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Abstract 

In our everyday lives, we are often required to follow a conversation when background noise is 

present (“speech-in-noise” perception). Speech-in-noise perception varies widely—and people who 

are worse at speech-in-noise perception are also worse at fundamental auditory grouping, as 

assessed by figure-ground tasks. Here, we examined the cortical processes that link difficulties with 

speech-in-noise perception to difficulties with figure-ground perception using functional magnetic 

resonance imaging (fMRI). We found strong evidence that the earliest stages of the auditory cortical 

hierarchy (left core and belt areas) are similarly disinhibited when speech-in-noise and figure-ground 

tasks are more difficult (i.e., at target-to-masker ratios corresponding to 60% than 90% 

thresholds)—consistent with increased cortical gain at lower levels of the auditory hierarchy. 

Overall, our results reveal a common neural substrate for these basic (figure-ground) and naturally 

relevant (speech-in-noise) tasks—which provides a common computational basis for the link 

between speech-in-noise perception and fundamental auditory grouping. 
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Introduction 

One of the greatest challenges of everyday listening is the requirement to understand speech when 

background noise is present (“speech-in-noise” perception). People vary widely in their ability to 

understand speech-in-noise, yet we do not fully understand the processes that contribute to this 

variability. A widely used clinical measure of peripheral hearing ability—the pure-tone audiogram—is 

unable to fully account for speech-in-noise difficulties (Cooper and Gates, 1991; Hind et al., 2011; 

Holmes and Griffiths, 2019; Kumar et al., 2007). Yet, recent evidence suggests that individual 

variability in central processes relates to speech-in-noise perception (Holmes and Griffiths, 2019). 

Here, we use functional magnetic resonance imaging (fMRI) to examine the cortical processes that 

relate to speech-in-noise difficulty. 

Holmes and Griffiths (2019) demonstrated that central auditory grouping processes also vary widely 

between people and can help to explain individual differences in speech-in-noise perception. They 

assessed fundamental grouping processes using stochastic figure-ground perception—which tests the 

ability to track pure tones that retain the same frequency over time (the ‘figure’) amongst a 

‘background’ of tones of random frequencies (Teki et al., 2013, 2011). Holmes and Griffiths (2019) 

varied the target-to-masker ratio between figure and background tones to estimate thresholds for 

discriminating gaps that occurred in the figure or background components. They found that figure-

ground thresholds helped to explain individual differences in speech-in-noise perception, after 

accounting for differences in peripheral hearing predicted by the pure-tone audiogram. In other 

words, people who are worse at speech-in-noise perception are worse at figure-ground perception. 

Figure-ground perception is non-linguistic—and the link between figure-ground and speech-in-noise 

perception likely reflects a shared reliance on fundamental grouping processes, which are used to 

segregate figure from background tones and to segregate target speech from other sounds (including 

competing speech). Similar to speech-in-noise perception, the ‘figure’ and ‘background’ tones used 

by Holmes and Griffiths (2019) overlap in frequency, so the figures cannot be detected based on 

simple spectral separation. Instead, proposed figure-ground mechanisms are based on binding figure 

elements of different frequencies—based on the detection of temporal coherence between figure 

elements, as measured by cross correlation (Shamma et al., 2011; Teki et al., 2013). Auditory cortex 

contains neurons that respond to multiple frequencies (Elhilali et al., 2009a; Rauschecker, 1998; 

Wang, 2013), and thus could plausibly represent figures containing multiple frequency elements. 

However, any account of the brain basis for the behavioural correlation between figure-ground and 

speech-in-noise perception must also account for the fact that these are both active tasks, and the 

task may interact with the stimulus representation. 

In studies in which there is no task or an irrelevant task, processing of figure-ground stimuli is 

associated with activity in high-level auditory-cortex and the intraparietal sulcus. Teki et al. (2011) 

showed with fMRI that figure properties associated with increased salience (i.e., longer figures or 

figures with more frequency components), produce greater activity in the superior temporal sulcus 

(STS) and inferior parietal sulcus (IPS), without a task. Additionally, longer figures produced more 

activity in auditory cortex: in the right planum temporale (PT). When Teki et al. (2011) specifically 

examined early auditory cortex (human homologues of ‘core’ designated Te 1.0 and ‘belt’ designated 

Te 1.1 and Te1.2; Morosan et al., 2001), there was no evidence for modulations of activity by these 

figure manipulations. A magnetoencephalography (MEG) study that used an irrelevant task (Teki et 

al., 2016) similarly demonstrated that activity of high-level auditory cortex and IPS were modulated 

by the same figure manipulations that increase salience. Figure detection in macaque monkeys has 

also been localised to higher parabelt areas of auditory cortex (Schneider et al., 2018). These studies 

are consistent with stimulus-driven effects in auditory cortex, although additional attentional effects 

on the brain signal evoked by figure-ground stimuli have been demonstrated using EEG (O’Sullivan et 
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al., 2015). The brain locus for attentional effects has also been assessed using MEG (Molloy et al., 

2019), which revealed an effect of attentional load on activity in early auditory cortex. In the present 

fMRI study, we were specifically interested in task effects in early auditory cortex that might be 

relevant to both figure-ground analysis and speech-in–noise perception. To this aim, we compared 

brain activity (here, estimated using blood-oxygen level-dependent [BOLD] activity) during active 

figure-ground analysis and speech-in-noise perception, and modelled responses in the auditory 

cortical hierarchy to establish the mechanism by which task effects operate. 

