multiple families with the same number of children, therefore the
single family with 5 children was excluded from these analyses. This resulted in a final sample of
10,145 subjects. Supplementary Table 1 outlines the names of each variable used in these analyses
from data release 2.0.1 in accordance with the NDA data dictionary.
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Neurocognitive assessment

NIH Toolbox

The NIH Toolbox Cognition Battery (NTCB) is a widely used battery of cognitive tests that measures a
range of different cognitive domains. All of the tasks within the NTCB were administered using an
iPad with support or scoring from a research assistant where needed. Below is a brief description of
each task.

The Toolbox Oral Reading Recognition Task (TORRT) measured language decoding and reading.
Children were asked to read aloud single letters or words presented in the center of an iPad screen.
The research assistant marked pronunciations as correct or incorrect. Extensive training was given
prior to administering the test battery. Item difficulty was modulated using computerised adaptive
testing (CAT).

The Toolbox Picture Vocabulary Task (TPVT), a variant of the Peabody Picture Vocabulary Test
(PPTV), measured language and vocabulary comprehension. Four pictures were presented on an
iPad screen as a word was played through the iPad speaker. The child was instructed to point to the
picture, which represented the concept, idea or object name heard. CAT was implemented to
control for item difficulty and avoid floor or ceiling effects.

The Toolbox Pattern Comparison Processing Speed Test (TPCPST) measured processing speed.
Children were shown two images and asked to determine if they were identical or different by
touching the appropriate response button on the screen. This test score is the sum of the number of
items completed correctly in the time given.

The Toolbox List Sorting Working Memory Test (TLSWMT) measured working memory. Children
heard a list of words alongside pictures of each word and were instructed to repeat the list back in
order of their actual size from smallest to largest. The list started with only 2 items and a single
category (e.g. animals). The number of items increased with each correct answer to a maximum of
seven. The child then progressed to the next stage in which two different categories were
interleaved. At this stage children were required to report the items back in size order from the first
category followed by the second category. Children were always given two opportunities to repeat
the list correctly before the experimenter scored the trial as incorrect.

The Toolbox Picture Sequence Memory Test (TPSMT) measured episodic memory. On each trial,
children were shown a series of fifteen pictures in a particular sequence. The pictures illustrated
activities or events within a particular setting (e.g. going to the park). Participants were instructed to
touch the pictures in the original sequence in which they were shown. The Rey-Auditory Verbal
Learning Task (RAVLT) was also included in the ABCD neurocognition battery as a more
comprehensive measure of episodic memory.

The Toolbox Flanker Task (TFT) measured executive function, attentional and inhibitory control.
This adaptation of the Eriksen Flanker task (Eriksen & Eriksen, 1974) captures how readily a
participant is influenced by the congruency of stimuli surrounding a target. On each trial a target
arrow was presented in the center of the iPad screen facing to the left or right and was flanked by
two additional arrows on both sides. The surrounding arrows were either facing in the same
(congruent) or different (incongruent) direction to the central target arrow. The participant was
instructed to push a response button to indicate the direction of the central target arrow. Accuracy
and reaction time scores were combined to produce a total score of executive attention, such that


https://doi.org/10.1101/816025
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/816025; this version posted October 23, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

higher scores indicate a greater ability to attend to relevant information and inhibit incorrect
responses.

The Toolbox Dimensional Change Card Sort Task (TDCCS) measured executive function and
cognitive flexibility. On each trial, the participant was presented with two objects at the bottom of
the iPad screen and a third object in the middle. The participant was asked to sort the third object
by matching it to one of the bottom two objects based on either colour or shape. In the first block
participants matched based on one dimension and in the second block they switched to the other
dimension. In the final block, the sorting dimension alternated between trials pseudorandomly. The
total score was calculated based on speed and accuracy.

In the current study, the uncorrected scores for each task were used for statistical analyses.
Composite scores of crystallised intelligence (mean of TPVT and TORRT), fluid intelligence (mean of
TPCPST, TLSWMT, TPSMT, TFT and TDCCS) and total score (mean of all tasks) were also analysed.
These measures are highly correlated with ‘gold standard’ measures of intelligence in adults (Heaton
et al., 2014) and children (Akshoomoff et al., 2013).

