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Abstract

Background: Mapping of allele-specific DNA methylation (ASM) can be a post-GWAS strategy for
localizing functional regulatory sequence polymorphisms (rSNPs). However, the unique advantages of

this approach, and the mechanisms underlying ASM in normal and neoplastic cells, remain to be clarified.

Results: We performed whole genome methyl-seq on diverse normal human cells and tissues from
multipleindividuals, plus a group of cancers (multiple myeloma, lymphoma, and glioblastoma
multiforme). After excluding imprinted regions, the data pinpointed 11,233 high-confidence ASM
differentially methylated regions (DMRs), of which 821 contained SNPs in strong linkage disequilibrium
or precisely coinciding with GWAS peaks. ASM was increased 5-fold in the cancers, due to widespread
alele-specific hypomethylation and focal allele-specific hypermethylation in regions of poised chromatin.
Allele-switching at ASM loci was increased in the cancers, but destructive SNPs in specific classes of
CTCF and transcription factor (TF) binding motifs correlated strongly with ASM in both normal and
cancer cells. Allele-specific binding site occupancies from ChlP-seq data were enriched among ASM loci,
but most ASM DMRs lacked such annotations, and some were found in otherwise uninformative

“chromatin deserts”.

Conclusions: ASM isincreased in cancers but it is produced by shared underlying mechanismsin normal
and neoplastic cells. Dense maps of ASM in normal plus cancer samples, provided here as genome
browser tracks, uncover mechanistically informative rSNPs that are difficult to find by other approaches.
We show examples of TF binding sites disrupted by these rSNPs that point to altered transcriptional

pathways in autoimmune, neuropsychiatric, and neoplastic diseases.
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Background

Genome-wide association studies (GWAS) have implicated numerous DNA sequence variants, mostly
single nucleotide polymorphisms (SNPs) in non-coding regions, as candidates for mediating inter-
individual differencesin disease susceptibility. However, to promote GWAS statistical signalsto
biological true-positives, and to identify the functional sequence variants that underlie these signals,
severa obstacles need to be overcome. Multiple statistical comparisons demand stringent thresholds for
significance, p<5x10°® for a GWAS, and this level can lead to the rejection of biological true-positives
with sub-threshold p-values[1]. A more fundamental challengeis identifying the causal regulatory SNPs
(rSNPs) among the typically large number of variants that are in linkage disequilibrium (LD) with a
GWAS peak SNP. Combined genetic-epigenetic mapping can address these challenges. In particular,
identification of non-imprinted allele-specific CpG methylation dictated by cis-acting effects of local
genotypes or haplotypes (sometimes abbreviated as hap-ASM but hereafter referred to simply as ASM),
led us and others to suggest that mapping this type of allelic asymmetry could prove useful as a“post-
GWAS’ method for localizing rSNPs [2-12]. The premiseis that the presence of an ASM DMR can
indicate a bona fide regulatory sequence variant (or regulatory haplotype) in that genomic region, which
declaresitself by conferring the physical asymmetry between the two alleles (i.e. ASM) in heterozygotes.
ASM mapping, and related post-GWAS approaches such as allel e-specific chromatin

immunopreci pitation-sequencing (ChlP-seq) [13, 14] can facilitate genome-wide screening for disease-
linked rSNPs, which can then be prioritized for functional studies. However, the unique advantages of
ASM mapping, and its potential non-redundancy with other post-GWA'S mapping methods, remain to be

clarified.

Genome-wide analysis of ASM by methylation sequencing (methyl-seq) is also yielding insights
to the general mechanisms that shape DNA methylation patterns. Our previous data using bisulfite
sequence capture (Agilent SureSelect) revealed ASM DMRs and methylation quantitative trait | oci

(mQTLs) in human brain cells and tissues, and in T lymphocytes, and uncovered arole for polymorphic
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CTCF and transcription factor (TF) binding sitesin producing ASM [8]. Others have pursued similar
approaches with progressively greater genomic coverage [10, 11], with substantial though partial overlap
in the resulting lists of ASM DMRs [9], and with consistent conclusions regarding the general importance
of polymorphic CTCF and TF binding sites. However, since ASM is often tissue-specific and its mapping
requires heterozygotes at one or more “index SNPs’ in the DMR, constraints from the numbers of
individuals and numbers of cell types have limited the harvest of high-confidence ASM DMRs. These
factors have in turn limited the assessment of specific classes of TF and CTCF binding sites for their
mechanistic involvement in ASM and limited the yield of candidate rSNPs in disease-associated
chromosomal regions. Further, the unique strengths and potential non-redundancy of dense ASM
mapping compared to other post-GWAS methods have not been assessed, and while afew studies have
been done using targeted methyl-seq [15-18], the genome-wide features and mechanisms of ASM in

human cancers have yet to be clarified.

To address these issues, we have expanded our previous methyl-seq dataset and carried out whole
genome bisulfite sequencing (WGBS) on anew large series of human samples spanning arange of tissues
and cell types from multiple individuals, plus three types of human cancers. We identify high-confidence
ASM DMRs using stringent criteria, perform extensive validations, apply a multi-step anaytical pipeline
to compare mechanisms of ASM in normal and cancer cells, and assess the unique strengths of dense

ASM mapping for finding mechanistically informative disease associated rSNPs.

Results

Dense mapping of high-confidence ASM regionsin normal and neoplastic human samples

The biological samplesin this study are listed in Table S1. Our experimental approach for identifying
ASM DMRs, and our analytical pipeline for testing ASM mechanisms and nominating disease-associ ated
rSNPs are diagrammed in Figur e S1. The sample set included diverse tissues and purified cell types from

multiple individuals, with an emphasis on immune system, brain, carcinoma precursor lineages and
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severa other normal tissues and cell types, plus a set of primary cancersincluding multiple myeloma, B
cell lymphoma, and glioblastoma multiforme (GBM) (Table S1 and Figure S2). Agilent SureSelect
methyl-seq is a sequence capture-based method for genome-wide bisulfite sequencing that covers 3.7
million CpGs, located in al RefSeq genes and concentrated in promoter regions, CpG islands, CpG island
shores, shelves, and DNAse | hypersensitive sites. We previously applied this method to 13 human
samples [8] and for the current study we added samples so that the final SureSelect seriesincluded 9 brain
(cerebral cortex), 7 T cell (CD3+), 3 whole peripheral blood leukocyte (PBL), 2 adult liver, 2 term
placenta, 2 fetal heart, 1 fetal lung, and one ENCODE |ymphoblastoid cell line (LCL; GM12878). All
samples were from different individual's, except for atrio (among the 9 brain samples) that consisted of
one frontal cortex (Brodmann area BA9) and two temporal cortex samples (BA37 and BA38) from the

same autopsy brain.

To further increase the number of samples and cell types, and to obtain complete genomic
coverage, we performed WGBS on 61 non-cancer and 14 cancer samples, including 16 T cell
preparations (10 CD3+, 4 CD4+, and 2 CD8+), 9 B cell samples (CD19+), 4 monocyte (CD14+) and 2
monocyte-derived macrophage samples, 2 PBL, 1 reactive lymph node, 2 placental samples (whole tissue
and purified villous cytotrophoblast from the same term placenta), 3 adult liver, 2 primary bladder
epithelia cell cultures, 2 epithelium-rich non-cancer tissue samples from breast biopsies, 3 primary
mammary epithelial cell cultures, 4 frontal cerebral cortex grey matter samples, 6 NeuN+ FANS-purified
cerebral cortex neuron preparations, 4 NeuN- FANS-purified cerebral cortex glia cell preparations, 1
ENCODE LCL (GM12878), 3 B cell lymphomas (1 follicular and 2 diffuse large B cell type), 6 multiple
myeloma cases (CD138+ cells from bone marrow aspirates), and 5 cases of glioblastoma multiforme
(GBM). The glia samples were paired with neuron preparations from the same autopsy brains, and several
of the B cell, PBL, monocyte/macrophage, and T cell samples were from the same individuals (Table
S1). While the two series were mostly distinct, 5 samples were assessed by both SureSelect and WGBS

(Table S1). Numbers of mapped reads and depth of sequencing are in Table S1, and numbers of
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informative (heterozygous) SNPs arein Figure S2. For quality control we performed Principle
Component Analysis (PCA) using net methylation values for single CpGs informative in both SureSelect
and WGBS. This procedure reveal ed the expected segregation of samples according to cell and tissue type
and cancer or non-cancer status. It also revealed some expected findings for cell lineages, particularly
highlighting both similarities and differences in methylation patternsin the brain cells (whole cerebral

cortex, glia, neurons) and the GBMs (Fig. S3).

Our analytical pipeline (Figure S1) includes steps to identify and rank ASM DMRs for strength
and confidence and utilize the resulting maps, together with public ENCODE and related data, for testing
mechanistic hypotheses for ASM in normal cells and tissues and in cancers. We separated the SureSelect
and WGBS reads by alleles using SNPs that were not destroyed by the bisulfite conversion, and defined
ASM DMRsby at least 3 CpGs with significant allelic asymmetry in fractional methylation (Fisher's
exact test p<0.05). We further required at least 2 contiguous CpGs with ASM, an absolute differencein
fractional methylation of >20% between alleles after averaging over all covered CpGsin the DMR, and
an overdl difference in fractiona methylation between alleles passing a Benjamini-Hochberg (B-H)
corrected Wilcoxon p-value (false discovery rate, FDR) <.05. As shown in Figure $4, using these cut-
offswe found agood yield of recurrent ASM regions, but aso many more loci with ASM seen in only
one sample. We utilized such rare or “private” ASM loci for anayzing per-sample ASM frequencies, but
for most of our downstream analyses, focused on testing mechanisms and disease associations, we
required ASM in at least two samples. Using these stringent criteria, in the combined SureSelect and
WGBS dataset we found 11,233 recurrent ASM DMRS, tagged by 13,210 index SNPs, representing
0.57% of al informative SNP-containing regions with adequate sequence coverage. These dataare
tabulated using the ASM index SNPs as unique identifiers, and annotated for strength of allelic
methylation differences, presence or absence of ASM for each of the various types of samples, chromatin
states, TF binding moatifs, LD of the ASM index SNPs with GWAS peak SNPs, and other relevant

parameters, in Table S2, with parameter definitionsin Table S3.
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ASM in imprinted chromosomal regions

While this study focuses mainly on non-imprinted SNP- or hapl otype-dependent ASM, genomic
imprinting also produces ASM, due to parent-of-origin dependent DNA methylation in a small number of
imprinted chromosomal domains (~100 imprinted loci). Therefore, we used the Genelmprint database
[19, 20] to flag imprinted gene regions, many of which showed ASM in the SureSelect and WGBS data,
thus serving as positive internal controls for ASM detection (Table $4). Since a hallmark of ASM due to
parental imprinting is 50/50 allele switching between individuals in unselected populations, to test for
possible novel imprinted loci, we assessed allele switching frequencies for all loci that showed ASM in
non-cancer samples from 10 or more different individuals, after excluding known imprinted regions
(Methods). The number of ASM DMRs decreases steeply when they are required to be found in many
individuals since identifying such loci requires both a high number of informative individuals and highly
recurrent ASM (Fig. $4). Accordingly, among the non-cancer samples 126 ASM DMRs outside of
imprinted regions were identified as showing significant ASM in more than 10 individuals. Only 15/126
(12%) of thisinformative group of DM Rs showed allele switching at a frequency of greater than or equal
to 20 percent of individuals. In comparison, anong ASM DMRsidentified in our dataset and located in or
near known imprinted genes, nearly all (34/35; 97%) showed high frequency allele switching, with an
approximatel y 50:50 ratio, as expected for parental imprinting. These results suggest that most of the
ASM loci identified by our genome-wide analysis reflect non-imprinted ASM, not ASM due to
imprinting. Interestingly, even among the 15 very highly recurrent ASM loci with frequent alele
switching in normal cells and tissues and located outside of validated imprinted domains, some (e.g.
IGF2R, IGF1R) have been reported asimprinted in humans with inconsistent findings or variability. This
small group of loci (Table S5) are not pursued further here but will be of interest for future testing of

parent-of -origin dependent behavior using samples from families.
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Validations by cross-platform comparisons and targeted methyl-seq

Consistency in the methylation profiles of genomic regions covered by both SureSelect and WGBS is
shown in Figure S5 for a DNA sample analyzed by both methods. Within the fraction of the genome that
was adequately covered by both methods and contained informative SNPs, we found 1,590 (42.4%)
shared ASM “hits’ (Fig. S3). This substantial but partial overlap is expected, given that most ASM loci
show asignificant allelic methylation biasin some but not al individuals (Table S2). In addition, some
ASM DMRs passed our statistical cutoffs in SureSelect but not in WGBS due to the greater sequencing
depth of SureSelect in some regions. The majority (79%) of these loci were sub-threshold (i.e. showing at
least 1 CpG with ASM) and showed an allelic methylation bias in the predicted direction in at least one
individual in the WGBS data. Conversely, some of the genomic regions (44%) that were covered by both
methods but revealed ASM DMRs only in the WGBS data were sub-threshold in SureSelect, with the
smaller overlap partly dueto inter-individual variation in ASM and inclusion of more individuals, and
hence more informative heterozygotes, in the larger WGBS series. Based on these results, the current

dataset provides dense maps of ASM but is still non-saturating.

To assess the true-positive rate for ASM calling more directly, we selected 18 ASM DMRs,
spanning arange from high to low ASM strength and confidence scores, for targeted bisulfite sequencing
(bis-seq). As summarized in Table S6, this procedure validated the presence of ASM in two or more
independent samples, with no discordance in the observed direction of the alelic methylation bias
between the genome-wide methylation sequencing data and the targeted bis-seq, in 83% (15/18) of the
DMRs assayed (examplesin Figur es S6-S9). The three remaining loci were one very low-ranked DMR
validated in the single available index case (Fig. S9), also with a concordant direction of the ASM, and
two middle-ranked DMRs validated in only one out of two available index cases, with concordant
direction of the ASM in the positive cases. This high overall validation rate by targeted bis-seq suggests a

high true-positive rate of the genome-wide data.
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ASM isincreased in cancersdueto widespread allele-specific CpG hypomethylation and focal

allele-specific CpG hyper methylation in regions of poised chromatin

As shown in Figure 1, when the numbers of ASM DMRs per sample were normalized to the numbers of
informative SNPs and then graphed with samples grouped by normal and cancer status it became obvious
that the number of ASM DMRsin cancers (multiple myeloma, lymphoma, GBM) is on average 5-fold
greater than in non-neoplastic samples (Wilcoxon p=6.9x10; Fig. 2A). These differences in the
frequency of ASM between cancer and non-cancer are particularly convincing since our series included
lineage-matched normal cell types for each of the three cancer types: non-neoplastic B cells for
comparing to the diffuse large B cell lymphomas (DLBCL), follicular lymphoma (FL), and multiple

myel omas and non-neoplastic glial cells for comparing to the GBMs. The increase in per-sample ASM
loci was stronger for the multiple myel omas and lymphomas and weaker for the GBMs. The EBV -
transformed lymphoblastoid line (GM 12878), which we had included to allow a direct reference to
ENCODE data, showed afrequency of ASM in the mid-neoplasiarange (5-fold greater than the average
of the non-neoplastic samples, Fig. 1), which isimportant since much existing allele-specific mapping
data, including expression and methylation quantitative trait loci (eQTLs, meQTLSs) and allele-specific TF

and CTCF binding by ChiP-seq (ASB) are from LCLs.

