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Abstract 

Background: Mapping of allele-specific DNA methylation (ASM) can be a post-GWAS strategy for 

localizing functional regulatory sequence polymorphisms (rSNPs). However, the unique advantages of 

this approach, and the mechanisms underlying ASM in normal and neoplastic cells, remain to be clarified. 

Results: We performed whole genome methyl-seq on diverse normal human cells and tissues from 

multiple individuals, plus a group of cancers (multiple myeloma, lymphoma, and glioblastoma 

multiforme). After excluding imprinted regions, the data pinpointed 11,233 high-confidence ASM 

differentially methylated regions (DMRs), of which 821 contained SNPs in strong linkage disequilibrium 

or precisely coinciding with GWAS peaks. ASM was increased 5-fold in the cancers, due to widespread 

allele-specific hypomethylation and focal allele-specific hypermethylation in regions of poised chromatin. 

Allele-switching at ASM loci was increased in the cancers, but destructive SNPs in specific classes of 

CTCF and transcription factor (TF) binding motifs correlated strongly with ASM in both normal and 

cancer cells. Allele-specific binding site occupancies from ChIP-seq data were enriched among ASM loci, 

but most ASM DMRs lacked such annotations, and some were found in otherwise uninformative 

“chromatin deserts”. 

Conclusions: ASM is increased in cancers but it is produced by shared underlying mechanisms in normal 

and neoplastic cells. Dense maps of ASM in normal plus cancer samples, provided here as genome 

browser tracks, uncover mechanistically informative rSNPs that are difficult to find by other approaches. 

We show examples of TF binding sites disrupted by these rSNPs that point to altered transcriptional 

pathways in autoimmune, neuropsychiatric, and neoplastic diseases.  
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Background 

Genome-wide association studies (GWAS) have implicated numerous DNA sequence variants, mostly 

single nucleotide polymorphisms (SNPs) in non-coding regions, as candidates for mediating inter-

individual differences in disease susceptibility. However, to promote GWAS statistical signals to 

biological true-positives, and to identify the functional sequence variants that underlie these signals, 

several obstacles need to be overcome. Multiple statistical comparisons demand stringent thresholds for 

significance, p<5x10-8 for a GWAS, and this level can lead to the rejection of biological true-positives 

with sub-threshold p-values [1]. A more fundamental challenge is identifying the causal regulatory SNPs 

(rSNPs) among the typically large number of variants that are in linkage disequilibrium (LD) with a 

GWAS peak SNP. Combined genetic-epigenetic mapping can address these challenges. In particular, 

identification of non-imprinted allele-specific CpG methylation dictated by cis-acting effects of local 

genotypes or haplotypes (sometimes abbreviated as hap-ASM but hereafter referred to simply as ASM), 

led us and others to suggest that mapping this type of allelic asymmetry could prove useful as a “post-

GWAS” method for localizing rSNPs [2-12]. The premise is that the presence of an ASM DMR can 

indicate a bona fide regulatory sequence variant (or regulatory haplotype) in that genomic region, which 

declares itself by conferring the physical asymmetry between the two alleles (i.e. ASM) in heterozygotes. 

ASM mapping, and related post-GWAS approaches such as allele-specific chromatin 

immunoprecipitation-sequencing (ChIP-seq) [13, 14] can facilitate genome-wide screening for disease-

linked rSNPs, which can then be prioritized for functional studies. However, the unique advantages of 

ASM mapping, and its potential non-redundancy with other post-GWAS mapping methods, remain to be 

clarified. 

 Genome-wide analysis of ASM by methylation sequencing (methyl-seq) is also yielding insights 

to the general mechanisms that shape DNA methylation patterns. Our previous data using bisulfite 

sequence capture (Agilent SureSelect) revealed ASM DMRs and methylation quantitative trait loci 

(mQTLs) in human brain cells and tissues, and in T lymphocytes, and uncovered a role for polymorphic 
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CTCF and transcription factor (TF) binding sites in producing ASM [8]. Others have pursued similar 

approaches with progressively greater genomic coverage [10, 11], with substantial though partial overlap 

in the resulting lists of ASM DMRs [9], and with consistent conclusions regarding the general importance 

of polymorphic CTCF and TF binding sites. However, since ASM is often tissue-specific and its mapping 

requires heterozygotes at one or more “index SNPs” in the DMR, constraints from the numbers of 

individuals and numbers of cell types have limited the harvest of high-confidence ASM DMRs. These 

factors have in turn limited the assessment of specific classes of TF and CTCF binding sites for their 

mechanistic involvement in ASM and limited the yield of candidate rSNPs in disease-associated 

chromosomal regions. Further, the unique strengths and potential non-redundancy of dense ASM 

mapping compared to other post-GWAS methods have not been assessed, and while a few studies have 

been done using targeted methyl-seq [15-18], the genome-wide features and mechanisms of ASM in 

human cancers have yet to be clarified. 

To address these issues, we have expanded our previous methyl-seq dataset and carried out whole 

genome bisulfite sequencing (WGBS) on a new large series of human samples spanning a range of tissues 

and cell types from multiple individuals, plus three types of human cancers. We identify high-confidence 

ASM DMRs using stringent criteria, perform extensive validations, apply a multi-step analytical pipeline 

to compare mechanisms of ASM in normal and cancer cells, and assess the unique strengths of dense 

ASM mapping for finding mechanistically informative disease associated rSNPs. 

Results 

Dense mapping of high-confidence ASM regions in normal and neoplastic human samples 

The biological samples in this study are listed in Table S1. Our experimental approach for identifying 

ASM DMRs, and our analytical pipeline for testing ASM mechanisms and nominating disease-associated 

rSNPs are diagrammed in Figure S1. The sample set included diverse tissues and purified cell types from 

multiple individuals, with an emphasis on immune system, brain, carcinoma precursor lineages and 
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several other normal tissues and cell types, plus a set of primary cancers including multiple myeloma, B 

cell lymphoma, and glioblastoma multiforme (GBM) (Table S1 and Figure S2). Agilent SureSelect 

methyl-seq is a sequence capture-based method for genome-wide bisulfite sequencing that covers 3.7 

million CpGs, located in all RefSeq genes and concentrated in promoter regions, CpG islands, CpG island 

shores, shelves, and DNAse I hypersensitive sites. We previously applied this method to 13 human 

samples [8] and for the current study we added samples so that the final SureSelect series included 9 brain 

(cerebral cortex), 7 T cell (CD3+), 3 whole peripheral blood leukocyte (PBL), 2 adult liver, 2 term 

placenta, 2 fetal heart, 1 fetal lung, and one ENCODE lymphoblastoid cell line (LCL; GM12878). All 

samples were from different individuals, except for a trio (among the 9 brain samples) that consisted of 

one frontal cortex (Brodmann area BA9) and two temporal cortex samples (BA37 and BA38) from the 

same autopsy brain. 

To further increase the number of samples and cell types, and to obtain complete genomic 

coverage, we performed WGBS on 61 non-cancer and 14 cancer samples, including 16 T cell 

preparations (10 CD3+, 4 CD4+, and 2 CD8+), 9 B cell samples (CD19+), 4 monocyte (CD14+) and 2 

monocyte-derived macrophage samples, 2 PBL, 1 reactive lymph node, 2 placental samples (whole tissue 

and purified villous cytotrophoblast from the same term placenta), 3 adult liver, 2 primary bladder 

epithelial cell cultures, 2 epithelium-rich non-cancer tissue samples from breast biopsies, 3 primary 

mammary epithelial cell cultures, 4 frontal cerebral cortex grey matter samples, 6 NeuN+ FANS-purified 

cerebral cortex neuron preparations, 4 NeuN- FANS-purified cerebral cortex glial cell preparations, 1 

ENCODE LCL (GM12878), 3 B cell lymphomas (1 follicular and 2 diffuse large B cell type), 6 multiple 

myeloma cases (CD138+ cells from bone marrow aspirates), and 5 cases of glioblastoma multiforme 

(GBM). The glia samples were paired with neuron preparations from the same autopsy brains, and several 

of the B cell, PBL, monocyte/macrophage, and T cell samples were from the same individuals (Table 

S1). While the two series were mostly distinct, 5 samples were assessed by both SureSelect and WGBS 

(Table S1). Numbers of mapped reads and depth of sequencing are in Table S1, and numbers of 
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informative (heterozygous) SNPs are in Figure S2. For quality control we performed Principle 

Component Analysis (PCA) using net methylation values for single CpGs informative in both SureSelect 

and WGBS. This procedure revealed the expected segregation of samples according to cell and tissue type 

and cancer or non-cancer status. It also revealed some expected findings for cell lineages, particularly 

highlighting both similarities and differences in methylation patterns in the brain cells (whole cerebral 

cortex, glia, neurons) and the GBMs (Fig. S3). 

Our analytical pipeline (Figure S1) includes steps to identify and rank ASM DMRs for strength 

and confidence and utilize the resulting maps, together with public ENCODE and related data, for testing 

mechanistic hypotheses for ASM in normal cells and tissues and in cancers. We separated the SureSelect 

and WGBS reads by alleles using SNPs that were not destroyed by the bisulfite conversion, and defined 

ASM DMRs by at least 3 CpGs with significant allelic asymmetry in fractional methylation (Fisher’s 

exact test p<0.05). We further required at least 2 contiguous CpGs with ASM, an absolute difference in 

fractional methylation of >20% between alleles after averaging over all covered CpGs in the DMR, and 

an overall difference in fractional methylation between alleles passing a Benjamini-Hochberg (B-H) 

corrected Wilcoxon p-value (false discovery rate, FDR) <.05. As shown in Figure S4, using these cut-

offs we found a good yield of recurrent ASM regions, but also many more loci with ASM seen in only 

one sample. We utilized such rare or “private” ASM loci for analyzing per-sample ASM frequencies, but 

for most of our downstream analyses, focused on testing mechanisms and disease associations, we 

required ASM in at least two samples. Using these stringent criteria, in the combined SureSelect and 

WGBS dataset we found 11,233 recurrent ASM DMRs, tagged by 13,210 index SNPs, representing 

0.57% of all informative SNP-containing regions with adequate sequence coverage. These data are 

tabulated using the ASM index SNPs as unique identifiers, and annotated for strength of allelic 

methylation differences, presence or absence of ASM for each of the various types of samples, chromatin 

states, TF binding motifs, LD of the ASM index SNPs with GWAS peak SNPs, and other relevant 

parameters, in Table S2, with parameter definitions in Table S3. 
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ASM in imprinted chromosomal regions 

While this study focuses mainly on non-imprinted SNP- or haplotype-dependent ASM, genomic 

imprinting also produces ASM, due to parent-of-origin dependent DNA methylation in a small number of 

imprinted chromosomal domains (~100 imprinted loci). Therefore, we used the GeneImprint database 

[19, 20] to flag imprinted gene regions, many of which showed ASM in the SureSelect and WGBS data, 

thus serving as positive internal controls for ASM detection (Table S4). Since a hallmark of ASM due to 

parental imprinting is 50/50 allele switching between individuals in unselected populations, to test for 

possible novel imprinted loci, we assessed allele switching frequencies for all loci that showed ASM in 

non-cancer samples from 10 or more different individuals, after excluding known imprinted regions 

(Methods). The number of ASM DMRs decreases steeply when they are required to be found in many 

individuals since identifying such loci requires both a high number of informative individuals and highly 

recurrent ASM (Fig. S4). Accordingly, among the non-cancer samples 126 ASM DMRs outside of 

imprinted regions were identified as showing significant ASM in more than 10 individuals. Only 15/126 

(12%) of this informative group of DMRs showed allele switching at a frequency of greater than or equal 

to 20 percent of individuals. In comparison, among ASM DMRs identified in our dataset and located in or 

near known imprinted genes, nearly all (34/35; 97%) showed high frequency allele switching, with an 

approximately 50:50 ratio, as expected for parental imprinting. These results suggest that most of the 

ASM loci identified by our genome-wide analysis reflect non-imprinted ASM, not ASM due to 

imprinting. Interestingly, even among the 15 very highly recurrent ASM loci with frequent allele 

switching in normal cells and tissues and located outside of validated imprinted domains, some (e.g. 

IGF2R, IGF1R) have been reported as imprinted in humans with inconsistent findings or variability. This 

small group of loci (Table S5) are not pursued further here but will be of interest for future testing of 

parent-of-origin dependent behavior using samples from families. 
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Validations by cross-platform comparisons and targeted methyl-seq 

Consistency in the methylation profiles of genomic regions covered by both SureSelect and WGBS is 

shown in Figure S5 for a DNA sample analyzed by both methods. Within the fraction of the genome that 

was adequately covered by both methods and contained informative SNPs, we found 1,590 (42.4%) 

shared ASM “hits” (Fig. S3). This substantial but partial overlap is expected, given that most ASM loci 

show a significant allelic methylation bias in some but not all individuals (Table S2). In addition, some 

ASM DMRs passed our statistical cutoffs in SureSelect but not in WGBS due to the greater sequencing 

depth of SureSelect in some regions. The majority (79%) of these loci were sub-threshold (i.e. showing at 

least 1 CpG with ASM) and showed an allelic methylation bias in the predicted direction in at least one 

individual in the WGBS data. Conversely, some of the genomic regions (44%) that were covered by both 

methods but revealed ASM DMRs only in the WGBS data were sub-threshold in SureSelect, with the 

smaller overlap partly due to inter-individual variation in ASM and inclusion of more individuals, and 

hence more informative heterozygotes, in the larger WGBS series. Based on these results, the current 

dataset provides dense maps of ASM but is still non-saturating. 

To assess the true-positive rate for ASM calling more directly, we selected 18 ASM DMRs, 

spanning a range from high to low ASM strength and confidence scores, for targeted bisulfite sequencing 

(bis-seq). As summarized in Table S6, this procedure validated the presence of ASM in two or more 

independent samples, with no discordance in the observed direction of the allelic methylation bias 

between the genome-wide methylation sequencing data and the targeted bis-seq, in 83% (15/18) of the 

DMRs assayed (examples in Figures S6-S9). The three remaining loci were one very low-ranked DMR 

validated in the single available index case (Fig. S9), also with a concordant direction of the ASM, and 

two middle-ranked DMRs validated in only one out of two available index cases, with concordant 

direction of the ASM in the positive cases. This high overall validation rate by targeted bis-seq suggests a 

high true-positive rate of the genome-wide data. 
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ASM is increased in cancers due to widespread allele-specific CpG hypomethylation and focal 

allele-specific CpG hypermethylation in regions of poised chromatin 

As shown in Figure 1, when the numbers of ASM DMRs per sample were normalized to the numbers of 

informative SNPs and then graphed with samples grouped by normal and cancer status it became obvious 

that the number of ASM DMRs in cancers (multiple myeloma, lymphoma, GBM) is on average 5-fold 

greater than in non-neoplastic samples (Wilcoxon p=6.9x10-9; Fig. 2A). These differences in the 

frequency of ASM between cancer and non-cancer are particularly convincing since our series included 

lineage-matched normal cell types for each of the three cancer types: non-neoplastic B cells for 

comparing to the diffuse large B cell lymphomas (DLBCL), follicular lymphoma (FL), and multiple 

myelomas and non-neoplastic glial cells for comparing to the GBMs. The increase in per-sample ASM 

loci was stronger for the multiple myelomas and lymphomas and weaker for the GBMs. The EBV-

transformed lymphoblastoid line (GM12878), which we had included to allow a direct reference to 

ENCODE data, showed a frequency of ASM in the mid-neoplasia range (5-fold greater than the average 

of the non-neoplastic samples, Fig. 1), which is important since much existing allele-specific mapping 

data, including expression and methylation quantitative trait loci (eQTLs, meQTLs) and allele-specific TF 

and CTCF binding by ChIP-seq (ASB) are from LCLs. 