Rey-Auditory Verbal Learning Task (RAVLT)

This task measures auditory learning, recall and recognition. Participants listened to a list of 15
unrelated words and were asked to immediately recall these after each of five learning trials. A
second unrelated list was then presented and participants were asked to recall as many words as
possible from the second list and then recall words again from the initial list. Following a delay of 30
minutes (during which other non-verbal tasks from the cognitive battery are administered), longer-
term retention was measured using recall and recognition. This task was administered via an iPad
using the Q-interactive platform of Pearson assessments (Daniel, Wahlstrom, & Zhang, 2014). In the
current study, the total number of items correctly recalled across the five learning trials was
summed to produce a measure of auditory verbal learning.

Little Man Task (LMT)

This task measures visuospatial processing involving mental rotation with varying degrees of
difficulty (Acker, 1982). A rudimentary male figure holding a briefcase in one hand was presented on
an iPad screen. The figure could appear in one of four positions: right side up vs upside down and
either facing the participant or with his back to the participant. The briefcase could be in either
hand. Participants indicated which hand the briefcase was in using one of two buttons.

Performance across the 32 trials was measured by the percentage of trials in which the child
responded correctly. This was divided by the average reaction time to complete the task (in
seconds) to produce a measure of efficiency of visuospatial processing. This was the dependent
variable analysed in this study.

Matrix reasoning

Nonverbal reasoning was measured using an automated version of the Matrix Reasoning subtest
from the Weschler Intelligence Test for Children-V (WISC-V; Weschler, 2014). On each trial the
participant was presented with a series of visuospatial stimuli, which was incomplete. The
participant was instructed to select the next stimulus in the sequence from four alternatives. There
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were 32 possible trials and testing ended when the participant failed three consecutive trials. The
total raw score, used in the current study, was the total number of trials completed correctly.

Imaging acquisition

The ABCD MRI data were collected across 21 research sites using Siemens Prisma, GE 750 and Philips
3T scanners. Scanning protocols were harmonised across sites. The Tlw acquisition (1 mm
isotropic) was a 3D T1w inversion prepared RF-spoiled gradient echo scan using prospective motion
correction, when available (Tisdall et al., 2012; White et al., 2010) (echo time = 2.88 ms, repetition
time = 2500 ms, inversion time = 1060 ms, flip angle = 8°, FOV = 256x256, FOV phase = 100%, slices =
176). Only the Tlw scans were analysed in this paper. Full details of all the imaging acquisition
protocols used in ABCD are outlined by Casey et al (Casey et al., 2018). Scanner ID was included in
all analyses to control for any differences in image acquisition across sites and scanners.

Imaging pre-processing

Pre-processing of all MRI data for ABCD was conducted using in-house software at the Center for
Multimodal Imaging and Genetics (CMIG) at University of California San Diego (UCSD) as outlined in
Hagler et al (Hagler et al., 2019). Manual quality control was performed prior to the full image pre-
processing and structural scans with poor image quality as well as those that did not pass FreeSurfer
QC were excluded from all analyses. Brain segmentation and cortical surface reconstruction were
completed using FreeSurfer v5.3.0 (Dale, Fischl, & Sereno, 1999; Bruce Fischl, Sereno, & Dale, 1999).

T1-weighted structural images were corrected for distortions caused by gradient nonlinearities,
coregistered, averaged, and rigidly resampled into alighment with an atlas brain. See previous
publications for details of the surface based cortical reconstruction segmentation procedures (Dale
et al., 1999; B Fischl & Dale, 2000; Bruce Fischl et al., 2004, 1999; Jovicich et al., 2006). In brief, a 3D
model of the cortical surface was constructed for each subject. This included segmentation of the
white matter (WM), tessellation of the gray matter (GM)/WM boundary, inflation of the folded,
tessellated surface, and correction of topological defects.