Given the well-known trend toward lower genome-wide (“global”) DNA methylation in human
neoplasia[21, 22] to evaluate mechanisms that could account for the gain of ASM in the cancers we first
asked whether there might be an inverse correlation between global methylation levels and frequencies of
ASM. Globa genomic hypomethylation was observed in the LCL and the three types of primary cancers
in our series (Fig. 1 and Fig. S10). Kernel density plots showed diffuse hypomethylation with nearly
complete loss of the high methylation peak (fractional methylation >0.8) in lymphoma and myeloma
compared to B cells, and aless dramatic but still obvious hypomethylation in the GBMs compared to
normal glia (Fig. S10). In primary surgical specimens, GBM cells are nearly always mixed with non-

neoplastic glial and vascular cells, but the presence of malignant cellsin each GBM sample was
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confirmed by histopathology on sections of the tissue blocks and was verified by assessing DNA copy
number using normalized WGBS read counts [23], which revealed characteristic GBM-associated
chromosomal gains and losses. Across the entire series of cancer and non-cancer samples, we found a
non-linear but strongly significant anti-correlation (i.e. inverse correlation) between per-sample ASM
frequencies and global CpG methylation levels (Spearman’s rho=-0.6 and p-value= 2.3x10®). Arguing for
global hypomethylation, not the malignant phenotype per se, as amain driving factor for increased ASM,
the immortalized but euploid GM 12878 LCL showed global hypomethylation and a high frequency of
ASM, and even among the non-neoplastic and non-immortalized samples, those that showed modestly
reduced global methylation (e.g. placentaand primary epithelial cell lines that had been expanded in

tissue culture) showed slightly higher per-sample frequencies of ASM.

To investigate how global hypomethylation could lead to increased ASM in cancers, we assessed
the absolute and relative methylation levels of each of the two aleles across instances of ASM in the
cancer samples, comparing myelomas and lymphomas to non-neoplastic B cells and GBMs to normal
glia cells. For each comparison, only the ASM-tagging index SNPs that were informative (heterozygous)
in both cell types were considered, and we focused on loci showing ASM in the cancers but not in the cell
lineage-matched informati ve non-neoplastic samples. We assessed the relative methylation levels of the
low and high methylated alleles of these instances using amixed linear model to estimate the average
methylation level of each alelein each cell type taking into account the ASM magnitude in each cell type
and the difference in ASM magnitude between cell types. As shown in Figure 2 and Figure S11, this
approach reveal ed that the average configuration was arelative loss of methylation (LOM) on one allele
in the cancers. In 70% of cancer-only ASM occurrences in myelomas, 73% in lymphomas and 41% in
GBMs, astrongly “hypermethylated/hypermethylated” configuration of the two alleles (“black/black™) in
non-cancer became a* hypomethylated/hypermethylated” (“white-grey/black™) configuration in cancer
(Figure 2). The terminology hereisapractical shorthand to describe the analytical approach: “LOM”

does not mean to imply that the normal cell types evolve into cancers; it issimply indicates the direction
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of the change in comparing the alelic methylation levelsin the cancer vs cell lineage-matched non-cancer
samples. Similarly, “cancer-only ASM” does not mean to imply that ASM at a given locus will never be
detected in any non-cancer samplein future studies; it simply refersto theloci that have ASM in one or

more cancer samples and in none of the non-cancer samplesin the current dataset.

While the inverse correlation between per-sample ASM frequencies and global methylation in
this seriesis uneguivocal and driven mostly by the cancer and LCL samples, a multivariate regression
analysis suggested that additional mechanisms might also play roles. This analysis showed that the anti-
correl ation between global methylation and per-sample ASM fregquencies is partly independent of
neoplastic status (p=3.9x10™"" after controlling for neoplastic status), and conversely, that the higher ASM
frequenciesin the cancers are only partly explained by globa methylation levels (p=2x10"* after
controlling for methylation levels). In fact, while most of the cancer-only ASM loci conformed to the
allele-specific LOM model, we found smaller but still substantial sets of loci (16% to 32% in the three
cancer types) in which ASM in the cancers reflected allele-specific gains of methylation (GOM), relative
to abiallelic low methylation configuration of the same regionsin the lineage-paired normal samples

(Fig. 3and Fig. S12).

To further characterize this interesting set of loci with allele specific GOM in the cancers, we
compared the genomic and regulatory features among these loci to the background features of all
informative loci using logistic regressions. As a comparison, we performed the same analyses for ASM
loci that showed allele-specific losses of methylation in the cancers. This procedure revealed strong over-
representation of the poised “bivalent” promoter state among the ASM DMRs with alele-specific GOM
in the cancers, compared to ASM loci overal and to ASM loci with allele-specific LOM in the cancers
(Fig. 3and Table 1). Poised promoters, as annotated by ENCODE chromatin state segmentation, are
marked by the simultaneous presence of active histone marks, H3K4me3 and H3K4me2, and the

repressive mark H3K27me3. Such regions are known to sometimes exist in a poised state in non-
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neoplastic stem cells[24] and can transition to a CpG-hypermethylated repressed state in cancer cells that

acquire de-differentiated or stem cell-like phenotypes [25].

Finally, using asimilar statistical approach and mixed model for the set of ASM occurrences that
were shared by cancer and non-cancer samples, we asked whether ASM might be not only more frequent
in cancers, but also stronger. We found no significant differencesin average ASM magnitude between the
cancer and non-cancer shared ASM loci (Fig S13). Thisfinding suggests there might be similaritiesin the
underlying mechanisms in the two classes of ASM, which are investigated by more specific tests in the

next sections.

Enrichment for chromatin states suggests mechanistic similarities between cancer and non-cancer

ASM

Different chromatin states, and different classes of binding sites for TFs and CTCF, can be associated
with specific patterns of CpG methylation [26-31]. Among the ASM DMRs found in the normal samples
in the current dataset, enrichment of active and poised promoter regions and enrichment of the
poised/bivalent enhancer state are strong, the active transcription state is slightly enriched, and quiescent
chromatin and heterochromatin states are depl eted, relative to the background of adequately covered
genomic regions (Table 1). This over-representation of promoter/enhancer elements among ASM DMRs
in normal cells and tissues suggests that ASM may contribute to inter-individual differencesin gene
expression —a conclusion that is supported by our observation of enrichment for eQTLsin ASM DMRs

(Table1).

To assess similarities and differences in the characteristics of ASM in non-cancer vs. cancer, we
took two approaches: first, we tested for enrichment of chromatin states among ASM loci that were
detected only in cancers (“cancer-only” ASM; observed in at least 2 cancer samples but in none of the
non-neoplastic samples) and ASM loci detected in non-cancer samples (“normal ASM”; present in at least
one non-cancer sample, but allowing ASM in cancers as well), separately and second, we compared the

percentage of ASM loci overlapping each chromatin state among cancer-only ASM loci versus ASM loci
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found in at least one non-cancer sample. The results of both approaches, using bivariate logistic
regressions, showed that ASM DMRsin cancer and non-cancer show a parallel enrichment in all the
strongly enriched chromatin features (T able 1), albeit with some differences among the less strongly
enriched features (Table 1 and Table S7). These findings suggest that the mechanisms leading to ASM
are at least partly similar in non-neoplastic and neoplastic cells - aconclusion that is further supported by
analysis of correlations of ASM with polymorphisms in recognition motifs for DNA binding proteins,

described below.

ASM correlates with allele-specific binding affinities of specific CTCF and TF recognition motifsin

both cancer and nor mal samples

The hypothesis that allele-specific TF binding site occupancy (ASB) due to sequence variantsin
regulatory elements could be a mechanism leading to ASM has been supported by previous data from us
and others[8, 10, 11]. To test this hypothesis using denser mapping, and to ask whether this mechanism
might underlie ASM in both normal and neoplastic cells, we analyzed the set of ASM loci for enrichment
of sequence motifs recognized by classical TFs, and motifs recognized by CTCF, which defines the
insulator chromatin state and regulates chromatin looping [32-34]. Previously we showed that ASM
DMRs can overlap with strong CTCF ChlP-seq peaks and polymorphic CTCF binding sites[8, 35]. In
our expanded dataset, we used atSNP to identify CTCF motif occurrences where the ASM index SNP not
only overlaps a CTCF motif but also significantly affects the predicted binding affinity, requiring a
significant differencein binding likelihood between the two alleles (FDR <0.05) and a significant binding
likelihood (p <0.005) for at least one of the alleles (reflecting CTCF occupancy on at least one allele). We
identified 2,302 ASM SNPs (17%) that significantly disrupted at |east one of the canonical or ENCODE-
discovery CTCF motifs [21, 33]. To estimate the random expectation of polymorphic CTCF motif
occurrences in the genome (the background frequency), we ran atSNP on a random sample of 40,000 non-
ASM informative SNPs (1:3 ASM vs non-ASM SNP ratio) and found that 8.6% of these non-ASM

informative SNPs significantly disrupted a CTCF motif, corresponding to a significant enrichment for
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disrupted CTCF motif among ASM SNPs (OR=2.6; p-value=8x10%%). Importantly from a mechanistic
standpoint, the enrichment persists, albeit slightly weaker, when considering only non-CpG-containing

polymorphic CTCF motif instances (OR=1.97; p=5.9x10).

When testing enrichment for the 14 distinct ENCODE/JASPAR-defined CTCF motifs, we found
significant enrichment for 13 of them (Table S7). Moreover, as shown in Figure 4, Figure S14, and
Table S8, the difference in binding affinity score between alelesis significantly anti-correlated (inversely
correlated) with the difference in methylation for 4 of these motifs, and these correl ations persist after
adjustment for the presence or absence of CpGsin the motif occurrencesin a multivariate model. Thus,
consistent with our previous conclusions in the smaller dataset, which required motif pooling [8], these
results from individual motifs, facilitated by the larger number of ASM occurrences in the expanded
dataset, show that while the presence of a methylatable CpG in the binding site increases the likelihood of
producing or propagating ASM, this feature is not required; rather, the essential featureis allele specific

CTCF binding.

Like CTCF, classical TFs could account for instances of ASM via ASB. When we scanned each
ASM SNP for all ENCODE/JASPAR defined TF motifs [36] we found 11,633 polymorphic binding site
occurrences overlapping with an informative index SNP for high-confidence recurrent ASM. Of these,
9,043 overlapped at least one ENCODE DNase | hypersensitive site and 2,384 at least one ENCODE
cognate ChlP-seq TF peak. From a panel of 1,493 TF motifswith at least 10 occurrences, we found 860
motifs with a specific enrichment (OR > 2 and FDR corrected g-value<0.05, compared to the random
sample of 40,000 non-ASM informative SNPs) anong ASM DMRs (Table S7). Next, using linear
regression of alele-specific affinity score differences on alele-specific CpG methylation differences, we
found 179 TF binding motifs, corresponding to 114 cognate TFs, where DNA methylation appearsto be
shaped by binding site occupancies (Fig. 4, Fig. S14, and Tables S8 and S9). Among these motifs, 116
also showed significant enrichment among ASM loci (Table S9). Using stringent statistical criteria

(FDR<0.05 and R?>0.4), all but one of these TF motifs that were both correlated and enriched show
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inversely correlated behavior, such that arelatively higher binding likelihood correlates with CpG
hypomethylation (examplesin Figure 4 and Figures S14 and S15). Multivariate linear regression of the
160 (out of 179) significantly correlated motifs with at |east three CpG-containing and three non-CpG-
containing occurrences revea ed that these inverse correlations between binding affinity scores and
methylation levels persist after adjustment for the presence or absence of CpGsin the motifs. Like the
findings for CTCF sites, these results suggest that ASM regions form around polymorphic TF binding
sites because of allele-specific differences in binding site occupancy (ASB), not requiring a methylatable

CpG in the binding motif.

Lastly and importantly, we tested for enrichment of TF and CTCF binding motifs and correlations
of ASM with predicted binding affinities separately in the sets of ASM loci that were detected only in the
cancers (including the GM 12878 EBV -transformed cell line) vs those found in non-cancer samples. We
also analyzed the full set of ASM loci using a multivariate mixed model to test for interactions of normal
vs cancer status with the TF binding site affinity to ASM strength correlations. The results showed that
ASM loci in cancer and non-cancer samples have similar directions of the correlations of ASM with
destructive SNPs in the top-ranked classes of polymorphic TF binding motifs (Fig. 4 and Figs. S14 and
S15), which indicates sharing of this fundamental mechanism of ASM in normal and cancer cells.
However, the correlations between predicted TF binding site affinities and ASM amplitude were slightly
weaker on average (shallower slopein the X-Y plot) among the cancer-only ASM loci (Fig. 4 and Fig.

S15).

Direct testing of the TF binding site occupancy mechanism of ASM

Asacrucial validation, using our GM 12878 SureSelect and WGBS data and the large number of
ENCODE ChlP-seq experiments available for this cell line, we could directly ask whether ASM regions
with or without polymorphic CTCF and classical TF binding sites exhibit allele specific binding of the
cognate factors. Among the 1,898 high-confidence ASM index SNPs from our GM 12878 data 1,555

overlapped at least one ChiP-seq peak in this cell line and had enough ChiP-seq reads (>10X) to assess
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alele-specific binding of at least one ENCODE-queried TF. We found that 8% (156) of these ASM index
SNPs showed ASB for at least one TF that could be assessed using available ENCODE data. As predicted
from the binding site occupancy hypothesis for ASM, at 129 (83%) of these sites, considering both CTCF
and TF matifs, the hypomethylated allele showed significantly greater occupancy. This percentage far
exceeds random expectation (exact binomial test, p=2.2e10™¢). Confirming this pooled analysis, anong
14 TFswith more than 10 ASB occurrences associated with ASM, 11, including the ELF1 (ETS-family)
motif and others, showed a significant enrichment in ASM occurrences with an inverse correlation of
predicted binding affinity with allelic CpG methylation (ASB-ASM instances with inverse correl ation:

86%-100%, FDR <0.05).