Given the well-known trend toward lower genome-wide (“global”) DNA methylation in human 

neoplasia [21, 22] to evaluate mechanisms that could account for the gain of ASM in the cancers we first 

asked whether there might be an inverse correlation between global methylation levels and frequencies of 

ASM. Global genomic hypomethylation was observed in the LCL and the three types of primary cancers 

in our series (Fig. 1 and Fig. S10). Kernel density plots showed diffuse hypomethylation with nearly 

complete loss of the high methylation peak (fractional methylation >0.8) in lymphoma and myeloma 

compared to B cells, and a less dramatic but still obvious hypomethylation in the GBMs compared to 

normal glia (Fig. S10). In primary surgical specimens, GBM cells are nearly always mixed with non-

neoplastic glial  and vascular cells, but the presence of malignant cells in each GBM sample was 
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confirmed by histopathology on sections of the tissue blocks and was verified by assessing DNA copy 

number using normalized WGBS read counts [23], which revealed characteristic GBM-associated 

chromosomal gains and losses. Across the entire series of cancer and non-cancer samples, we found a 

non-linear but strongly significant anti-correlation (i.e. inverse correlation) between per-sample ASM 

frequencies and global CpG methylation levels (Spearman’s rho=-0.6 and p-value= 2.3x10-8). Arguing for 

global hypomethylation, not the malignant phenotype per se, as a main driving factor for increased ASM, 

the immortalized but euploid GM12878 LCL showed global hypomethylation and a high frequency of 

ASM, and even among the non-neoplastic and non-immortalized samples, those that showed modestly 

reduced global methylation (e.g. placenta and primary epithelial cell lines that had been expanded in 

tissue culture) showed slightly higher per-sample frequencies of ASM. 

To investigate how global hypomethylation could lead to increased ASM in cancers, we assessed 

the absolute and relative methylation levels of each of the two alleles across instances of ASM in the 

cancer samples, comparing myelomas and lymphomas to non-neoplastic B cells and GBMs to normal 

glial cells. For each comparison, only the ASM-tagging index SNPs that were informative (heterozygous) 

in both cell types were considered, and we focused on loci showing ASM in the cancers but not in the cell 

lineage-matched informative non-neoplastic samples. We assessed the relative methylation levels of the 

low and high methylated alleles of these instances using a mixed linear model to estimate the average 

methylation level of each allele in each cell type taking into account the ASM magnitude in each cell type 

and the difference in ASM magnitude between cell types. As shown in Figure 2 and Figure S11, this 

approach revealed that the average configuration was a relative loss of methylation (LOM) on one allele 

in the cancers. In 70% of cancer-only ASM occurrences in myelomas, 73% in lymphomas and 41% in 

GBMs, a strongly “hypermethylated/hypermethylated” configuration of the two alleles (“black/black”) in 

non-cancer became a “hypomethylated/hypermethylated” (“white-grey/black”) configuration in cancer 

(Figure 2). The terminology here is a practical shorthand to describe the analytical approach: “LOM” 

does not mean to imply that the normal cell types evolve into cancers; it  is simply indicates the direction 
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of the change in comparing the allelic methylation levels in the cancer vs cell lineage-matched non-cancer 

samples. Similarly, “cancer-only ASM” does not mean to imply that ASM at a given locus will never be 

detected in any non-cancer sample in future studies; it simply refers to the loci that have ASM in one or 

more cancer samples and in none of the non-cancer samples in the current dataset. 

While the inverse correlation between per-sample ASM frequencies and global methylation in 

this series is unequivocal and driven mostly by the cancer and LCL samples, a multivariate regression 

analysis suggested that additional mechanisms might also play roles. This analysis showed that the anti-

correlation between global methylation and per-sample ASM frequencies is partly independent of 

neoplastic status (p=3.9x10-17 after controlling for neoplastic status), and conversely, that the higher ASM 

frequencies in the cancers are only partly explained by global methylation levels (p=2x10-05 after 

controlling for methylation levels). In fact, while most of the cancer-only ASM loci conformed to the 

allele-specific LOM model, we found smaller but still substantial sets of loci (16% to 32% in the three 

cancer types) in which ASM in the cancers reflected allele-specific gains of methylation (GOM), relative 

to a biallelic low methylation configuration of the same regions in the lineage-paired normal samples 

(Fig. 3 and Fig. S12).  

To further characterize this interesting set of loci with allele specific GOM in the cancers, we 

compared the genomic and regulatory features among these loci to the background features of all 

informative loci using logistic regressions. As a comparison, we performed the same analyses for ASM 

loci that showed allele-specific losses of methylation in the cancers. This procedure revealed strong over-

representation of the poised “bivalent” promoter state among the ASM DMRs with allele-specific GOM 

in the cancers, compared to ASM loci overall and to ASM loci with allele-specific LOM in the cancers 

(Fig. 3 and Table 1). Poised promoters, as annotated by ENCODE chromatin state segmentation, are 

marked by the simultaneous presence of active histone marks, H3K4me3 and H3K4me2, and the 

repressive mark H3K27me3. Such regions are known to sometimes exist in a poised state in non-
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neoplastic stem cells [24] and can transition to a CpG-hypermethylated repressed state in cancer cells that 

acquire de-differentiated or stem cell-like phenotypes [25]. 

Finally, using a similar statistical approach and mixed model for the set of ASM occurrences that 

were shared by cancer and non-cancer samples, we asked whether ASM might be not only more frequent 

in cancers, but also stronger. We found no significant differences in average ASM magnitude between the 

cancer and non-cancer shared ASM loci (Fig S13). This finding suggests there might be similarities in the 

underlying mechanisms in the two classes of ASM, which are investigated by more specific tests in the 

next sections.  

Enrichment for chromatin states suggests mechanistic similarities between cancer and non-cancer 

ASM 

Different chromatin states, and different classes of binding sites for TFs and CTCF, can be associated 

with specific patterns of CpG methylation [26-31]. Among the ASM DMRs found in the normal samples 

in the current dataset, enrichment of active and poised promoter regions and enrichment of the 

poised/bivalent enhancer state are strong, the active transcription state is slightly enriched, and quiescent 

chromatin and heterochromatin states are depleted, relative to the background of adequately covered 

genomic regions (Table 1). This over-representation of promoter/enhancer elements among ASM DMRs 

in normal cells and tissues suggests that ASM may contribute to inter-individual differences in gene 

expression – a conclusion that is supported by our observation of enrichment for eQTLs in ASM DMRs 

(Table 1). 

 To assess similarities and differences in the characteristics of ASM in non-cancer vs. cancer, we 

took two approaches: first, we tested for enrichment of chromatin states among ASM loci that were 

detected only in cancers (“cancer-only” ASM; observed in at least 2 cancer samples but in none of the 

non-neoplastic samples) and ASM loci detected in non-cancer samples (“normal ASM”; present in at least 

one non-cancer sample, but allowing ASM in cancers as well), separately and second, we compared the 

percentage of ASM loci overlapping each chromatin state among cancer-only ASM loci versus ASM loci 
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found in at least one non-cancer sample. The results of both approaches, using bivariate logistic 

regressions, showed that ASM DMRs in cancer and non-cancer show a parallel enrichment in all the 

strongly enriched chromatin features (Table 1), albeit with some differences among the less strongly 

enriched features (Table 1 and Table S7). These findings suggest that the mechanisms leading to ASM 

are at least partly similar in non-neoplastic and neoplastic cells - a conclusion that is further supported by 

analysis of correlations of ASM with polymorphisms in recognition motifs for DNA binding proteins, 

described below. 

ASM correlates with allele-specific binding affinities of specific CTCF and TF recognition motifs in 

both cancer and normal samples 

The hypothesis that allele-specific TF binding site occupancy (ASB) due to sequence variants in 

regulatory elements could be a mechanism leading to ASM has been supported by previous data from us 

and others [8, 10, 11]. To test this hypothesis using denser mapping, and to ask whether this mechanism 

might underlie ASM in both normal and neoplastic cells, we analyzed the set of ASM loci for enrichment 

of sequence motifs recognized by classical TFs, and motifs recognized by CTCF, which defines the 

insulator chromatin state and regulates chromatin looping [32-34]. Previously we showed that ASM 

DMRs can overlap with strong CTCF ChIP-seq peaks and polymorphic CTCF binding sites [8, 35]. In 

our expanded dataset, we used atSNP to identify CTCF motif occurrences where the ASM index SNP not 

only overlaps a CTCF motif but also significantly affects the predicted binding affinity, requiring a 

significant difference in binding likelihood between the two alleles (FDR <0.05) and a significant binding 

likelihood (p <0.005) for at least one of the alleles (reflecting CTCF occupancy on at least one allele). We 

identified 2,302 ASM SNPs (17%) that significantly disrupted at least one of the canonical or ENCODE-

discovery CTCF motifs [21, 33]. To estimate the random expectation of polymorphic CTCF motif 

occurrences in the genome (the background frequency), we ran atSNP on a random sample of 40,000 non-

ASM informative SNPs (1:3 ASM vs non-ASM SNP ratio) and found that 8.6% of these non-ASM 

informative SNPs significantly disrupted a CTCF motif, corresponding to a significant enrichment for 
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disrupted CTCF motif among ASM SNPs (OR=2.6; p-value=8x10-232). Importantly from a mechanistic 

standpoint, the enrichment persists, albeit slightly weaker, when considering only non-CpG-containing 

polymorphic CTCF motif instances (OR=1.97; p=5.9x10-40). 

When testing enrichment for the 14 distinct ENCODE/JASPAR-defined CTCF motifs, we found 

significant enrichment for 13 of them (Table S7).  Moreover, as shown in Figure 4, Figure S14, and 

Table S8, the difference in binding affinity score between alleles is significantly anti-correlated (inversely 

correlated) with the difference in methylation for 4 of these motifs, and these correlations persist after 

adjustment for the presence or absence of CpGs in the motif occurrences in a multivariate model. Thus, 

consistent with our previous conclusions in the smaller dataset, which required motif pooling [8], these 

results from individual motifs, facilitated by the larger number of ASM occurrences in the expanded 

dataset, show that while the presence of a methylatable CpG in the binding site increases the likelihood of 

producing or propagating ASM, this feature is not required; rather, the essential feature is allele specific 

CTCF binding.  

Like CTCF, classical TFs could account for instances of ASM via ASB. When we scanned each 

ASM SNP for all ENCODE/JASPAR defined TF motifs [36] we found 11,633 polymorphic binding site 

occurrences overlapping with an informative index SNP for high-confidence recurrent ASM. Of these, 

9,043 overlapped at least one ENCODE DNase I hypersensitive site and 2,384 at least one ENCODE 

cognate ChIP-seq TF peak. From a panel of 1,493 TF motifs with at least 10 occurrences, we found 860 

motifs with a specific enrichment (OR > 2 and FDR corrected q-value<0.05, compared to the random 

sample of 40,000 non-ASM informative SNPs) among ASM DMRs (Table S7). Next, using linear 

regression of allele-specific affinity score differences on allele-specific CpG methylation differences, we 

found 179 TF binding motifs, corresponding to 114 cognate TFs, where DNA methylation appears to be 

shaped by binding site occupancies (Fig. 4, Fig. S14, and Tables S8 and S9). Among these motifs, 116 

also showed significant enrichment among ASM loci (Table S9). Using stringent statistical criteria 

(FDR<0.05 and R2
≥0.4), all but one of these TF motifs that were both correlated and enriched show 
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inversely correlated behavior, such that a relatively higher binding likelihood correlates with CpG 

hypomethylation (examples in Figure 4 and Figures S14 and S15). Multivariate linear regression of the 

160 (out of 179) significantly correlated motifs with at least three CpG-containing and three non-CpG-

containing occurrences revealed that these inverse correlations between binding affinity scores and 

methylation levels persist after adjustment for the presence or absence of CpGs in the motifs. Like the 

findings for CTCF sites, these results suggest that ASM regions form around polymorphic TF binding 

sites because of allele-specific differences in binding site occupancy (ASB), not requiring a methylatable 

CpG in the binding motif.  

 Lastly and importantly, we tested for enrichment of TF and CTCF binding motifs and correlations 

of ASM with predicted binding affinities separately in the sets of ASM loci that were detected only in the 

cancers (including the GM12878 EBV-transformed cell line) vs those found in non-cancer samples. We 

also analyzed the full set of ASM loci using a multivariate mixed model to test for interactions of normal 

vs cancer status with the TF binding site affinity to ASM strength correlations. The results showed that 

ASM loci in cancer and non-cancer samples have similar directions of the correlations of ASM with 

destructive SNPs in the top-ranked classes of polymorphic TF binding motifs (Fig. 4 and Figs. S14 and 

S15), which indicates sharing of this fundamental mechanism of ASM in normal and cancer cells. 

However, the correlations between predicted TF binding site affinities and ASM amplitude were slightly 

weaker on average (shallower slope in the X-Y plot) among the cancer-only ASM loci (Fig. 4 and Fig. 

S15). 

Direct testing of the TF binding site occupancy mechanism of ASM 

As a crucial validation, using our GM12878 SureSelect and WGBS data and the large number of 

ENCODE ChIP-seq experiments available for this cell line, we could directly ask whether ASM regions 

with or without polymorphic CTCF and classical TF binding sites exhibit allele specific binding of the 

cognate factors. Among the 1,898 high-confidence ASM index SNPs from our GM12878 data 1,555 

overlapped at least one ChIP-seq peak in this cell line and had enough ChIP-seq reads (>10X) to assess 
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allele-specific binding of at least one ENCODE-queried TF. We found that 8% (156) of these ASM index 

SNPs showed ASB for at least one TF that could be assessed using available ENCODE data. As predicted 

from the binding site occupancy hypothesis for ASM, at 129 (83%) of these sites, considering both CTCF 

and TF motifs, the hypomethylated allele showed significantly greater occupancy. This percentage far 

exceeds random expectation (exact binomial test, p=2.2e10-16). Confirming this pooled analysis, among 

14 TFs with more than 10 ASB occurrences associated with ASM,  11, including the ELF1 (ETS-family) 

motif and others, showed a significant enrichment in ASM occurrences with an inverse correlation of 

predicted binding affinity with allelic CpG methylation (ASB-ASM instances with inverse correlation: 

86%-100%, FDR <0.05). 

ASM DMRs are found both in active chromatin and in quiescent “chromatin deserts” 

For post-GWAS mapping of rSNPs that underlie GWAS signals much attention has been appropriately 

focused on cataloguing SNPs that are expression quantitative trait loci (eQTLs) and/or lie within regions 

of ASB. Such efforts are aided by databases such as AlleleDB for allele-specific marks [37-39], and 

RegulomeDB [40, 41], which highlights potential rSNPs in non-coding regions by assigning a score to 

each SNP based on criteria including location in regions of DNAase hypersensitivity, binding sites for 

TFs, and promoter/enhancer regions that regulate transcription. Our cross-tabulations indicate that, 

despite a strong enrichment in ASB SNPs among ASM index SNPs (Table 1), most of the ASM index 

SNPs (>90%) in our expanded dataset currently lack ASB annotations (Table S2). In addition, index 

SNPs for strong ASM DMRs sometimes have weak RegulomeDB scores (Table S2). Thus, from a 

practical standpoint with existing public databases, ASM mapping for identifying rSNPs appears to be 

largely non-redundant with other post-GWAS modalities. 