Measures of cortical thickness at each vertex were calculated as the shortest distance between the
reconstructed GM/WM and pial surfaces (B Fischl & Dale, 2000). To calculate cortical surface area, a
standardised tessellation was mapped to the native space of each subject using a spherical atlas
registration, which matched the cortical folding patterns across subjects. Surface area of each point
in atlas space was calculated as the area of each triangle. This generated a continuous vertex-wise
measure of relative areal expansion or contraction. Cortical maps were smoothed using a Gaussian
kernel of 20 mm full-width half maximum (FWHM) and mapped into standardised spherical atlas
space. Vertex-wise data for all subjects for each morphometric measurement were concatenated
into matrices in MATLAB R2017a and entered into general linear models for statistical analysis using
custom written code.
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Statistical Analysis 1: determining the association between relative brain structure and
cognition using the MOSTest

In order to determine whether there was a significant association between relative, vertex-wise
cortical morphology and cognitive task performance, we employed the MOSTest. We applied a
general linear model (GLM) associating a given behaviour y from a set of covariates W and the
vertex-wise morphology data, X. W represents a standardized N by m matrix of covariates of no
interest where N represents the number of subjects and m the number of covariates. X denotes the
standardised N by V matrix of vertex-wise imaging data where V denotes the number of vertices. y
represents an N by 1 vector of a behavioural phenotype. £ and a are the V by 1 and m by 1 vectors
of parameters of interest and no interest respectively (Eq 1).

(1) y= ap+Wa+Xp +¢

Using this linear model, we evaluated whether the vertex-wise data could predict the behaviour of
interest, while controlling for a set of covariates, and obtained the least-squares estimate for each [)’j
from the GLM. This was used to compute the multivariate vector of association Wald statistics z =
(2, ..., zy)" across the whole cortex. The multivariate statistic was calculated as the Mahalanobis
norm, )(ZMOST (Eg 2). This is an approximation of the multivariate normal cumulative distribution
with known variance-covariance matrix, given by R. The correlation matrix was estimated from the
P by V matrix of permuted z statistics, Zperm where p = 1,...,P denotes permutations. This was
then regularised using a Tikhonov regularization to ensure the correlation matrix was invertible (Eq
3). The magnitude of regularisation dictated by the penalty factor A was optimised based on the
negative log likelihood of the fit of the gamma cumulative density function to the permuted
distribution of y2,,0sr (see supplementary figure 3).

(2) X*mosr =z Rz

(3) R= cov(Zperm)(1 — A1) + Al

A permutation test was used to determine the distribution of x?2,,os under the null hypothesis Ho.
We rejected Hoif y%,,0s7 Was greater than the permutation distribution more than 99.62% of the
time (alpha level of 95% Bonferroni corrected for 13 tests). Theoretical p-values for y2,,0sr Were
calculated by fitting a gamma cumulative density function to the permuted scores and estimating
the likelihood of the observed omnibus test statistic given this permuted distribution.
Supplementary figures 4A & 5A show the fit of the gamma distribution to the permuted data. All
analyses were also conducted using the most significant vertex, z%,;yp , as the omnibus statistic (Eq
4). Theoretical p-values for these permutation tests were generated by fitting a beta cumulative
density function to the permuted data. This estimates the likelihood of these observations using a
Sidak correction. The fits of these data are shown in supplementary figures 4B & 5B.

(4) zpnp = max(z?)

To correctly estimate the null distribution from permutations, subject labels were shuffled according
to exchangeability blocks (EBs) defined based on the family structure within ABCD (Winkler,
Webster, Vidaurre, Nichols, & Smith, 2015). Families with the same number of siblings were allowed
to be shuffled as a whole and siblings within a family were allowed to be shuffled with each other.
This was necessary to account for the joint distribution of the observed data due to the relatedness
of the ABCD sample. Permutations that adhered to this shuffling scheme were generated using the
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PALM toolbox (Winkler, Ridgway, Webster, Smith, & Nichols, 2014). All statistical imaging analyses
were conducted using custom code written in Matlab R2017a.

All imaging analyses included sex, self-declared race and ethnicity, household income, parental
education and scanner as categorical fixed covariates and age as a standardised (z-scored)
continuous fixed covariate. For vertex-wise cortical thickness analyses, standardised global mean
thickness was included as a covariate, and for vertex-wise cortical surface area analyses,
standardised total surface area was included.