Previous studies of speech-in-noise perception have revealed responses in a wide variety of areas, 

including parts of auditory cortex that have been associated with figure-ground perception. When 

more difficult listening conditions (e.g., speech at a lower target-to-masker ratio [TMR]) are 

compared with easier listening conditions (e.g., at a higher TMR or without background noise), the 

posterior STS (Eckert et al., 2016) and bilateral superior temporal gyrus (STG) (Wong et al., 2008) 

show greater activity. Although primary (core) auditory cortex has typically been absent in studies 

comparing different speech-in-noise conditions, it shows a relationship with the intelligibility of 

speech presented alone: it shows greater activity for clear relative to degraded (vocoded) speech, 

greater activity for degraded than unintelligible speech, and greater activity when the intelligibility of 

degraded speech is enhanced by presenting a matching word prime (Wild et al., 2012). Putative belt 

areas of auditory cortex show similar patterns: Anterolateral Heschl’s gyrus shows a preference for 

clear compared to vocoded speech (Nourski et al., 2019), and posterior Heschl’s gyrus shows a 

relationship with speech intelligibility in signal-correlated noise (Davis et al., 2011). Beyond auditory 

cortex, speech-in-noise tasks engage fronto-parietal areas (Eckert et al., 2016; Hill and Miller, 2010) 

that are commonly associated with attention—in particular, the inferior frontal gyrus, but also the 

inferior frontal sulcus and middle frontal gyrus (Binder et al., 2004; Davis et al., 2011; Scott et al., 

2004; Zekveld et al., 2006). Activity has also been observed in cingulo-opercular regions, including 

the insula, frontal operculum, and cingulate gyrus (Eckert et al., 2016; Vaden Jr et al., 2016, 2013). 

Based on these studies, we anticipated that the greatest overlap of functional integration between 

figure-ground and speech-in-noise perception would occur in auditory cortex. We used fMRI to 

measure BOLD activity in combination with dynamic causal modelling (DCM) to examine the 

common (i.e., shared) changes in effective connectivity engaged by active speech-in-noise and figure-

ground tasks. Regarding BOLD effects, we predicted the two tasks would activate distinct higher-

level regions beyond auditory cortex (e.g., IPS, IFG, and cingulo-opercular regions), but we predicted 

overlapping activations in early auditory cortex. To ensure that behavioural performance did not 

explain differences between the two tasks, we selected target-to-masker ratios for which accuracy 

was matched. To assess the functional anatomy of the shared behavioural relationship, we selected 

two different target-to-masker ratios—which, here, correspond to the salience of the figure and 

speech or, in other words, the difficulty of the tasks—that led to different performance levels. For 

the DCM analysis, we first assessed top-down connectivity from higher to lower levels of the 

auditory cortical hierarchy when speech-in-noise and figure-ground perception are more difficult. 

This would be consistent with the longstanding idea that, when speech is perceptually ambiguous due 

to noise, listeners rely on (higher-level) prior expectations to a greater extent (e.g., Marslen-Wilson 

and Tyler, 1980; Mattys et al., 2012; McClelland and Elman, 1986; Norris et al., 2015; Norris and 

Mcqueen, 2008; Peelle, 2017). We were also interested to quantify changes in effective connectivity 

within early sub-regions of auditory cortex, which might explain attentional and task effects 

suggested by earlier studies. An advantage of using DCM is that it allows us to compare—using 

Bayesian model comparison—models that do and do not contain task-specific effects of difficulty. If 

models without task-specific effects have greater evidence, we can conclude that greater difficulty in 

both tasks are mediated by similar changes in directed neuronal coupling. 
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Results 

Behaviour (d′) in the scanner followed the expected patterns (see Figure 1). A two-way within-

subjects ANOVA showed a significant main effect of Difficulty [F(1, 43) = 19.40, p < .001, ωp
2 = .29] 

and no significant main effect of Task [F(1, 43) = .56, p = .46, ωp
2 = -.01]. The interaction between 

Task and Difficulty was not significant either [F(1, 43) = .95, p = .34, ωp
2 < .01]. These results 

confirm that the difficulty manipulation was successful, and show that performance did not differ 

significantly between the two tasks. 

 

 

Figure 1. Sensitivity in the stochastic figure-ground (SFG) and speech-in-noise (SPIN) tasks, at the 

two TMRs corresponding to 60% and 90% thresholds. Error bars display ±1 standard error of the 

mean. 

 

 

Figure-ground perception predominantly activates a sub-set of the areas for speech-in-

noise perception 

The univariate analyses showed significant differences in activity between the two tasks. Table 1 lists 

the statistics and Figure 2A–B displays the thresholded SPMs. The speech-in-noise task was 

associated with greater activity in bilateral STG, the left precentral gyrus, and the right cerebellum 

than the figure-ground task; these results all survived a threshold of p < .001 after family-wise error 

(FWE) correction. Whereas, the opposite contrast yielded only two significant voxels, and they did 

not survive a pFWE < .001 threshold. The finding that greater activity was revealed by the SPIN > SFG 

contrast than the SFG > SPIN contrast implies that the figure-ground task predominantly activates a 

sub-set of the areas that are active for the speech-in-noise task. 

None of the other contrasts (main effect of Difficulty or Task–Difficulty interactions) revealed 

activity below the p = .05 FWE threshold. 
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Table 1. Contrasts between the speech-in-noise (SPIN) and stochastic figure-ground (SFG) tasks. 

Statistical analyses were conducted at the group level using one-sample t-tests, and were 

thresholded at p = .05 after correcting for family-wise error (FWE). Peak locations were determined 

using Neuromophometrics (Neuromorphometrics, Inc.; http://neuromorphometrics.com/). 