To further assess the unique value of ASM mapping, we defined “chromatin desert” ASM regions 

as 1 kb genomic windows, centered on ASM index SNPs, that contained no DNAse peaks or only one 

DNAse peak among the 122 ENCODE cell lines and tissues, and no strong active promoter/enhancer, 

poised, or insulator chromatin state in any ENCODE sample. Less than 56% of such regions have SNPs 
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listed in RegulomeDB, and when they are in that database they almost always (93%) have weak scores 

equal to or greater than 5 (Table S2). While most ASM loci map to active chromatin and are depleted in 

desert regions overall (Table 1), we find that 8% of ASM index SNPs in normal cells and 22% of cancer-

only ASM SNPs in this study are in chromatin deserts (Table 1 and Table S2). Although deserts lack 

evidence of TF and CTCF binding in available databases, ASM DMRs found in these regions might be 

informative for localizing bona fide rSNPs, particularly if some desert regions contain cryptic binding 

motifs that were active (occupied) at some point in the history of the cell. 

To test this possibility, we asked whether correlations of ASM with destructive SNPs in TF 

binding motifs might also pertain to ASM in desert regions. We analyzed the full set of ASM loci using a 

multivariate mixed model to test for interactions of normal vs cancer status and desert vs non-desert 

location (i.e. 4 classes of ASM loci) with the TF binding site affinity to ASM strength correlations. Some 

motifs, such as CTCF binding sites, were highly depleted in deserts and therefore excluded from the 

analysis, which was performed on the subset of 62 TF motifs that had at least 3 occurrences per ASM 

class. The correlations were significant and in the same direction (inverse correlation of predicted binding 

affinity with allelic methylation) in all 4 ASM classes. As expected from the findings above, we observed 

a slightly weaker correlation for cancer only ASM loci compared to ASM loci in non-cancer samples. 

However, no differences in the strength of the correlations were found when comparing ASM occurrences 

in desert versus non-desert locations, both for normal and cancer-associated ASM loci. The simplest 

hypothesis to explain these results is that ASM DMRs in desert regions are footprints left by rSNPs that 

disrupt cryptic TF binding sites that were active at some stage of normal or neoplastic cell differentiation 

(or de-differentiation) but are no longer active in available cells or tissue types. Figure S16 shows 

examples of ASM DMRs in desert regions that contain disruptive SNPs in ASM-correlated TF binding 

motifs. 
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Allele-switching at ASM loci is infrequent in normal samples but increased in cancers 

Most of the ASM DMRs passed statistical cutoffs for ASM in less than half of the informative samples 

(Table S2), with variability not only between cell types and cancer status but also within a single cell 

type. As diagrammed in Figure S17A, given the connection between TF binding site occupancies and 

ASM, one hypothesis to explain this variability invokes differences in intracellular levels of TFs. 

Alternatively, genetic differences (i.e. haplotype effects due to the influence of other SNPs near the ASM 

index SNP) could also play a role (Fig. S17B). A more extreme form of variation was observed at some 

ASM loci, namely “allele switching” [8], in which some individuals have relative hypermethylation of 

Allele A while others show hypermethylation of Allele B, when assessed using a single index SNP. Some 

instances of allele switching reflect haplotype effects [8] or parental imprinting, but other occurrences 

might have other explanations. In this regard, a striking finding in the current dataset is that the frequency 

of allele switching among ASM loci in normal samples is low (10%), while the rate of allele switching is 

strikingly higher (43%) among cancer-only ASM loci (Fig. 5A, B and Fig. S17C). This finding suggests 

that biological states, here neoplastic vs non-neoplastic, can influence the stability of ASM, with greater 

epigenetic variability or instability in cancers manifesting as increased allele switching. 

 To investigate this variability, we compared the features of ASM DMRs that showed allele 

switching versus those that did not. As shown in Figure 5C, the sets of ASM index SNPs for two classes 

of loci differed significantly in the relative representation of specific CTCF and TF binding motifs, such 

that the CTCF_1 motif and nearly all of the most strongly ASM-correlated classical TF binding motifs 

were markedly under-represented among the switching loci. Reinforcing this finding, ASM loci that were 

highly recurrent across multiple normal cell types and individuals showed a low frequency of switching, 

even when these loci had ASM in some cancers (Fig. S18). This finding suggests a working model that 

postulates two classes of binding motifs: one group of motifs in which destructive SNPs show strong 

correlations with ASM and stably bind their cognate factors, independently of the neoplastic cellular 

phenotype, thereby mitigating against allele switching; and another group of motifs with more labile TF 
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binding, which are sensitive to changes in the intracellular levels of their cognate factors and that can 

participate in allele switching via “TF competition”. According to this model (Fig. S17C), in situations 

with adequate chromatin accessibility, there could be replacement of one TF by another more highly 

expressed one that recognizes a nearby or overlapping DNA sequence motif. The credibility of this 

hypothesis is supported by the well-known over-expression of various oncogenic TFs in cancer cells, and 

by experimental findings indicating that global DNA hypomethylation in transformed cells is associated 

with increased chromatin accessibility at regulatory elements [42, 43]. 

ASM index SNPs in LD or precisely coinciding with GWAS peak SNPs 

For assessing the value of ASM as a signpost for rSNPs in disease-associated chromosomal regions, we 

defined lenient and stringent haplotype blocks by applying the algorithm of Gabriel et al [44], using 1000 

Genomes data and employing D-prime (D’) values, both with standard settings utilizing high D’ and R-

squared (R2) values to define “stringent” blocks (median size 5 kb) and with relaxed R2 criteria to define 

larger “lenient” blocks with a median size of 46 kb (Figs. S19 and S20). We also calculated R2 between 

each ASM and GWAS SNP to identify SNPs in the same haplotype block and with high R2, plus SNPs in 

strong LD located in genomic regions that lacked a haplotype block structure. We took this two-fold 

approach because (i) R2 can fail to identify SNPs in perfect LD when rare mutations have occurred over 

time on pre-existing common alleles in the population – a situation that can have a high D’, and (ii) for 

some loci, the combined effect of multiple regulatory SNPs, some with weak R2 values but high D’, might 

be responsible for net effects on disease susceptibility. Using our complete list of ASM DMRs and 

GWAS data from NHGRI-EBI, including both supra-threshold and suggestive peaks (p<10-6), we 

identified 821 ASM DMRs that contained SNPs in strong LD (R2>0.8) or precisely coinciding with 

GWAS peak SNPs. A much larger group of 5,988 ASM DMRs were in leniently defined haplotype 

blocks that contained GWAS peaks. Highlighting mechanistic information from these ASM loci, among 

the ASM index SNPs in strong LD or precisely coinciding with GWAS peak SNPs, 627 were in ASM-
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enriched classes of CTCF or TF binding motifs and 174 were in significantly ASM-correlated CTCF or 

TF binding motifs. 

ASM index SNPs in LD with GWAS peaks for autoimmune/inflammatory diseases 

We found 207 ASM DMRs containing 231 index SNPs in strong LD (R2>.8) with GWAS peak SNPs for 

autoimmune and inflammatory diseases (Table S10), plus a larger number in the leniently defined blocks 

containing such peaks (Table S2). Among the loci in strong LD, about half showed ASM in immune 

system cell types (T cells, B cells, PBL, monocyte/macrophages; Table S10). In these DMRs, 51 ASM 

index SNPs precisely coincided with GWAS peak SNPs, supporting the candidacy of these statistically 

identified SNPs as biologically functional rSNPs. Another partly overlapping group of 51 ASM index 

SNPs altered strongly correlated CTCF or TF binding motifs, providing mechanistic leads to disease-

associated transcriptional pathways (Tables S2 and S10). Some interesting ASM index SNPs in the 

stringent blocks, some precisely coinciding with GWAS peak SNPs and others in strong LD with these 

peaks include rs2145623, coinciding with a GWAS peak SNP for ulcerative colitis, sclerosing 

cholangitis, ankylosing spondylitis, psoriasis and Crohn's disease (nearest genes PSMA6, NFKBIA), 

rs10411630 linked to multiple sclerosis (MS) via LD with GWAS peak SNP rs2303759 (nearest genes 

TEAD2, DKKL1, and CCDC155; Fig. S6), rs2272697 linked to MS via LD with GWAS peak SNP 

rs7665090 (nearest genes NFKB1, MANBA), rs2664280 linked to inflammatory bowel disease, systemic 

lupus erythematosus (SLE) and psoriasis via GWAS SNPs rs2675662 and rs2633310 (nearest genes 

CAMK2G, PLAU, C10orf55; Fig. 7), rs6603785 coinciding with a GWAS peak for SLE and 

hypothyroidism (nearest genes TFNRSF4, SDF4, B3GALT6, FAM132A, UBE2J2; Fig. S21), and 

rs11516512 in LD with a GWAS peak SNP for multiple sclerosis, rheumatoid arthritis, and celiac disease 

(nearest genes MMEL1, TTC34). Among these examples, index SNPs rs2145623, rs10411630, 

rs2664280, and rs6603785 each disrupt one or more strongly ASM-correlated TF binding motifs, 

implicating multiple ETS-family TFs, EGR1, AP1 (JUNB), and MYC, respectively, as candidate 

transcriptional pathways in these diseases. 
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ASM index SNPs in LD with GWAS peaks for cancer susceptibility 

We found 189 ASM DMRs containing 206 index SNPs in strong LD (R2>.8) with GWAS peak SNPs for 

cancer susceptibility or response to treatment (Table S11), plus a larger number of ASM loci in the more 

leniently defined blocks containing such peaks (Table S2). Among the DMRs that contained index SNPs 

in strong LD with the GWAS peaks, a large majority showed ASM in cancers or cell types that 

approximate cancer precursor cells (e.g. B cells for lymphoma and multiple myeloma, glia for GBM, 

mammary or bladder epithelial cells for carcinomas, etc.) and/or in T cells, which are relevant to cancer 

via immune surveillance. In these DMRs, 43 of the ASM index SNPs precisely coincided with the GWAS 

peak SNPs, suggesting that these peak SNPs might be bona fide rSNPs, and another partly overlapping 

group of 37 index SNPs altered strongly ASM-correlated binding motifs, providing mechanistic 

information about disease-associated transcriptional pathways (Table S11). Some interesting ASM index 

SNPs in the stringently defined haplotype blocks, some of which precisely coincide with GWAS peak 

SNPs, include rs416981 (nearest genes FAM3B, MX2, MX1) associated with cutaneous melanoma and 

nevus counts, rs4487645 (nearest genes SP4, DNAH11, CDCA7L; Fig. 7) associated with multiple 

myeloma and immunoglobulin light chain amyloidosis, rs2853677 linked to lung cancer, gliomas, and 

other malignancies, as well as benign prostatic hyperplasia via LD with several GWAS peak SNPs (genes 

SLC6A18, TERT, MIR4457, CLPTM1L; Fig. 7), rs3806624 linked to multiple myeloma and lymphoma 

(nearest gene EOMES; Fig. S21), and rs2754412 linked to breast cancer via LD with GWAS peak SNP 

rs2754412 (nearest genes HSD17B7P2, SEPT7P9, LINC00999; Fig. S22). Potentially informative 

examples in the lenient blocks include rs2427290 linked to colorectal cancer via GWAS peak SNP 

rs4925386 (nearest genes OSBPL2, ADRM1, MIR4758, LAMA5, RPS21, CABLES2; Fig. S7), and 

rs2283639 linked to non-small cell lung cancer via GWAS peak SNP rs1209950 (nearest genes 

LINC00114, ETS2, LOC101928398; Fig. S8), plus many others. Among these examples, index SNPs 

rs416981, rs4487645, rs2427290, rs2283639, rs3806624 and rs61837215 each disrupt a strongly ASM-

correlated TF binding motif, implicating TATA_disc1 (a discovery motif that has been suggested to bind 
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YY1), PAX5, CCNT2, SMC3, BATF, and ELF1_2, respectively, as candidate transcriptional or 

chromatin organizing pathways in susceptibility to these cancers. 

ASM index SNPs in LD with GWAS peaks for neuropsychiatric traits and disorders and 

neurodegenerative diseases 

We found 152 ASM DMRs containing 164 index SNPs in strong LD (R2>.8) with GWAS peak SNPs for 

neurodegenerative, neuropsychiatric, or behavioral phenotypes (Table S12), plus a larger number in the 

more leniently defined haplotype blocks encompassing the GWAS peaks (Table S2). Among the loci in 

the stringently defined blocks, 21 showed ASM in brain cells and tissues (grey matter, neurons, glia), and 

a somewhat larger number showed ASM in immune system cell types. Both can be phenotypically 

relevant, since studies have linked brain disorders not only to neuronal and glial cell processes but also to 

the immune system [45]. In addition, many loci in this list showed ASM in GBMs, which have partial 

glial and neuronal differentiation.  In these DMRs, 36 of the ASM index SNPs precisely coincided with 

the GWAS peak SNPs, supporting a functional regulatory role for these variants, and another partly 

overlapping group of 34 SNPs altered strongly ASM-correlated binding motifs, providing mechanistic 

information about disease-associated transcriptional pathways. Some interesting examples in the stringent 

blocks (Table S12) include rs1150668 linked to risk tolerance/smoking behavior and wellbeing spectrum 

via GWAS peak SNPs rs1150668 (precisely coinciding with the ASM index SNP) and rs62620225 

(nearest genes ZSCAN16, ZKSCAN8, ZNF192P1, TOB2P1, ZSCAN9; Fig. 7), rs2710323 that coincides 

with a GWAS peak SNP for schizoaffective disorder, anxiety behavior, bipolar disorder and others 

(nearest genes NEK4, ITIH1, ITIH3, ITIH4, MUSTN1, MIR8064, TMEM110; Fig. S21), rs4976977 linked 

to intelligence measurement, anxiety measurement, schizophrenia, and unipolar depression via strong LD 

with GWAS peak SNP rs4976976 (nearest genes MIR4472-1, LINC00051, TSNARE1), rs667897 linked 

to Alzheimer’s disease via GWAS peak SNP rs610932 (nearest genes MS4A2, MS4A6A) and rs13294100 

that precisely coincides with a GWAS peak SNP for Parkinson’s disease (nearest gene SH3GL2), plus 

others. Among these examples, index SNPs rs2710323 (super enhancer with multiple TF binding sites), 
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rs4976977 (TAL1_5 motif), rs667897 (NFE2, NFE2L2 motifs), and rs13294100 (STAT6_2 motif) each 

disrupt strongly ASM-correlated TF binding motifs, implicating specific candidate transcriptional 

pathways in these traits and diseases. 

 In addition to the disease categories detailed above, we observed several hundred high confidence 

ASM index SNPs in strong LD with GWAS peaks for cardiometabolic diseases and traits, for example 

rs2664280 linked to Type 2 diabetes mellitus as well as psoriasis (Fig. 7), or with other medically 

important phenotypes including pharmacogenetic profiles. 

Visualization of the ASM mapping data as annotated genome browser tracks 

The final set of high-confidence recurrent ASM loci averaged 25 ASM DMRs per Mb of DNA genome 

wide. We provide the data both in tabular format (Table S2) and as annotated genome browser tracks that 

include the most useful and mechanistically relevant parameters for each ASM index SNP. These 

parameters include ASM confidence and strength ranks, cell and tissue types with ASM, cancer vs normal 

status of the samples with ASM, and presence or absence of enriched CTCF or TF binding motifs and/or 

motifs with significant correlations of ASM strength with allele-specific differences in predicted binding 

affinity scores. An example is shown in Figure 7. These tracks (see Availability of Data section) can be 

displayed, together with other relevant tracks, including chromatin structure for mechanistic studies and 

the GWAS catalogue track for potential disease associations, in UCSC Genome Browser sessions [46].  