ASM DM Rsarefound both in active chromatin and in quiescent “chromatin deserts’

For post-GWA'S mapping of rSNPs that underlie GWAS signals much attention has been appropriately
focused on cataloguing SNPs that are expression quantitative trait loci (eQTLs) and/or lie within regions
of ASB. Such efforts are aided by databases such as AlleleDB for allele-specific marks [37-39], and
RegulomeDB [40, 41], which highlights potential rSNPs in non-coding regions by assigning a score to
each SNP based on criteriaincluding location in regions of DNAase hypersensitivity, binding sites for
TFs, and promoter/enhancer regions that regulate transcription. Our cross-tabulations indicate that,
despite a strong enrichment in ASB SNPs among ASM index SNPs (Table 1), most of the ASM index
SNPs (>90%) in our expanded dataset currently lack ASB annotations (T able S2). In addition, index
SNPsfor strong ASM DM Rs sometimes have weak RegulomeDB scores (Table S2). Thus, from a
practical standpoint with existing public databases, ASM mapping for identifying rSNPs appears to be

largely non-redundant with other post-GWAS modalities.

To further assess the unique value of ASM mapping, we defined “chromatin desert” ASM regions
as 1 kb genomic windows, centered on ASM index SNPs, that contained no DNAse peaks or only one
DNAse peak among the 122 ENCODE cell lines and tissues, and no strong active promoter/enhancer,

poised, or insulator chromatin state in any ENCODE sample. Less than 56% of such regions have SNPs

16


https://doi.org/10.1101/815605
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/815605; this version posted November 1, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

listed in RegulomeDB, and when they are in that database they almost always (93%) have weak scores
equal to or greater than 5 (T able S2). While most ASM loci map to active chromatin and are depleted in
desert regions overall (Table 1), we find that 8% of ASM index SNPsin normal cells and 22% of cancer-
only ASM SNPs in this study are in chromatin deserts (Table 1 and Table S2). Although deserts lack
evidence of TF and CTCF binding in available databases, ASM DMRs found in these regions might be
informative for localizing bona fide rSNPs, particularly if some desert regions contain cryptic binding

motifs that were active (occupied) at some point in the history of the cell.

To test this possibility, we asked whether correlations of ASM with destructive SNPsin TF
binding motifs might also pertain to ASM in desert regions. We analyzed the full set of ASM loci using a
multivariate mixed model to test for interactions of normal vs cancer status and desert vs non-desert
location (i.e. 4 classes of ASM laci) with the TF binding site affinity to ASM strength correlations. Some
motifs, such as CTCF binding sites, were highly depleted in deserts and therefore excluded from the
analysis, which was performed on the subset of 62 TF motifsthat had at least 3 occurrences per ASM
class. The correlations were significant and in the same direction (inverse correlation of predicted binding
affinity with allelic methylation) in all 4 ASM classes. As expected from the findings above, we observed
aslightly weaker correlation for cancer only ASM loci compared to ASM loci in non-cancer samples.
However, no differences in the strength of the correlations were found when comparing ASM occurrences
in desert versus non-desert locations, both for normal and cancer-associated ASM loci. The simplest
hypothesis to explain these resultsis that ASM DMRs in desert regions are footprints left by rSNPs that
disrupt cryptic TF binding sites that were active at some stage of normal or neoplastic cell differentiation
(or de-differentiation) but are no longer active in available cells or tissue types. Figur e S16 shows
examples of ASM DMRs in desert regions that contain disruptive SNPsin ASM-correlated TF binding

motifs.
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Allele-switching at ASM laoci isinfrequent in normal samples but increased in cancers

Most of the ASM DMRs passed statistical cutoffs for ASM in less than half of the informative samples
(Table S2), with variability not only between cell types and cancer status but also within asingle cell
type. Asdiagrammed in Figure S17A, given the connection between TF binding site occupancies and
ASM, one hypothesis to explain this variability invokes differences in intracellular levels of TFs.
Alternatively, genetic differences (i.e. haplotype effects due to the influence of other SNPs near the ASM
index SNP) could also play arole (Fig. S17B). A more extreme form of variation was observed at some
ASM loci, namely “allele switching” [8], in which some individuals have relative hypermethylation of
Allele A while others show hypermethylation of Allele B, when assessed using a single index SNP. Some
instances of allele switching reflect haplotype effects [8] or parental imprinting, but other occurrences
might have other explanations. In this regard, a striking finding in the current dataset is that the frequency
of allele switching among ASM loci in normal samplesislow (10%), while the rate of alele switching is
strikingly higher (43%) among cancer-only ASM loci (Fig. 5A, B and Fig. S17C). This finding suggests
that biological states, here neoplastic vs non-neoplastic, can influence the stability of ASM, with greater

epigenetic variability or instability in cancers manifesting asincreased allele switching.

To investigate this variability, we compared the features of ASM DMRs that showed allele
switching versus those that did not. As shown in Figure 5C, the sets of ASM index SNPs for two classes
of loci differed significantly in the relative representation of specific CTCF and TF binding motifs, such
that the CTCF_1 motif and nearly all of the most strongly ASM-correlated classical TF binding motifs
were markedly under-represented among the switching loci. Reinforcing this finding, ASM loci that were
highly recurrent across multiple normal cell types and individuals showed alow frequency of switching,
even when these loci had ASM in some cancers (Fig. S18). This finding suggests a working model that
postulates two classes of binding motifs: one group of motifs in which destructive SNPs show strong
correlations with ASM and stably bind their cognate factors, independently of the neoplastic cellular

phenotype, thereby mitigating against allele switching; and another group of motifs with more labile TF
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binding, which are sensitive to changesin the intracellular levels of their cognate factors and that can
participate in allele switching via*“ TF competition”. According to thismodel (Fig. S17C), in situations
with adequate chromatin accessibility, there could be replacement of one TF by another more highly
expressed one that recognizes anearby or overlapping DNA sequence motif. The credibility of this
hypothesisis supported by the well-known over-expression of various oncogenic TFsin cancer cells, and
by experimental findings indicating that global DNA hypomethylation in transformed cells is associated

with increased chromatin accessibility at regulatory elements[42, 43].
ASM index SNPsin LD or precisely coinciding with GWAS peak SNPs

For assessing the value of ASM as asignpost for rSNPs in disease-associated chromosomal regions, we
defined lenient and stringent hapl otype blocks by applying the algorithm of Gabriel et a [44], using 1000
Genomes data and employing D-prime (D’) values, both with standard settings utilizing high D’ and R-
squared (R®) values to define “stringent” blocks (median size 5 kb) and with relaxed R? criteriato define
larger “lenient” blocks with a median size of 46 kb (Figs. S19 and S20). We also calculated R? between
each ASM and GWAS SNP to identify SNPs in the same haplotype block and with high R?, plus SNPsin
strong LD located in genomic regions that lacked a haplotype block structure. We took this two-fold
approach because (i) R? can fail to identify SNPsin perfect LD when rare mutations have occurred over
time on pre-existing common alleles in the popul ation — a situation that can have ahigh D’, and (ii) for
some loci, the combined effect of multiple regulatory SNPs, some with weak R? values but high D', might
be responsible for net effects on disease susceptibility. Using our complete list of ASM DMRs and
GWAS data from NHGRI-EBI, including both supra-threshold and suggestive peaks (p<10°), we
identified 821 ASM DMRs that contained SNPs in strong LD (R*>0.8) or precisely coinciding with
GWAS peak SNPs. A much larger group of 5,988 ASM DMRs werein leniently defined haplotype
blocks that contained GWAS peaks. Highlighting mechanistic information from these ASM loci, among

the ASM index SNPsin strong LD or precisely coinciding with GWAS peak SNPs, 627 werein ASM-
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enriched classes of CTCF or TF binding motifs and 174 were in significantly ASM-correlated CTCF or

TF binding moatifs.
ASM index SNPsin LD with GWAS peaks for autoi mmune/inflammatory diseases

We found 207 ASM DMRs containing 231 index SNPs in strong LD (R?>.8) with GWAS peak SNPs for
autoimmune and inflammatory diseases (T able S10), plus alarger number in the leniently defined blocks
containing such peaks (Table S2). Among the loci in strong LD, about half showed ASM in immune
system cell types (T cells, B cells, PBL, monocyte/macrophages; Table S10). In these DMRs, 51 ASM
index SNPs precisely coincided with GWAS peak SNPs, supporting the candidacy of these statistically
identified SNPs as biologically functional rSNPs. Another partly overlapping group of 51 ASM index
SNPs altered strongly correlated CTCF or TF binding motifs, providing mechanistic leads to disease-
associated transcriptional pathways (Tables S2 and S10). Someinteresting ASM index SNPsin the
stringent blocks, some precisely coinciding with GWAS peak SNPs and othersin strong LD with these
peaks include rs2145623, coinciding with a GWAS peak SNP for ulcerative colitis, sclerosing
cholangitis, ankylosing spondylitis, psoriasis and Crohn's disease (nearest genes PSVIAG6, NFKBIA),
rs10411630 linked to multiple sclerosis (MS) via LD with GWAS peak SNP rs2303759 (nearest genes
TEADZ2, DKKL1, and CCDC155; Fig. S6), rs2272697 linked to MSvia LD with GWAS peak SNP
rs7665090 (nearest genes NFKB1, MANBA), rs2664280 linked to inflammatory bowel disease, systemic
lupus erythematosus (SLE) and psoriasis via GWAS SNPs rs2675662 and rs2633310 (nearest genes
CAMK2G, PLAU, C100rf55; Fig. 7), rs6603785 coinciding with a GWAS peak for SLE and
hypothyroidism (nearest genes TFNRSF4, SDF4, B3GALT6, FAM132A, UBE2J2; Fig. S21), and
rs11516512 in LD with a GWAS peak SNP for multiple sclerosis, rheumatoid arthritis, and celiac disease
(nearest genes MMEL1, TTC34). Among these examples, index SNPs rs2145623, rs10411630,
rs2664280, and rs6603785 each disrupt one or more strongly ASM-correlated TF binding motifs,
implicating multiple ETS-family TFs, EGR1, AP1 (JUNB), and MY C, respectively, as candidate

transcriptional pathways in these diseases.
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ASM index SNPsin LD with GWAS peaks for cancer susceptibility

We found 189 ASM DMRs containing 206 index SNPs in strong LD (R*>.8) with GWAS peak SNPs for
cancer susceptibility or response to treatment (T able S11), plus alarger number of ASM loci in the more
leniently defined blocks containing such peaks (Table S2). Among the DMRs that contained index SNPs
in strong LD with the GWAS peaks, alarge mgjority showed ASM in cancers or cell typesthat
approximate cancer precursor cells (e.g. B cells for lymphoma and multiple myeloma, gliafor GBM,
mammary or bladder epithelial cellsfor carcinomas, etc.) and/or in T cells, which are relevant to cancer
viaimmune surveillance. In these DMRs, 43 of the ASM index SNPs precisely coincided with the GWAS
peak SNPs, suggesting that these peak SNPs might be bonafide rSNPs, and ancther partly overlapping
group of 37 index SNPs atered strongly ASM-correlated binding motifs, providing mechanistic
information about disease-associated transcriptional pathways (Table S11). Some interesting ASM index
SNPs in the stringently defined hapl otype blocks, some of which precisely coincide with GWAS peak
SNPs, include rs416981 (nearest genes FAM3B, MX2, MX1) associated with cutaneous melanoma and
nevus counts, rs4487645 (nearest genes SP4, DNAH11, CDCATL; Fig. 7) associated with multiple
myeloma and immunoglobulin light chain amyloidosis, rs2853677 linked to lung cancer, gliomas, and
other malignancies, as well as benign prostatic hyperplasiavia LD with several GWAS peak SNPs (genes
SLC6A18, TERT, MIR4457, CLPTMLL,; Fig. 7), rs3806624 linked to multiple myeloma and |lymphoma
(nearest gene EOMES, Fig. S21), and rs2754412 linked to breast cancer via LD with GWAS peak SNP
rs2754412 (nearest genes HSD17B7P2, SEPT7P9, LINC00999; Fig. S22). Potentially informative
examplesin the lenient blocks include rs2427290 linked to colorectal cancer via GWAS peak SNP
rs4925386 (nearest genes OSBPL2, ADRM1, MIR4758, LAMAS, RP1, CABLES?; Fig. S7), and
rs2283639 linked to non-small cell lung cancer via GWAS peak SNP rs1209950 (nearest genes
LINC00114, ETS2, LOC101928398; Fig. S8), plus many others. Among these examples, index SNPs
rs416981, rs4487645, rs2427290, rs2283639, rs3806624 and rs61837215 each disrupt a strongly ASM-

correlated TF binding motif, implicating TATA_discl (adiscovery motif that has been suggested to bind
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YY1), PAX5, CCNT2, SMC3, BATF, and ELF1_2, respectively, as candidate transcriptional or

chromatin organizing pathways in susceptibility to these cancers.

ASM index SNPs in LD with GWAS peaks for neuropsychiatric traits and disorders and

neur odegener ative diseases

We found 152 ASM DMRSs containing 164 index SNPsin strong LD (R*>.8) with GWAS peak SNPs for
neurodegenerative, neuropsychiatric, or behavioral phenotypes (T able S12), plus alarger number in the
more leniently defined haplotype blocks encompassing the GWAS peaks (T able S2). Among the loci in
the stringently defined blocks, 21 showed ASM in brain cells and tissues (grey matter, neurons, glia), and
asomewhat larger number showed ASM in immune system cell types. Both can be phenotypically
relevant, since studies have linked brain disorders not only to neuronal and glial cell processes but also to
the immune system [45]. In addition, many loci in thislist showed ASM in GBMs, which have partial
glial and neuronal differentiation. Inthese DMRs, 36 of the ASM index SNPs precisely coincided with
the GWAS peak SNPs, supporting afunctional regulatory role for these variants, and another partly
overlapping group of 34 SNPs altered strongly ASM-correlated binding motifs, providing mechanistic
information about disease-associated transcriptiona pathways. Some interesting examples in the stringent
blocks (Table S12) include rs1150668 linked to risk tolerance/smoking behavior and wellbeing spectrum
via GWAS peak SNPsrs1150668 (precisely coinciding with the ASM index SNP) and rs62620225
(nearest genes ZSCAN16, ZKSCANS, ZNF192P1, TOB2P1, ZSCANY; Fig. 7), rs2710323 that coincides
with a GWAS peak SNP for schizoaffective disorder, anxiety behavior, bipolar disorder and others
(nearest genes NEK4, ITIHL, ITIH3, ITIH4, MUSTN1, MIR8064, TMEM110; Fig. S21), rs4976977 linked
to intelligence measurement, anxiety measurement, schizophrenia, and unipolar depression viastrong LD
with GWAS peak SNP rs4976976 (nearest genes MIR4472-1, LINC00051, TSNAREL), rs667897 linked
to Alzheimer’s disease via GWAS peak SNP rs610932 (nearest genes MSAA2, MSAABA) and rs13294100
that precisely coincides with a GWAS peak SNP for Parkinson’s disease (nearest gene SH3GL2), plus

others. Among these examples, index SNPs rs2710323 (super enhancer with multiple TF binding sites),
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rs4976977 (TALL_5 motif), rs667897 (NFE2, NFE2L 2 motifs), and rs13294100 (STAT6_2 motif) each
disrupt strongly ASM-correlated TF binding motifs, implicating specific candidate transcriptional

pathways in these traits and diseases.