Contrast Peak location X (mm) Y (mm) Z (mm) t pFWE 

SPIN > SFG Left STG -63 -36 6 8.56 < .001 

  -60 -3 -3 8.00 < .001 

  -57 -12 0 7.97 < .001 

 Left precentral gyrus -51 -12 42 7.95 < .001 

 Right STG 60 -21 0 7.48 < .001 

  66 -15 0 7.13 < .001 

  63 -6 -6 6.97 < .001 

 Right cerebellum 24 -60 -21 6.99 < .001 

 Right cerebellum 15 -66 -12 5.91 .011  

 Left inferior temporal gyrus -45 -57 -9 5.82 .014 

 Left putamen -30 -15 -3 5.61 .029 

 Left middle frontal gyrus -39 6 36 5.55 .036 

 Cerebellar Vermal Lobules I-V 6 -57 -3 5.53 .038 

 Left STG -51 -9 -12 5.52 .040 

 White matter 9 -75 24 5.47 .047 

SFG > SPIN White matter -21 -6 51 5.72 .020 

 Left superior parietal lobule -36 -39 42 5.46 .048 
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Figure 2. Group-level contrasts, thresholded at p < .05 (family-wise error corrected) and 

superimposed on coronal sections of the average (N = 44) T1-weighted structural image. (a) Voxels 

showing greater activity for the speech-in-noise (SPIN) than stochastic figure-ground (SFG) task. (b) 

Voxels showing greater activity for the stochastic figure-ground than speech-in-noise task. (c) Voxels 

for the All Trials > baseline contrast. MNI co-ordinates (in mm) are displayed below each coronal 

section. White lines show the outlines of anatomical maps corresponding to areas Te1.0, Te1.1, 

Te1.2, and Te3. 

 

 

Difficulty with speech-in-noise and figure-ground perception lead to similar disinhibition 

in auditory cortex 

To determine nodes for the DCM analysis, we contrasted All Trials against baseline. Table 2 lists the 

locations of voxels that survived the p < .05 FWE threshold, and Figure 2C shows the locations on 

four coronal slices. The voxels that survived a correction of p < .001 FWE were located on the 

superior temporal lobe—with peaks in the left transverse temporal gyrus (Heschl’s gyrus), left 

planum temporale, and bilateral planum polare. Thus, for the DCM analyses we focussed broadly on 

these parts of auditory cortex as areas of interest. We segmented the functional activity into 

anatomical regions of the auditory hierarchy: bilateral Te1.0, Te1.1, Te1.2, and Te3 (Morosan et al., 

2005, 2001).  

Table 3 displays the parameters of interest in the final group-level DCM, after Bayesian model 

reduction and averaging. These parameters quantified the modulatory effects of Difficulty and the 

interaction between Task and Difficulty on each connection. Only two of the parameters had high 

probabilities (Pp > .95). These two parameters correspond to the modulation of intrinsic (i.e., self) 

connections for left Te1.0 and left Te1.1 by the main effect of Difficulty (Figure 3). The values of 
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these parameters were -.31 and -.30, respectively, which indicate a decrease in self-inhibition 

associated with the experimental effects.  

Interestingly, all of the parameters corresponding to modulations of connectivity by the Task–

Difficulty interaction were pruned away, as were as all of the modulations of extrinsic connectivity—

and therefore, these parameters are not present in the final model. In other words, the model 

evidence was greater when these connections were ‘switched off’ than when they were ‘switched 

on’. Thus, there is very strong evidence that, in auditory cortex, effects of Difficulty on effective 

connectivity are shared between the speech-in-noise and figure-ground tasks. The evidence does not 

support partially shared effects of Difficulty (which would be indicated by modulations of effective 

connectivity by both Difficulty and the Task-Difficulty interaction) or separate effects (which would 

be indicated by modulations of effective connectivity by the Task-Difficulty interaction only).  

Some of the model parameters covaried with the TMR in one of the four conditions, although it is 

worth noting that their posterior probabilities were low (≤ .81), and their connection strengths 

differed minimally from the prior.  

 

 

 

 

Figure 3. Group-level Dynamic Causal Model (DCM), after Bayesian model reduction and 

averaging. Parameters that survive a threshold of Posterior Probability (Pp) > .95 are displayed: 

These correspond to modulations of intrinsic connectivity by the main effect of Difficulty in left 

Te1.0 and 1.1. Their connection strengths (in Hz) are displayed in the figure. Results are displayed 

on a 3D reconstructed surface of the anatomical regions of interest in the left hemisphere, which 

was generated using ITK-SNAP (www.itksnap.org; Yushkevich et al., 2006) and ParaView 

(www.paraview.org; Ahrens et al., 2005). Note that right-hemisphere homologues were included in 

the DCM, but none of the parameters had posterior probabilities greater than .95. 
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Table 2. Contrast of All Tasks > baseline. Statistical analyses were conducted at the group level 

using one-sample t-tests, and were thresholded at p = .05 after correcting for family-wise error 

(FWE). Peak locations were determined using Neuromophometrics (Neuromorphometrics, Inc.; 

http://neuromorphometrics.com/). 

