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Summary: In light of the low signal-to-noise nature of many large biological data sets, we propose a novel method to identify
the structure of association networks using a Gaussian graphical model combined with prior knowledge. Our algorithm includes
the following two parts. In the first part we propose a model selection criterion called structural Bayesian information criterion
(SBIC) in which the prior structure is modeled and incorporated into the Bayesian information criterion (BIC). It is shown
that the popular extended BIC (EBIC) is a special case of SBIC. In second part we propose a two-step algorithm to construct
the candidate model pool. The algorithm is data-driven and the prior structure is embedded into the candidate model
automatically. Theoretical investigation shows that under some mild conditions SBIC is a consistent model selection criterion
for the high-dimensional Gaussian graphical model. Simulation studies validate the superiority of the SBIC over the standard
BIC and show the robustness to the model misspecification. Application to relative concentration data from infant feces
collected from subjects enrolled in a large molecular epidemiologic cohort study validates that prior knowledge on metabolic
pathway involvement is a statistically significant factor for the conditional dependence among metabolites. More importantly,
new relationships among metabolites are identified through the proposed algorithm which can not be covered by conventional
pathway analysis. Some of them have been widely recognized in the literature.
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1. Introduction

Modern ’omics technology can easily generate thousands of
measurements in a single run which provides an opportunity
for researchers to explore complex relationships in biology.
However, It has been widely recognized that biological mea-
surements are usually accompanied by a low ratio of signal-to-
noise making detection of effect challenging and final conclu-
sions unreliable. As previously reported in Ideker et al (2011),
prior knowledge can play a pivotal role in deciphering this
kind of complexity. For example, Segre et al (2010) drew on
the prior knowledge on mitochondrial genes sets to investigate
whether mitochondrial dysfunction is a cause of the common
form of diabetes. Roach et al (2010) identified the gene that
causes Miller syndrome based on the human genome reference
map. For more work on the application of prior biological
knowledge, see Boluki et al (2017); Imoto et al (2004) and
Ma (2015). In this paper, our aim is to identify the metabolite
network based on pathway analysis.

Biological network, such as microbe-microbe interaction
networks, metabolite networks and gene regulation networks

have received much attention in recent years. Based on the
random graph theory, many algorithms have been proposed
in statistics to explore the structure of nework, see Lauritzen
(1996). In this respect, Friedman et al (2008); Meinshansen
and Bühlmann (2006) investigated the identification problem
for high-dimensional Gaussian undirected graphical model,
while Cheng et al (2014); Ravikumar et al (2010); Wainwright
and Jordan (2003) studied the identification of discrete net-
work modeled by high-dimensional Ising model. In order to
deal with the prior structure of network, the Bayesian method
is the typical choice in literature. However, finding a realistic
prior distribution for the metabolite network is difficult. For
the popular choice of conjugate G-Wishart distribution, the
complex sampling algorithms from the posterior distribution
have hindered its wide use in practice, see Roverato (2002).
Ma (2015) considered this problem under the frequentist
framework. However Ma (2015) only focused on the determin-
istic prior structure which in most situations is an unrealistic
assumption.

In this paper, we propose a novel method to identify the
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structure of a graphical model based on prior information.
Contrary to Ma (2015), here uncertainty in prior information
is taken into account. Specifically, the algorithm includes the
following two parts. In the first part we propose a structural
Bayesian information criterion (SBIC) based on Boltzmann
distribution which incorporates the prior structure. For high-
dimensional models, the extended Bayesian information cri-
terion (EBIC) has been widely used in literature for model
selection, see Bogdan et al (2004); Chen and Chen (2008,
2012); Foygel and Drton (2010) for details. Compared to
EBIC, SBIC provides a more flexible framework and EBIC
can be regarded as a special case of SBIC with null prior
structure. In second part, based on the prior structure, we
propose a data-driven two-step algorithm to build the model
pool. The graph is enriched in the first step and pruned in
the second step. This part can be implemented readily by
using the R package glmnet. Through simulation studies it
is shown that the combination of SBIC and two-step algo-
rithm can effectively deal with the prior structure for high-
dimensional graphical model and improve the analysis results.
As a theoretical basis, for high-dimensional sparse Gaussian
graphical models, it is shown that SBIC is consistent for model
selection under mild conditions. With the proposed algorithm
in hand, we studied 1H NMR-based metabolite data profiled
in infant feces collected as part of the New Hampshire Birth
Cohort Study, a large prospective cohort study of mothers
and their children born in New Hampshire, see Madan et al
(2016) for details. The prior structure for these metabolites is
constructed based on the related pathway information from
the biological database Kyoto Encyclopedia of Genes and
Genomes (KEGG). Our results show that pathways have
statistically significant effects on the conditional dependence
among metabolites. The probability of existence of dependent
relationships between two metabolites increases if the propor-
tion of shared pathways increases. Furthermore our approach
reveals new relationships among metabolites that can not be
identified through standard pathway analysis, though many
of which are validated in the literature.