In addition to the disease categories detailed above, we observed several hundred high confidence
ASM index SNPsin strong LD with GWAS peaks for cardiometabolic diseases and traits, for example
rs2664280 linked to Type 2 diabetes mellitus as well as psoriasis (Fig. 7), or with other medically

important phenotypes including pharmacogenetic profiles.
Visualization of the ASM mapping data as annotated genome browser tracks

Thefinal set of high-confidence recurrent ASM loci averaged 25 ASM DMRs per Mb of DNA genome
wide. We provide the data both in tabular format (T able S2) and as annotated genome browser tracks that
include the most useful and mechanistically relevant parameters for each ASM index SNP. These
parameters include ASM confidence and strength ranks, cell and tissue types with ASM, cancer vs normal
status of the samples with ASM, and presence or absence of enriched CTCF or TF binding motifs and/or
motifs with significant correlations of ASM strength with allele-specific differencesin predicted binding
affinity scores. An exampleis shown in Figure 7. These tracks (see Availability of Data section) can be
displayed, together with other relevant tracks, including chromatin structure for mechanistic studies and

the GWAS catal ogue track for potential disease associations, in UCSC Genome Browser sessions [46].

Discussion

These data from dense mapping of ASM in normal human cell types and tissues, plus agroup of cancers,
identify 13,210 index SNPsin 11,233 DMRs that show strong and recurrent ASM, of which a substantial
subset map within haplotype blocks that contain GWAS peaks for common diseases and related traits. In
this study we focused on finding strong and high-confidence ASM DMRs, each containing multiple

contiguous CpGs passing ASM criteria, and each detected in at least two independent samples. Thus, we

sought to maximize true-positive findings, which were borne out by a high validation rate using targeted
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bis-seg. In addition to the value of these data for disease-focused post-GWAS studies, this high yield of
stringently defined ASM DMRs, and inclusion of both cancer and normal cell types and tissues, allowed
us to test mechanistic hypotheses for the creation of allele-specific DNA methylation patterns in ways that

have not been feasible with prior datasets.

A recent study by Onuchic et a. using Human Epigenome Project (HEP) data provided a map of
ASM SNPs based on 49 WGBS from 11 donors (non-cancer tissues) and 2 cell lines[11]. Using their
publicly accessible processed data, we identified a set of strong ASM SNPs that pass similar effect size
and p-value criteriaasin our anaysis (>20% methylation difference and corrected p-value<0.05).
Overdl, 50% of our informative SNPs were also informative in the HEP dataset and 31% of our ASM
index SNPs passed criteriafor ASM in the HEP data. Given the differencesin analytical methods, and
more importantly, the differences in numbers and tissue types of the individuals analyzed, thisisan
encouraging convergence of findings. At the same time, this comparison indicates that our dataset adds
substantial new information. With even greater numbers of individual s (informative heterozygotes at
more SNPs), additional cell and tissue types, and greater depth of WGBS, additional loci with ASM will
beidentified. Our data already reveal alarge component of rare or “private” ASM. Indeed, some of the
ASM loci identified and validated by targeted bis-seq in our previous smaller study [8] are not included in
our current list of recurrent ASM DM Rs because they passed ASM criteriain only oneindividual.
Conversely, as expected based on the requirement for multiple individuals when using a methylation QTL
(mQTL) approach to detect ASM, the current ASM dataset now encompasses a larger percentage of the

set of mQTLsidentified in that prior study.

Allele specific binding of TFs and CTCF has been detected at up to 5 percent of assessed
genomic sites [38], and the data provided here bolster and refine previous results from us and others[8, 9,
11, 27, 29, 30, 47] supporting adominant role for binding site occupancies in shaping both net and allele-
specific DNA methylation patternsin normal human cells. The harvest of large numbers of strong and

high-confidence ASM occurrencesin this study facilitated our analysis of individual (not pooled) binding
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motifs, thereby producing a statistically robust list of specific ASM-correlated CTCF and TF binding
motifs, nearly all of which show anti-correlated (i.e. inversely correlated) behavior in which greater

predicted binding site affinity and site occupancy tracks with less methylation of CpGs on that allele.

The set of CTCF and TF binding motifs that we find to be strongly correlated with ASM when
they contain disruptive SNPs overlaps only partly with the ASM-correlated motifs identified in the HEP
study [11]. Encouragingly, certain classes of motifs emerge as significantly correlated in both studies.
However, in addition to some differences in the identities of the most strongly correlated and enriched
motifs or motif classes, an interesting general difference between the conclusions of the two studies
concerns the numbers of motifs showing positive vs negative directions of the correlations. The HEP
investigators reported a substantial minority subset (approximately 30%) of motifs for which higher
predicted binding affinity was found to correlate with greater CpG methylation (i.e. positively or directly
correlated behavior). In our dataset, using our ASM criteria and analytical pipeline, we find anearly
complete absence of such occurrences. All but one of the 116 motifs that are both enriched and
significantly ASM-correlated (T able S9) show astrongly inversely correlated direction of the
relationship, such that higher predicted binding affinity (greater predicted binding site occupancy) tracks
with relative CpG hypomethylation, which can be heuristically understood as protection of the occupied
binding site from methylation. When we only require ASM correl ation, without enrichment as a criterion
(Table S8), we find 174 motifs with thisinversely correlated behavior, and only 5 motifs with positively
correlated behavior in which greater predicted binding site occupancy tracks with CpG hypermethylation.
Our combined ASM and ASB analysis, using ENCODE ChlP-seq datain the GM12878 LCL, aso
showed a strong enrichment of inverse correlations between binding and methylation levels. Interestingly
however, in our small set of 5 positively correlated motifs we find the Y'Y 1 binding motif, which was also
found by the HEP investigators in their positively correlated subset. This finding makes biological sense
sincethe YY1 TF, acting as a component of the PRC2 polycomb repressive complex, can attract CpG

methylation, at least partly through recruitment of DNA methyltransferases [48].
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A crucial qualitative advance in the current study is our ability to test and compare mechanisms
of ASM in normal and neoplastic cells. We observed a dramatic increase in per sample ASM frequencies,
on average, in the primary cancers, and in the GM 12878 LCL, compared to normal cells and tissues and
non-transformed low-passage primary epithelial cell explants. Special aspects of ASM detected in the
cancers, and in the immortalized but euploid LCL, included allele-specific hypomethylation genome-wide
and allele-specific hypermethylation at loci in poised chromatin, as well asincreased ASM in chromatin
desert regions and increased allele-switching at ASM loci. Despite these differences, our findings from
testing for enrichment of TF and CTCF binding motifs and correlations of ASM with destructive SNPsin
these motifs clearly indicate that the same binding site occupancy mechanism pertainsin both normal and

cancer-associated ASM.

Based on this shared mechanism, an important practical conclusion is that analyzing combined
series of cancer cases plus non-cancer samples increases the power of ASM mapping for finding
mechanistically informative rSNPs. In conjunction with GWAS data these rSNPs can point to genetically
regulated transcriptional pathways that underlie inter-individual differencesin susceptibility not only to
cancers but also to nearly all common human non-neoplastic diseases. Due to the LD structure of the
genome, GWAS peaks by themselves can only point to disease-associated haplotype blocks, with all
SNPsin strong LD with the causal SNP(s) showing similar correlations to the phenotype. Therefore,
additional types of evidence are needed before causal roles can be attributed to GWAS peak SNPs or to
other SNPsin strong LD with them. ASM mapping can pinpoint candidate rSNPs that declare their
presence by conferring the observed physical asymmetry in CpG methylation between the two aleles.
The key finding that supports such mapping for biologically meaningful rSNP discovery is the one above,
namely that ASM is caused by disruptive SNPsin TF and CTCF binding sites. Among the ASM index
SNPs that we find in strong LD or precisely coinciding with GWAS peak SNPs, 627 arein ASM-
enriched classes of CTCF or TF binding motifs and 174 are in significantly ASM-correlated CTCF or TF

binding motifs.
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Thisinformative situation is highlighted by our findings for ASM index SNP rs4487645, which
coincides with a GWAS peak for AL amyloidosis and multiple myeloma and disrupts a TF motif (PAX5)
that is significantly correlated with ASM. Since the PAX5 TF is known to function as a master regulator
of B cell development [49], these ASM mapping data are post-GWAS evidence for involvement of a
relevant biological pathway in susceptibility to multiple myeloma, an important type of B cell
malignancy. That the ASM at this locus was specifically found in a sample of DLBCL (another type of B
cell cancer) highlights the usefulness of including primary tumor samplesin ASM mapping studies. A
similarly useful example, in a non-neoplastic disease, is provided by ASM index SNP rs2664280, which
disrupts a JUNB motif (abinding site for the AP1 TF complex) and isin strong LD with a GWAS peak
SNPsfor psoriasis. For this example, the ASM was found in T cells, which are relevant for psoriasis, and
the candidacy of the JUNB motif disruption as abiological explanation for the disease association is
supported by other evidence for involvement of AP1-dependent transcriptional changesin this disease

[50].

Lastly, regarding the usefulness and non-redundancy of ASM mapping as a post-GWAS
approach, while SNPs with experimental evidence for ASB are strongly enriched among the ASM loci
reported here, more than 90 percent of the ASM index SNPs harvested in this study lack currently
available ASB annotations. Thus, maps of ASM, which are readily generated from large archival
collections of DNA samples, can provide information about rSNPs that has not emerged from other types
of mapping data, such as ChlP-seq for ASB, which require whole cells or tissue samples and are more
technically difficult to obtain. That ASM data are largel y non-redundant with other post-GWAS
modalities (ASB, chromatin states and chromatin accessibility, eQTLS) is further highlighted by our
observation of ASM DMRs in chromatin deserts. Our finding of similar correlations of ASM with
destructive SNPs in specific TF binding motifs in both non-desert and desert regions suggests that

mapping ASM in deserts can pinpoint candidate rSNPs in cryptic TF binding sites, which were
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presumably active at earlier stages of cell differentiation and have left “ methylation footprints’ that can

be detected as ASM but cannot be found using other mapping methods.

Conclusions

We mapped ASM genome-widein DNA samples including diverse normal tissues and cell types from
many individuals, plus three types of cancers. The datarevea 11,233 high-confidence ASM regions, of
which 821 contain SNPsin strong LD or precisdly coinciding with GWAS peaks for common human
diseases and traits. We find that ASM isincreased in cancers, due to widespread allele-specific
hypomethylation and focal allele-specific hypermethylation in regions of poised chromatin, with cancer-
associated epigenetic variability manifesting as increased alele switching. Despite these differences,
enrichment and correlation analyses indicated that destructive SNPs in specific classes of CTCF and TF
binding motifs are a shared mechanism of ASM in normal and cancer cells, and that this mechanism aso
underlies ASM in “chromatin deserts’, where other post-GWA S mapping methods have been non-
informative. We provide our dense ASM maps as genome browser tracks and show examples of
destructive variantsin TF binding sites that nominate altered transcriptional pathways in susceptibility to

autoimmune, neuropsychiatric, and neoplastic diseases.
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Materials and methods

Human cells and tissues

Human tissues and cell types analyzed in this study arelisted in Table S1. Peripheral blood samples were
obtained with informed consent, and CD3+ T-lymphocytes, CD19+ B-lymphaocytes and CD14+
monaocytes were isolated by negative selection using RosetteSep kits (Sigma). Macrophages were
produced from monocytes by culturing in RPM1 with 20% fetal calf serum with 50 ng/ml M-CSF for one
week as described [51]. All other non-neoplastic primary human tissues were obtained from autopsies.
Neuronal and glial cell nuclei were prepared from autopsy brains using tissue homogenization, sucrose
gradient centrifugation and fluorescence activated nuclear sorting (FANS) with a monoclona anti-NeuN
antibody [52] and documented for purity of cell types by immunostaining of cytospin slides, as shown
previously [23]. Biopsy samples of human cancers were obtained with |1.R.B. approval in ade-identified
manner from the Tissue Biorepository of the John Theurer Cancer Center. The GM 12878 lymphaobl astoid
cell line was purchased from Coriéll, primary cultures of non-neoplastic human urinary bladder epithelia
cellswere purchased from A.T.C.C., and primary cultures of non-neoplastic human mammary epithelial

cells were purchased from Cell Applications, Inc. and ScienCell Research Laboratories.

Agilent SureSelect M ethyl-seq and WGBS

We used the Agilent SureSelect methyl-seq DNA hybrid capture kit according to the manufacturer’s
protocol to analyze methylomesin atotal of 27 non-neoplastic cell and tissue samples (Table S1). In this
protocol, targeted regions (total of 3.7M CpGs) including RefGenes, promoter regions, CpG islands, CpG
island shores, shelves, and DNAse | hypersensitive sites are sequenced to high depth. DNA was sheared
to an average size of 200 bp and bisulfite converted with the EZ DNA methylation kit (Zymo). Paired end
reads (100, 150 or 250 bp) were generated at the Genomics Shared Resource of the Herbert Irving

Comprehensive Cancer Center of Columbia University, with an lllumina Hi Seq2500 sequencer.