Peak location X (mm) Y (mm) Z (mm) t pFWE 

Left planum temporale -60 -18 9 9.55 < .001 

Left transverse temporal gyrus -51 -15 6 9.45 < .001 

Left planum polare -45 -12 0 8.75 < .001 

Right planum polare 57 3 0 9.01 < .001 

Right cerebral white matter 63 -12 3 8.89 < .001 

Right planum polare 51 -3 -3 7.91 < .001 

Right anterior insula 30 24 0 6.74  .001 

Right frontal operculum 33 18 9 5.60  .030 

Left supplementary motor cortex -6 18 45 6.31 .003  

Left opercular IFG -48 21 24 5.86 .013 

Left superior parietal lobule -27 -54 48 5.60 .031 

Left anterior insula -39 18 -3 5.58 .032 

Left anterior insula -33 21 0 5.58 .032 

Right planum polare 42 -15 -6 5.55 .036 

Left cerebral white matter -39 -30 0 5.55 .036 

Right cerebellum 21 -66 -51 5.52 .040 

Right opercular IFG 48 9 21 5.48 .045 

Right opercular IFG 57 21 15 5.48 .045 
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Table 3. Parameters in the Dynamic Causal Model (DCM) after Bayesian model reduction and 

averaging. Target-to-masker ratios (TMR) in each of the four conditions (SPIN-90, SPIN-60, SFG-90, 

SFG-60) were included as regressors. The connection strengths and posterior probabilities 

associated with the parameters (based on the free energy with and without the parameter) are 

displayed in the final columns. For intrinsic parameters, the prior connection strength is -.5 Hz—

reflecting an inhibitory self-connection; therefore, values smaller than -.5 reflect disinhibition relative 

to the prior. For extrinsic parameters, the prior is set to 0. Parameters with probabilities < .95 are 

listed in italics. 

 Parameter 
Connection 

strength (Hz) 

Posterior 

probability 

Commonalities Difficulty modulation: Left Te1.0 (intrinsic) -.31 >.99 

 Difficulty modulation: Left Te1.1 (intrinsic) -.30 >.99 

 Difficulty modulation: Left Te1.3 (intrinsic) -.38 .94 

 Difficulty modulation: Right Te1.1 (intrinsic) -.42 .71 

SFG-60 TMR Interaction modulation: Left Te1.1-Left Te1.2 -.02 .78 

SPIN-60 TMR Difficulty modulation: Left Te1.2 (intrinsic) -.53 .76 

 Difficulty modulation: Right Te1.0 (intrinsic) -.53 .73 

 Difficulty modulation: Right Te1.2 (intrinsic) -.53 .81 

 

 

 

Discussion 

Our results demonstrate that speech-in-noise and figure-ground perception rely on similar cortical 

processes. Using DCM, we found that greater difficulty in both tasks leads to similar disinhibition at 

lower levels of the auditory cortical hierarchy: We found strong evidence (> 99% probability) that 

left Te1.0 and left Te1.1 are disinhibited when the tasks are more difficult—indicating that these 

regions likely increase their gain when speech or figures are difficult to follow. Importantly, we found 

the best model had no modulations by the Task–Difficulty interaction, suggesting that the best 

explanation of the data is that effective connectivity in auditory cortex is common to the two tasks, 

rather than task-specific. Overall, these results provide evidence for a common cortical substrate in 

early auditory cortex that could explain why people who find speech-in-noise perception difficult 

also find figure-ground perception difficult (Holmes and Griffiths, 2019). 

The results showed that lower-level intrinsic connectivity, rather than top-down connectivity from 

higher to lower areas, was modulated by task difficulty—consistent with previous reports that 

activity in early auditory cortex is modulated by attentional load during figure-ground analysis 

(Molloy et al., 2019). Previous studies of visual scene analysis that used DCM similarly found that 

lower-level intrinsic connections, rather than top-down connections, offered the best explanation 

for modulations of BOLD activity by the ‘noisiness’ of a random dot motion stimulus (Adams et al., 

2016, 2015). Intrinsic connections in DCM are rate constants, which control the rate of decay in a 

region, and disinhibitory modulations indicate slower decay. In other words, disinhibition indicates 

that an area becomes more excitable. In predictive coding formulations of perceptual synthesis, this 
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is usually interpreted in terms of assigning more precision to prediction errors, so that they have 

greater influence on evidence accumulation or Bayesian belief updating. From a psychological 

perspective, this is usually thought of in terms of attentional selection (Auksztulewicz and Friston, 

2015; Bauer et al., 2014; Brown et al., 2013; Kanai et al., 2015; Vossel et al., 2015, 2014). 

Thus, our results imply that when figure-ground and speech-in-noise perception are more difficult—

in other words, when figures and speech are less salient—we ‘listen harder’ or ‘pay more attention’ 

to lower levels of the auditory hierarchy. A likely mechanism for disinhibition of intrinsic 

connections is increased neuronal gain or excitability, which is well-established in auditory cortex 

(Rabinowitz et al., 2011). This could be realized by communication through coherence, by spiking 

inter-inhibitory neurons equipped with N-methyl-D-aspartate (NMDA) receptors, or by modulations 

through acetylcholine (ACh). Broadly speaking, these mechanisms are unlikely to be synapse-specific 

and would therefore more likely manifest in changes in intrinsic than extrinsic connectivity. 

Modulations of particular extrinsic (e.g., top-down) connections would be more consistent with 

synapse-specific effects. 

Modulations of lower-level intrinsic connectivity are also consistent with the results of some 

previous studies examining speech perception. For example, Mattys et al. (2005) found that when 

speech is accompanied by white noise, lexical decisions are based on lower level (word stress) cues 

rather than higher level (e.g., context) cues. In addition, several studies have proposed that listening 

challenges during speech perception are realised by feedforward rather than feedback processes. For 

example, Davis et al. (2011) used fMRI to measure responses to spoken sentences. They found that 

listening challenges introduced by presenting speech at a low TMR or by presenting semantically 

ambiguous sentences were associated with early responses in anterior STG, which preceded later 

changes in higher areas. They interpret their results as reflecting a greater demand on internal 

representations of unanalysed speech when speech perception is challenging. Using DCM, Leff et al. 