Discussion 

These data from dense mapping of ASM in normal human cell types and tissues, plus a group of cancers, 

identify 13,210 index SNPs in 11,233 DMRs that show strong and recurrent ASM, of which a substantial 

subset map within haplotype blocks that contain GWAS peaks for common diseases and related traits. In 

this study we focused on finding strong and high-confidence ASM DMRs, each containing multiple 

contiguous CpGs passing ASM criteria, and each detected in at least two independent samples. Thus, we 

sought to maximize true-positive findings, which were borne out by a high validation rate using targeted 
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bis-seq. In addition to the value of these data for disease-focused post-GWAS studies, this high yield of 

stringently defined ASM DMRs, and inclusion of both cancer and normal cell types and tissues, allowed 

us to test mechanistic hypotheses for the creation of allele-specific DNA methylation patterns in ways that 

have not been feasible with prior datasets.  

A recent study by Onuchic et al. using Human Epigenome Project (HEP) data provided a map of 

ASM SNPs based on 49 WGBS from 11 donors (non-cancer tissues) and 2 cell lines [11]. Using their 

publicly accessible processed data, we identified a set of strong ASM SNPs that pass similar effect size 

and p-value criteria as in our analysis (>20% methylation difference and corrected p-value<0.05). 

Overall, 50% of our informative SNPs were also informative in the HEP dataset and 31% of our ASM 

index SNPs passed criteria for ASM in the HEP data. Given the differences in analytical methods, and 

more importantly, the differences in numbers and tissue types of the individuals analyzed, this is an 

encouraging convergence of findings. At the same time, this comparison indicates that our dataset adds 

substantial new information. With even greater numbers of individuals (informative heterozygotes at 

more SNPs), additional cell and tissue types, and greater depth of WGBS, additional loci with ASM will 

be identified. Our data already reveal a large component of rare or “private” ASM. Indeed, some of the 

ASM loci identified and validated by targeted bis-seq in our previous smaller study [8] are not included in 

our current list of recurrent ASM DMRs because they passed ASM criteria in only one individual. 

Conversely, as expected based on the requirement for multiple individuals when using a methylation QTL 

(mQTL) approach to detect ASM, the current ASM dataset now encompasses a larger percentage of the 

set of mQTLs identified in that prior study.  

Allele specific binding of TFs and CTCF has been detected at up to 5 percent of assessed 

genomic sites [38], and the data provided here bolster and refine previous results from us and others [8, 9, 

11, 27, 29, 30, 47] supporting a dominant role for binding site occupancies in shaping both net and allele-

specific DNA methylation patterns in normal human cells. The harvest of large numbers of strong and 

high-confidence ASM occurrences in this study facilitated our analysis of individual (not pooled) binding 
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motifs, thereby producing a statistically robust list of specific ASM-correlated CTCF and TF binding 

motifs, nearly all of which show anti-correlated (i.e. inversely correlated) behavior in which greater 

predicted binding site affinity and site occupancy tracks with less methylation of CpGs on that allele. 

The set of CTCF and TF binding motifs that we find to be strongly correlated with ASM when 

they contain disruptive SNPs overlaps only partly with the ASM-correlated motifs identified in the HEP 

study [11]. Encouragingly, certain classes of motifs emerge as significantly correlated in both studies. 

However, in addition to some differences in the identities of the most strongly correlated and enriched 

motifs or motif classes, an interesting general difference between the conclusions of the two studies 

concerns the numbers of motifs showing positive vs negative directions of the correlations. The HEP 

investigators reported a substantial minority subset (approximately 30%) of motifs for which higher 

predicted binding affinity was found to correlate with greater CpG methylation (i.e. positively or directly 

correlated behavior). In our dataset, using our ASM criteria and analytical pipeline, we find a nearly 

complete absence of such occurrences. All but one of the 116 motifs that are both enriched and 

significantly ASM-correlated (Table S9) show a strongly inversely correlated direction of the 

relationship, such that higher predicted binding affinity (greater predicted binding site occupancy) tracks 

with relative CpG hypomethylation, which can be heuristically understood as protection of the occupied 

binding site from methylation. When we only require ASM correlation, without enrichment as a criterion 

(Table S8), we find 174 motifs with this inversely correlated behavior, and only 5 motifs with positively 

correlated behavior in which greater predicted binding site occupancy tracks with CpG hypermethylation. 

Our combined ASM and ASB analysis, using ENCODE ChIP-seq data in the GM12878 LCL, also 

showed a strong enrichment of inverse correlations between binding and methylation levels. Interestingly 

however, in our small set of 5 positively correlated motifs we find the YY1 binding motif, which was also 

found by the HEP investigators in their positively correlated subset. This finding makes biological sense 

since the YY1 TF, acting as a component of the PRC2 polycomb repressive complex, can attract CpG 

methylation, at least partly through recruitment of DNA methyltransferases [48]. 
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A crucial qualitative advance in the current study is our ability to test and compare mechanisms 

of ASM in normal and neoplastic cells. We observed a dramatic increase in per sample ASM frequencies, 

on average, in the primary cancers, and in the GM12878 LCL, compared to normal cells and tissues and 

non-transformed low-passage primary epithelial cell explants. Special aspects of ASM detected in the 

cancers, and in the immortalized but euploid LCL, included allele-specific hypomethylation genome-wide 

and allele-specific hypermethylation at loci in poised chromatin, as well as increased ASM in chromatin 

desert regions and increased allele-switching at ASM loci. Despite these differences, our findings from 

testing for enrichment of TF and CTCF binding motifs and correlations of ASM with destructive SNPs in 

these motifs clearly indicate that the same binding site occupancy mechanism pertains in both normal and 

cancer-associated ASM. 

Based on this shared mechanism, an important practical conclusion is that analyzing combined 

series of cancer cases plus non-cancer samples increases the power of ASM mapping for finding 

mechanistically informative rSNPs. In conjunction with GWAS data these rSNPs can point to genetically 

regulated transcriptional pathways that underlie inter-individual differences in susceptibility not only to 

cancers but also to nearly all common human non-neoplastic diseases. Due to the LD structure of the 

genome, GWAS peaks by themselves can only point to disease-associated haplotype blocks, with all 

SNPs in strong LD with the causal SNP(s) showing similar correlations to the phenotype. Therefore, 

additional types of evidence are needed before causal roles can be attributed to GWAS peak SNPs or to 

other SNPs in strong LD with them. ASM mapping can pinpoint candidate rSNPs that declare their 

presence by conferring the observed physical asymmetry in CpG methylation between the two alleles. 

The key finding that supports such mapping for biologically meaningful rSNP discovery is the one above, 

namely that ASM is caused by disruptive SNPs in TF and CTCF binding sites. Among the ASM index 

SNPs that we find in strong LD or precisely coinciding with GWAS peak SNPs, 627 are in ASM-

enriched classes of CTCF or TF binding motifs and 174 are in significantly ASM-correlated CTCF or TF 

binding motifs. 
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This informative situation is highlighted by our findings for ASM index SNP rs4487645, which 

coincides with a GWAS peak for AL amyloidosis and multiple myeloma and disrupts a TF motif (PAX5) 

that is significantly correlated with ASM. Since the PAX5 TF is known to function as a master regulator 

of B cell development [49], these ASM mapping data are post-GWAS evidence for involvement of a 

relevant biological pathway in susceptibility to multiple myeloma, an important type of B cell 

malignancy. That the ASM at this locus was specifically found in a sample of DLBCL (another type of B 

cell cancer) highlights the usefulness of including primary tumor samples in ASM mapping studies. A 

similarly useful example, in a non-neoplastic disease, is provided by ASM index SNP rs2664280, which 

disrupts a JUNB motif (a binding site for the AP1 TF complex) and is in strong LD with a GWAS peak 

SNPs for psoriasis. For this example, the ASM was found in T cells, which are relevant for psoriasis, and 

the candidacy of the JUNB motif disruption as a biological explanation for the disease association is 

supported by other evidence for involvement of AP1-dependent transcriptional changes in this disease 

[50]. 

Lastly, regarding the usefulness and non-redundancy of ASM mapping as a post-GWAS 

approach, while SNPs with experimental evidence for ASB are strongly enriched among the ASM loci 

reported here, more than 90 percent of the ASM index SNPs harvested in this study lack currently 

available ASB annotations. Thus, maps of ASM, which are readily generated from large archival 

collections of DNA samples, can provide information about rSNPs that has not emerged from other types 

of mapping data, such as ChIP-seq for ASB, which require whole cells or tissue samples and are more 

technically difficult to obtain. That ASM data are largely non-redundant with other post-GWAS 

modalities (ASB, chromatin states and chromatin accessibility, eQTLs) is further highlighted by our 

observation of ASM DMRs in chromatin deserts. Our finding of similar correlations of ASM with 

destructive SNPs in specific TF binding motifs in both non-desert and desert regions suggests that 

mapping ASM in deserts can pinpoint candidate rSNPs in cryptic TF binding sites, which were 
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presumably active at earlier stages of cell differentiation and have left “methylation footprints” that can 

be detected as ASM but cannot be found using other mapping methods. 

Conclusions 

We mapped ASM genome-wide in DNA samples including diverse normal tissues and cell types from 

many individuals, plus three types of cancers. The data reveal 11,233 high-confidence ASM regions, of 

which 821 contain SNPs in strong LD or precisely coinciding with GWAS peaks for common human 

diseases and traits. We find that ASM is increased in cancers, due to widespread allele-specific 

hypomethylation and focal allele-specific hypermethylation in regions of poised chromatin, with cancer-

associated epigenetic variability manifesting as increased allele switching. Despite these differences, 

enrichment and correlation analyses indicated that destructive SNPs in specific classes of CTCF and TF 

binding motifs are a shared mechanism of ASM in normal and cancer cells, and that this mechanism also 

underlies ASM in “chromatin deserts”, where other post-GWAS mapping methods have been non-

informative. We provide our dense ASM maps as genome browser tracks and show examples of 

destructive variants in TF binding sites that nominate altered transcriptional pathways in susceptibility to 

autoimmune, neuropsychiatric, and neoplastic diseases.  
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Materials and methods 

Human cells and tissues 

Human tissues and cell types analyzed in this study are listed in Table S1. Peripheral blood samples were 

obtained with informed consent, and CD3+ T-lymphocytes, CD19+ B-lymphocytes and CD14+ 

monocytes were isolated by negative selection using RosetteSep kits (Sigma). Macrophages were 

produced from monocytes by culturing in RPMI with 20% fetal calf serum with 50 ng/ml M-CSF for one 

week as described [51]. All other non-neoplastic primary human tissues were obtained from autopsies. 

Neuronal and glial cell nuclei were prepared from autopsy brains using tissue homogenization, sucrose 

gradient centrifugation and fluorescence activated nuclear sorting (FANS) with a monoclonal anti-NeuN 

antibody [52] and documented for purity of cell types by immunostaining of cytospin slides, as shown 

previously [23]. Biopsy samples of human cancers were obtained with I.R.B. approval in a de-identified 

manner from the Tissue Biorepository of the John Theurer Cancer Center. The GM12878 lymphoblastoid 

cell line was purchased from Coriell, primary cultures of non-neoplastic human urinary bladder epithelial 

cells were purchased from A.T.C.C., and primary cultures of non-neoplastic human mammary epithelial 

cells were purchased from Cell Applications, Inc. and ScienCell Research Laboratories. 

Agilent SureSelect Methyl-seq and WGBS  

We used the Agilent SureSelect methyl-seq DNA hybrid capture kit according to the manufacturer’s 

protocol to analyze methylomes in a total of 27 non-neoplastic cell and tissue samples (Table S1). In this 

protocol, targeted regions (total of 3.7M CpGs) including RefGenes, promoter regions, CpG islands, CpG 

island shores, shelves, and DNAse I hypersensitive sites are sequenced to high depth. DNA was sheared 

to an average size of 200 bp and bisulfite converted with the EZ DNA methylation kit (Zymo). Paired end 

reads (100, 150 or 250 bp) were generated at the Genomics Shared Resource of the Herbert Irving 

Comprehensive Cancer Center of Columbia University, with an Illumina HiSeq2500 sequencer.  

For analyzing complete methylomes in 60 primary non-neoplastic and 14 primary neoplastic 

samples, plus the GM12878 LCL, WGBS was performed at the New York Genome Center (NYGC), 
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MNG Genetics (MNG) and the Genomics Shared Resource of the Roswell Park Cancer Institute (RPCI), 

as indicated in Table S1. The NYGC used a modified Nextera transposase-based library approach. 

Briefly, genomic DNA was first tagmented using Nextera XT transposome and end repair was performed 

using 5mC. After bisulfite conversion, Illumina adapters and custom bisulfite converted adapters are 

attached by limited cycle PCR. Two separate libraries were prepared and pooled for each sample to limit 

the duplication rate and sequenced using Illumina X system (150 bp paired-end). WGBS performed at 

MNG used the Illumina TruSeq DNA Methylation Kit for library construction according to the 

manufacturer’s instructions and generated 150 bp paired end reads on an Illumina NovaSeq machine. 

WGBS performed at RPCI utilized the ACCEL-NGS Methyl-Seq DNA Library kit for library 

construction (Swift Biosciences) and generated 150 bp paired end reads on an Illumina NovaSeq.   

Read mapping, SNP calling, and identification of ASM DMRs 

Our analytical pipeline is diagrammed in Figure S1. Compared with our previous study [8], updates 

included improvements in sequence processing, updated database utilization and increased stringency for 

SNP quality control, assignment of both strength and confidence scores to ASM index SNPs, use of 

updated ENCODE and JASPAR databases [21, 53] for scoring the effects of the ASM index SNPs on 

predicted TF binding affinities, and utilization of  haplotype blocks and LD criteria, instead of simple 

distance criteria around GWAS peaks for nominating disease-associated rSNPs in ASM DMRs. After 

trimming for low-quality bases (Phred score<30) and reads with a length <40 bp with TrimGalore, the 

reads were aligned to the human genome (GRCh37) using Bismark [54] with paired end mode and default 

setting allowing about 3 mismatches in a 150 bp read. For the SureSelect methyl-seq samples, unpaired 

reads after trimming were aligned separately using single end-mode and the same settings. Duplicate 

reads were removed using Picard tools [55] and reads with more than 10% unconverted CHG or CHH 

cytosines (interquartile range: 0.1-2.2% of mapped reads; median 0.14%) were filtered out. Depth of 

sequencing for each sample in Table S1, with metrics calculated using Picard tools. SNP calling was 

performed with BisSNP [56] using default settings, except for the maximum coverage filter set at 200 to 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 1, 2019. ; https://doi.org/10.1101/815605doi: bioRxiv preprint 

https://doi.org/10.1101/815605
http://creativecommons.org/licenses/by-nc-nd/4.0/


31 
 

encompass deep sequencing, and quality score recalibration. SNP calling was carried out using human 

genome GRCh37 and dbSNP147 as references. For ASM calling, only heterozygous SNPs are 

informative. We filtered out heterozygous SNPs with less than 5 reads per allele. In addition, SNP with 

multiple mapping positions were filtered out, as well as SNPs with more than one minor allele with allele 

frequency>0.05. Informative SNPs were defined as heterozygous, bi-allelic and uniquely mapped SNPs 

that did not deviate significantly from Hardy-Weinberg equilibrium based on exact tests corrected for 

multiple tests (FDR<0.05 by HardyWeinberg R package) and were covered by more than 5 reads per 

allele. Informative regions were defined as regions with overlapping reads covering at least one 

informative SNP. Bisulfite sequencing converts unmethylated C residues to T, while methylated C 

residues are not converted. Therefore, for C/T and G/A SNPs the distinction between the alternate allele 

and bisulfite conversion is possible only on the non-C/T strand. For SureSelect methyl-seq, since only 

negative stranded DNA fragments are captured, G/A SNPs were filtered out; for WGBS, C/T and G/A 

SNPs were assessed after filtering out reads mapping to the C/T strand.  