For analyzing complete methylomes in 60 primary non-neoplastic and 14 primary neoplastic

samples, plusthe GM 12878 LCL, WGBS was performed at the New Y ork Genome Center (NY GC),
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MNG Genetics (MNG) and the Genomics Shared Resource of the Roswell Park Cancer Institute (RPCI),
asindicated in Table S1. The NY GC used a modified Nextera transposase-based library approach.
Briefly, genomic DNA was first tagmented using Nextera X T transposome and end repair was performed
using 5mC. After bisulfite conversion, Illumina adapters and custom bisulfite converted adapters are
attached by limited cycle PCR. Two separate libraries were prepared and pooled for each sample to limit
the duplication rate and sequenced using Illumina X system (150 bp paired-end). WGBS performed at
MNG used the lllumina TruSeq DNA Methylation Kit for library construction according to the
manufacturer’ sinstructions and generated 150 bp paired end reads on an Illumina NovaSeq machine.
WGBS performed at RPCI utilized the ACCEL-NGS Methyl-Seq DNA Library kit for library

construction (Swift Biosciences) and generated 150 bp paired end reads on an Illumina NovaSeq.

Read mapping, SNP calling, and identification of ASM DM Rs

Our analytical pipelineis diagrammed in Figure S1. Compared with our previous study [8], updates
included improvements in sequence processing, updated database utilization and increased stringency for
SNP quality control, assignment of both strength and confidence scoresto ASM index SNPs, use of
updated ENCODE and JASPAR databases [21, 53] for scoring the effects of the ASM index SNPs on
predicted TF binding affinities, and utilization of haplotype blocks and LD criteria, instead of simple
distance criteriaaround GWAS peaks for nominating disease-associated rSNPsin ASM DMRs. After
trimming for low-quality bases (Phred score<30) and reads with alength <40 bp with TrimGal ore, the
reads were aligned to the human genome (GRCh37) using Bismark [54] with paired end mode and default
setting allowing about 3 mismatches in a 150 bp read. For the SureSelect methyl-seq samples, unpaired
reads after trimming were aligned separatel y using single end-mode and the same settings. Duplicate
reads were removed using Picard tools [55] and reads with more than 10% unconverted CHG or CHH
cytosines (interquartile range: 0.1-2.2% of mapped reads; median 0.14%) were filtered out. Depth of
sequencing for each sample in Table S1, with metrics calculated using Picard tools. SNP calling was

performed with BisSNP [56] using default settings, except for the maximum coverage filter set at 200 to
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encompass deep sequencing, and quality score recalibration. SNP calling was carried out using human
genome GRCh37 and dbSNP147 as references. For ASM calling, only heterozygous SNPs are
informative. We filtered out heterozygous SNPs with less than 5 reads per allele. In addition, SNP with
multiple mapping positions were filtered out, as well as SNPs with more than one minor allele with alele
frequency>0.05. Informative SNPs were defined as heterozygous, bi-allelic and uniquely mapped SNPs
that did not deviate significantly from Hardy-Weinberg equilibrium based on exact tests corrected for
multiple tests (FDR<0.05 by HardyWeinberg R package) and were covered by more than 5 reads per
alele. Informative regions were defined as regions with overlapping reads covering at least one
informative SNP. Bisulfite sequencing converts unmethylated C residuesto T, while methylated C
residues are not converted. Therefore, for C/T and G/A SNPs the distinction between the alternate allele
and bisulfite conversion is possible only on the non-C/T strand. For SureSelect methyl-seq, since only
negative stranded DNA fragments are captured, G/A SNPs were filtered out; for WGBS, C/T and G/A

SNPs were assessed after filtering out reads mapping to the C/T strand.

ASM calling was performed after separating the SNP-containing reads by allele. For each
heterozygous SNP, all reads overlapping the 2 kb window centered on the SNP were extracted using
Samtools. Given the median insert size of our libraries (~200 bp), the use of a2 kb window instead of the
SNP coordinate allows extraction, in most cases, of both paired ends even if the SNP isonly covered at
one of the ends. SNP calling is performed on each paired read and read | Ds are separated into two files as
reference (REF) and alternate (ALT) alleles using R. After Bismark methylation extractor is applied, CpG
methylation calls by alele are retrieved using alele tagged read IDs. Paired reads with ambiguous SNP
caling (i.e, caled as REF alele on one paired end and ALT allele on the other) were discarded. For
Nextera WGBS, due to the fill-in reaction using 5mC following DNA tagmentation which affects the 10
first base pairs (bp) on 5 of read 2, methylation calling for Cs mapping to these bp were not considered.
In addition, a dlight methylation bias due to random priming and specific to each library kit was observed

within thelast 2 bp on 3’ of both paired ends for Nextera WGBS, within thefirst 10 bp on 5 of both
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paired ends and the last 2 bp on 3’ of read 2 for TruSeq WGBS, and within thefirst 10 bp on 5' of read 2

for ACCEL-NGS WGBS. Therefore, methylation calls in these windows were ignored.

To further increase the stringency and accuracy of ASM calling, only regions with at least 3
CpGs covered by more than 5 reads per allele were considered. ASM CpGs were then defined as CpGs
with Fisher's exact test p-vaue <0.05 and ASM DMRs were defined as regions with >20% methylation
difference after averaging al CpGs covered between the first and last CpGs showing ASM in the region,
a Wilcoxon p-value corrected for multiple testing by the B-H method <0.05 (FDR at 5%) and more than 3
ASM CpGsincluding at least 2 consecutive ASM CpGs. CpGs destroyed by common SNPs (maf>0.05)
were filtered out from both CpG and DMR level analyses. Very close or overlapping DMRs (<250

intervening bp) were merged into one unique DMR.

We ranked the ASM SNPs using two approaches, one based on confidence/recurrence criteria and
the other on percent difference in methylation of the two alleles (ASM strength). For the confidence rank,
we used the geometric mean of the average coverage of each allele, the number of samples showing
ASM, and the percentage of these samples among all heterozygous (informative) samples. For the
strength rank, we used the geometric mean of the methylation difference, number of ASM CpGs and
percentage of ASM CpGs among all covered CpGs. An overall rank was calculated using the geometric
mean of these two ranks. ASM DMRs dictated by multiple index SNPs were ranked by the top-scoring
SNP. ASM calling and ranking were performed using R and Stata 15. We used the Genelmprint database
to flag and exclude from downstream analyses all ASM DMRs that mapped within 150Kb windows
centered on the transcription starting site of all known high confidence imprinted genes, including in this
list the VTRNA2-1 gene, which we have previously shown to be subject to parental imprinting in trio
samples [35] and which showed frequent allele switching in normal samplesin the current dataset,

consistent with imprinting (T able $4).

Lastly, although varying levels of non-CpG methylation (mCH) have been observed in human

and mouse tissues, and this non-canonical methylation appears to have unique sub-chromosomal
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distributions and biological functions[57], for clarity the current report is focused only on ASM affecting
classical CpG methylation. Nonetheless, giving confidence in our dataset, we found mCH to be higher in
the purified cerebral cortical neurons, (2.4% +/- 0.9%, N=16) than in the non-neurona samples (0.47%

+/- 0.54%, N=43), which is consistent with findings from another laboratory [58, 59].

Targeted bisulfite sequencing (bis-seq) for validations of ASM

Targeted bis-seq was utilized for validation of ASM regions. PCR primers were designed in MethPrimer
[55], and PCR products from bisulfite-converted DNA samples were generated on a Huidigm
AccessArray system as described previously [8], followed by sequencing on an IlluminaMiSeq. PCRs
were performed in triplicate and pooled to ensure sequence complexity. ASM was assessed when the
depth of coverage was at least 100 reads per alele. While the absolute differences between methylation of
the two alleles are not exaggerated by deep sequencing, the p-values for these differences tend to zero as
the number of reads increases. Therefore, to avoid artificially low p-values, we carried out bootstrapping
(1000 random samplings, 50 reads per allele), followed by Wilcoxon tests for significance. Samplings and

bootstrapping were performed using R. The tested ASM loci and amplicon coordinates are in Table S6.
Annoctation and enrichment analysis of ASM loci

To annotate ASM and informative SNPs, we defined small (1000 bp) and large (150 kb) windows
centered on each index SNP. The small windows were used to assess mechanistic hypotheses involving
local sequence elements and chromatin states and the large windows were used for functiona annotation
(genes and GWAS associated SNPs). We used BedToolsto intersect the genomic coordinates of ASM
windows to the coordinates of the annotation sets. From the UCSC Genome Browser (GRCh37 assembly)
we downloaded RefSeq annotations, DNase hypersensitive sites, TF peaks by ChlP-seq, and chromatin
state segmentation by HMM in ENCODE cell lineg60]. We allowed multiple chromatin states at asingle
location when different states were present in different cell lines. Distances between ASM loci and genes
were calculated from the transcription start sites. Regulome scores were downloaded from RegulomeDB

[41]. For each relevant feature, enrichment among ASM index SNPs compared to the genome-wide set of
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nformative SNPs (SNPs that were adequatel y covered and heterozygousin at least 2 samples) was tested
using bivariate logistic regressions. To compare characteristics of ASM observed only in cancer samples
(“cancer-only ASM”) vs ASM observed in at least one non-cancer sample (“normal ASM”), these
analyses were stratified by cancer status. To assess enrichment for chromatin states among ASM loci that
were found only in cancers or only in non-cancer samples, with the occurrences divided into subsets
according to the direction of the change in methylation in the cancers compared to cell lineage-matched
normal samples, we used the same approach but considering only the sets of heterozygous SNPs
informative in both myelomas and B cells, or lymphomas and B cells, or GBMs and glia. To compare the
regulatory features of ASM to those of other allele-specific marks, we performed similar anal yses for
enrichment of ASM index SNPsin the sets of publicly available eQTLs [53] and ASB SNPs[38, 61] that

were informative in our dataset.
Testsfor correlations of ASM with SNPsin TF and CTCF binding sites

Totest for correlations of ASM with destructive SNPsin TF binding motifs, we used position weight
matrices (PWMs) of TF motifs from ENCODE ChiP-seq data[21, 33], aswell as PWMs from the
JASPAR database [36, 53]. We scored allele specific binding affinity at each index SNP using the atSNP
R package [39], which computes the B-H corrected p-values (i.e. g-values) of the affinity scores for each
alele and g-value of the affinity score differences between alleles. Matifs that contained SNPs affecting
allele specific TF binding affinity were defined as motifs with a significant difference in binding affinity
scores of the two alleles (g-value<0.05) and a significant binding affinity scorein at least one alele (p-
value<0.005). For each TF occurrence, the binding scores per allele were estimated using PWM scores
calculated as described in our earlier study [8]. In addition, among the ASM index SNPs, we specifically
annotated TF binding motifs that overlapped with cognate TF ChlP-seq peaks based on ENCODE
data[60]. For each motif, we used data from Kheradpour and Kellis [21, 33] to define the cognate TF
peaks, required a 10-fold enrichment of the motif among ASM loci compared to background, and filtered

out TF peaks with less than 10 occurrences of the tested motif anong ASM loci.
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To test whether ASM index SNPs are enriched in variants that disrupt polymorphic TF binding
motifs, we used logistic regressions to calculate O.R.s for each disrupted polymorphic motif. Enrichment
was defined as an O.R.>1.5 and B-H corrected p-value <0.05. Since computing resources required to run
atSNP for >2 million SNPs and > 2000 TF motifs are extremely large, we random sampled 40,000 non-
ASM informative SNPs (1:3 ASM vs non-ASM SNP ratio) to estimate the random expectation of each
TF motif occurrence. To test whether the disruption of TF binding sites could be a mechanism of ASM,
we correlated the difference in PWM scores between alleles of each occurrence of agiven TF motif
disrupted by an ASM index SNP to the differences in methylation levels between the two alleles, using
linear regression. Only TF motifs with more than 10 disrupted occurrencesin ASM regions were
analyzed. For index SNPs showing ASM in multiple samples, we used the average methylation difference
between the two alleles. For each TF motif, a significant correlation of ASM with predicted TF binding

affinity differences between the two alleles was defined as FDR<0.05 and R? >0.4.

To ask whether the correlations between ASM and predicted TF binding affinity differences
between alleles might be similar for ASM loci found only in cancers compared to ASM loci that were
observed in at least one normal sample, and to ask this same question for chromatin desert ASM vs non-
desert ASM regions, we used a multivariate mixed model with random slope and intercept, with pooling
of TF motifs to reach sufficient power (number of occurrences used for the regression). TF motifs with
less than 10 occurrences total, or less than 3 occurrencesin any ASM class, were filtered out. TF motifs
included in the final mixed models for the four classes of ASM loci were pre-sel ected from the bivariate
model (performed without distinction of ASM class; requiring FDR<0.05 and R? >0.4). To not bias the
analysis toward TF motifs without any ASM class effect (which might be overrepresented in the set of
significant TF motifsidentified in the bivariate analyses), we a so screened each TF motif, including
CTCF motifs, using separated multivariate linear fixed models to include any motifs showing no
correlation overall but a correlation trend only in one of the ASM classes (FDR<0.05 for at least one of

the ASM classes, multivariate model adjusted R%>0.4).
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We defined chromatin deserts as 1 kb genomic windows, centered on ASM index SNPs, which
contained no DNAse peaks or only one DNAse peak among the 122 ENCODE cell lines and tissues, and
no strong active promoter/enhancer, poised, or insulator chromatin state in any ENCODE sample. The
multivariate mixed model accounts for both intra- and inter-TF motif error terms and includes the
predicted TF binding affinity difference, either for two classes of ASM laci (non-cancer ASM and cancer
ASM ) or 4 classes of ASM loci (non-cancer ASM in non-desert regions, non-cancer ASM in desert
regions, cancer ASM in non-desert regions, and cancer ASM in desert regions), the interaction between
ASM class and binding affinity as fixed explanatory covariates for the methylation difference, and the TF
motif as arandom covariate. Margina effects from predictions of the mixed model and Bonferroni-
corrected p-values were then computed to compare the correlation between ASM classes. The variation
dueto the TF motif was considered as a random effect, under the assumption that each TF motif might
have a different intercept and slope. The interaction terms reflect the difference in the methylation to
binding affinity correlation between each ASM class compared to the reference class, which we defined
as non-cancer ASM for the 2-calss anaysis and non-cancer ASM in non-desert region for the 4-class
anaysis. Analysis after excluding ASM loci that showed switching behavior gave similar results. TF
motifs with significant correlations of disruptive SNPswith ASM for at least one of the 2 or 4 ASM
classes (FDR <0.05 and R* >0.4) were then pooled to be tested in the final mixed model, such that the
model was run using atotal of 178 TF motifs with 16,609 motif occurrences disrupted by 3,394 ASM
SNPsfor the 2 ASM-class analysis and atotal of 62 TF motifs with 10,709 motif occurrences disrupted
by 1,967 ASM SNPsfor the 4 ASM-class analysis. To assess ASB in the GM 12878 cell line, ChiP-seq
datafor 154 TFs available for this cell line were downloaded from ENCODE. For each TF, SNP
genotyping and allele specific read count were performed using the ChiP-seq alignment data for the set of
high confidence ASM SNPs found in our GM 12878 data and compared to datafrom WGBS. ASB SNPs
were defined as SNPs showing homozygous genotype in the ChiP-seq data (but heterozygous in WGBYS)
with a significant allele-specific occupancy bias (FDR <0.05, Fisher exact test). All analyses were
performed using R and STATA statistical software.
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Associations of ASM with GWAS peaks