(Leff et al., 2008) found that feedforward, rather than feedback, connections were associated with 

the difference between intelligible speech in quiet and unintelligible (time-reversed) speech. In 

addition, these lower-level regions have previously been associated with speech intelligibility in some 

studies: Binder et al. (2004) found that an anteriolateral temporal region—corresponding to Te1.1—

correlated with accuracy on a phoneme-in-noise discrimination task, and Wild et al. (2012) found 

that activity in Te1.0 covaried with the intelligibility of degraded speech. The current results support 

the idea that lower-level processes (in Te1.0 and Te1.1) are associated with the perceptual challenge 

of a less favourable TMR during speech-in-noise perception. In addition, we show that perceptual 

challenges during figure-ground perception affect these lower-level processes in a similar way as do 

challenges during speech-in-noise perception. 

A previous fMRI study of figure-ground perception (Teki et al., 2011), which used the same maps of 

auditory cortex that we used here, found no evidence for activity in primary auditory cortex—

although they did not use a task, whereas we used a relevant, active task. A previous EEG study 

(O’Sullivan et al., 2015) found greater activity during active than passive listening to figure-ground 

stimuli, and a MEG study (Molloy et al., 2019) similarly found greater activity in primary auditory 

cortex under low than high visual load. Thus, our results are consistent with the idea that task 

effects modulate early auditory cortex during figure-ground perception. Here, we extend this idea by 

showing that the earliest stages of the auditory cortical hierarchy are more engaged (i.e., less 

inhibited) when the figure-ground task is more challenging due to a lower TMR. 

Studies using other simultaneous or sequential stream segregation to study perceptual organisation 

have found that activity in both primary (Bidet-Caulet et al., 2007; Deike et al., 2010; Fishman et al., 

2001; Micheyl et al., 2005; Schadwinkel and Gutschalk, 2010; Wilson et al., 2007) and non-primary 

(Deike et al., 2010; Schadwinkel and Gutschalk, 2010; Wilson et al., 2007) auditory cortex differs 

depending on how listeners perceive acoustic sources—for example the number of sources they 
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perceive or which features of the scene they attend to. Also, Overath et al. (2010) found both 

primary and non-primary parts of auditory cortex were active when participants detected changes in 

spectrotemporal coherence in dense acoustic ‘textures’, which contain multiple components that 

changed frequency; participants made decisions about the how coherent the direction of frequency 

changes were across components. 

The strongest—and highest probability—modulations of effective connectivity by difficulty were 

located in the left hemisphere. It is widely accepted that speech is processed bilaterally in auditory 

cortex (see Peelle, 2012; Scott and McGettigan, 2013). However, the left hemisphere modulations 

we observed are consistent with previous studies that have localised speech-in-noise effects to the 

left hemisphere. For example, Scott et al. (2004) found an area within the left anterior STG that 

showed a positive correlation with speech intelligibility, and Davis et al. (2011) found that the left 

posterior STG correlated positively with TMR. Regarding more basic stimuli designed to assess 

auditory scene analysis, two previous studies of sequential stream segregation found correlates of 

different percepts in the left but not right auditory cortex (Deike et al., 2010, 2004). Flinker et al. 

(2019) suggest that perceiving temporal modulations leads to left lateralised responses, whereas 

perceiving spectral modulations leads to right lateralised responses. Unlike other figure-ground tasks 

(Elhilali et al., 2009b; Gutschalk et al., 2008; Kidd, 1994; Kidd et al., 1995), the stochastic figure-

ground task used here cannot be detected based on simple spectral separation; instead, it has been 

associated with a temporal coherence mechanism (Shamma et al., 2011; Teki et al., 2013). That we 

found predominantly left-hemisphere modulations therefore aligns both with the division proposed 

by Flinker et al. (2019), and with the findings from previous speech-in-noise tasks. However, it is 

worth noting that one right hemisphere intrinsic connection (Te1.1) was present in our DCM (Table 

3), albeit with a lower probability (.71)—suggesting the effects are not entirely lateralised. One 

previous EEG study (Bidelman and Howell, 2016) reported greater right-hemisphere lateralisation 

when speech-in-noise was presented at a lower TMR, although in this study, participants were 

instructed to ignore the speech stimuli—and, therefore, responses are unlikely to relate to poorer 

intelligibility and may instead relate to stimulus acoustics. 

In the current study, we manipulated difficulty by manipulating TMR, which is a naturally relevant 

quantity that varies greatly among different everyday listening settings. Rather than specifying a TMR 

that was fixed across participants, we selected TMRs for each participant that corresponded to 60% 

and 90% behavioural thresholds. This aspect of the design makes it less likely that the results reflect 

acoustic properties of different TMRs, but rather the perceptual challenges imposed by a lower 

TMR—which occur at different TMRs for different people. The selected TMRs and the acoustic 

noise (babble for speech-in-noise; random tone chords for figure-ground) also differed between the 

two tasks. Furthermore, absolute TMRs in each participant were regressed out of the model. 

Therefore, disinhibition of left Te1.0 and Te1.1 likely arose due to the increased difficulty associated 

with lower TMRs, rather than acoustic properties of the speech-in-noise and figure-ground tasks 

that covary with TMR. 

Possibly, between-subjects differences in the disinhibition of left Te1.0 and 1.1 might help to explain 

why Holmes and Griffiths (2019) found that people who are worse at figure-ground perception are 

also worse at speech-in-noise perception. A common clinical observation is that patients report 

difficulties with speech-in-noise perception, despite no evidence of impaired peripheral function 

(Cooper and Gates, 1991; Hind et al., 2011; Kumar et al., 2007). Clinical measures are usually 

restricted to peripheral measures, such as the pure-tone audiogram, which do not fully account for 

individual differences understanding speech in noise (Cooper and Gates, 1991; Hind et al., 2011; 

Holmes and Griffiths, 2019; Kumar et al., 2007). Figure-ground perception has great potential as a 

useful clinical measure to predict speech-in-noise perception: Holmes and Griffiths (2019) 

demonstrate that it explains variance in speech-in-noise perception after accounting for differences 

in audiometric thresholds. One of the reasons it might be helpful in predicting speech-in-noise 
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perception is because it assesses cortical processing that is relevant to speech-in-noise perception, 

which is not assessed by current clinical measures. In other words, some of the individual variability 

in speech-in-noise perception may arise from differences in disinhibition at the early stages of 

auditory cortical processing. 