ASM calling was performed after separating the SNP-containing reads by allele. For each 

heterozygous SNP, all reads overlapping the 2 kb window centered on the SNP were extracted using 

Samtools. Given the median insert size of our libraries (~200 bp), the use of a 2 kb window instead of the 

SNP coordinate allows extraction, in most cases, of both paired ends even if the SNP is only covered at 

one of the ends. SNP calling is performed on each paired read and read IDs are separated into two files as 

reference (REF) and alternate (ALT) alleles using R. After Bismark methylation extractor is applied, CpG 

methylation calls by allele are retrieved using allele tagged read IDs. Paired reads with ambiguous SNP 

calling (i.e., called as REF allele on one paired end and ALT allele on the other) were discarded. For 

Nextera WGBS, due to the fill-in reaction using 5mC following DNA tagmentation which affects the 10 

first base pairs (bp) on 5’ of read 2, methylation calling for Cs mapping to these bp were not considered. 

In addition, a slight methylation bias due to random priming and specific to each library kit was observed 

within the last 2 bp on 3’ of both paired ends for Nextera WGBS, within the first 10 bp on 5’ of both 
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paired ends and the last 2 bp on 3’ of read 2 for TruSeq WGBS, and within the first 10 bp on 5’ of read 2 

for ACCEL-NGS WGBS. Therefore, methylation calls in these windows were ignored.  

To further increase the stringency and accuracy of ASM calling, only regions with at least 3 

CpGs covered by more than 5 reads per allele were considered. ASM CpGs were then defined as CpGs 

with Fisher’s exact test p-value <0.05 and ASM DMRs were defined as regions with >20% methylation 

difference after averaging all CpGs covered between the first and last CpGs showing ASM in the region, 

a Wilcoxon p-value corrected for multiple testing by the B-H method <0.05 (FDR at 5%) and more than 3 

ASM CpGs including at least 2 consecutive ASM CpGs. CpGs destroyed by common SNPs (maf>0.05) 

were filtered out from both CpG and DMR level analyses. Very close or overlapping DMRs (<250 

intervening bp) were merged into one unique DMR. 

We ranked the ASM SNPs using two approaches, one based on confidence/recurrence criteria and 

the other on percent difference in methylation of the two alleles (ASM strength). For the confidence rank, 

we used the geometric mean of the average coverage of each allele, the number of samples showing 

ASM, and the percentage of these samples among all heterozygous (informative) samples. For the 

strength rank, we used the geometric mean of the methylation difference, number of ASM CpGs and 

percentage of ASM CpGs among all covered CpGs. An overall rank was calculated using the geometric 

mean of these two ranks. ASM DMRs dictated by multiple index SNPs were ranked by the top-scoring 

SNP. ASM calling and ranking were performed using R and Stata 15. We used the GeneImprint database 

to flag and exclude from downstream analyses all ASM DMRs that mapped within 150Kb windows 

centered on the transcription starting site of all known high confidence imprinted genes, including in this 

list the VTRNA2-1 gene, which we have previously shown to be subject to parental imprinting in trio 

samples [35] and which showed frequent allele switching in normal samples in the current dataset, 

consistent with imprinting (Table S4). 

Lastly, although varying levels of non-CpG methylation (mCH) have been observed in human 

and mouse tissues, and this non-canonical methylation appears to have unique sub-chromosomal 
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distributions and biological functions [57], for clarity the current report is focused only on ASM affecting 

classical CpG methylation. Nonetheless, giving confidence in our dataset, we found mCH to be higher in 

the purified cerebral cortical neurons, (2.4% +/- 0.9%, N=16) than in the non-neuronal samples (0.47% 

+/- 0.54%, N=43), which is consistent with findings from another laboratory [58, 59]. 

Targeted bisulfite sequencing (bis-seq) for validations of ASM 

Targeted bis-seq was utilized for validation of ASM regions. PCR primers were designed in MethPrimer 

[55], and PCR products from bisulfite-converted DNA samples were generated on a Fluidigm 

AccessArray system as described previously [8], followed by sequencing on an Illumina MiSeq. PCRs 

were performed in triplicate and pooled to ensure sequence complexity. ASM was assessed when the 

depth of coverage was at least 100 reads per allele. While the absolute differences between methylation of 

the two alleles are not exaggerated by deep sequencing, the p-values for these differences tend to zero as 

the number of reads increases. Therefore, to avoid artificially low p-values, we carried out bootstrapping 

(1000 random samplings, 50 reads per allele), followed by Wilcoxon tests for significance. Samplings and 

bootstrapping were performed using R. The tested ASM loci and amplicon coordinates are in Table S6. 

Annotation and enrichment analysis of ASM loci 

To annotate ASM and informative SNPs, we defined small (1000 bp) and large (150 kb) windows 

centered on each index SNP. The small windows were used to assess mechanistic hypotheses involving 

local sequence elements and chromatin states and the large windows were used for functional annotation 

(genes and GWAS associated SNPs). We used BedTools to intersect the genomic coordinates of ASM 

windows to the coordinates of the annotation sets. From the UCSC Genome Browser (GRCh37 assembly) 

we downloaded RefSeq annotations, DNase hypersensitive sites, TF peaks by ChIP-seq, and chromatin 

state segmentation by HMM in ENCODE cell lines[60]. We allowed multiple chromatin states at a single 

location when different states were present in different cell lines. Distances between ASM loci and genes 

were calculated from the transcription start sites. Regulome scores were downloaded from RegulomeDB 

[41]. For each relevant feature, enrichment among ASM index SNPs compared to the genome-wide set of 
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nformative SNPs (SNPs that were adequately covered and heterozygous in at least 2 samples) was tested 

using bivariate logistic regressions. To compare characteristics of ASM observed only in cancer samples 

(“cancer-only ASM”) vs ASM observed in at least one non-cancer sample (“normal ASM”), these 

analyses were stratified by cancer status. To assess enrichment for chromatin states among ASM loci that 

were found only in cancers or only in non-cancer samples, with the occurrences divided into subsets 

according to the direction of the change in methylation in the cancers compared to cell lineage-matched 

normal samples, we used the same approach but considering only the sets of heterozygous SNPs 

informative in both myelomas and B cells, or lymphomas and B cells, or GBMs and glia. To compare the 

regulatory features of ASM to those of other allele-specific marks, we performed similar analyses for 

enrichment of ASM index SNPs in the sets of publicly available eQTLs [53] and ASB SNPs [38, 61] that 

were informative in our dataset. 

Tests for correlations of ASM with SNPs in TF and CTCF binding sites 

To test for correlations of ASM with destructive SNPs in TF binding motifs, we used position weight 

matrices (PWMs) of TF motifs from ENCODE ChIP-seq data [21, 33], as well as PWMs from the 

JASPAR database [36, 53]. We scored allele specific binding affinity at each index SNP using the atSNP 

R package [39], which computes the B-H corrected p-values (i.e. q-values) of the affinity scores for each 

allele and q-value of the affinity score differences between alleles. Motifs that contained SNPs affecting 

allele specific TF binding affinity were defined as motifs with a significant difference in binding affinity 

scores of the two alleles (q-value<0.05) and a significant binding affinity score in at least one allele (p-

value<0.005).  For each TF occurrence, the binding scores per allele were estimated using PWM scores 

calculated as described in our earlier study [8]. In addition, among the ASM index SNPs, we specifically 

annotated TF binding motifs that overlapped with cognate TF ChIP-seq peaks based on ENCODE 

data[60]. For each motif, we used data from Kheradpour and Kellis [21, 33] to define the cognate TF 

peaks, required a 10-fold enrichment of the motif among ASM loci compared to background, and filtered 

out TF peaks with less than 10 occurrences of the tested motif among ASM loci. 
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To test whether ASM index SNPs are enriched in variants that disrupt polymorphic TF binding 

motifs, we used logistic regressions to calculate O.R.s for each disrupted polymorphic motif. Enrichment 

was defined as an O.R.>1.5 and B-H corrected p-value <0.05. Since computing resources required to run 

atSNP for >2 million SNPs and > 2000 TF motifs are extremely large, we random sampled 40,000 non-

ASM informative SNPs (1:3 ASM vs non-ASM SNP ratio) to estimate the random expectation of each 

TF motif occurrence. To test whether the disruption of TF binding sites could be a mechanism of ASM, 

we correlated the difference in PWM scores between alleles of each occurrence of a given TF motif 

disrupted by an ASM index SNP to the differences in methylation levels between the two alleles, using 

linear regression. Only TF motifs with more than 10 disrupted occurrences in ASM regions were 

analyzed. For index SNPs showing ASM in multiple samples, we used the average methylation difference 

between the two alleles. For each TF motif, a significant correlation of ASM with predicted TF binding 

affinity differences between the two alleles was defined as FDR<0.05 and R2 >0.4.  

To ask whether the correlations between ASM and predicted TF binding affinity differences 

between alleles might be similar for ASM loci found only in cancers compared to ASM loci that were 

observed in at least one normal sample, and to ask this same question for chromatin desert ASM vs non-

desert ASM regions, we used a multivariate mixed model with random slope and intercept, with pooling 

of TF motifs to reach sufficient power (number of occurrences used for the regression). TF motifs with 

less than 10 occurrences total, or less than 3 occurrences in any ASM class, were filtered out. TF motifs 

included in the final mixed models for the four classes of ASM loci were pre-selected from the bivariate 

model (performed without distinction of ASM class; requiring FDR<0.05 and R2 >0.4). To not bias the 

analysis toward TF motifs without any ASM class effect (which might be overrepresented in the set of 

significant TF motifs identified in the bivariate analyses), we also screened each TF motif, including 

CTCF motifs, using separated multivariate linear fixed models to include any motifs showing no 

correlation overall but a correlation trend only in one of the ASM classes (FDR<0.05 for at least one of 

the ASM classes, multivariate model adjusted R2>0.4). 
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We defined chromatin deserts as 1 kb genomic windows, centered on ASM index SNPs, which 

contained no DNAse peaks or only one DNAse peak among the 122 ENCODE cell lines and tissues, and 

no strong active promoter/enhancer, poised, or insulator chromatin state in any ENCODE sample. The 

multivariate mixed model accounts for both intra- and inter-TF motif error terms and includes the 

predicted TF binding affinity difference, either for two classes of ASM loci (non-cancer ASM and cancer 

ASM ) or 4 classes of ASM loci (non-cancer ASM in non-desert regions, non-cancer ASM in desert 

regions, cancer ASM in non-desert regions, and cancer ASM in desert regions), the interaction between 

ASM class and binding affinity as fixed explanatory covariates for the methylation difference, and the TF 

motif as a random covariate. Marginal effects from predictions of the mixed model and Bonferroni-

corrected p-values were then computed to compare the correlation between ASM classes. The variation 

due to the TF motif was considered as a random effect, under the assumption that each TF motif might 

have a different intercept and slope. The interaction terms reflect the difference in the methylation to 

binding affinity correlation between each ASM class compared to the reference class, which we defined 

as non-cancer ASM for the 2-calss analysis and non-cancer ASM in non-desert region for the 4-class 

analysis. Analysis after excluding ASM loci that showed switching behavior gave similar results. TF 

motifs with significant correlations of disruptive SNPs with ASM for at least one of the 2 or 4 ASM 

classes (FDR <0.05 and R2 >0.4) were then pooled to be tested in the final mixed model, such that the 

model was run using a total of 178 TF motifs with 16,609 motif occurrences disrupted by 3,394 ASM 

SNPs for the 2 ASM-class analysis and a total of 62 TF motifs with 10,709 motif occurrences disrupted 

by 1,967 ASM SNPs for the 4 ASM-class analysis. To assess ASB in the GM12878 cell line, ChiP-seq 

data for 154 TFs available for this cell line were downloaded from ENCODE.  For each TF, SNP 

genotyping and allele specific read count were performed using the ChiP-seq alignment data for the set of 

high confidence ASM SNPs found in our GM12878 data and compared to data from WGBS. ASB SNPs 

were defined as SNPs showing homozygous genotype in the ChiP-seq data (but heterozygous in WGBS) 

with a significant allele-specific occupancy bias (FDR <0.05, Fisher exact test). All analyses were 

performed using R and STATA statistical software. 
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Associations of ASM with GWAS peaks 

GWAS traits and associated supra and subthreshold SNPs (p<10-6) were downloaded from the NHGRI 

GWAS catalog [41]. We defined haplotype blocks using 1000 Genomes phase 3 data [62] based on the 

method of Gabriel et al. for scoring linkage disequilibrium (LD) with emphasis on D-prime values [44] in 

PLINK [63]. To identify GWAS peaks in moderate LD with ASM index SNPs, we used relaxed criteria 

of D-prime confidence intervals (0.60-0.84) and historical recombination (0.55) but set the maximum 

haplotype block size at 200 kb to minimize large block calling in genomic regions lacking haplotype 

block structure. The blocks so defined have a median size of 46 kb. To identify ASM SNPs in strong LD 

with GWAS peak SNPs, we utilized the default parameters of Gabriel et al. for haplotype block calling 

[44]. The blocks so defined have a much smaller median size of 5 kb. Finally, we computed pairwise R2 

between our ASM SNPs and all GWAS SNPs within 200kb.  SNPs with high R2 represent a subtype of 

SNPs in high LD where not only a non-random association (high D’) is observed but where these SNPs 

can essentially be considered as proxies of each other. Statistical association between a GWAS SNP and 

trait can be directly imputed to any SNPs with very high R2, so such SNPs are obvious candidates for 

post-GWAS analyses. However, SNPs showing high D’ but low R2 with the GWAS SNP (which occurs 

when a rare SNP is in high LD with a more frequent SNP) might also contribute biologically to disease 

associations. We annotated each ASM index SNP for localization within these haplotype blocks, and for 

precise co-localization with a GWAS peak SNP or high R2 (>0.8), and tested for enrichment of ASM 

SNPs within these blocks, as well as among GWAS peak SNPs, using the same approach as described 

above for other genomic features.  
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Table 1. Enrichment analysis for mechanistically relevant features reveals similarities between 

normal and cancer ASM. 

Parameters are listed in descending order of enrichment odds ratio among ASM loci found in normal 

samples. N refers to the numbers of ASM index SNPs. 