GWAS traits and associated supra and subthreshold SNPs (p<10°) were downloaded from the NHGRI
GWAS catalog [41]. We defined haplotype blocks using 1000 Genomes phase 3 data [62] based on the
method of Gabriel et al. for scoring linkage disequilibrium (LD) with emphasis on D-prime values[44] in
PLINK [63]. To identify GWAS peaksin moderate LD with ASM index SNPs, we used relaxed criteria
of D-prime confidence intervals (0.60-0.84) and historical recombination (0.55) but set the maximum
hapl otype block size at 200 kb to minimize large block calling in genomic regions lacking haplotype
block structure. The blocks so defined have a median size of 46 kb. To identify ASM SNPsin strong LD
with GWAS peak SNPs, we utilized the default parameters of Gabriel et a. for haplotype block calling
[44]. The blocks so defined have a much smaller median size of 5 kb. Finally, we computed pairwise R?
between our ASM SNPs and all GWAS SNPs within 200kb. SNPswith high R? represent a subtype of
SNPsin high LD where not only a non-random association (high D) is observed but where these SNPs
can essentially be considered as proxies of each other. Statistical association between a GWAS SNP and
trait can be directly imputed to any SNPs with very high R* so such SNPs are obvious candidates for
post-GWAS analyses. However, SNPs showing high D’ but low R? with the GWAS SNP (which occurs
when arare SNP isin high LD with amore frequent SNP) might also contribute biologically to disease
associations. We annotated each ASM index SNP for localization within these hapl otype blocks, and for
precise co-localization with a GWAS peak SNP or high R? (>0.8), and tested for enrichment of ASM
SNPs within these blocks, as well as among GWAS peak SNPs, using the same approach as described

above for other genomic features.
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Table 1. Enrichment analysisfor mechanistically relevant featuresreveals similarities between
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nor mal and cancer ASM.

Parameters are listed in descending order of enrichment odds ratio among ASM loci found in normal

samples. N refersto the numbers of ASM index SNPs.
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Normal ASM *° Cancer ASM " Enrichment/depletion Enrichmeht
Parameter (N=9,667) (N=3,543) in same direction in ca?:::/gr:‘:r:al

O.R. (p-value) O.R. (p-value) cancer vs normal ASM (p-value)
ASM SNP is ASB SNP 16.5 (< 10°%) 5.3(3x10™Y) YES: enriched 0.34 (7x10™")
ASB SNP within 1kb 8.2 (< 10°%) 3.3 (9x10™%) YES: enriched 0.42 (2x102Y)
enriched poly. motif OR >4° | 5.7 (< 10°%) 1.7 (2x10™%) YES: enriched 0.46 (2x10°)
poised promoter 5.4 (< 10°%) 5.8 (< 10°%) YES: enriched 1.1(3.7x10%)
weak promoter 4.9 (< 10%%) 3.7 (4x107"%) YES: enriched 0.77 (4x10™9)
active promoter 4.3(<10°%) 4.2 (2x107%) YES: enriched 0.97 (6x10°")
correlated poly. motif © 4.0 (< 10°%) 0.87 (2x 10%) NO 0.35 (1x10™°)
enriched poly. motif OR>2° | 3.9 (< 10°%) 1.5 (3x107) YES: enriched 0.47 (5x10°%)
weak/poised enhancer 3.0 (< 10°%) 1.6 (6x10™) YES: enriched 0.53 (3x10™°)
any polymorphic motif 2.7 (3x10™%%) 0.87 (2x10%) NO 0.48 (2x10°)
repetitive 2.3(2x107% 1.8 (6x10™") YES: enriched 0.79 (2x10%)
strong enhancer 2.2 (2x107%%) 1.4 (1.3x10™%) YES: enriched 0.63 (4x10™Y)
insulator 2.2 (7x107*%%) 1.4 (6x10™ YES: enriched 0.67 (3x10™)
ASM SNP is eQTL SNP 2.2 (4x107%) 1.9 (1x10™") YES: enriched 0.86 (7x10%)
polycomb repressed 2.0 (1x107°%) 1.9 (3x107) YES: enriched 0.92 (4x10%)
GWAS peak precise overlap 2.0 (5x10%%) 2.1(5x10™h YES: enriched 1.1 (7x10™Y
GWAS peak rsq>0.8 1.5 (2x107%) 1.4 (1x10™) YES: enriched 0.96 (6x10™)
Txn state 1.3 (1x10™ 1.0 (8x10™Y Weak 0.74 (3x10™)
Heterochromatin * 0.82 (1x10™) 1.0 (5x10™ Weak 1.2 (4x10°%)

quiescent chromatin

0.23 (2x10-%%)

0.53 (5x107*%)

YES: depleted

2.2 (4x10-*Y)

chromatin desert °

0.12 (<10°%)

0.48 (1x10™")

YES: depleted

3.6 (3x10-')

&“Normal ASM” refersto ASM in at least one non-cancer sample, allowing ASM in cancer samples.

b«Cancer ASM” refersto ASM present in one or more cancer samples (including the GM12878 LCL), but not in any normal

sample.

¢ Enriched and correlated motifs determined on the complete set of ASM SNPs; includes ENCODE discovery motifs (_disc)

9Heterochromatin in at least one cell lines and no other statesin other cells

¢ Chromatin desert defined in Methods.
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Figure Legends

Figure 1. ASM isincreased in cancers and theincrease correlates with global DNA

hypomethylation.

A, Violin plots showing the percentage of index SNPs showing ASM among the sets of informative SNPs
(heterozygous) in each sample. The frequency of ASM is significantly higher in the cancers and
lymphoblastoid cell line (LCL) compared to non-neoplastic cells/tissues. N indicates the number of
samples. For uniformity in thisanalysis, only WGBS samples (not SureSelect) are shown. *The

GM 12878 LCL is grouped with the cancer samples. B, Relationship between global DNA methylation
and the percentage of informative SNPs that reveal ASM in each sample, showing a significant inverse
correl ation between per sample ASM frequencies and global methylation levels. Cancer samples are
color-coded in red scale and non-cancer samplesin blue scale. ** mammary epithelial cell lines (N=3) and

epithelium-rich normal breast tissue (N=2).
Figure 2. Gains of ASM in cancers dueto widespread allele-specific LOM

A, Schematic showing the average configurations for allelic methylation levelsin non-cancer and cancer
samples at loci where ASM was observed only in cancer. Cancer samples were compared to the relevant
non-cancer cell types (B cells for myeloma and lymphoma; gliafor glioblastoma). Average fractional
methylation was estimated using alinear mixed model with random intercept and random slope
(Methods). For each sample type, the squares represent the model estimate of the average fractional
methylation in the low and high methylated alleles. B, Specific examples showing primary WGBS data.
For the three types of cancers, the most frequent situation is an allele-specific LOM occurring in the
cancers at loci that are highly methylated in the lineage-matched normal cell types. Rows are bisulfite
sequence reads separated by REF and ALT allele. Methylated CpGs are black and unmethylated CpGs are
white. C, Bar graphs showing distribution of net methylation in normal B-cells (Ieft) and glia (right)
grouped into 3 classes (low, intermediate and high methylation) at all informative CpGs (which reflects
the random expectation) and at CpGs where ASM was observed in the cancer samples but not in the cell
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lineage-matched non-cancer samples. While allele-specific LOM in cancer numerically accounts for most
instances of cancer-only ASM (black bars; high methylation in the normal samples), relative to the
background of global hypomethylation in the cancersit in fact occurs less often than random expectation.
In contrast, the smaller group of loci that have GOM leading to cancer-only ASM (white bars; low
methylation in the normal samples) represent a significant enrichment over random expectation, given the

globally hypomethylated genomic background of the cancers.
Figure 3. Gains of ASM in cancersdueto allele-specific GOM at loci in poised chromatin

A, Bar graph showing enrichment in the poised promoter state as defined using ENCODE chromatin state
segmentation by HMM. Although enrichment in poised promoter state is observed among ASM regions
in general, this enrichment is dramatically increased among the subset of loci that show alele-specific
GOM in cancers compared to cell lineage-matched non-neoplastic samples. B, Map of the FOXBL locus
showing an example of allele-specific GOM in multiple myeloma overlapping a CpG-island region with a
poised promoter chromatin state (color coded purple). Methylation differences between alleles (index
SNP rs62013139) are shown as a genome browser track and as WGBS reads for CD138+ multiple

myel oma cells from a bone marrow aspirate, which show strong ASM with hypermethylation of the REF
alele, and a paired peripheral blood non-neoplastic B cell sample from the same patient, which shows
very weak ASM with dight hypermethylation of the ALT allele. Absence of circulating myelomacellsin
the paired B cell sample was verified by cytopathology and by the absence of DNA copy number

aberrations that were seen in the multiple myeloma.

Figure4. ASM isdriven by allele specific CTCF and TF binding in both nor mal and neoplastic cells

A, XY plots showing examples of TF motifs with strong correlations between predicted allele-specific
binding site affinities (estimated by PWM scores) and methylation differences across all occurrences
showing ASM. These examples are among 179 significantly correlated motifs, listed in Table S8. Each
data point represents one occurrence of the motif overlapping an ASM index SNP in cancer (orange) or

non-cancer samples (blue). For occurrences showing ASM in multiple samples, allelic methylation
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differences were averaged across samples by sampletype. R? and B-H corrected p-values (FDR) were
calculated using linear regression. B, A large majority of the polymorphic motifs with significant

correl ations between allelic methylation and predicted binding affinities are also statistically enriched
among ASM regions (T able S9). The heatmap shows the enrichment or depletion, in log?(O.R.), for the
top 20 enriched TF binding motifs among cancer or non-cancer ASM loci in regions defined as chromatin
desert or non-desert (Methods). C, Graphs showing significant correlations between alelic TF binding
affinity scoresand ASM in each of the 4 classes of ASM loci. The left panel shows the fitted ASM
difference on PWM score using a multivariate mixed model. The fitted line and its 95-confidence
intervals (area) are shown for each ASM class; slopes were calculated by the marginal effects of the
interaction term between PWM score and ASM class and were significantly different from zero. The
correlations are similar in cancer ASM (in both non-desert and desert) compared to non-cancer ASM,
with small differencesin the slopes for each class. D, Pairwise comparisons of the correlations in each of
the 4 classes of ASM loci, Bonferroni-adjusted for multiple testing. While al the slopesarein asimilar
range, the correlations in the mixed model are weakest for cancer-only ASM loci, with amodest but
statistically significant difference between the cancer vs non-cancer ASM classes, but not between desert

and non-desert ASM loci. N: number of occurrences included in the mixed mode!.
Figureb. Increased allele switching at ASM loci in cancers

A, Map of the ASM region tagged by index SNP rs11864188 in the PKD1L3 gene. The ASM shows
switching with the ALT allele being hyper-methylated in the FL but with an opposite direction of the
allelic methylation biasin the DLBCL. No ASM was detected in 23 non-cancer heterozygous samples.
The rs11864188 SNP disrupts multiple TF motifs, some of which have opposite allele-specific predicted
affinity differences. These motifsinclude MY C and ABF1 motifs with ahigher affinity onthe ALT alele
and RXRA and NR4A2 motifs with a higher affinity on the REF allele. B, Frequency of switching, scored
for ASM index SNPs that were heterozygousin at least 2 samples, isincreased among cancer-only ASM

loci (43%) compared to norma ASM loci (10%). As an internal control, informative SNPs mapping to
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known imprinted regions showed 57% switching, approximating the expected 50% based on parent-of-
origin dependent ASM. C, Enrichment analyses of polymorphic CTCF and TF binding motifs among
switching vs non-switching ASM loci: in the left panel, polymorphic motifs with very strong correlations
between ASM magnitude and affinity score differences are found to be depleted among switching
compared to non-switching ASM loci. In the right panel, polymorphic TF motifs enriched among ASM
but with little or no correlations of predicted binding affinity with ASM magnitude showed little or no
depletion among switching ASM loci. The dotted vertical lines show the average values for depletion for

each set of motifs.
Figure 6. Examples of ASM index SNPsin strong LD or coinciding with GWAS peaks

A, Map of the ASM DMR tagged by index SNP rs4487645, which coincides with a GWAS peak SNP for
multiple myeloma (p=3.0x10™*; 0.R.=1.38) and AL amyloidosis (p=2.0x10°; O.R.=1.35). The ASM
index SNP isin an enhancer region (yellow-coded chromatin state; GM 12878 track) of the DNAH11 gene
on chromosome 7. This SNP disrupts a PAX5 TF binding motif on the ALT alele. The REF alele, with
intact high-affinity motif, isrelatively hypomethylated, as predicted by the TF binding site occupancy
model. B, Map of the ASM region tagged by index SNP rs2664280, which isin strong LD with GWAS
peak SNPs rs2675662 for psoriasis (p=3.0x10®%; O.R.=1.14) and rs2633310 for T2D (p=2.0x10®; Beta=-
.044). The ASM index SNP isin an enhancer region (yellow-coded chromatin state; GM 12878) in the
CAMK2G gene on chromosome 10. This SNP disrupts several AP1 binding motifs (JUNB shown) on the
ALT allele, with higher binding affinity on the REF allele, which isrelatively hypomethylated as
predicted. C, Map of the ASM DMRs tagged by the rs2853677 and rs6420020 index SNPs in the TERT
gene on chromosome 5. The DMRs are in chromatin that is quiescent/repressed in most ENCODE
samples (light and dark gray coded chromatin state; K562 track), but this region is transcribed in
undifferentiated H1-hESC. ASM for these DMRs was found only in cancer samples (GBMs). The index
SNP rs2853677 isa GWAS peak SNP for non-small cell lung cancer and benign prostatic hyperplasia