The paper is organized as follows. Section 2 reviews the
Gaussian undirected graphical model and related EBIC. A
new formulation of EBIC will be introduced. In Section 3,
we present our main algorithm. Section 3.1 will elaborate
on the definition of structural BIC and its implications.
Section 3.2 describes the two-step algorithm for building the
candidate model pool. Theoretical results of SBIC will be
given in Section 4. In Section 5, the algorithm is evaluated
through simulated data. In Section 6 we use the algorithm to
investigate the metabolomic data from the New Hampshire
Birth Cohort Study. Section 7 concludes with some comments.

2. Gaussian Graphical Model and BIC

2.1 A brief review of BIC for Gaussian graphical model

Given p-dimensional normal random vector X =
(X1, X2, · · · , Xp)T ∼ N(µp,Σp×p), an undirected graph
is used to depict the conditional dependent relationship
among X. If Xi and Xj are independent given all the
other components of X, then there is no edge between

Xi and Xj otherwise there is an edge between them. The
precision matrix is defined as Ωp×p = (ωij) = Σ−1. It
turns out that the precision matrix completely describes
such conditional dependence. Given n i.i.d observations

X̃ = (X1, · · · ,Xn)
T

, our aim is to identify the nonzero

components in p̃
4
= p(p − 1)/2 off-diagonal entries in Ω.

In its general form, BIC can be stated as follows. Let E
be the model space under consideration with π(E) the
prior distribution defined on E . Let θ denote the unknown
parameter in E with prior distribution p(θ). With θ in
hand, let the density function for X̃ be f(X̃|θ) so that
the likelihood for observations X̃ can be expressed as
l(X̃|E) =

∫
f(X̃; θ)p(θ)dθ. The posterior distribution of

model E can be expressed as

p(E|X̃) =
l(X̃|E)π(E)∑
E∈E l(X̃|E)π(E)

. (1)

Through Laplace’s method of integration, the following
approximation up to a constant can be obtained for
−2 log p(E|X̃),

−2 log f(X̃|θ) + |E| logn− |E| log(2π)− 2 log p(θ|E) (2)

+ log det(V )− 2 log π(E), (3)

where V is the expected information matrix for a single
observation and |E| is the degree of freedom of model E. By
omitting the last four terms which do not involve the sample
size n, we get the standard BIC, BIC(E) = −2ln(E)+|E| logn
with ln(E) = log f(X̃|θ). For the high-dimensional regression
model, Bogdan et al (2004); Chen and Chen (2008, 2012)
proposed extended BIC (EBIC) which puts more weight on
sparse model than standard BIC. Foygel and Drton (2010)
further generalized EBIC to the Gaussian graphical model
which has the following form,

EBICλ = −2ln(Ω(E)) + |E| logn+ 4|E|λ log p, (4)

where Ω(E) is the precision matrix associated with model E.
Tuning parameter 0 6 λ 6 1 controls the model complexity.
When λ = 0, EBIC reduces to the standard BIC. As λ
becomes larger, (4) will put more weight on the sparse model.
The log-likelihood function ln(Ω(E)) in (4) for the Gaussian
graphical model has the following form,

ln(Ω) =
n

2
[log det(Ω)− trace(SΩ)], (5)

where S is the empirical covariance matrix. Foygel and Dr-
ton (2010) proved that under the given assumptions, (4) is
a consistent model selection criterion for high-dimensional
Gaussian graphical model.

Although EBIC has been widely used in the literature
for high-dimensional model selection, several limitations have
yet to be addressed. For example, EBIC does not take prior
information into account. In practice, it is often desired that
we can adapt (4) to reflect such prior biological knowledge.
Also, the choice of λ has a potentially large impact on the final
result. It is helpful to find a proper way to select λ. With these
motivations in mind, in Section 3 we propose a new algorithm
for the selection of Gaussian graphical model which aims to
address these problems. Though we have focused on Gaussian
graphical model in this paper, the algorithm can be easily
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adapted to accommodate the discrete graphical model such
as Ising model.