Statistical Analysis 2: quantifying the magnitude of the association between brain
structure and cognition using the PVS

The PVS was calculated for each cognitive task to determine the behavioural variance explained by
the vertex-wise cortical morphology. All behavioural and imaging data were pre-residualised using
the covariates of no interest prior to calculation of the PVS. For the imaging data, the global CSA and
CTH measures specific to each modality were also included in this. This allowed us to determine the
unique association between relative cortical morphology and cognition and compare this to the
predictive power of brain structure without controlling for global measures. The method used here
is outlined in detail in Zhao et al (in prep). The association between each imaging phenotype and
each cognitive task was modelled using the mass univariate approach such that the behaviour of
interest was modelled independently at each vertex using a general linear model (GLM). In the
equations described below, X denotes a standardized N by IV matrix of a given imaging phenotype
where N and V denotes the number of subjects and vertices respectively. y represents an N by 1
vector of a behavioural phenotype, and f is the V by 1 vector of parameters of interest.

Parameter estimation

Across subjects, the imaging data and the behaviour were modelled as a linear combination of the
imaging data at each vertex plus measurement error (Eq 5). This is used to generate mass univariate
beta estimates, ,BAU based on the assumption that each vertex is independent (Eq 6).

(5)y = XB+e
(6) By =1X'y

However, the assumption that the signal at each vertex is independent is not correct. We therefore
used a Bayesian parameter estimation procedure adapted from the LDpred framework used to
improve accuracy for polygenic risk scores(Vilhjalmsson et al., 2015). Full details of this procedure
are outlined in Zhao et al (in prep) where the authors applied this method to imaging data and show
improvements in prediction performance. This Bayesian parameter estimation procedure calculates
the posterior mean effect size at each vertex using the mass univariate beta estimates, the observed
correlation structure of the brain structure, D, the estimated signal-to-noise ratio (SNR) of the
imaging phenotype, S, (computed using the GWASH framework(Schwartzman, Schork, Zablocki, &
Thompson, 2017)), the number of vertices, V/, and sample size, N (Eq 7).

(7) E(.BBayesian |.éU' D) =( NLS + D)_l.gU

The Bayesian parameter estimation procedure takes into account the correlation structure of the
brain providing a more valid estimate of the association between the brain and behaviour.
Furthermore, by incorporating an estimate of the SNR of the imaging phenotype we can reduce the
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variance in prediction error, which leads to better predictive performance. We note that this method
explicitly assumes a prior that all vertices have true associations with behaviour.

Behavioural prediction

The estimated beta parameters were then used to predict the behavioural phenotype and thus
produce the PVS for each subject. The PVS was calculated by aggregating the Bayesian parameter
estimates across all of the vertices (Eq 8). This measure harnesses the explanatory power of all of
the vertices on behaviour. The PVS can then be compared with the observed behaviour in order to
provide an estimate for how much variance in the observed behaviour can be predicted using the
vertex-wise imaging phenotype.

(8) Jpvs—p = Z‘J/ Xj BBayesian,j

In order to generate an unbiased PVS for every subject we used a leave-one-out 10 fold cross-
validation procedure. The Bayesian parameters were estimated in the training set (90% of full
sample) and multiplied with the imaging phenotype of participants in the test set (10% of full
sample). This was repeated 10 times for each fold until a PVS was calculated for every participant in
the full sample. The subjects in each fold were randomly selected based on unique family IDs, such
that subjects within the same family were always within the same fold. The association between the
imaging phenotype and behaviour across the whole sample was calculated as the squared
correlation (R?) between the observed behaviour and the predicted behaviour (the PVS). This
process was repeated for four imaging phenotypes: CSA, relative CSA (controlling for total CSA), CTH.
relative CTH (controlling for mean CTH).

RESULTS

Determining the association between relative cortical morphology and cognition

In order to test the association between the regionalisation of cortical morphology across the whole
cortical surface and cognition in this study, we employed the MOSTest. The multivariate statistic
was calculated and used within a permutation test for each cognitive task and cortical morphology
measure independently.