Parameter 

Normal ASM 
a
 

(N=9,667) 

O.R. (p-value) 

Cancer ASM 
b
 

(N=3,543) 

O.R. (p-value) 

Enrichment/depletion 

in same direction in 

cancer vs normal ASM 

Enrichment 

strength in 

cancer/normal 

(p-value) 

ASM SNP is ASB SNP 16.5 (< 10
-999

) 5.3 (3x10
-31

) YES: enriched 0.34 (7x10
-13

) 

ASB SNP within 1kb 8.2 (< 10
-999

)  3.3 (9x10
-46

) YES: enriched 0.42 (2x10
-21

) 

enriched poly. motif OR >4
c
 5.7 (< 10

-999
) 1.7 (2x10

-42
) YES: enriched 0.46 (2x10

-39
) 

poised promoter 5.4 (< 10
-999

) 5.8 (< 10
-999

) YES: enriched 1.1 (3.7x10
-02

) 

weak promoter 4.9 (< 10
-999

) 3.7 (4x10
-272

)  YES: enriched 0.77 (4x10
-10

)  

active promoter 4.3 (< 10
-999

) 4.2 (2x10
-228

) YES: enriched 0.97 (6x10
-01

) 

correlated poly. motif 
c
 4.0 (< 10

-999
) 0.87 (2x 10

-02
) NO 0.35 (1x10

-59
) 

enriched poly. motif OR >2
c
 3.9 (< 10

-999
) 1.5 (3x10

-27
) YES: enriched 0.47 (5x10

-68
) 

weak/poised enhancer 3.0 (< 10
-999

) 1.6 (6x10
-43

) YES: enriched 0.53 (3x10
-55

) 

any polymorphic motif  2.7 (3x10
-92

) 0.87 (2x10
-03

) NO 0.48 (2x10
-39

) 

repetitive 2.3 (2x10
-74

) 1.8 (6x10
-13

) YES: enriched 0.79 (2x10
-02

) 

strong enhancer 2.2 (2x10
-296

) 1.4 (1.3x10
-16

) YES: enriched 0.63 (4x10
-21

) 

insulator 2.2 (7x10
-195

) 1.4 (6x10
-14

) YES: enriched 0.67 (3x10
-13

) 

ASM SNP is eQTL SNP 2.2 (4x10
-78

) 1.9 (1x10
-17

) YES: enriched 0.86 (7x10
-02

) 

polycomb repressed 2.0 (1x10
-263

) 1.9 (3x10
-77

) YES: enriched 0.92 (4x10
-02

) 

GWAS peak precise overlap 2.0 (5x10
-22

) 2.1 (5x10
-11

) YES: enriched 1.1 (7x10
-01

) 

GWAS peak rsq>0.8 1.5 (2x10
-29

) 1.4 (1x10
-09

) YES: enriched 0.96 (6x10
-01

) 

Txn state 1.3 (1x10
-41

) 1.0 (8x10
-01

) Weak 0.74 (3x10
-13

) 

Heterochromatin 
d
 0.82 (1x10

-12
) 1.0 (5x10

-01
) Weak 1.2 (4x10

-04
) 

quiescent chromatin 0.23 (2x10-
224

) 0.53 (5x10
-33

) YES: depleted 2.2 (4x10-
31

) 

chromatin desert 
e
 0.12 (<10

-999
) 0.48 (1x10

-71
) YES: depleted 3.6 (3x10-

114
) 

a “Normal ASM” refers to ASM in at least one non-cancer sample, allowing ASM in cancer samples.  

b “Cancer ASM” refers to ASM present in one or more cancer samples (including the GM12878 LCL), but not in any normal 
sample. 

c Enriched and correlated motifs determined on the complete set of ASM SNPs; includes ENCODE discovery motifs (_disc)  

d Heterochromatin in at least one cell lines and no other states in other cells 

e Chromatin desert defined in Methods. 
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Figure Legends 

Figure 1. ASM is increased in cancers and the increase correlates with global DNA 

hypomethylation.  

A, Violin plots showing the percentage of index SNPs showing ASM among the sets of informative SNPs 

(heterozygous) in each sample. The frequency of ASM is significantly higher in the cancers and 

lymphoblastoid cell line (LCL) compared to non-neoplastic cells/tissues. N indicates the number of 

samples. For uniformity in this analysis, only WGBS samples (not SureSelect) are shown. *The 

GM12878 LCL is grouped with the cancer samples. B, Relationship between global DNA methylation 

and the percentage of informative SNPs that reveal ASM in each sample, showing a significant inverse 

correlation between per sample ASM frequencies and global methylation levels. Cancer samples are 

color-coded in red scale and non-cancer samples in blue scale. **mammary epithelial cell lines (N=3) and 

epithelium-rich normal breast tissue (N=2). 

Figure 2. Gains of ASM in cancers due to widespread allele-specific LOM 

A, Schematic showing the average configurations for allelic methylation levels in non-cancer and cancer 

samples at loci where ASM was observed only in cancer. Cancer samples were compared to the relevant 

non-cancer cell types (B cells for myeloma and lymphoma; glia for glioblastoma). Average fractional 

methylation was estimated using a linear mixed model with random intercept and random slope 

(Methods). For each sample type, the squares represent the model estimate of the average fractional 

methylation in the low and high methylated alleles. B, Specific examples showing primary WGBS data. 

For the three types of cancers, the most frequent situation is an allele-specific LOM occurring in the 

cancers at loci that are highly methylated in the lineage-matched normal cell types. Rows are bisulfite 

sequence reads separated by REF and ALT allele. Methylated CpGs are black and unmethylated CpGs are 

white.  C, Bar graphs showing distribution of net methylation in normal B-cells (left) and glia (right) 

grouped into 3 classes (low, intermediate and high methylation) at all informative CpGs (which reflects 

the random expectation) and at CpGs where ASM was observed in the cancer samples but not in the cell 
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lineage-matched non-cancer samples. While allele-specific LOM in cancer numerically accounts for most 

instances of cancer-only ASM (black bars; high methylation in the normal samples), relative to the 

background of global hypomethylation in the cancers it in fact occurs less often than random expectation. 

In contrast, the smaller group of loci that have GOM leading to cancer-only ASM (white bars; low 

methylation in the normal samples) represent a significant enrichment over random expectation, given the 

globally hypomethylated genomic background of the cancers. 

Figure 3. Gains of ASM in cancers due to allele-specific GOM at loci in poised chromatin 

A, Bar graph showing enrichment in the poised promoter state as defined using ENCODE chromatin state 

segmentation by HMM. Although enrichment in poised promoter state is observed among ASM regions 

in general, this enrichment is dramatically increased among the subset of loci that show allele-specific 

GOM in cancers compared to cell lineage-matched non-neoplastic samples. B, Map of the FOXB1 locus 

showing an example of allele-specific GOM in multiple myeloma overlapping a CpG-island region with a 

poised promoter chromatin state (color coded purple). Methylation differences between alleles (index 

SNP rs62013139) are shown as a genome browser track and as WGBS reads for CD138+ multiple 

myeloma cells from a bone marrow aspirate, which show strong ASM with hypermethylation of the REF 

allele, and a paired peripheral blood non-neoplastic B cell sample from the same patient, which shows 

very weak ASM with slight hypermethylation of the ALT allele. Absence of circulating myeloma cells in 

the paired B cell sample was verified by cytopathology and by the absence of DNA copy number 

aberrations that were seen in the multiple myeloma. 

Figure 4. ASM is driven by allele specific CTCF and TF binding in both normal and neoplastic cells 

A, XY plots showing examples of TF motifs with strong correlations between predicted allele-specific 

binding site affinities (estimated by PWM scores) and methylation differences across all occurrences 

showing ASM. These examples are among 179 significantly correlated motifs, listed in Table S8. Each 

data point represents one occurrence of the motif overlapping an ASM index SNP in cancer (orange) or 

non-cancer samples (blue). For occurrences showing ASM in multiple samples, allelic methylation 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 1, 2019. ; https://doi.org/10.1101/815605doi: bioRxiv preprint 

https://doi.org/10.1101/815605
http://creativecommons.org/licenses/by-nc-nd/4.0/


43 
 

differences were averaged across samples by sample type.  R2 and B-H corrected p-values (FDR) were 

calculated using linear regression. B, A large majority of the polymorphic motifs with significant 

correlations between allelic methylation and predicted binding affinities are also statistically enriched 

among ASM regions (Table S9). The heatmap shows the enrichment or depletion, in log2(O.R.), for the 

top 20 enriched TF binding motifs among cancer or non-cancer ASM loci in regions defined as chromatin 

desert or non-desert (Methods). C, Graphs showing significant correlations between allelic TF binding 

affinity scores and ASM in each of the 4 classes of ASM loci. The left panel shows the fitted ASM 

difference on PWM score using a multivariate mixed model. The fitted line and its 95-confidence 

intervals (area) are shown for each ASM class; slopes were calculated by the marginal effects of the 

interaction term between PWM score and ASM class and were significantly different from zero. The 

correlations are similar in cancer ASM (in both non-desert and desert) compared to non-cancer ASM, 

with small differences in the slopes for each class. D, Pairwise comparisons of the correlations in each of 

the 4 classes of ASM loci, Bonferroni-adjusted for multiple testing. While all the slopes are in a similar 

range, the correlations in the mixed model are weakest for cancer-only ASM loci, with a modest but 

statistically significant difference between the cancer vs non-cancer ASM classes, but not between desert 

and non-desert ASM loci. N: number of occurrences included in the mixed model. 

Figure 5. Increased allele switching at ASM loci in cancers 

A, Map of the ASM region tagged by index SNP rs11864188 in the PKD1L3 gene. The ASM shows 

switching with the ALT allele being hyper-methylated in the FL but with an opposite direction of the 

allelic methylation bias in the DLBCL. No ASM was detected in 23 non-cancer heterozygous samples. 

The rs11864188 SNP disrupts multiple TF motifs, some of which have opposite allele-specific predicted 

affinity differences. These motifs include MYC and ABF1 motifs with a higher affinity on the ALT allele 

and RXRA and NR4A2 motifs with a higher affinity on the REF allele. B, Frequency of switching, scored 

for ASM index SNPs that were heterozygous in at least 2 samples, is increased among cancer-only ASM 

loci (43%) compared to normal ASM loci (10%). As an internal control, informative SNPs mapping to 
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known imprinted regions showed 57% switching, approximating the expected 50% based on parent-of-

origin dependent ASM. C, Enrichment analyses of polymorphic CTCF and TF binding motifs among 

switching vs non-switching ASM loci: in the left panel, polymorphic motifs with very strong correlations 

between ASM magnitude and affinity score differences are found to be depleted among switching 

compared to non-switching ASM loci. In the right panel, polymorphic TF motifs enriched among ASM 

but with little or no correlations of predicted binding affinity with ASM magnitude showed little or no 

depletion among switching ASM loci. The dotted vertical lines show the average values for depletion for 

each set of motifs. 

Figure 6. Examples of ASM index SNPs in strong LD or coinciding with GWAS peaks 

A, Map of the ASM DMR tagged by index SNP rs4487645, which coincides with a GWAS peak SNP for 

multiple myeloma (p=3.0x10-14; O.R.=1.38) and AL amyloidosis (p=2.0x10-9; O.R.=1.35). The ASM 

index SNP is in an enhancer region (yellow-coded chromatin state; GM12878 track) of the DNAH11 gene 

on chromosome 7. This SNP disrupts a PAX5 TF binding motif on the ALT allele. The REF allele, with 

intact high-affinity motif, is relatively hypomethylated, as predicted by the TF binding site occupancy 

model. B, Map of the ASM region tagged by index SNP rs2664280, which is in strong LD with GWAS 

peak SNPs rs2675662 for psoriasis (p=3.0x10-8; O.R.=1.14) and rs2633310 for T2D (p=2.0x10-8; Beta=-

.044). The ASM index SNP is in an enhancer region (yellow-coded chromatin state; GM12878) in the 

CAMK2G gene on chromosome 10. This SNP disrupts several AP1 binding motifs (JUNB shown) on the 

ALT allele, with higher binding affinity on the REF allele, which is relatively hypomethylated as 

predicted. C, Map of the ASM DMRs tagged by the rs2853677 and rs6420020 index SNPs in the TERT 

gene on chromosome 5. The DMRs are in chromatin that is quiescent/repressed in most ENCODE 

samples (light and dark gray coded chromatin state; K562 track), but this region is transcribed in 

undifferentiated H1-hESC. ASM for these DMRs was found only in cancer samples (GBMs). The index 

SNP rs2853677 is a GWAS peak SNP for non-small cell lung cancer and benign prostatic hyperplasia 

(p<10-999; O.R.=1.41 and p=2.0x10-22; O.R.=1.12 respectively). The other ASM index SNP, rs6420020 
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(Table S2) is in LD with GWAS peak SNPs for GBM (p=6.0x10-24; O.R.=1.68), breast carcinoma 

(p=3.0x10-8; O.R.=1.07), and chronic lymphocytic leukemia (p=6.0x10-10; O.R.=1.18). ASM allele 

switching is seen at rs6420020; candidate polymorphic TF binding motifs are in Table S2. D, Map of the 

ASM DMR tagged by a closely spaced group of SNPs, rs114627468, rs9357065, rs1225618 and 

rs1150668, in the promoter region of the ZNF192P1 pseudogene, closely flanked by coding genes in the 

ZSCAN family, on chromosome 6. ASM index SNP rs1150668 is a GWAS peak SNP for body height 

(p=2.0x10-7; Beta=-.060), smoking status (p=6.0x10-15; Beta=-.0086), smoking behavior (p=3.0x10-8; 

Beta=+.011), myopia (p=1.0x10-11; Beta=+6.78), and schizophrenia with autism spectrum disorder 

(p=8.0x10-11; O.R.=1.07). In addition, the 4 ASM index SNPs are in a stringently defined haplotype block 

containing GWAS peak SNP rs62620225, for multiple phenotypes including wellbeing spectrum 

(p=6x10-12; Beta=0.023). ASM in this DMR was observed in multiple tissues, including brain. The ASM 

index SNP rs1225618 is as an ASB SNP for TAF1; other ASM-correlated motifs disrupted by the index 

SNPs are in Table S12.  Additional examples of disease-linked ASM loci are in Figures S6-S8, S21, and 

S22. 

Figure 7. ASM loci displayed as annotated genome browser tracks 

Track of high confidence ASM are provided in UCSC browser format (see Availability of Data). The 

detailed bed file is provided as supplemental data and can be uploaded to the UCSC Genome Browser. 

ASM is color coded in blue scale for negative direction ASM (hypomethylation of ALT allele compared 

to REF allele on average across all ASM samples) and positive direction ASM in red scale 

(hypermethylation of ALT allele compared to REF allele). Information about the index ASM SNP is 

displayed by clicking on the SNP (box). Reported information includes sample-aggregated information on 

the ASM-DMR and the index SNP, sample-specific information on ASM strength (p-value and 

methylation difference), the two classes of polymorphic motifs disrupted by the index SNP (i.e. enriched 

among ASM and/or with binding affinity-methylation correlation ). Motif logo and sequences of the 2 
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alleles at the motif occurrences, generated using atSNP, are displayed by clicking on the motif name. 

Additional annotations of ASM index SNPs are in Table S2. 

Supplemental Figure Legends 

Figure S1. Flow charts of computational and analytical approaches in this study. 

A, Steps for ASM calling and ranking, including ASM definition and criteria (See Methods). Our ASM 

definition combines both individual CpG and DMR-wide (multiple CpG) criteria. B, Analytical pipeline 

for post-calling annotation and analyses to test ASM mechanisms, comparing ASM sub-classes (cancer vs 

non-cancer; desert vs non-desert), and overlaying that information with public GWAS data to nominate 

disease associated rSNPs. 

Figure S2. Summary of sample types and numbers and yield of informative SNPs 

A, Summary of samples sequenced by Agilent and WGBS. Additional information is provided in Table 

S1. Since our high confidence ASM set required ASM in at least 2 samples, the final informative SNP set 

used for downstream analyses corresponds to the 2,263,262 SNPs that were informative in at least 2 

samples. The Venn diagrams are diagrammatic, not drawn to scale. B, Map of a region of chromosome 

20, showing an increased yield of ASM SNPs in WGBS compared to SureSelect, as expected based on 

genomic coverage, with consistent findings in regions covered by both methods. 