2.2 A new formulation of EBIC

In this section we introduce a different way to formulate EBIC
which will facilitate the introduction of prior structure in
Section 3. For any given pair of nodes, (Xi, Xj), define the
edge variable Zij equal to one if there exists an edge between
Xi andXj and zero otherwise, i.e., Zij is the indicator variable
for the existence of the edge between nodes Xi and Xj . Due to
the symmetry of undirected graph, we have Zij = Zji (1 6 i <
j 6 p). We pool all the Zij together and define a p(p− 1)/2-

dimensional random vector Z = (Z12, Z13, · · · , Z(p−1)p)
T 4

=
(Z1, · · · , Zm)T with m = p(p − 1)/2. The prior information
about the structure of E can be completely described by the
probability distribution of Z. Here Boltzmann distribution is
employed to model Z. Boltzmann distribution, which origi-
nated from statistical physics, has been widely used to model
the stochastic phenomenon. Formally Boltzmann distribution
can be formulated as,

Pr(Z = z) ∝ exp

(
− ε(z)

KT

)
, (6)

where ε(z) > 0 is the energy function corresponding to state z,
T the temperature parameter and K the Boltzmann constant.
Without loss of generality, K = 2 will always be assumed in
the following. Substitution of (6) into (1) and (2) leads to the
following form of BIC for Gaussian graphical model,

BICT,ε(z) = −2ln(Ω(z)) + |z| logn+ ε(z)/T, (7)

where |z| denotes the number of nonzero components in z.
In order to use (7) in practice, we have to specify the form
of ε(z). Among many other possible choices, we consider the
following specification,

BICT,W (z) = −2ln(Ω(z) + |z| logn+ zTWz/T, (8)

where W is a positive semi-definite matrix. In (8) energy
function can be regarded as the squared weighted Euclidean
distance between two states, z and 0. It is obvious that (8)
includes standard BIC and EBIC as special cases. In fact if
W = 0, (8) is the standard BIC; if T = 1/(4λ), and W =
(log p)Ip̃ with Ip̃ the p̃ × p̃ identity matrix, then (8) reduces
to the EBIC in (4)-(5). With such a specification of W in
EBIC, it is straightforward to show that the components of Z
are independent Bernoulli variables with nonzero probability

1
1+p2λ

. Such probabilistic explanation can guide us to choose

the tuning parameter λ involved in EBIC (4). For example for
λ = 0.5, or equivalently T = 0.5, which is often recommended
in literature, it implies that the prior mean of total edges is
p̃/(1 + p) ≈ (p− 1)/2. More generally it can be seen that for
T > 0, we have P (Zi = 1) < 0.5 while for T < 0, we have
P (Zi) > 0.5. So for the graph with E|Z| < p̃/2, T > 0 is a
more plausible choice.

In some circumstances, prior information involves not only
the mean of the total edges but also its variance which can
also be modeled through BICT,W . Specifically, consider the
following form of W for BICT,W ,

W (ρ) = DTR(ρ)D (9)

with D = diag(
√

log p, · · · ,
√

log p), and R = ρJp̃ + (1 − ρ)Ip̃
for some 0 6 ρ < 1. Here Jp̃ is the p̃ × p̃ matrix with all the
entries being 1. There is a one-to-one correspondence between
(ρ, T ) and (µ, σ2), the mean and variance of total edge. The
details about the formulas are given in Appendix. So given
prior information about (µ, σ2), the corresponding parameter
(T, ρ) can be easily determined which in turn can be used in
BICT,W for model selection.

3. Incorporation of Prior Structure into Model
Selection

3.1 Prior structure enhanced BIC for Gaussian graphical
model

Now let us consider how to adapt BICT,W (8) to accommodate
the specific structure information. Consider the following
common scenario in biology. For X ∼ N(µ,Σ), suppose that
the graph G̃ = (V, Ẽ) is the prior strucure ( e.g., constructed
based on some biological theory) and we have to identify
the true graph structure based on G̃ and the observations
on X. First we introduce the concept of difference graph.
For two graphs G̃ and G = (V,E), the difference graph of
G̃ and G is defined as the graph which has the same nodes
as G̃ and G while the edge set is Ē = Ẽ4E and denoted

by Ḡ = G̃4G 4
= (V, Ē). Here 4 stands for the symmetrical

difference operator between two sets. For a given prior edge
set Ẽ, there is a one-to-one correspondence between Ē and
E. Equivalenly, there is a one-to-one correspondence between
their edge variable vector, Z̄ = I(Z̃ − Z) and Z. Replace z
in the third term in BICT,W by z̄, we obtain the following
structural Bayesian information criterion (SBIC),

SBICT,W (z) = −2ln(Ω(z) + |z| logn+ z̄TW z̄/T, (10)

in which the first term measures the fitness between model
and data, the second term measures the model complexity
and the third term measures the deviation of the model from
the prior structure. Minimization of (10) will lead to solutions
that achieve balance between these terms. Essentially we have
assumed that Z̄ in (10) has Boltzmann distribution,

P (Z̄ = z̄) ∝ exp

(
− z̄TW z̄

2T

)
. (11)

If we set W = diag(log p, · · · , log p) just like EBIC, then (10)
reduces to

SBICT (z) = −2ln(Ω(z) + |z| logn+ |z̄| log p/T, (12)

which will be used in the numerical studies in Section 5 and
6.