Relative CSA

For each cognitive task, our multivariate statistic, y2,;0s7, Was calculated for each permutation
(n=10,000) for statistical inference. In figure 1, we have plotted the distribution of y2,,,sr across
permutations and superimposed the observed (non-permuted) statistic (green) to demonstrate the
likelihood of observing the non-permuted statistic by chance. The Bonferroni corrected alpha
threshold (0.05/13=0.0038) is overlaid (red) on each plot in order to demonstrate the significance of
the permutation test. The MOSTest showed a significant association between relative cortical
configuration of CSA (controlling for total CSA) and cognition for all of the cognitive performance
measures. We also conducted the same permutation test using the most significant vertex (z%,;;yp)
as the test statistic for comparison. The results are shown in supplementary figure 1. Here we can
see that using the same threshold for significance the flanker task, pattern speed, picture
sequencing, LMT and RAVLT did not show significant associations.
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Relative CTH

In figure 2, we show the permuted and non-permuted statistics for the association between
cognitive performance and the relative cortical configuration of CTH (controlling for mean CTH). The
relative cortical configuration of CTH was significantly associated with all of the cognitive measures
at the Bonferroni corrected alpha level (p<0.0038) according to the MOSTest. The same
permutation test was carried out using the most significant vertex, z%,;yp , and the results are
shown in supplementary figure 2. According to this analysis, for comparison, the following measures
would not have been considered to show a significant association with relative CSA: picture
vocabulary, flanker, pattern speed, LMT and RAVLT.

Across both relative CSA and CTH, the p-values for the MOSTest associations were magnitudes
smaller than for the min-p associations (supplementary table 2). The increased power of the
MOSTest is likely due to the distributed nature of the associations between cognition and relative
cortical morphology. This can clearly be seen in the surface maps of the unthresholded mass
univariate effect sizes for relative CSA and CTH predicting the total composite score from the NIH
Toolbox (Figure 3).

Quantifying the association between brain structure and cognition

Having established there was a significant association between relative cortical configuration and
cognition across tasks, we aimed to quantify the unique proportion of individual variability in each
behaviour predicted by the relative cortical configuration. To do this we used the PVS in order to
provide a conservative, out-of-sample estimate of the variance in each behaviour predicted by the
relative vertex-wise imaging data. Each PVS was orthogonal to the modality specific global imaging
measures (total CSA and mean CTH respectively) as all imaging data were pre-residualised using
these measures (and the additional covariates of no interest) prior to calculating the PVS. We then
used a linear model to determine the unique contribution of each PVS (relative CSA and relative
CTH) to cognitive task performance and compared to this to the independent contribution of the
global imaging measures. Figure 4 shows the variance (%R?) in each cognitive task performance
explained by total CSA (dark blue), relative CSA (light blue), mean CTH (dark pink) and relative CTH
(light pink).

Total CSA predicted more variance in cognitive performance compared to relative CSA for the
crystallised measures (reading recognition, picture vocabulary, crystallised composite score and the
total composite score); however, this relationship was not always true for the other cognitive
measures. Indeed, for the fluid composite score, total and relative CSA predicted a similar
proportion of variance. This suggests that brain size is more predictive of crystallised compared to
fluid cognitive measures. Mean CTH was not predictive of cognitive performance across any
domains, however, relative CTH was predictive across cognitive domains. In general, the variance in
behaviour explained by these morphology measures was very low with the largest association at
1.45%R?; however, in this analysis we have residualised for a wide range of confounding
demographic variables (race and ethnicity, household income and parental education), which
removes a large portion of shared variance amongst these variables, brain structure and cognition.
These estimates of R? therefore provide a conservative lower bound of the contribution of cortical
morphology to cognition that is not attributable to confounding variables.


https://doi.org/10.1101/816025
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/816025; this version posted October 23, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

DISCUSSION

In this study, we have used a novel multivariate omnibus statistical test, the MOSTest, to
demonstrate that individual differences in the regionalisation of cortical morphology can predict
cognitive performance across multiple domains in a large sample of 9 and 10 year old children. This
method aggregates many small effects across the cortical surface to improve our power for
discovering distributed brain-behaviour associations. The MOSTest has allowed us to uncover
patterns of association across the cortical surface between the regionalisation of cortical
morphology and cognition that have not previously been detected. We then used the PVS to
guantify the effect size of these discovered associations. The regionalisation of CSA and CTH
predicted unique variance in cognition beyond that predicted by global brain measures, however the
relative contribution of arealisation and total CSA to predicting behaviour differed depending on the
cognitive modality being measured. These results highlight the importance of studying the
configuration of brain structure relative to global brain measures. Individual differences in these
regionalisation patterns may uncover important mechanisms underlying the development of
cognitive processes.