The results of the univariate analysis indicate that figure-ground perception predominantly activates a 

sub-set of the regions involved in speech-in-noise perception: both tasks reliably activate the 

superior temporal lobe (Table 2), but speech-in-noise perception leads to greater activity in bilateral 

STG, the left precentral gyrus, and the right cerebellum (Table 1). This finding is consistent with the 

idea that our figure-ground task is a basic version of speech-in-noise perception that relies on similar 

acoustic analysis (e.g., fundamental grouping processes), but does not require linguistic and 

articulatory processes involved in speech-in-noise perception.  

The areas that were more strongly activated by speech-in-noise than figure-ground—bilateral STG, 

the left precentral gyrus, and the right cerebellum—have been associated with speech-in-noise tasks 

in previous studies. For example, the STG correlates positively with speech intelligibility (Scott et al., 

2004) and TMR (Davis et al., 2011). Cerebellar activity has also been reported in previous studies 

(see Ackermann et al., 2007 for a review), despite the fact that—traditionally—the cerebellum is not 

commonly thought to be part of the speech network. Using PET, Salvi et al. (2002) found activity in 

the right cerebellum when speech-in-babble was compared to speech-in-quiet; perhaps, crucially, 

they selected levels for the speech and babble to ensure that performance was approximately 50% 

for each participant. Similarly, here, we ensured that speech intelligibility was below ceiling (60% or 

90%) and equated performance between the speech-in-noise and figure-ground tasks. The 

involvement of the motor cortex (precentral gyrus) in speech perception has been long debated (see 

Scott et al., 2014), but several studies have found motor cortex activity during speech perception 

(e.g., Wilson et al., 2004; Wilson and Iacoboni, 2006). The current results lead further support to 

the claim that, compared to more basic auditory stimuli, speech perception is associated with activity 

in motor cortex. 

Only two voxels showed greater activity for figure-ground than speech-in-noise perception, and they 

did not survive a stringent correction for family-wise error at an alpha of .001. However, it is worth 

noting that they are located close to parts of the IPS that have previously been associated with 

figure-ground perception (Teki et al., 2016, 2011). Consistent with these results, earlier work has 

demonstrated that IPS plays a role in basic auditory streaming (Cusack, 2005). Previously, IPS activity 

has been attributed to top-down attention (Cusack, 2005) or to perceptual ‘pop-out’ (Shamma and 

Micheyl, 2010; Teki et al., 2011) during auditory scene analysis. During figure-ground perception, 

predictions about frequencies can be very precise after the figure has been detected (because the 

frequencies of the figure remain the same for the entire figure duration), whereas speech changes 

frequency over time; thus, greater activity in IPS during figure-ground perception could reflect 

greater ‘pop-out’ of figures that remain the same frequency over time, than of speech, which changes 

frequency over time.  

In summary, our results demonstrate common processes for figure-ground and speech-in-noise 

perception in early auditory cortex. We found that figure-ground perception predominantly 

activates a sub-set of regions involved in speech-in-noise perception. Modelling of BOLD responses 

showed that greater difficulty in both tasks is associated with disinhibition in left Te1.0 and left 

Te1.1—implying that the early stages of the auditory cortical hierarchy increase their gain when 

speech-in-noise and figure-ground perception become more difficult. Ultimately, these results 

suggest a common cortical substrate that links perception of basic and natural sounds—and might 

explain why people who are worse at figure-ground perception are also worse at speech-in-noise 

perception. 
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Materials and Methods 

Subjects 

49 participants completed the experiment. We measured their pure-tone audiometric thresholds at 

octave frequencies between 0.25 and 8 kHz in accordance with BS EN ISO 8253-1 (British Society of 

Audiology, 2004). We excluded one participant who had a mild sloping hearing loss; all other 

participants had 6-frequency average thresholds better than 20 dB HL in either ear. We also 

excluded 4 participants who were not native English speakers, leaving 44 participants—which is the 

number we aimed to analyse based on an a priori power analysis. A sample size of 44 was estimated 

using NeuroPower (http://neuropowertools.org) with power = 0.8, and was based on publicly 

available fMRI data reported by Hakonen et al. (2017). The 44 participants (23 male) we tested were 

19–35 years old (median = 22.7 years; interquartile range = 6.0) and all reported that they were 

right-handed. 

The study was approved by the University College London Research Ethics Committee, and was 

performed in accordance with relevant guidelines and regulations. Informed consent was obtained 

from all participants. 

Stimuli 

Stochastic figure-ground stimuli were based on Holmes & Griffiths (2019). They contained 50-ms 

chords, gated by a 10-ms raised-cosine ramp, with 0 ms inter-chord interval. Each chord contained 

multiple pure tones at frequencies selected from a logarithmic scale between 179 and 7246 Hz 

(1/24th octave separation). The stimuli contained a figure that lasted 2100 ms (42 chords) and a 

background that lasted 3100 ms (62 chords). The background comprised 5–15 pure tones, whose 

frequencies were selected randomly at each time window. The figure comprised 3 components; the 

frequencies were selected randomly on each trial and were the same for the entire figure duration. 