Remark. (i) If z̃ = 0, i.e., the prior structure is a graph
with no edges, then SBIC in (12) reduces to EBIC in (4). So
EBIC is a special case of SBIC. (ii) If T is large enough, then
the model selected by SBIC is the same as that from standard
BIC. If T is small enough, then the model selected by SBIC is
the prior structure. For other T , the model selected by SBIC
will be a compromise of these two extreme cases. (iii) The
choice of T in (12) relies on the expected error rate of prior
structure. The expected error rate is defined as r = m1+m2

p̃
,

where m1 is the number of true edges that have been missed
by prior structure while m2 is the number of edges that have
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been mistakenly added to the prior structure. Note we can
always assume 0 6 r 6 0.5 and r = 0.5 will lead to the
standard BIC. There is an one-to-one correspondence between
T and r. The more intuitive explanation of r can guide us to
find the appropriate value for T .

The generalization of (12) is possible. For example in (12)
it has been implicitly assumed that the probability of adding
an edge to the prior graph, p1, and the probability of deleting
an edge from the prior graph, p2, is equal. In some cases
compared to pruning edge, we may be more inclined to add
edges to the prior graph, i.e., p1 > p2. The following simple
generalization of (12) can accommodate such situation,

SBICT1,T2(z̄) = −2ln(Ω(z) + |z| logn+ |z̄1| log p/T1

+|z̄2| log p/T2 (13)

where z̄1 is the indicator vector of whether the entries of
(z̃− z) are 1 while z̄2 is the indicator vector for -1. If T1 < T2,
then SBICT1,T2 favor the graphs which share more edges with
prior structure. The cost for such flexibility is that we have
to specify the values for both T1 and T2.

3.2 Construction of candidate model pool based on prior
structure

From Example 1 in Section 5, we can see that with the
aid of prior structure, structural BIC can outperform the
standard BIC. Note that there are only six variables involved
in Example 1 and consequently the exhaustive search in the
model space is possible. As the number of variables gets larger,
it becomes unrealistic to carry out a exhaustive search in the
model space and we have to choose a subset of the model
space as the candidate model pool. A common practice for
the construction of candidate model pool for high-dimensional
model is to use the solution path of lasso. The disadvantage
of such a practice is that the models in the model pool have
nothing to do with the prior structure. Even with SBIC in
hand, we still have a high probability to end up with a poor
model. It is necessary to incorporate the prior structure into
the construction of model pool. There are multiple methods
to get this done. For example in addition to the solution path
of lasso, we may simply include random samples from the
Boltzmann distribution corresponding to the prior structure
as a part of the model pool. However this method turns
out to be very inefficient for high-dimensional model. An
alternative way is to adapt the penalty term in lasso using
the prior structure so that the resulted solution path can
automatically be related to the prior structure. Similar idea
has been investigated under the name of generalized lasso,
e.g., Tibshirani and Taylor (2011). For present situation,
without loss of generality, let us consider the node Xi and
its neighborhood. Given the prior structure, let z̃

(i)
0 be a

(p− 1)-dimensional vector with components 0 or 1, in which
0 indicates no association while 1 means association with Xi
in prior structure. Then the model pool may be constructed
by solving a series of the following optimization problems,

min
β(i)
‖xi −

∑
j 6=i

β
(i)
j xj‖22 + λ‖z(i) − z̃

(i)
0 ‖0, (14)

where vector z(i) is the indicator vector of β(i) =
(β

(i)
1 , · · · , β(i)

i−1, β
(i)
i+1, · · · , β

(i)
p )T for a given model as z̃

(i)
0 . For

a large λ, the nonzero components of the resulting solution to
(14) will be the same as the prior structure. As λ deceases,
the solution will include more edges that have not appeared
in the prior structure. In the extreme case of λ = 0, as in
standard lasso, all the edges will be selected.

Note (14) is not a convex optimization problem and there is
no existing software to solve (14). In the following we propose
a two-step algorithm to build the model pool. The algorithm
can also incorporate the prior structure into the candidate
model in the meanwhile can be easily implemented based on
the existing R package such as glmnet. Simulation results show
that the model pool constructed by two-step algorithm has a
big advantage over standard lasso. Specifically, given ith node,
the algorithm consists the following two steps.

Forward Step (Enrichment). In this step the prior structure
of the graph is fixed and we consider how to select the nodes
from the rest nodes and add them into the neighborhood
of ith node. Let Ai = (Ai1, Ai2) in which Ai1 is the indices
of the nodes that have appeared in prior neighborhood of
Xi while Ai2 is the indices of the rest nodes. For a given
increasing sequence, 0 6 λ

(1)
1 < · · · < λ

(m1)
1 , this step can

be accomplished by solving the following pm1 optimization
problems,

β̂(i) 4= arg minβ(i)‖xi −
∑
j 6=i

β
(i)
j xj‖22 + λ

(k)
1 ‖β

(i)(Ai2)‖1 (15)

for i = 1, · · · , p, k = 1, · · · ,m1. Through (15) we aim to pick
up the nodes that have been omitted by the prior structure.
Denote by Ai3 the nodes that appear in the solution β̂(i).
Combination of A13, · · · , Ap3 leaves us m1 graphs denoted by
G(k) for k = 1, · · · ,m1 respectively.