A novel multivariate vertex-wise statistical inference tool

In order to make a statistical inference about the association between cortical configuration and
cognition in this study we developed the MOSTest. This test uses a statistic that aggregates effects
of interest across the cortex; therefore, it is optimally powered to detect effects that are distributed
across the cortical surface. Traditionally, neuroimaging analysis methods assume neuroimaging
effects are sparse and localised, therefore adopt the most significant vertex or voxel as an omnibus
test statistic. However, this can lead to reduced statistical power and an increase in Type Il errors
(Cremers et al., 2017) particularly if the association between the brain and behaviour is continuous
and distributed across the cortex. The continuous distribution of brain-behaviour associations has
recently been highlighted across modalities using large samples such as the ABCD study. Indeed, a
recent paper introducing the PVS, demonstrated that aggregating information across the cortex
could produce greater out-of-sample prediction performance of task fMRI-behaviour associations
than thresholding based on significance level (Zhao et al, in prep). This mirrors findings from
genetics, which demonstrate that many complex behavioural phenotypes are polygenic: genome-
wide significant single nucleotide polymorphisms (SNPs) only predict a very small proportion of the
variance in complex behavioural phenotypes, however collating effects across the entire genome
increases the variance explained. Zhao and colleagues have shown that the same is true when
integrating effects across the cortex.

In this study, the MOSTest detected a greater number of significant associations compared to using
the most significant vertex as an omnibus test, which demonstrates the increased power of this test
for the discovery of vertex-wise associations with behaviour. Van der Meer and colleagues have
applied the MOSTest to detect significant genome-wide associations with regional neuroimaging
phenotypes using UK Biobank data and demonstrated a 3-fold increase in statistical power using this
method compared to standard univariate analyses (Meer et al., 2019). This method improves
power by capitalising on the shared variance across vertices and by negating the need to use
stringent vertex-wise correction for multiple comparisons across the cortical surface; but
importantly it does not inflate the type-1 error rate due to the use of a permutation test for
statistical inference. Additionally, the MOSTest test statistic takes into account the correlation
structure of the data across vertices rather than using the smoothness of the imaging measure to
estimate an effective degrees of freedom for multiple comparison correction of the univariate test
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statistics. The multivariate test statistic, the Mahalanobis norm, represents the sum of squared
deviations of the vector of decorrelated mass univariate z statistics. This is a generalisation of
measuring the Euclidean distance across a decorrelated multidimensional space. Using this
multivariate method we can readily test for associations between the brain and behaviour using
information across the entire cortex with increased statistical power. Although it is clear that not all
behaviours will be associated with widespread cortical activity or brain structure, these data suggest
that we should not assume sparseness of neuroimaging associations.

Relative cortical configuration is important for cognition

Global brain measures have been previously associated with cognition; however, there are many
examples where there are differences in global brain measures, such as brain size between men and
women, which do not correspond with differences in cognition. When measuring regional
associations with behaviour it is therefore essential to control for these global measures in order to
uncover specific relationships between regionalisation and behaviour. Indeed, a number of studies
have highlighted associations between regional differences in cortical morphology and cognition;
however, they have lacked the power and multivariate methods to measure associations specifically
based on the entire configuration of cortical morphology. Importantly, the regionalisation of CSA
and CTH has been associated with distinct, continuous gradients of genetic influences across the
cortex (C.-H. Chen et al., 2013; C. Chen et al., 2013; Chi-Hua Chen et al., 2011) that coincide with the
gene expression patterns that dictate specialisation of the neocortex during embryonic
development. Individual differences in this molecular signalling could therefore lead to subtle
alterations in this cortical configuration, which could lead to variability in behaviour. It is therefore
important to use a statistical test that captures the graded and distributed nature of the biology of
regionalisation, such as the MOSTest.