(p<10°%; 0.R.=1.41 and p=2.0x10%; O.R.=1.12 respectively). The other ASM index SNP, rs6420020
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(Table S2) isin LD with GWAS peak SNPs for GBM (p=6.0x10**; O.R.=1.68), breast carcinoma
(p=3.0x10®; 0.R.=1.07), and chronic lymphocytic leukemia (p=6.0x10"%; O.R.=1.18). ASM allele
switching is seen at rs6420020; candidate polymorphic TF binding motifsarein Table S2. D, Map of the
ASM DMR tagged by a closely spaced group of SNPs, rs114627468, rs9357065, rs1225618 and
rs1150668, in the promoter region of the ZNF192P1 pseudogene, closely flanked by coding genesin the
ZSCAN family, on chromosome 6. ASM index SNP rs1150668 is a GWAS peak SNP for body height
(p=2.0x10"; Beta=-.060), smoking status (p=6.0x10™"°; Beta=-.0086), smoking behavior (p=3.0x10%;
Beta=+.011), myopia (p=1.0x10"""; Beta=+6.78), and schizophrenia with autism spectrum disorder
(p=8.0x10™; O.R.=1.07). In addition, the 4 ASM index SNPs are in a stringently defined haplotype block
containing GWAS peak SNP rs62620225, for multiple phenotypes including wellbeing spectrum
(p=6x10"%; Beta=0.023). ASM in this DMR was observed in multiple tissues, including brain. The ASM
index SNP rs1225618 is as an ASB SNP for TAF1; other ASM-correlated motifs disrupted by the index
SNPsarein Table S12. Additional examples of disease-linked ASM loci arein Figures S6-S8, S21, and

S22.
Figure 7. ASM loci displayed as annotated genome br owser tracks

Track of high confidence ASM are provided in UCSC browser format (see Availability of Data). The
detailed bed file is provided as supplemental data and can be uploaded to the UCSC Genome Browser.
ASM iscolor coded in blue scale for negative direction ASM (hypomethylation of ALT allele compared
to REF alele on average across all ASM samples) and positive direction ASM in red scale
(hypermethylation of ALT allele compared to REF alele). Information about theindex ASM SNP is
displayed by clicking on the SNP (box). Reported information includes sample-aggregated information on
the ASM-DMR and the index SNP, sample-specific information on ASM strength (p-value and
methylation difference), the two classes of polymorphic motifs disrupted by the index SNP (i.e. enriched

among ASM and/or with binding affinity-methylation correlation ). Motif logo and sequences of the 2
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aleles at the motif occurrences, generated using atSNP, are displayed by clicking on the motif name.

Additional annotations of ASM index SNPs arein Table S2.

Supplemental Figure L egends
Figure S1. Flow charts of computational and analytical approachesin this study.

A, Stepsfor ASM calling and ranking, including ASM definition and criteria (See Methods). Our ASM
definition combines both individual CpG and DMR-wide (multiple CpG) criteria. B, Analytical pipeline
for post-calling annotation and analyses to test ASM mechanisms, comparing ASM sub-classes (cancer vs
non-cancer; desert vs non-desert), and overlaying that information with public GWAS data to nominate

disease associated rSNPs.
Figure S2. Summary of sample types and numbersand yield of infor mative SNPs

A, Summary of samples sequenced by Agilent and WGBS. Additional information is provided in Table
S1. Since our high confidence ASM set required ASM in at least 2 samples, the final informative SNP set
used for downstream anal yses corresponds to the 2,263,262 SNPs that were informative in at least 2
samples. The Venn diagrams are diagrammatic, not drawn to scale. B, Map of aregion of chromosome
20, showing an increased yield of ASM SNPsin WGBS compared to SureSelect, as expected based on

genomic coverage, with consistent findings in regions covered by both methods.

Figure S3. PCA of the WGBS and SureSelect methyl-seq data and overlap between ASM loci

detected by the two methods

A, PCA performed using net methylation values of CpGs on chromosome 20. Only CpGsinformative
(>10X) in both Agilent SureSelect and WGBS were used. The PCA shows clear clustering by cell/tissue
and cancer type. Similar results were found using methylation data from other autosomes. B, Pie chart
showing the proportion of high confidence ASM SNPs found in more than two biological samples,
identified by WGBS and by SureSelect methyl-seq. Numbers of ASM SNPs are in parenthesis. C, Venn

diagram showing a cross-platform comparison, with the percentage of high confidence ASM index SNPs
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that were identified in both assays. Only SNPsinformative in both assays (adequate sequence coverage

and heterozygous genotype calls) were considered for this comparison.

Figure $4. Distribution of ASM shows a high proportion of rare or private ASM in both cancer and

normal samplesand a significant increase in per-sample ASM in the cancers.

A, Most of the ASM calls were found only in 1 sample. While many might be genuine ASM associated
with rare SNPs or with inter-individual variability, all downstream analysesin the current study are
focused on recurrent ASM detected in at least 2 samples (13,210 ASM index SNPs). B and C,
Approximately one third of the ASM DMRs were identified only in cancer samples (referred to here as
“cancer-only ASM”). Given that our study included more non-cancer than cancer samples, this high
proportion of ASM SNPs found only in the cancersis significantly increased compared to random

expectation.

Figure Sb. Example of a chromosomer egion illustrating consistency between SureSelect methyl-

seq, WGBS, and tar geted bisulfite sequencing

A, Map of the region on chromosome 20 containing the ASM index SNP rs2427290. When covered in
both SureSelect and WGBS, the net methylation is consistent between both assays, and shows low
methylation “wells’” at CpG islands, as expected. ASM dictated by index SNP rs2427290 is detected in
both assays, with additional ASM SNPs found by WGBS, as expected. B, Primary sequencing data from
WGBS, Agilent SureSelect methyl-seq, and targeted bis-seq, showing consistent findingsof ASM in T
cell samples. Rows represent sequence reads, and columns CpG sitesin these reads. All samples are
heterozygous, and the reads are separated by allele. Methylated CpGs are black circles, and unmethylated

CpGs are white circles.
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Figure S6. Validations of ASM DM Rsin disease-associated chromosomal regions. rs1041163 and

multiple sclerosis

A, Map showing the ASM region associated with rs1041163 in a putative tissue-specific
promoter/enhancer region of the CCDC155 gene, downstream of the DKKL1 gene on chromasome 19.
ENCODE chromatin state tracks suggest dynamic regulation, with active or quiescent marks depending
on the cdll type. Bisulfite PCR amplicons were designed to overlap the ASM and flanking SNPs, and to
include at least 3 CpGs. The SNP isin high LD and R* (R*=0.98) with the rs2303759 GWAS peak SNP
associated with multiple sclerosis, and another amplicon was designed to assess possible ASM at this
position (which did not show ASM in our genome-wide data). The ASM index SNP disrupts an EGR1 TF
binding motif and aweak EGR1 ChlP-seq peak found in K562 cells, supporting rs1041163 as abonafide
regulatory SNP. B, Targeted bis-seq reads, validating a discrete ASM regions (amplicon 2 and part of
amplicon 3) spanning ~700 bp in T cells and brain. Number of ASM samples, informative tissue types
and additional annotations are in Table S2. The targeted bis-seq showed no evidence of ASM at the
GWAS peak SNP, as expected. Rows represent sequence reads, and columns CpG sites in these reads. All
samples are heterozygous, and the reads are separated by allele. Methylated CpGs are black circles, and

unmethylated CpGs are white circles.

Figure S7. Validation of ASM DM Rsin disease-associated chromosomal regions: rs2427290 and

colorectal cancer

A, Map showing the ASM region tagged by SNP rs2427290 in the LAMAS gene on chromosome 20. The
same region is shown, for adifferent purpose, in Figure S5. This region has an active promoter state
(color-coded red) in the GM 12878 LCL but isin a Txn state (coded green) without promoter
characteristics in other ENCODE cell lines. The ASM index SNP isin moderate LD (Ienient haplotype
block; D'=0.8) with GWAS peak SNP rs4925386 associated with colorectal cancer. The ASM index SNP
isin aregion of open chromatin (DNAse hypersensitivity) and disrupts an ENCODE discovery motif for

CCNT2 TF binding. The relatively hypomethylated allele is the one with the higher predicted CCNT2
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binding affinity. B, Targeted bis-seq reads validating a discrete ASM regions (amplicon 2) spanning ~400
bpin T cellsand colonic mucosa. ASM is not found at the GWAS peak SNP. Numbers of ASM samples
in each cell and tissue type, and additional annotations, arein Table S2. Rows represent sequence reads,
and columns CpG sitesin these reads. All samples are heterozygous, and the reads are separated by allele.

Methylated CpGs are black circles, and unmethylated CpGs are white circles.

Figure S8. Validation of ASM DM Rsin disease-associated chromaosomal regions. rs2283639 and

non-small cell lung carcinoma

A, Map showing the ASM region tagged by index SNP rs2283639, |ocated in an enhancer region (color-
coded in yellow) located immediately upstream of the promoter of the ETS2 gene on chromosome 21.
The SNPisin partial LD (Ienient haplotype block; D'=.96) with GWAS peak SNP rs1209950, associated
with survival after treatment of non-small cell lung carcinoma. The ASM index SNP disrupts an
ENCODE-discovery motif for SMC3 (cohesion complex component), and it co-localizes with a CTCF
ChlP-seq peak and a and weak SMC3 ChlP-seq peak. Three amplicons were designed for targeted bis-seq
of the ASM region. B, Graphical representation of the targeted bis-seq results, validating a discrete ASM
regions (amplicon 2) spanning ~600 bp in T cells and lung. The relatively hypomethylated alele isthe
one with higher predicted SMC3 binding affinity. Numbers of ASM samples in each tissue and cell type,
and additional annotations, arein Table S2. Rows represent sequence reads, and columns CpG sitesin
these reads. All samples are heterozygous, and the reads are separated by allele. Methylated CpGs are

black circles, and unmethylated CpGs are white circles.

Figure S9. Validations of ASM DM Rs spanning a range of ASM ranks

Targeted bis-seq showing validation of additional ASM regions (othersin Figures S6-S8), with ASM
index SNPs that have high, middle or low overall ranks. The results of all validations are summarized in
Table S6. Rows represent sequence reads, and columns CpG sitesin these reads. All samples are
heterozygous, and the reads are separated by alele. Methylated CpGs are black circles, and unmethylated

CpGs arewhitecircles. In each illustrated case, the relatively hypermethylated allele (REF or ALT) in the
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targeted bis-seq datais consistent with the relatively hypermethylated allele detected in the primary

SureSelect or WGBS data (Table S2).

Figure S10. Kernel density plots of methylation levels showing global hypomethylation and

decreasein the per centage of high methylated CpGsin cancers

Distribution of the averaged percentage of net methylation genome wide for al informative CpGsin
cancer and lineage matched normal samples, by Kernel density estimation. CpG methylation has a
bimodal distribution with alarge major mode at the high methylated CpGs (>80%) and a weak minor
mode at the low methylated CpGs (<5% methylation) in the 2 non-neoplastic cell type (B cellsand glia).
In multiple myeloma and lymphoma, a strong global hypomethylation with the loss of the high

methylated CpGs peak is observed. Hypomethylation is present, but milder, in GBMs.
Figure S11. Allele-specific losses of methylation leadingto ASM in cancers

Graphs showing the fitted values of the percentage methylation in cancer (red) for myeloma, lymphoma
and glioblastoma versus the lineage-matched non-neoplastic cell types (B cells for myeloma and
lymphoma and gliafor glioblastoma) for regions where ASM was found only in cancer. In non-neoplastic
cells, on average, the methylation levelsin these regions were high or intermediate on both alleles and
ASM in cancer reflects |osses of methylation on one of the alleles. The average fractional methylation
was estimated using alinear mixed model with random intercept and random slope (Methods). The light
lines represent the fitted values for each locus and the bold line the average fit. The slope between low
and high methylation estimates the ASM magnitude. The non-significant and small slope in non-

neoplastic cells reflects the absence of significant ASM in these regions.

Figure S12. Kernel density plots of methylation level distributions showing statistically enriched

instances of allele-specific gains of methylation leading to ASM in cancers.

These Kernel density plots show the distribution of methylation values in non-neoplastic cells comparing

methylation at loci where ASM was found neither in the non-neoplastic cells nor in the matched cancer
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samples vsloci where ASM was found only in the matched cancer. These graphs show that alele-specific
loss of methylation (LOM), which represents the most common scenario for cancer-only ASM, is under-
represented compared to random expectation in the globally hypomethylated genomic background, while
the less frequent allelic-specific gains of methylation (GOM) are over-represented relative to this
background. As shown in Figure 3, these instances of GOM in the cancers often map to regions of poised

chromatin.

Figure S13. Shared ASM loci in cancer and non-cancer have similar ASM magnitude

Graphs and diagrams showing the fitted values of the average percent methylation of the low and high
methylated allelesin cancer (RED) for multiple myeloma (MM), lymphoma, and glioblastoma
multiforme (GBM) vs cell lineage-matched non-neoplastic cell types (BLUE), namely B cellsfor MM
and lymphoma and gliafor GBM, for DMRs where ASM was found both in cancer and non-cancer. The
average fractional methylation of each allele and in each cancer or normal sample class (middle panels)
was estimated using alinear mixed model with random intercept and random slope (Methods).On the | eft
panels, the light lines represent the fitted values for each locus and the bold line the average fit. The
slopes between low and high methylated alleles estimate the ASM magnitude and are similar (paralel) in
cancer and non-cancer samples, with a non-significant statistical interaction between cancer vs normal
status and ASM magnitude. The right panels show primary WGBS data for representative examples, with
sequence reads separated by allele. Methylated CpGs are black circles, and unmethylated CpGs are white

circles.

Figure S14. Correlations between ASM magnitude and disruption of CTCF motifs by ASM index

SNPs does not depend on the presence of CpG dinucleotidesin the binding motifs

X-Y plots showing the allelic methylation to binding affinity relationship for the 4 CTCF motifswith a
significant correlation. Motif occurrences containing at least one CpG site are in green and non-CpG
containing motifsin orange. No significant difference in the correlation was observed between the 2

classes of motifs.
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Figure S15. Correlations between allelic TF binding affinity scores and ASM cancer versusnon
cancer and specific examples of TF binding motifs, showing significant correlations between
predicted allele-specific binding site affinitiesand ASM amplitudein both nor mal and cancer

samples.