Figure S3. PCA of the WGBS and SureSelect methyl-seq data and overlap between ASM loci 

detected by the two methods 

A, PCA performed using net methylation values of CpGs on chromosome 20. Only CpGs informative 

(>10X) in both Agilent SureSelect and WGBS were used. The PCA shows clear clustering by cell/tissue 

and cancer type. Similar results were found using methylation data from other autosomes. B, Pie chart 

showing the proportion of high confidence ASM SNPs found in more than two biological samples, 

identified by WGBS and by SureSelect methyl-seq. Numbers of ASM SNPs are in parenthesis. C, Venn 

diagram showing a cross-platform comparison, with the percentage of high confidence ASM index SNPs 
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that were identified in both assays. Only SNPs informative in both assays (adequate sequence coverage 

and heterozygous genotype calls) were considered for this comparison. 

Figure S4. Distribution of ASM shows a high proportion of rare or private ASM in both cancer and 

normal samples and a significant increase in per-sample ASM in the cancers.  

A, Most of the ASM calls were found only in 1 sample. While many might be genuine ASM associated 

with rare SNPs or with inter-individual variability, all downstream analyses in the current study are 

focused on recurrent ASM detected in at least 2 samples (13,210 ASM index SNPs). B and C, 

Approximately one third of the ASM DMRs were identified only in cancer samples (referred to here as 

“cancer-only ASM”). Given that our study included more non-cancer than cancer samples, this high 

proportion of ASM SNPs found only in the cancers is significantly increased compared to random 

expectation. 

Figure S5. Example of a chromosome region illustrating consistency between SureSelect methyl-

seq, WGBS, and targeted bisulfite sequencing 

A, Map of the region on chromosome 20 containing the ASM index SNP rs2427290. When covered in 

both SureSelect and WGBS, the net methylation is consistent between both assays, and shows low 

methylation “wells” at CpG islands, as expected. ASM dictated by index SNP rs2427290 is detected in 

both assays, with additional ASM SNPs found by WGBS, as expected. B, Primary sequencing data from 

WGBS, Agilent SureSelect methyl-seq, and targeted bis-seq, showing consistent findings of ASM in T 

cell samples. Rows represent sequence reads, and columns CpG sites in these reads. All samples are 

heterozygous, and the reads are separated by allele. Methylated CpGs are black circles, and unmethylated 

CpGs are white circles. 
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Figure S6. Validations of ASM DMRs in disease-associated chromosomal regions: rs1041163 and 

multiple sclerosis 

A, Map showing the ASM region associated with rs1041163 in a putative tissue-specific 

promoter/enhancer region of the CCDC155 gene, downstream of the DKKL1 gene on chromosome 19. 

ENCODE chromatin state tracks suggest dynamic regulation, with active or quiescent marks depending 

on the cell type. Bisulfite PCR amplicons were designed to overlap the ASM and flanking SNPs, and to 

include at least 3 CpGs. The SNP is in high LD and R2 (R2 =0.98) with the rs2303759 GWAS peak SNP 

associated with multiple sclerosis, and another amplicon was designed to assess possible ASM at this 

position (which did not show ASM in our genome-wide data). The ASM index SNP disrupts an EGR1 TF 

binding motif and a weak EGR1 ChIP-seq peak found in K562 cells, supporting rs1041163 as a bona fide 

regulatory SNP. B, Targeted bis-seq reads, validating a discrete ASM regions (amplicon 2 and part of 

amplicon 3) spanning ~700 bp in T cells and brain. Number of ASM samples, informative tissue types 

and additional annotations are in Table S2. The targeted bis-seq showed no evidence of ASM at the 

GWAS peak SNP, as expected. Rows represent sequence reads, and columns CpG sites in these reads. All 

samples are heterozygous, and the reads are separated by allele. Methylated CpGs are black circles, and 

unmethylated CpGs are white circles. 

Figure S7. Validation of ASM DMRs in disease-associated chromosomal regions: rs2427290 and 

colorectal cancer 

A, Map showing the ASM region tagged by SNP rs2427290 in the LAMA5 gene on chromosome 20. The 

same region is shown, for a different purpose, in Figure S5. This region has an active promoter state 

(color-coded red) in the GM12878 LCL but is in a Txn state (coded green) without promoter 

characteristics in other ENCODE cell lines. The ASM index SNP is in moderate LD (lenient haplotype 

block; D'=0.8) with GWAS peak SNP rs4925386 associated with colorectal cancer. The ASM index SNP 

is in a region of open chromatin (DNAse hypersensitivity) and disrupts an ENCODE discovery motif for 

CCNT2 TF binding. The relatively hypomethylated allele is the one with the higher predicted CCNT2 
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binding affinity. B, Targeted bis-seq reads validating a discrete ASM regions (amplicon 2) spanning ~400 

bp in T cells and colonic mucosa. ASM is not found at the GWAS peak SNP. Numbers of ASM samples 

in each cell and tissue type, and additional annotations, are in Table S2. Rows represent sequence reads, 

and columns CpG sites in these reads. All samples are heterozygous, and the reads are separated by allele. 

Methylated CpGs are black circles, and unmethylated CpGs are white circles. 

Figure S8. Validation of ASM DMRs in disease-associated chromosomal regions: rs2283639 and 

non-small cell lung carcinoma 

A, Map showing the ASM region tagged by index SNP rs2283639, located in an enhancer region (color-

coded in yellow) located immediately upstream of the promoter of the ETS2 gene on chromosome 21. 

The SNP is in partial LD (lenient haplotype block; D'=.96) with GWAS peak SNP rs1209950, associated 

with survival after treatment of non-small cell lung carcinoma. The ASM index SNP disrupts an 

ENCODE-discovery motif for SMC3 (cohesion complex component), and it co-localizes with a CTCF 

ChIP-seq peak and a and weak SMC3 ChIP-seq peak. Three amplicons were designed for targeted bis-seq 

of the ASM region.  B, Graphical representation of the targeted bis-seq results, validating a discrete ASM 

regions (amplicon 2) spanning ~600 bp in T cells and lung. The relatively hypomethylated allele is the 

one with higher predicted SMC3 binding affinity. Numbers of ASM samples in each tissue and cell type, 

and additional annotations, are in Table S2. Rows represent sequence reads, and columns CpG sites in 

these reads. All samples are heterozygous, and the reads are separated by allele. Methylated CpGs are 

black circles, and unmethylated CpGs are white circles. 

Figure S9. Validations of ASM DMRs spanning a range of ASM ranks 

Targeted bis-seq showing validation of additional ASM regions (others in Figures S6-S8), with ASM 

index SNPs that have high, middle or low overall ranks. The results of all validations are summarized in 

Table S6. Rows represent sequence reads, and columns CpG sites in these reads. All samples are 

heterozygous, and the reads are separated by allele. Methylated CpGs are black circles, and unmethylated 

CpGs are white circles. In each illustrated case, the relatively hypermethylated allele (REF or ALT) in the 
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targeted bis-seq data is consistent with the relatively hypermethylated allele detected in the primary 

SureSelect or WGBS data (Table S2). 

Figure S10. Kernel density plots of methylation levels showing global hypomethylation and 

decrease in the percentage of high methylated CpGs in cancers 

Distribution of the averaged percentage of net methylation genome wide for all informative CpGs in 

cancer and lineage matched normal samples, by Kernel density estimation. CpG methylation has a 

bimodal distribution with a large major mode at the high methylated CpGs (>80%) and a weak minor 

mode at the low methylated CpGs (<5% methylation) in the 2 non-neoplastic cell type (B cells and glia). 

In multiple myeloma and lymphoma, a strong global hypomethylation with the loss of the high 

methylated CpGs peak is observed. Hypomethylation is present, but milder, in GBMs. 

Figure S11. Allele-specific losses of methylation leading to ASM in cancers 

Graphs showing the fitted values of the percentage methylation in cancer (red) for myeloma, lymphoma 

and glioblastoma versus the lineage-matched non-neoplastic cell types (B cells for myeloma and 

lymphoma and glia for glioblastoma) for regions where ASM was found only in cancer. In non-neoplastic 

cells, on average, the methylation levels in these regions were high or intermediate on both alleles and 

ASM in cancer reflects losses of methylation on one of the alleles. The average fractional methylation 

was estimated using a linear mixed model with random intercept and random slope (Methods). The light 

lines represent the fitted values for each locus and the bold line the average fit. The slope between low 

and high methylation estimates the ASM magnitude. The non-significant and small slope in non-

neoplastic cells reflects the absence of significant ASM in these regions. 

Figure S12. Kernel density plots of methylation level distributions showing statistically enriched 

instances of allele-specific gains of methylation leading to ASM in cancers. 

These Kernel density plots show the distribution of methylation values in non-neoplastic cells comparing 

methylation at loci where ASM was found neither in the non-neoplastic cells nor in the matched cancer 
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samples vs loci where ASM was found only in the matched cancer. These graphs show that allele-specific 

loss of methylation (LOM), which represents the most common scenario for cancer-only ASM, is under-

represented compared to random expectation in the globally hypomethylated genomic background, while 

the less frequent allelic-specific gains of methylation (GOM) are over-represented relative to this 

background. As shown in Figure 3, these instances of GOM in the cancers often map to regions of poised 

chromatin. 

Figure S13. Shared ASM loci in cancer and non-cancer have similar ASM magnitude 

Graphs and diagrams showing the fitted values of the average percent methylation of the low and high 

methylated alleles in cancer (RED) for multiple myeloma (MM), lymphoma, and glioblastoma 

multiforme (GBM) vs cell lineage-matched non-neoplastic cell types (BLUE), namely B cells for MM 

and lymphoma and glia for GBM, for DMRs where ASM was found both in cancer and non-cancer. The 

average fractional methylation of each allele and in each cancer or normal sample class (middle panels) 

was estimated using a linear mixed model with random intercept and random slope (Methods).On the left 

panels, the light lines represent the fitted values for each locus and the bold line the average fit. The 

slopes between low and high methylated alleles estimate the ASM magnitude and are similar (parallel) in 

cancer and non-cancer samples, with a non-significant statistical interaction between cancer vs normal 

status and ASM magnitude. The right panels show primary WGBS data for representative examples, with 

sequence reads separated by allele. Methylated CpGs are black circles, and unmethylated CpGs are white 

circles.  

Figure S14. Correlations between ASM magnitude and disruption of CTCF motifs by ASM index 

SNPs does not depend on the presence of CpG dinucleotides in the binding motifs 

X-Y plots showing the allelic methylation to binding affinity relationship for the 4 CTCF motifs with a 

significant correlation. Motif occurrences containing at least one CpG site are in green and non-CpG 

containing motifs in orange. No significant difference in the correlation was observed between the 2 

classes of motifs. 
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Figure S15. Correlations between allelic TF binding affinity scores and ASM cancer versus non 

cancer and specific examples of TF binding motifs, showing significant correlations between 

predicted allele-specific binding site affinities and ASM amplitude in both normal and cancer 

samples. 

A, Graphs showing significant correlations between allelic TF binding affinity scores and ASM in each of 

the 2 classes of ASM loci. The left panel shows the fitted ASM difference on PWM score using a 

multivariate mixed model. The fitted line and its 95-confidence intervals (area) are shown for each ASM 

class. The slopes of the fitted lines were calculated by the marginal effects of the interaction term between 

PWM score and ASM class and were significantly different from zero. The correlations are similar in 

cancer ASM compared to non-cancer ASM, with slightly weaker slope in cancer. The right panel shows 

the pairwise comparison of the correlations in each of the 2 classes of ASM loci with a significant 

difference between the cancer vs non-cancer ASM classes. N: number of occurrences included in the 

mixed model. B, These examples were selected requiring at least 3 occurrences per ASM classes. The X-

Y plots show ASM magnitude vs differences in predicted allele-specific binding affinities (PWM scores) 

for the EHF_1, SPI1_3, SPIB_2 and ETV6_1 motifs. All 4 classes of ASM loci show similar anti-

correlations, but there is a slight decrease in the slope for cancer compared to normal ASM. Desert vs 

non-desert classes of ASM loci show essentially identical slopes. Regression lines were not plotted if 

there were less than 3 occurrences within the ASM class (non-cancer/desert for SPIB_2 and cancer/desert 

for ETV6_1) 

Figure S16. Examples of ASM DMRs in chromatin deserts 

A, Map showing the ASM DMR tagged by index SNP rs2272697 in the body of the MANBA gene. 

ENCODE chromatin state data show that this region is marked only by a non-regulatory chromatin state 

(Txn, color-coded green), and the index SNP has a weak regulomeDB score (5), this SNP in fact disrupts 

an ETS1 motif, suggesting that it could have a regulatory role via the ETS1 transcriptional pathway at 

some stage of cellular differentiation. This SNP is in high LD (R2>0.9) with multiple GWAS peak SNPs 
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(rs5026472, rs1054037 and rs7665090) associated lymphocyte count, liver cirrhosis, and multiple 

sclerosis. B, Map showing the ASM DMR tagged by index SNP rs13097644 in the intergenic region 

upstream of the SETMAR gene. This region is flagged as quiescent by ENCODE chromatin state (color-

coded light gray), consistent with the low regulomeDB score (6) for this SNP. However, the index ASM 

SNP disrupts an ASM-correlated Erg TF binding motif, suggesting that rs13097644 might act as a 

regulatory genetic variant at some stage of cell differentiation. 

Figure S17. Models for inter-individual variability and allele-switching at ASM loci  

A, ASM is not present, with high methylation on both alleles, when either the TFBS is not accessible 

(closed chromatin) or the TF is not sufficiently expressed (left panel). For accessible TFBS, the 

magnitude of ASM depends on the level of free TFs (middle panels). When the TF level is low, binding 

occurs on allele A (with high binding affinity) but stochastically in only a subset of DNA molecules. The 

overall proportion of low methylated reads (bound TFBS) reflects the steady state between dissociation 

and binding rates, defined by the concentration of the TF. At the other end of the concentration curve 

(right panel), strongly overexpressed TFs can bind both high and low binding affinity sites, leading to 

protection of both alleles against methylation and a loss of ASM. B, Inter-individual variability and allele-

switching at ASM loci can be explained by a haplotype effects, in which multiple SNPs rather than a 

single SNP, or a dominant SNP in weak LD with the scored index SNP, dictate the ASM. This situation is 

“pseudo-switching”. C, Since most ASM SNPs found in this study can potentially disrupt multiple TF 

motifs, a TF competition model can explain bona fide allele-switching. This model appears to apply more 

often in cancer cells, which show a high frequency of ASM allele-switching in this study and are known 

to frequently over-express oncogenic TFs (e.g. c-MYC; Fig. 5). 

Figure S18. The percentage of ASM loci that show switching behavior in cancers is smaller when 

considering only loci for which ASM is also detected in non-cancer samples  

Graph showing the percentage of switching ASM loci in cancer and non-cancer samples as a function of 

the number of non-cancer samples where ASM is seen. For ASM loci in cancer, the x=0 data point 
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corresponds to the percentage of switching among cancer-only ASM loci, while the subsequent data 

points show a decrease in switching among ASM loci found in both cancer and normal as the number of 

non-cancer samples (in addition to the cancer samples) showing ASM increases. As a comparison, the 

percentage of switching among ASM loci found in non-cancer samples is low and independent of the total 

number of samples showing ASM. This finding supports a working model that postulates two classes of 

binding motifs: one group in which destructive SNPs show strong correlations with ASM, independently 

of the neoplastic cell phenotype, and stably bind their cognate factors, mitigating against allele switching; 

and another group of motifs with more labile TF binding, which are sensitive to global increases in 

chromatin accessibility and changes in intracellular levels of their cognate factors, leading to allele 

switching via “TF competition”. 