Here we have shown that performance across multiple cognitive tasks was associated with the
regionalisation of cortical morphology across the whole cortex. The presence of negative and
positive associations across the cortical surface suggests that it is the patterning of cortical
morphology that may be important for supporting cognitive function. Indeed, the regionalisation of
CSA predicted additional unique variance in cognition not explained by total CSA. This allows us to
partition the variance associated with cortical morphology in order determine the relative
importance of these components of CSA for cognition. This appeared to differ depending on the
cognitive task, with more crystallised measures having a greater association with total CSA
compared to the regionalisation of CSA. Comparatively the proportion of variance in behaviour
explained by regional CTH was relatively similar for fluid and crystallised measures. Mean CTH did
not predict cognitive performance across any measures; however this may be due to the
developmental stage of this sample. These results support the independence of CSA and CTH and
suggest they may have differential influences across different cognitive domains.

It is important to note that the effect sizes reported between brain structure and cognition in this
study are relatively small (~1% R?). This is important because we have used a very conservative, out-
of-sample effect size estimate and have residualised for a number of confounding demographic
variables, which are highly collinear with these measures. We are therefore providing the lower
bound for the estimated effect size between regionalisation and cognition, which is not influenced
by any confounding measures. Nevertheless, cognitive processing is highly complex, therefore we
are unlikely to explain large proportions of individual variability using single neuroimaging
modalities. Future work combining imaging measures within multi-modal predictive models will
likely uncover larger associations between brain phenotypes and cognition.
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Conclusions

With the availability of large multi-dimensional datasets such as the ABCD study, we can now begin
developing more advanced predictive models of behaviour, which will allow for more model
complexity whilst still remaining interpretable. It is essential that we generate models that can be
used to understand how stable individual differences in complex behaviours relate to individual
differences in brain phenotypes and their development. Future work will aim to understand how
these structural associations change over time with longitudinal assessments in ABCD. Moreover,
we aim to further elucidate the heterogeneity in the pattern of associations between cortical
morphology and cognition across subjects and across cognitive tasks.
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Figure 1. Multivariate omnibus permutation test for each cognitive task and relative CSA. The multivariate

test statistic ()(ZMOST) was calculated as the Mahalanobis norm of the decorrelated mass univariate z statistics
for the association between relative CSA and each of the cognitive tasks. All of the left side plots show the
permuted null distribution of this statistic for each cognitive task. The observed, non-permuted test statistic is
shown in green and the Bonferroni corrected alpha level in red. All of the right side plots show the likelihood
values for the permuted observations after fitting a gamma cumulative density function to the tail of the null
distribution. This can be used to approximate a theoretical p-value for the observed statistic.
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Figure 2. Multivariate omnibus permutation test for each cognitive task and relative CTH. The multivariate

test statistic ()(ZMOST) was calculated as the Mahalanobis norm of the decorrelated mass univariate z statistics
for the association between relative CTH and each of the cognitive tasks. All of the left side plots show the
permuted null distribution of this statistic for each cognitive task. The observed, non-permuted test statistic is
shown in green and the Bonferroni corrected alpha level in red. All of the right side plots show the likelihood
values for the permuted observations after fitting a gamma cumulative density function to the tail of the null
distribution. This can be used to approximate a theoretical p-value for the observed statistic.
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Figure 3. Surface maps showing the mass univariate standardised beta coefficients for the association
between the NIH Toolbox Total Composite score and (A) relative CSA and (B) relative CTH. These
unthresholded effect size maps show the continuously distributed associations across the cortical surface.
These distributed patterns of association support the need to use a multivariate statistic that incorporates this
entire pattern to determine the relationship between relative cortical morphology and cognition.
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Figure 4. Percent behavioural variance explained across cognitive tasks by CSA and CTH. Variance explained
was calculated by correlating each PVS with the observed behaviour for each cognitive task to generate a %R?
value. Each PVS was generated by aggregating the Bayesian estimated effect sizes across the whole cortex
from the association between the imaging data and behaviour. The composite scores, which represent
averages of single task performance, are highlighted in bold. The percent variance explained for each
cognitive measure was determined for the following imaging phenotypes: CSA (dark blue), relative CSA
(controlling for total CSA; light blue), CTH (dark pink), relative CTH (controlling for mean CTH; light pink).
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