Backward Step (Pruning). Note each G(k) (k = 1, · · · ,m1)
from first step contains the prior structure. In order to prune
the redundant edges in prior structure, for a given increasing
sequence, 0 6 λ

(1)
2 < · · · < λ

(m2)
2 , we solve the following

pm1m2 optimization problems,

β̂(i)(Ai3)
4
= arg minβ(i)(Ai3)

‖xi −
∑
j 6=i

β
(i)
j xj‖22 + λ

(h)
2 ‖β

(i)(Ai3)‖1 (16)

for i = 1, · · · , p, h = 1, · · · ,m2 and k = 1, · · · ,m1. Here Ai3 is
a given neighborhood in G(k). The final index set form (16)
is denoted by Ai4. Combination of A14, · · · , Ap4 leaves us a
graph G(kh) for k = 1, · · · ,m1 and h = 1, · · · ,m2. Thus there
are total m1m2 candidate models in the final model pool.

Remark. If the prior structure is a graph with no edge,
then only Forward step is involved to build the model pool. If
the prior structure is a complete graph, then only Backward
step is involved. The model pools for these two extreme cases
turn out to be the same as that from the standard lasso
algorithm.

4. Theoretical Results

In this section we investigate the theoretical properties of
SBIC. It is shown that under the given assumptions, SBIC can
consistently select the underlying model for high-dimensional
Gaussian graphical model where the number of nodes may
increase as sample size increases.
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First let us introduce some notations for the ease of expo-
sition. Recall z is the p(p− 1)/2-dimension vector indicating
whether there is an edge between given two vertices. Define

|z| =
∑p(p−1)/2

i=1
zi and let z0 be the vector corresponding to

the true graph E0 under consideration. We confine ourselves
to the graphs with no more than q edges and let Eq denote such
graph set with Zq ⊂ Rp(p−1)/2 the corresponding indicator
vector set. Let σ2

max be the largest diagonal component of
the true covariance matrix Σ0, λmax be the largest eigenvalue
of true precision matrix Θ0 and τmax and τmin are the the
largest and smallest eigenvalue of W respectively. With these
notations in hand, the consistency for BICT,W (8) and SBIC
(12) are proved in Theorem 1 and 2 respectively. For BICT,W ,
the following assumptions are involved.

Assumption 1. E0 ∈ Eq is decomposable;
Assumption 2. p = O(nκ) for some 0 < κ < 1;
Assumption 3. ∃ constant C > 0 such that σ2

maxλmax 6
C and θ0 = mine∈E0 |(Θ0)e| > 0

Assumption 4. ∃ε > 0 such that 0 < 2T (4+ε− 1
2κ

) log p 6
τmin 6 τmax = o(p).

Theorem 1. Under Assumptions 1-4, the model selection
procedure based on BICT,W given in (8) is consistent, i.e., as
n→∞ we have

z0 = arg min
z∈Zq

BICT,W (z) (17)

in probability.
Now let’s consider SBIC (12) in which prior structure is

available for the underlying graphical model. Recall G̃ =
(V, Ẽ) is the prior structure, G0 = (V,E0) is the true graph
and Ḡ = (V, Ē) is the difference graph of G̃ and G. Particu-
larly Ḡ0 is the difference graph of G̃ and G0. Here we have
assumed G̃ and G0 have the same nodes.

Assumption 1
′
Ẽ ∈ Eq1 , Ē0 ∈ Eq2 for some integers q1

and q2 and E0 is decomposable.
Assumption 4

′
For κ0 = 1

κ
− γ > 0, ∃ ε > 0, 0 < τ < 1

such that τκ0 > 4 + ε.
Assumption 1

′
says that z̄0 has at most q2 nonzero com-

ponents which means that we can reach the true model
E0 by adding or deleting at most q2 edges from the prior
model Ẽ and so E0 ∈ Eq1+q2 . Given the observations
X̃ = (X1, · · · ,Xn), we have the following result hold.

Theorem 2. Given Assumption 1
′

and 2, 3 and 4
′
, SBIC

(12) can consistently select the true graph structure G0, i.e.,
as n→∞, we have

z0 = arg minz∈Zq1+q2
SBICT (z) (18)

in probability.
The detailed proofs of Theorem 1 and 2 are provided in

Appendix B.