Figure S19. Examples of haplotype blocks defined by stringent and lenient parameters 

Example of haplotype blocks on chromosome 5 using the Gabriel et al. approach based on confidence 

interval of D’ values, with stringent (top) and lenient parameter (bottom). The lenient parameters, with 

relaxed D-prime confidence intervals and historical recombination rate (Methods), lead to haplotype 

blocks with larger sizes. Graphs were generated using Haploview using 1000 Genome data. 

Figure S20. Utility of D’ and R-square parameters for assessing candidate disease-associated rSNPs 

Example of D’ (left) and R2 (right) values between GWAS SNP rs710987 and all SNPs within 200 kb. 

The GWAS SNP is in red and ASM SNPs are in blue. The lenient haplotype block borders are shown in 

dashed green. The D’ graph confirms that most of the SNPs within the block (including the ASM SNPs) 

exhibit high D’ with the GWAS SNP and in this regard are in strong LD with it. The R2 graph of the same 

window and SNPs shows that only a small subset of the SNPs in LD also exhibits high R2 values, because 

even among SNPs in perfect LD only those with similar allele frequencies are expected to have high R2 

values. A complete understanding of disease associations, including possible effects of more than one 

rSNP in the same haplotype block, requires extending the identification of rSNPs to those in strong LD 

with the GWAS peak SNP based on D’, even without high R2 values. 
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Figure S21. Additional examples of mechanistically informative disease associated ASM index 

SNPs: autoimmune and neuropsychiatric disorders 

A, Map of the ASM region tagged by index SNP rs6603785 and located in an active enhancer region 

(color coded dark yellow) downstream of the UBE2J2 gene on chromosome 1. ASM was observed in 

multiple blood cell types, including B cells. The ASM index SNP coincides with a GWAS peak SNP, 

associated with SLE (p=9.0x10-6; O.R.=1.11) and hypothyroidism (p=2.0x10-9; O.R. not listed). The SNP 

disrupts a MYC motif, with lower binding affinity and hypermethylation on the ALT allele, as predicted 

by the TF binding site occupancy model. B, Map of the ASM region tagged by index SNP rs2710323 and 

located in an active enhancer region (color coded in dark yellow) in the gene body of ITIH1 on 

chromosome 3. ASM was observed in multiple blood cells, including T cells. The ASM index SNP 

coincides with a supra-threshold GWAS peak SNP for BMI measurements and multiple neuropsychiatric 

phenotypes including feeling nervous measurement, anxiety measurement, schizoaffective disorder, 

schizophrenia, and bipolar disorder (p-values and O.R. or Beta values in Table S12). The SNP disrupts an 

ELF1 motif, with lower binding affinity and higher methylation, as predicted, on the REF allele. 

Figure S22. Additional examples of mechanistically informative disease associated ASM index 

SNPs: breast cancer and lymphoma 

A, Map of the ASM region tagged by index SNP rs61837215 and located in the active promoter region 

(color coded red) of the SEPT7P9 pseudogene (nearest coding gene, ZNF37A) on chromosome 10. ASM 

is observed in multiple myeloma cells and in normal B cells. The index SNP is in strong LD with GWAS 

peak SNP rs2754412 associated with breast cancer (p=6.0x10-7; Beta=+.031). The ASM index SNP 

disrupts an ELF1_2 motif, with lower binding affinity and higher methylation on the REF allele, as 

predicted by the TF binding site occupancy model. B, Map of the ASM region tagged by SNP rs3806624 

and located in a poised promoter region (color coded purple) of the EOMES gene on chromosome 3. 

ASM was observed in DLBCL and in GBM, with allele switching between the two cancer types. The 

ASM index SNP coincides with a GWAS peak SNP for Hodgkin lymphoma (p=1.0x10-12; O.R.=1.26) 
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and is in strong LD with GWAS peak SNP rs9880772 associated with chronic lymphocytic leukemia 

(p=3.0x10-11; O.R.=1.19), as well as with multiple myeloma (Table S11). The SNP disrupts multiple 

motifs, including a BATF motif (lower binding affinity and higher methylation on the ALT allele) and a 

MAZ motif with opposite disruption of the binding affinity (lower binding affinity and higher 

methylation on the REF allele).  

Supplemental Table Legends 

Table S1. Biological samples analyzed in this study 

List of genomic DNA samples sequenced by Agilent SureSelect methyl-seq and by WGBS. Cell/tissue 

type, normal or cancer status, and diagnoses of the cancer patients from which the samples were collected 

are listed. Multiple biological samples from the same subjects can be identified by subject ID. Sequencing 

depth and QC information are also reported.  

Table S2. ASM index SNPs and DMRs identified in this study and annotated for multiple relevant 

parameters 

ASM loci, excluding known imprinted chromosomal regions (Methods), are listed using index SNPs as 

unique identifiers. Thus, some ASM DMRs are listed more than once, when multiple ASM index SNPs 

lie in the same DMR. Information relative to samples with and without ASM are aggregated, with the 

samples listed as concatenated entries. However, information at the single sample level can be retrieved 

from the UCSC-format detailed bed file: 

(https://genome.ucsc.edu/s/TyckoLab/High%20Confidence%20ASM). Relevant annotations were 

selected to characterize ASM SNPs based on their potential regulatory functions and disease associations. 

Briefly, the ASM index SNPs and DMRs are ranked for ASM strength and confidence (Methods), 

annotated using information about chromatin states, TF binding motifs, and allele-specific marks (ASB, 

eQTLs) from public databases, with some parameters being calculated using analytical procedures 
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described in the Methods. ASM index SNPs are also annotated for their haplotype block locations and LD 

with GWAS peak SNPs. 

Table S3. Definitions of the terms in Table S2 

Description and definition of the columns in table S2. The order by row corresponds to the column order. 

Table S4. Imprinted regions with known ASM detected in this study 

ASM DMRs detected within 75 kb of known and validated imprinted genes (i.e. 150 kb windows) was 

considered as likely due to imprinting and was therefore excluded from our downstream analyses but 

listed in this table. The detection of these instances of ASM, with the expected high rate of allele 

switching (due to parent of origin dependence) in imprinted regions serves as a positive internal control 

for the initial steps of the ASM calling pipeline. 

Table S5. New candidate imprinted regions and previously provisional imprinted loci with ASM 

detected in this study 

Table S6. ASM loci tested for validations by targeted bisulfite sequencing 

Primers for bisulfite PCR were designed using MethPrimer, with the resulting amplicons spanning the 

indicated genomic coordinates. 

Table S7. Complete list of polymorphic CTCF and TF binding motifs found to be significantly 

enriched among ASM loci, requiring that the motif be disrupted by the ASM index SNP 

Results are from testing for enrichment of motif occurrences in which the motif is disrupted by the ASM 

index SNP, with a significant difference in affinity score between the two alleles. Significant enrichment 

among ASM loci was defined as FDR<0.05 and OR>2 (no depletion was observed). Background number 

of polymorphic occurrences for each motif (random expectation) was computed by screening a random 

sample of 40,000 occurrences from the list of non-ASM heterozygous (informative) SNPs in our study. 
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Table S8. Complete list of CTCF and TF binding motifs that show significant correlations between 

allelic PWM scores and magnitude of ASM 

Significance was defined as FDR<0.05 and model R2 >0.4. Results from the linear regressions with and 

without controlling for the motif CpG content (when the number of occurrences was >3 in each group) 

are reported.  

Table S9. CTCF and TF binding motifs that show strong correlations of PWM scores with ASM 

and are also significantly enriched among ASM loci. 

Subset of enriched motifs with significant correlation of predicted allele-specific binding affinities with 

ASM magnitude. Results of the enrichment analysis by ASM classes (non-desert-non-neoplastic, desert-

non-neoplastic, non-desert-cancer and non-desert-cancer) are reported. 

Table S10. ASM index SNPs in strong LD or precisely coinciding with GWAS peak SNPs for 

immune-related diseases and phenotypes 

R2 cutoff was set at 0.8. GWAS peak SNPs associated with immune related diseases were identified using 

EFO parent-terms mapped to the GWAS reported traits (provided by the GWAS catalog) with additional 

manual curation. 

Table S11. ASM index SNPs in strong LD or precisely coinciding with GWAS peak SNPs for cancer 

susceptibility 

R2 cutoff was set at 0.8. GWAS peak SNPs associated with cancer susceptibility were identified using 

EFO parent-terms mapped to the GWAS reported traits (provided by the GWAS catalog) with additional 

manual curation. 
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Table S12. ASM index SNPs in strong LD or precisely coinciding with GWAS peak SNPs for brain-

related diseases and phenotypes 

R2 cutoff was set at 0.8. GWAS peak SNPs associated with neuropsychiatric disorders and traits, or with 

neurodegenerative diseases, were identified using EFO parent-terms mapped to the GWAS reported traits 

(provided by the GWAS catalog) with additional manual curation. 
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Figure 6

Multiple myeloma and AL amyloidosis (rs4487645)
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Figure 7
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Figure S1

Identifying and ranking 
ASM DMRs

• BisSNP - default settings with Quality Score recalibration 
• Non-G/A SNP coverage > 5x per allele (total coverage > 

10x)
• Allele B coverage > 20 and < 80 of total coverage
• Filter out false calls : SNPs with multiple alignment, > 2 

alleles with AF>0.01, indels, no AF  (UCSC browser 
annotation of dbSNP147)

• Filter out false calls: SNPs with in HW disequilibrium 
(exact FDR<0.05) and het. freq > expected het. freq
(dbSNP147)

Heterozygous SNP calling

• CpG coverage > 5X
• Filter out CpGs destroyed by common SNPs (> 5% MAF)
• Filter out CpGs within 10 bp of PE read 2 for Nextera

(“fill-in” region) and 7 bp of both reads for TruSeq
• Fisher exact test comparing methylation on allele A vs B 

(p < 0.05)
• Check predicted differences in methylation in AA vs. BB 

homozygotes using an mQTL-like approach

Identification of CpGs with ASM

Sequence alignment to the reference methylome

• BisMark - default settings with PE mode (WGBS, Agilent) 
and SE mode (Agilent unpaired reads after trimming).

Identification & ranking of ASM DMRs

• Estimate DMR border (first and last ASM CpG) and 
count the # of significant CpGs in the DMR

• Compare methylation between alleles across the DMR: 
avg methylation across all covered CpGs between the 
first and last ASM CpG of the same DMR.

• ASM calling : DMR difference > 20 and BH-corrected 
Wilcoxon p-value < 0.05 and at least 3 ASM CpGs 
including at least 2 consecutive CpGs (overlapping 
DMRs merged)

• Exclude DMRs in known imprinted chromosomal regions
• Rank DMRs by absolute methylation difference, number 

and percentage of ASM CpGs 
• Independent validations by targeted bis-seq on a set of 

ASM loci with strong and weak ranks

Testing mechanisms in normal and cancer 
ASM; nominating disease-associated rSNPs

Identification of TFBS motifs with disruptive SNPs that 
correlate with ASM

• Identify polymorphic TF motifs occurrences using 
ENCODE and JASPAR PWM and AtSNP software 
(require DNAse-hs peaks)

• Test for enrichment of disrupted vs non-disruptive 
polymorphic TF occurrences among ASM DMRs

• Test for correlations of ASM strength with PWM scores

Functional annotation and enrichment analyses of  features 
in ASM DMRs

• eQTLs; DNAse-hs, TF binding (ChIP-seq)
• Disrupted TFBS motif occurrences overlapping a cognate 

ChIP-seq peak (200 bp window)
• TF peaks for which the motif is enriched (>10 fold ) 

compared to background based on ENCODE ChIP-seq

Identification of hap-ASM DMRs in haplotype blocks that 
contain GWAS peaks

• Determine stringent and lenient LD and haplotype blocks
• Require distance between ASM and GWAS SNP < 200 kb
• Annotate ASM index SNPs for associations with 

immune/inflammatory, neuropsychiatric and 
neurodegenerative, neoplastic, and cardiometabolic 
diseases and traits

Creation of genome browser tracks for visualization and 
prioritization of candidate disease-associated rSNPs

• Custom tracks of ASM for each chromosome in UCSC 
Genome Browser format; tracks provide multiple 
annotations of each ASM index SNP.

• Annotations include ranking based on ASM strength and 
mechanistically relevant features including the identities 
of enriched and correlated TF and CTCF binding motifs 
that are disrupted by each ASM index SNP

Assess mechanistic similarities and differences between 
cancer and non-cancer ASM

• Multivariate analysis to compute odds ratios of finding 
ASM DMRs from cancer and non-cancer samples in 
specific chromatin states and associated with SNPs that 
disrupt specific TF binding motifs

• Assess rates of allele switching in cancer vs non-cancer 
ASM loci

• Assess frequencies of chromatin desert locations for 
cancer vs non-cancer ASM loci
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Figure S2

Agilent SureSelect (27 samples)

• 1 lymphoblastoid cell line

• 26 primary non cancer tissues/cells 

9 brains, 1 fetal lung, 2 fetal hearts, 2 
fetal placentas, 2 livers, 3 PBL, 7 T cells

WGBS (74 samples)

• 5 normal cell types from explants grown in tissue culture (2 
bladder ep. cell lines, 3 mammary ep. cell lines)

• 1 lymphoblastoid cell line

• 54 primary non-neoplastic tissues or purified cell types (4 brain, 4 
glia, 5 neurons, 8 B cells, 13 T cells, 2 CD4, 2 CD8,  2 Mac, 4 
monocytes, 2 PBL, 1 LN, 1  fetal placenta, 1 fetal CTB, 3 livers, 2 
breast tissue)

• 14 primary cancers (6 multiple myeloma, 2 DBCL, 1 FL, 5 GBM)
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Figure S4
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Figure S5
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Figure S8

SMC3_disc2

rs2283639 (ASM)

Bis-seq amplicons

CTCF GM12873

CTCF GM12878

SMC3 HELA

rs1209950
lung CA survival (p = 3x10-07)

50 kb

LINC00114 PSMG1ETS2

RefSeq genes

GGGCCACCA
GGACCACCA

REF (PWM 12.7)
ALT (PWM14.7)

Chrom. states

Dnase (master)

A

B

1 2 3

T cells Lung

ChIP-seq:

1 kb

REF

ALT

REF

ALT

Ampl. 1 Ampl. 2 Ampl. 3 Ampl. 2

rs2283639 rs2283639

Chr20

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 1, 2019. ; https://doi.org/10.1101/815605doi: bioRxiv preprint 

https://doi.org/10.1101/815605
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure S9
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Figure S10
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Figure S11
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Figure S12

Distribution of net methylation in B cells - specifically for loci that 
show ASM in lymphoma (BLUE) vs loci without ASM (RED)

Under-representation of high 
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Over-representation of low 
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show ASM in GBM (BLUE) vs loci without ASM (RED) 

Distribution of net methylation in B cells - specifically for loci 
that show ASM in myeloma (BLUE) vs loci without ASM (RED)
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Fractional methylation in the 
911 ASM regions found in 

both B cells and MM
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Inter-individual variability due to variations in TF levels
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Figure S18
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Gabriel et al. (stringent) criteria

“Relaxed” criteria
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