The figure began 500 ms (10 chords) after the background. For half of stimuli, 4 chords (lasting 200 

ms) were omitted from the figure. For the other half, the same number of components (3) were 

omitted from the background (4 chords; 200 ms). The omitted components began 20–42 chords 

after the onset of the figure-ground stimulus (10–32 chords after the onset of the figure); the 

components were always omitted while the figure was present, even if they were omitted from the 

background. 

Sentences for the speech-in-noise task were from the English version of the Oldenburg matrix set 

(HörTech, 2014) and were recorded by a male native-English speaker with a British accent. The 

sentences are of the form “<Name> <verb> <number> <adjective> <noun>” and contain 10 

options for each word (see Table 4). An example is “Rachel brought four large chairs”. Recorded 

sentences were normalised to the same root-mean-square amplitude and lasted on average 2.2 

seconds (standard deviation = .1). The sentences were presented simultaneously with 16-talker 

babble, which began 500 ms before the sentence began, ended 500 ms after the sentence ended, and 

was gated by a 10-ms raised-cosine ramp. The babble was taken from a continuous track lasting 20 

seconds; a different segment of the babble was selected on each trial. 

Stimuli were presented using MATLAB (R2015a) and Psychtoolbox (version 3.0.14). Sounds were 

presented at 75 dB A, which was measured using a Brüel & Kjær (Nærum, Denmark) Type 2636 

sound level meter. The levels were calibrated separately with the equipment that was used for the 

behavioural and MRI sessions.  
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Table 4. Words from the English version of the Oldenburg International Matrix corpus, which was 

used in the speech-in-noise task. Sentences were constructed by selecting one word from each of 

the five columns with equal probability, ensuring that transition probabilities between words were 

equated across sentences. Sentences were recorded in their entirety rather than as individual words. 

Name Verb Number Adjective Noun 

Alan got three large desks 

Doris sees nine small chairs 

Kathy brought seven old tables 

Lucy gives eight dark toys 

Nina sold four heavy spoons 

Peter prefers nineteen green windows 

Rachel has two cheap sofas 

Steven kept fifteen pretty rings 

Thomas ordered twelve red flowers 

William wants sixty white houses 

 

 

 

Experimental Procedures 

Pre-scan behavioural 

At the beginning of the experiment, participants completed a behavioural session, to determine their 

thresholds for 60% and 90% performance on the stochastic figure-ground (SFG) and speech-in-noise 

(SPIN) tasks.  

The pre-scan behavioural was conducted in a sound-attenuating booth. Participants sat in a 

comfortable chair facing an LCD visual display unit (Dell Inc.). Acoustic stimuli were presented 

through a Roland Edirol UA-4FX (Roland Corporation, Shizuoka,, Japan) USB soundcard connected 

to circumaural headphones (Sennheiser HD 380 Pro; Sennheiser electronic GmbH & Co. KG). 

Participants first performed a short (< 5 minute) block to familiarise them with the figure-ground 

stimuli. During the familiarisation block, they heard the figure and ground parts individually and 

together, with and without a gap in the figure. 

After familiarisation, we determined thresholds for the two tasks. We varied the target-to-masker 

ratio (TMR) between the target (figure or speech) and masker (background tones or babble noise, 

respectively) in a weighted adaptive procedure (Kaernbach, 1991). We used a step size ratio of 6:1 

to estimate 60% thresholds and a step size ratio of 9:1 to estimate 90% thresholds. We used four 

separate blocks to estimate the TMRs corresponding to 60% and 90% thresholds for the two tasks. 

Each block included two separate but interleaved runs, which were identical except that different 

stimuli were presented. Each run started at a TMR of 0 dB and terminated after 10 reversals. The 

step size began at 1 dB and decreased to .5 dB after 3 reversals. Identical stimuli were used in the 

60% and 90% blocks, but they were presented in different orders.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 23, 2019. ; https://doi.org/10.1101/814913doi: bioRxiv preprint 

https://doi.org/10.1101/814913
http://creativecommons.org/licenses/by-nc-nd/4.0/


16 

 

To estimate figure-ground thresholds, participants completed a yes-no task. On each trial, 

participants heard a figure-ground stimulus and had to decide whether or not there was a gap in the 

figure. The figure contained a gap on 50% of trials. On trials in which there was no gap in the figure, 

there was a gap in the background of the same magnitude (for details, see ‘Stimuli’ section above). 

Participants responded by clicking buttons on the screen corresponding to yes and no responses. 

During the speech-in-noise blocks, participants also completed a yes-no task. They had to decide 

whether a sentence written on the screen was the same as the target sentence they heard spoken. 

The written sentence was presented on the screen after the spoken sentence had ended, and was 

identical to the spoken sentence on 50% of trials. It was different on 50% of trials: On these trials, 

one word in the written sentence differed from the word in the spoken sentence; this word 

occurred at each position in the sentence with equal probability, and was selected randomly from 

the other words in the corpus. Participants responded by clicking buttons on the screen 

corresponding to yes (same sentence) and no (different sentence) responses.  

The order of the figure-ground and speech-in-noise blocks were counterbalanced across 

participants. Before the first block of each task, participants performed a 6-trial practice at 3 dB 

TMR, with feedback. 

MRI 

The MRI session was completed on the same day, immediately after the pre-scan behavioural. The 

same figure-ground and speech-in-noise tasks were presented, but at fixed TMRs—corresponding to 

the adapted TMRs from the pre-scan behavioural. Each task was presented at two different TMRs: 

One corresponding to the 90% threshold (SPIN-90 and SFG-90) and another corresponding to the 

60% threshold (SPIN-60 and SFG-60). 