5. Simulation Studies

Two examples will be considered in this section. The first
example considers a low-dimensional graph in which only six
nodes are involved. In such case all the candidate models can
be investigated. It is shown that structural BIC can uniformly
outperform the standard BIC. In the second example, a graph
with 40 nodes is considered. First it is shown that the candi-
date model pool constructed by two-step algorithm is superior

Figure 1. Graphs involved in Example 1. The left one is
used as the prior structure while the right one is the true
structure.

to the model pool constructed by standard lasso in which
the same model selection criterion SBIC is used. Then we
combine the model pool and model selection criterion together
and show that structural BIC outperforms standard BIC and
exhibits the robustness to the specification of temperature
parameter.

Example 1. Let us consider a circle with six nodes as
shown in Figure 1. Specifically we have Xi = αXi−1 + εi
for i = 2, · · · , 5 and X1 = αX6 + ε1. Sample size are set
to be n = 40, 80. For coefficient we consider the cases of

α = 0.3, 0.4 and 0.5 respectively with εi
i.i.d.∼ N(0, 1). The

left graph in Figure 1 is used as prior graph while the right
one is the true graph. We use the error rate to determine
the temperature parameter T . From Figure 1 the true error
rate is r = 2/15. In order to evaluate the consequence of
misspecification of error rate, we also consider five other
choices, r = 1/15, 3/15, · · · , 6/15 from which temperature
parameter T can be determined respectively. Two criteria,
True positive rate (TPR) and False positive rate (FPR) are
employed to compare the performance of SBIC and BIC which
are defined as the following,

TPR =
#{identified true edges}

#{all true edges} , (19)

FPR =
#{falsely identified edges}

#{all none edges} . (20)

For each scenario, the replication is set to be N = 100 and the
resulted TPR and FPR are listed in Table 1. The first number
in parentheses is TPR and the second is FPR. It can be seen
that, when the error rate is specified correctly, i.e., r = 2/15,
SBIC outperforms BIC for all the cases considered, either in
terms of TPR or FPR. Even for the misspecification cases, in
most scenarios considered, SBIC still outperforms standard
BIC, especially in terms of FPR. SBIC shows robustness with
respect to the misspecification of the expected error rate.

Example 2. Consider a Gaussian graphical model with
a tree structure. Specifically, let X = (X1, · · · , X40) be a
random vector with X1 ∼ N(0, 1). For i = 2, 3, 4, we have
Xi = αX1 + εi with εi ∼ N(0, 1). For i = 5, 6, 7, we have
Xi = αX2 + εi with εi ∼ N(0, 1). For i = 8, 9, 10, we have
Xi = αX3 + εi with εi ∼ N(0, 1). In this manner, all the
variables can be generated. The structure of X is shown in
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Figure 2. The graphs involved in Example 2. The left one
is used as the prior while the right one is the true graphical
structure.

Figure 2. The left graph in Figure 2 is used as the prior
structure and the right graph is the real structure.

Figure 3 presents the plots for TPR and FPR as a function
of α respectively. In each plot two curves are drawn in which
the solid one corresponds to model pool constructed from
standard lasso and the dashed one corresponds to model
pool constructed from two-step algorithm. For both cases
structural BIC is employed to select the model in which
temperature parameter is set based on r = 9/780. Replication
is N = 100. Sample size is n = 60. From the plots it is obvious
that TPR from two-step algorithm is higher than TPR from
standard lasso while FPR from two-step algorithm is lower
than FPR from standard lasso. In particular the difference
becomes more prominent when the association among the
nodes is weak.

Table 2 lists the results for SBIC and BIC under dif-
ferent scenarios. Specifically, the sample sizes are n =
50, 100 and replication is N = 100. Three choices of as-
sociation strength are α = 0.3, 0.4, 0.5. As for temper-
ature parameter T , six choices for expected error rate,
r = 3/780, 9/780, 18/780, 27/780, 36/780, 390/780, are con-
sidered. As in Example 1 temperature parameter can be
derived from the error rate. Two-step algorithm is used to
construct the candidate model pool for these five cases while
standard lasso is used for the last row.

From Table 2 it can be seen that the worst cases occur
at the combination of BIC and lasso. The best cases occur
at the combination of SBIC and two-step algorithm. For the
rows with the error rate other than the true value r = 9/780,
if it is not too far from r = 9/780, the results are comparable
with the results from r = 9/780. For the row of r = 390/780
which corresponds to the combination of BIC and two-step
algorithm, the results are similar to the last row.

In summary, if prior structure is available for high-
dimensional graphical model, then both model selection crite-
rion and candidate model pool should incorporate such infor-
mation. The results from the proposed procedure demonstrate
robustness to the misspecification of the expected error rate.
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Figure 3. The top plot is the true positive rate versus
association strength α and the bottom plot is the false positive
rate versus α. The solid lines correspond to the model pool
constructed by lasso while the dashed lines correspond to the
model pool constructed by two-step algorithm.