A, Graphs showing significant correl ations between alelic TF binding affinity scores and ASM in each of
the 2 classes of ASM loci. The left panel shows the fitted ASM difference on PWM score using a
multivariate mixed model. The fitted line and its 95-confidence intervals (area) are shown for each ASM
class. The slopes of the fitted lines were calculated by the marginal effects of the interaction term between
PWM score and ASM class and were significantly different from zero. The correlations are similar in
cancer ASM compared to non-cancer ASM, with slightly weaker slope in cancer. The right panel shows
the pairwise comparison of the correlations in each of the 2 classes of ASM loci with asignificant
difference between the cancer vs non-cancer ASM classes. N: number of occurrences included in the
mixed model. B, These examples were selected requiring at least 3 occurrences per ASM classes. The X-
Y plots show ASM magnitude vs differencesin predicted allele-specific binding affinities (PWM scores)
for the EHF_1, SPI1_3, SPIB_2 and ETV6_1 moatifs. All 4 classes of ASM loci show similar anti-
correlations, but there is aslight decrease in the slope for cancer compared to normal ASM. Desert vs
non-desert classes of ASM loci show essentially identical slopes. Regression lines were not plotted if
there were less than 3 occurrences within the ASM class (non-cancer/desert for SPIB_2 and cancer/desert

for ETV6_1)
Figure S16. Examples of ASM DM Rsin chromatin deserts

A, Map showing the ASM DMR tagged by index SNP rs2272697 in the body of the MANBA gene.
ENCODE chromatin state data show that this region is marked only by anon-regulatory chromatin state
(Txn, color-coded green), and the index SNP has aweak regulomeDB score (5), this SNP in fact disrupts
an ETS1 motif, suggesting that it could have aregulatory role viathe ETS1 transcriptional pathway at

some stage of cellular differentiation. This SNPisin high LD (R2>0.9) with multiple GWAS peak SNPs
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(rsb026472, rs1054037 and rs7665090) associated lymphocyte count, liver cirrhosis, and multiple
sclerosis. B, Map showing the ASM DMR tagged by index SNP rs13097644 in the intergenic region
upstream of the SETMAR gene. Thisregion is flagged as quiescent by ENCODE chromatin state (color-
coded light gray), consistent with the low regulomeDB score (6) for this SNP. However, theindex ASM
SNP disrupts an ASM-correlated Erg TF binding motif, suggesting that rs13097644 might act asa

regulatory genetic variant at some stage of cell differentiation.
Figure S17. M odelsfor inter-individual variability and allele-switching at ASM laci

A, ASM is not present, with high methylation on both alleles, when either the TFBS is not accessible
(closed chromatin) or the TF is not sufficiently expressed (left panel). For accessible TFBS, the
magnitude of ASM depends on the level of free TFs (middle panels). When the TF level islow, binding
occurson alele A (with high binding affinity) but stochastically in only a subset of DNA molecules. The
overall proportion of low methylated reads (bound TFBS) reflects the steady state between dissociation
and binding rates, defined by the concentration of the TF. At the other end of the concentration curve
(right panel), strongly overexpressed TFs can bind both high and low binding affinity sites, leading to
protection of both alleles against methylation and aloss of ASM. B, Inter-individual variability and allele-
switching at ASM loci can be explained by a haplotype effects, in which multiple SNPs rather than a
single SNP, or adominant SNP in weak LD with the scored index SNP, dictate the ASM. This situationis
“pseudo-switching”. C, Since most ASM SNPs found in this study can potentially disrupt multiple TF
motifs, a TF competition model can explain bonafide allele-switching. This model appears to apply more
often in cancer cells, which show a high frequency of ASM allele-switching in this study and are known

to frequently over-express oncogenic TFs (e.g. c-MYC; Fig. 5).

Figure S18. The percentage of ASM loci that show switching behavior in cancersis smaller when

considering only loci for which ASM isalso detected in non-cancer samples

Graph showing the percentage of switching ASM loci in cancer and non-cancer samples as a function of

the number of non-cancer samples where ASM is seen. For ASM loci in cancer, the x=0 data point
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corresponds to the percentage of switching among cancer-only ASM loci, while the subsequent data
points show a decrease in switching among ASM loci found in both cancer and normal as the number of
non-cancer samples (in addition to the cancer samples) showing ASM increases. As a comparison, the
percentage of switching among ASM loci found in non-cancer samplesis low and independent of the total
number of samples showing ASM. This finding supports aworking model that postulates two classes of
binding matifs: one group in which destructive SNPs show strong correlations with ASM, independently
of the neoplastic cell phenotype, and stably bind their cognate factors, mitigating against allele switching;
and another group of motifs with more labile TF binding, which are sensitive to global increasesin
chromatin accessibility and changesin intracellular levels of their cognate factors, leading to alele

switching via“TF competition”.
Figure S19. Examples of haplotype blocks defined by stringent and lenient parameters

Example of haplotype blocks on chromosome 5 using the Gabriel et a. approach based on confidence
interval of D’ values, with stringent (top) and lenient parameter (bottom). The lenient parameters, with
relaxed D-prime confidence intervals and historical recombination rate (Methods), lead to haplotype

blocks with larger sizes. Graphs were generated using Haploview using 1000 Genome data.
Figure S20. Utility of D’ and R-square parametersfor assessing candidate disease-associated r SNPs

Example of D’ (left) and R? (right) values between GWAS SNP rs710987 and all SNPs within 200 kb.
The GWAS SNPisinred and ASM SNPs are in blue. The lenient haplotype block borders are shown in
dashed green. The D’ graph confirms that most of the SNPs within the block (including the ASM SNPs)
exhibit high D’ with the GWAS SNP and in this regard are in strong LD with it. The R? graph of the same
window and SNPs shows that only asmall subset of the SNPsin LD also exhibits high R values, because
even among SNPsin perfect LD only those with similar allele frequencies are expected to have high R
values. A complete understanding of disease associations, including possible effects of more than one
rSNP in the same haplotype block, requires extending the identification of rSNPs to those in strong LD

with the GWAS peak SNP based on D, even without high R? values.
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Figure S21. Additional examples of mechanistically infor mative disease associated ASM index

SNPs: autoimmune and neur opsychiatric disorders

A, Map of the ASM region tagged by index SNP rs6603785 and located in an active enhancer region
(color coded dark yellow) downstream of the UBE2J2 gene on chromosome 1. ASM was observed in
multiple blood cell types, including B cells. The ASM index SNP coincides with a GWAS peak SNP,
associated with SLE (p=9.0x10°%; O.R.=1.11) and hypothyroidism (p=2.0x10°; O.R. not listed). The SNP
disruptsaMY C moatif, with lower binding affinity and hypermethylation on the ALT allele, as predicted
by the TF binding site occupancy model. B, Map of the ASM region tagged by index SNP rs2710323 and
located in an active enhancer region (color coded in dark yellow) in the gene body of ITIH1 on
chromosome 3. ASM was observed in multiple blood cells, including T cells. The ASM index SNP
coincides with a supra-threshold GWAS peak SNP for BMI measurements and multiple neuropsychiatric
phenotypes including feeling nervous measurement, anxiety measurement, schizoaffective disorder,
schizophrenia, and bipolar disorder (p-values and O.R. or Beta valuesin Table S12). The SNP disrupts an

ELF1 motif, with lower binding affinity and higher methylation, as predicted, on the REF allele.

Figure S22. Additional examples of mechanistically infor mative disease associated ASM index

SNPs: breast cancer and lymphoma

A, Map of the ASM region tagged by index SNP rs61837215 and located in the active promoter region
(color coded red) of the SEPT7P9 pseudogene (nearest coding gene, ZNF37A) on chromosome 10. ASM
isobserved in multiple myeloma cells and in normal B cells. Theindex SNPisin strong LD with GWAS
peak SNP rs2754412 associated with breast cancer (p=6.0x10"; Beta=+.031). The ASM index SNP
disrupts an ELF1_2 motif, with lower binding affinity and higher methylation on the REF allele, as
predicted by the TF binding site occupancy model. B, Map of the ASM region tagged by SNP rs3806624
and located in a poised promoter region (color coded purple) of the EOMES gene on chromosome 3.
ASM was observed in DLBCL and in GBM, with allele switching between the two cancer types. The

ASM index SNP coincides with a GWAS peak SNP for Hodgkin lymphoma (p=1.0x10"; O.R.=1.26)
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and isin strong LD with GWAS peak SNP rs9880772 associated with chronic lymphocytic leukemia
(p=3.0x10™; 0O.R.=1.19), as well as with multiple myeloma (T able S11). The SNP disrupts multiple
motifs, including aBATF motif (lower binding affinity and higher methylation on the ALT alele) and a
MAZ motif with opposite disruption of the binding affinity (lower binding affinity and higher

methylation on the REF allele).

Supplemental Table L egends
Table S1. Biological samples analyzed in this study

List of genomic DNA samples sequenced by Agilent SureSelect methyl-seq and by WGBS. Cell/tissue
type, normal or cancer status, and diagnoses of the cancer patients from which the samples were collected
are listed. Multiple biological samples from the same subjects can be identified by subject ID. Sequencing

depth and QC information are also reported.

Table S2. ASM index SNPs and DM Rsidentified in this study and annotated for multiple relevant

parameters

ASM laci, excluding known imprinted chromosomal regions (Methods), are listed using index SNPs as
unique identifiers. Thus, some ASM DMRs are listed more than once, when multiple ASM index SNPs
liein the same DMR. Information relative to samples with and without ASM are aggregated, with the
samples listed as concatenated entries. However, information at the single sample level can be retrieved
from the UCSC-format detailed bed file:

(https://genome.ucsc.edu/s/ TyckoL ab/High%20Confidence%20ASM). Relevant annotations were
selected to characterize ASM SNPs based on their potential regulatory functions and disease associations.
Briefly, the ASM index SNPs and DMRs are ranked for ASM strength and confidence (M ethods),
annotated using information about chromatin states, TF binding matifs, and allele-specific marks (ASB,

eQTLs) from public databases, with some parameters being cal culated using analytical procedures
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described in the Methods. ASM index SNPs are also annotated for their haplotype block locations and LD

with GWAS peak SNPs.

Table S3. Definitions of thetermsin Table S2

Description and definition of the columnsin table S2. The order by row corresponds to the column order.

Table S4. Imprinted regionswith known ASM detected in this study

ASM DMRs detected within 75 kb of known and validated imprinted genes (i.e. 150 kb windows) was
considered as likely due to imprinting and was therefore excluded from our downstream anal yses but
listed in this table. The detection of these instances of ASM, with the expected high rate of allele
switching (due to parent of origin dependence) in imprinted regions serves as a positive internal control

for theinitial steps of the ASM calling pipeline.

Table S5. New candidate imprinted regions and previously provisional imprinted loci with ASM

detected in this study

Table S6. ASM loci tested for validations by targeted bisulfite sequencing

Primers for bisulfite PCR were designed using MethPrimer, with the resulting amplicons spanning the

indicated genomic coordinates.

Table S7. Completelist of polymorphic CTCF and TF binding motifs found to be significantly

enriched among ASM loci, requiring that the motif be disrupted by the ASM index SNP

Results are from testing for enrichment of motif occurrences in which the motif is disrupted by the ASM
index SNP, with a significant difference in affinity score between the two alleles. Significant enrichment
among ASM loci was defined as FDR<0.05 and OR>2 (no depl etion was observed). Background number
of polymorphic occurrences for each motif (random expectation) was computed by screening a random

sample of 40,000 occurrences from the list of non-ASM heterozygous (informative) SNPsin our study.
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Table S8. Completelist of CTCF and TF binding motifs that show significant correlations between

allelic PWM scor es and magnitude of ASM

Significance was defined as FDR<0.05 and model R? >0.4. Results from the linear regressions with and
without controlling for the motif CpG content (when the number of occurrences was >3 in each group)

are reported.

Table S9. CTCF and TF binding motifsthat show strong correlations of PWM scoreswith ASM

and are also significantly enriched among ASM laoci.

Subset of enriched motifs with significant correlation of predicted allele-specific binding affinities with
ASM magnitude. Results of the enrichment analysis by ASM classes (non-desert-non-neoplastic, desert-

non-neopl astic, non-desert-cancer and non-desert-cancer) are reported.

Table S10. ASM index SNPsin strong LD or precisely coinciding with GWAS peak SNPsfor

immune-related diseases and phenotypes

R? cutoff was set at 0.8. GWAS peak SNPs associated with immune related diseases were identified using
EFO parent-terms mapped to the GWAS reported traits (provided by the GWAS catal og) with additional

manual curation.

Table S11. ASM index SNPsin strong LD or precisely coinciding with GWAS peak SNPsfor cancer

susceptibility

R? cutoff was set at 0.8. GWAS peak SNPs associated with cancer susceptibility were identified using
EFO parent-terms mapped to the GWAS reported traits (provided by the GWAS catal og) with additional

manual curation.
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Table S12. ASM index SNPsin strong LD or precisely coinciding with GWAS peak SNPsfor brain-

related diseases and phenotypes

R? cutoff was set at 0.8. GWAS peak SNPs associated with neuropsychiatric disorders and traits, or with
neurodegenerative diseases, were identified using EFO parent-terms mapped to the GWAS reported traits

(provided by the GWAS catalog) with additional manual curation.
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Figure S1
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Figure S8
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Figure S10
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Figure S11
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Figure S12
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Figure S13
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Figure S14
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Figure S15
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Erg (MA0474.1) motif ..

REF (PWM 12.1) AAA
ALT (PWM 10.1)

A NR_136202 NFKB1 MANBA 50 kb
chr4 - | - ‘ - . |
rs7665090 rs1054037 rs5026472 rs2272697
(MS) (Cirrhosis)  (Lymph Ct)  (ASM)
350 bp MANBA
RefSeq genes — I GWAS SNP
Chrom. states I ASM SNP
(ENCODE)
DNAse
Master
( ) Methyl. difference (ALT-REF) B cells
100
PBL 108{ |I| | -
100(
B cells 0‘ |
-100
' rs2272697 (ASM SNP) .
ETS1_1 motif e Acce ALT 2% ©
REF (PWM 8.5) ACAAGAAGTG
ALT (PWM 10.5) AC AAGTG
B LRRN1 SETMAR
chr3
______________ - 64 kb B cells T cells
____________________ SUB59 SUB36
RefSeq genes 800 bp
Chrom. states
(ENCODE)
DNAse REF
Master
( ) Methyl. difference (ALT-REF)
100
[ Il
B cells 0 {
1 :
[ ]
T cells 0 [ I '&3 .
.80 @ \..
-100 { 1 rs13097644 (ASM SNP) ALT — g33% ggee”
- E
1 L]



https://doi.org/10.1101/815605
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure S17
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Figure S18
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Figure S19

Gabriel et al. (stringent) criteria
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Figure S20
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Figure S21
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Figure S22
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