6. Metabolite Network for Infant Feces

Metabolites in human body are intrinsically related with
different diseases. Understanding the relationship among
metabolites are helpful to design appropriate treatment. To
this end, multiple methods have been proposed in literature
to identify the structure of metabolite network . For example,
Gao et al (2015); Karnovsky et al (2012) used the biochemical
domain knowledge to construct the metabolite network. Baru-
pal et al (2012); Grapov et al (2015) constructed the network
based on structural similarity and mass spectral similarity
of metabolites. The metabolite prior network in this paper
is constructed based on the method in Gao et al (2015);
Karnovsky et al (2012).

The dataset considered here comes from the New Hamp-
shire Birth Cohort Study, an ongoing prospective cohort
study of women and their young children, to demonstrate
the efficiency of our algorithm. see Madan et al (2016). The
dataset was obtained from metabolomics characterizations
of stool samples collected from infants at approximately six
weeks to one year of age. Sample preparation (with some
modifications), 1H NMR data acquisition, and metabolites
profiling procedures have been previously described in Brim
et al (2017); Sumner et al (2009, 2015); Banerjee et al (2012);
Pathmasiri et al (2012). Chenomx NMR Suite 8.4 Professional
software (Edmonton, Alberta, Canada) was used to determine
relative concentration (Weljie et al (2006)) of selected metabo-
lites from a curation of list of metabolites that are associated
with host-microbiome metabolism, see Li et al (2008); Paul
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et al (2016). This resulted in a total of 882 observations
for 36 metabolites in this data set. All the observations for
metabolites were standardized so that they have zero mean
and unit standard error, see van den Berg (2006). In the
following we consider to identify the network among these
metabolites using the algorithms proposed in Section 3.

We use pathway analysis to construct the prior structure.
These pathway data are obtained from biological database
Kyoto Encyclopedia of Genes and Genomes (KEGG) which
provides state-of-the-art information about the metabolites
and their pathways. Specifically, each of the targeted metabo-
lites is listed with its associated KEGG Compound ID.
Compound information for small molecules in the KEGG
database can be retrieved using KEGGREST, a client API
written for R (Dan Tenenbaum (2018). KEGGREST: Client-
side REST access to KEGG. R package version 1.22.0). Using
functions in the KEGGREST library, the database resource
was queried in the R language to retrieve the list of one or
more pathways associated with each metabolite. With the
pathway information in hand, for two given metabolites Xi
and Xj , let the pathways associated with Xi and Xj are
respectively Zi = {Zi1, · · · , Zimi} and Zj = {Zj1, · · · , Zjmj}.
Denote the common pathways of Xi and Xj by Zij = Zi ∩Zj
and define

sij =
|Zij |

min{|Zi|, |Zj |}
.

If sij > 0.8, then Xi and Xj are regarded as associated and
there is an edge between them. With threshold equal to 0.8,
there are 27 edges among these metabolites. With threshold
equal to 0.6, there are 117 edges among these metabolites.
We use the difference of the two number as the expected
number of edges in difference graph between the prior network
and true network which in turn implies that the value of
temperature parameter involved in SBIC is T = 1. As for
the construction of model pool, we set m1 = m2 = 200 with
λmax/λmin = 0.01 in (15) and (16), where λmax repsents the
minimal λ at which the neighborhood is an empty set. Then
based on SBIC (12) and two-step algorithm, we can get the
final network. Comparison of the prior network to the final
network reveals that there are 153 edges added and 3 edges
deleted from the prior network. Figure 4 shows the added
edges. The three deleted edges are between (Methionine,
Tryptophan), (Glutamate, Histidine), (Asparagine, Valine)
respectively.

A primary question here is that whether the edges that are
defined by pathway reflect the association between metabo-
lites. If pathway does not contain any information about
metabolites, then such prior network can be regarded as built
just randomly. Then the probability p1 that an edge is deleted
from and the probability p2 that an edge is added to the prior
network should be equal. Thus we can consider the following
hypothesis testing problem, H0 : p1 = p2. The test statistic
involved is U = p̂1−p̂2

(var(p̂1)+var(p̂2))
1/2 where p̂1 and p̂2 are the

maximum likelihood of p1 and p2 respectively. In light of
central limit theorem, it can be shown that the p-value for
the hypothesis above is 0.0234. With such a p-value, we can
tentatively assert that pathway have statistically significant
effect on the association between metabolites.

One potential concern about the previous analysis is that

Figure 4. The edges that appear in the final network while
were not included in prior network.

the conclusion may be biased by the prior structure. How-
ever, we still can use the following method to validate this
conclusion. Specifically, we just consider the added edges in
Figure 4 which are not involved in prior structure. For any
given 0 < s < 0.8, we construct the prior network Es by
using the same procedure as above, i.e, add an edge for
(Xi, Xj) if sij > s otherwise not. Note for s = 0.8 there
are 153 added edge among total 603 edges, apart from the
27 prior edges. Imagine that if pathways have no impact
on the association of metabolites, then the proportion of
153 added edges in Es should be the same as for s = 0.8,
i.e., p0 = 153

603
= 0.2537. Define ps the probability of the

edges in Figure 4 falling into Es, then the null hypothesis
is H0 : ps = p0. For s = 0.1, 0.2, · · · , 0.6, the estimate p̂s can
be shown to be (0.2578, 0.2596, 0.2800, 0.3300, 0.3630, 0.4111)
and the corresponding p-value for the hypothesis H0 are
(0.3959, 0.3658, 0.1287, 0.0059, 0.0011, 0.0003). Based these
results, we can say that pathway is statistically significant
factor on the association of metabolite. The possibility of
association will increase as the threshold s increases. Figure 5
depicts the empirical probability of association as a function
of threshold.

It should be stressed that the discussion above does not
mean that prior network must have to share some common
information with the data. If a prior network is theoretically
sound, such prior network is also feasible. However, if a prior
network can find the support from both the theory and data,
in our view, it is more advantageous than the one with support
just from theory or subjective belief.

We have confirmed that part of the association among
metabolites can be attributed to pathway. The next question
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Figure 5. The proportion of the added edges in prior
network Es as a function of threshold s. The bottom dashed
line corresponds to the line under the null hypothesis.

Table 3
Edges in Figure 4 that can not be covered by standard

pathway analysis

Malonate Asparagine, Cholate, Isobutyrate,
Tryptophan, Phenylalanine, Propionate,
Succinate, Lysine

Propylene glycol Butyrate, Formate, Methionine,
Fumarate, Histidine, Isoleucine,
Maltose, Fucose

π.Methylhistidine Asparagine, Maltose, Nicotinate,
Tryptophan

we aim to address is whether all associations among metabo-
lites can be explained solely by pathway? To try to answer
this question, first we define a more inclusive prior structure
among metabolites based on pathway. Specifically, whenever
two metabolites have any pathway in common, then there is
an edge between them and no edge otherwise. By comparing
the network in Figure 4 to this prior structure, we found
that there are 20 edges which are not covered by the prior
structure. In other words, pathway analysis cannot cover all
the relationships among metabolites.

These 20 edges are listed in Table 3. Among these 20 edges,
8 edges are related with malonate, 8 edges are related with
propylene glycol and 4 with π-Methylhistidine. Malonate is a
well-known competitive inhibitor of succinate dehydrogenase
(SDH) while SDH is a complex of four polypeptides (SDH
A–D) that catalyzes the conversion of succinate to fumarate
and functions in mitochondrial energy generation, oxygen
sensing and tumor suppression. Propylene glycol is a widely
used drug vehicle with serious side effects reported in clinical
studies and recognized toxicity, see Morshed et al (1998,
1994). In light of these existing studies, it is not surprising to
find their wide connection with other metabolites even they
do not share any pathway.

In summary, metabolic pathways can explain most of the
connections among the metabolites but not completely. This
may be explained by the fact that conventional metabolic
pathway datasets only focus on the endogenous reactions
occurring within the cell. It is possible that some important
reactions may be omitted by conventional pathway analysis.

However, by appropriately combining prior knowledge with
empirical data analysis, the proposed method can discovered
these reactions in a more comprehensive way.

7. Conclusion

We have developed a novel method to select the high-
dimensional Gaussian graphical model with the aid of prior
structure. Such prior structure is often the result of biological
knowledge. The algorithm consists of two parts. In the first
part we proposed a model selection criterion called structural
BIC which can be regarded as a generalization of the widely
used extended BIC. In second part, we propose a two-step
algorithm to construct the candidate model pool which in-
corporates the prior structure during the construction. It is
proved that under the given assumptions the structural BIC
is a consistent model selection criterion. Simulation results
validate the efficacy and robustness of the algorithm.

We applied the proposed algorithm to the metabolite data
from infant feces for which the prior network is constructed
through the pathways shared by metabolites. It is shown that
pathway is a statistically significant factor for the associa-
tion of metabolites. As the network based on the pathway
analysis have been widely used in many fields, these findings
provide statistical basis for such practice. We also found
new relationships among metabolites that have been omitted
by conventional pathway analysis in which most of them is
related two well-known important metabolites.

It is possible to use the proposed algorithm analyzing other
types of prior network for metabolites, e.g, the structural
similarity based prior network. More generally, other biolog-
ical network such as gene regulation network or microbial
interaction network if the related prior structure is available.
The algorithm can be easily adapted for the binary data such
as Ising model. It is known that model selection with prior
structure for Ising model is complex and little work has been
done in this respect. Our method provides a possible solution
to this issue and deserves further investigation in the future.
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