Participants laid on a bed in the MRI scanner. Visual stimuli were presented through an Epson EB-

L1100U projector, which participants viewed through a mirror attached to the head coil. Auditory 

stimuli were presented through a Roland Edirol UA-4FX (Roland Corporation, Shizuoka,, Japan) USB 

soundcard connected to Ear-Tone Etymotic earphones (Etymotic Research, Inc., Illinois, U.S.A.) with 

disposable foam ear tips. 

We presented 8 functional runs, each containing 24 trials. Each run contained 6 trials from each 

condition, which were pseudorandomly interleaved. Figure 4 shows a schematic of the trial 

structure. Each trial lasted 8 seconds and contained three major components: A visual cue, which 

indicated the task for the upcoming trial; the acoustic stimuli; and a probe sentence, which cued 

participants to make a response. We used a sparse sampling method with one functional MRI volume 

acquisition at the end of each trial. The acoustic stimuli were presented in the silent gap between 

scans. They began, on average, 1.4 seconds after the start of the trial and were jittered within an 

interval of 2 seconds (i.e., .4–2.4 seconds after the end of the previous scan). The visual cue was the 

word “figure” or “speech”; it was presented for .4 seconds (.35 seconds during the previous scan, 

and .05 seconds after the previous scan had ended). A fixation cross then appeared on the screen 

until the probe sentence was presented 5.6 seconds after the trial began. The probe sentence 

remained on the screen until the visual cue for the next trial began. On figure-ground trials, the 

probe sentence was “Gap in figure?”. On speech-in-noise trials, the probe was a written sentence 

followed by a question mark. Participants responded using a button box in their right hand; they 

pressed one button to respond “yes”—if the there was a gap in the figure (figure-ground task) or if 

the written sentence matched the spoken sentence (speech-in-noise task)—and a different button to 

respond “no”.  

Before participants began the MRI session, they first completed a practice of 24 trials outside the 

scanner using the same equipment that was used for the pre-scan behavioural. The trial structure of  
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Figure 4. Schematic of the trial structure during the MRI session. The upper row displays the onset 

of visual stimulus presentation. The lower row displays the positioning of acoustic stimuli, and the 

approximate timing of button press responses. Grey bars represent functional volume acquisitions, 

which each lasted 3.36 seconds. Two exemplar trials are shown: a speech-in-noise trial followed by a 

figure-ground trial. 

 

 

the practice was identical to the MRI session, and participants received no feedback about their 

responses. 

MRI data acquisition 

MRI was conducted on a 3.0 Tesla Siemens MAGNETOM TIM Trio MR scanner (Siemens 

Healthcare, Erlangen, Germany) at the Wellcome Centre for Human Neuroimaging (London, U.K.) 

with a 64-channel receive coil.  

T2*-weighted functional images were acquired using echo-planar imaging (EPI) with field of view of 

192 x 192 x 144 mm; voxel size = 3.0 x 3.0 x 2.5 mm; echo spacing of 30 ms; time-to-repeat (TR) of 

3.36 seconds; 48 slices; anterior-to-posterior phase encoding; bandwidth of 2298 Hz/Px. Acquisition 

was whole-brain transverse oblique, angled away from the eyes. We used sparse temporal sampling 

(Hall et al., 1999): A delay of 4.64 seconds was imposed between successive volumes, such that each 

volume acquisition began 8 seconds after the previous volume acquisition began. We collected 24 

volumes from each participant in each of the 8 runs, plus an additional ‘dummy’ scan, which was 

presented immediately prior to the first trial of each run and was excluded from the analyses. We 

collected field maps immediately after the functional runs (short TE = 10.00 ms and long TE = 12.46 

ms). 

At the end of the session, we acquired a whole-brain T1-weighted anatomical image (MPRAGE, 176 

slices; voxel size = 1 mm isotropic; field of view 256 x 256 x 176 mm; PAT GRAPPA of factor 2; 

anterior-to-posterior phase encoding; TR = 2530 ms, TE = 3.34 ms). 

Analyses 

Pre-scan behavioural 

We calculated thresholds as the median of the last 6 reversals in each run. We averaged the 

thresholds from the two interleaved runs within each block. 
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Behaviour during scan 

To determine behaviour during the MRI session, we calculated d′ (Green and Swets, 1966) with 

loglinear correction (Hautus, 1995). Trials with no response were included in the analysis as misses 

and false alarms (i.e., as incorrect responses). 

MRI pre-processing 

MRI data were processed using SPM12 (Wellcome Centre for Human Neuroimaging, London, UK). 

Each participant’s functional images (EPIs) were unwarped using their field maps and were realigned 

to the first image of the run. We then applied slice time correction. The functional and anatomical 

images were co-registered to the mean EPI, then normalised to the standard spm12 template 

(avg305T1). We spatially smoothed the images using a Gaussian kernel with 4 mm full-width at half-

maximum. 

Statistical parametric mapping 

We modelled the fMRI timeseries for each participant with a General Linear (convolution) Model, 

with the motion realignment parameters as covariates of no interest. Each stimulus was modelled as 

a delta function, convolved with the canonical hemodynamic response function. We ran a contrast of 

all trials over the (implicit) baseline, which we used to define regions of interest (ROIs) for the DCM 

analysis. For completeness, we also ran contrasts to test the main effect of Task (figure-ground and 

speech-in-noise), the main effect of Difficulty (TMRs for 90% or 60% performance), and the 

interactions between Task and Difficulty. We entered the contrasts into a second level analysis, 

which applied one-sample t-tests at the group level. 

Dynamic Causal Modelling 

DCM is used to infer effective connectivity—and how directed causal influences among neural 

populations are affected by experimental manipulations. In brief, DCM is based on a model of neural 

population dynamics, which is combined with a hemodynamic model. The technical details of DCM 

are explained in other papers (see Friston et al., 2017, 2003; Zeidman et al., 2019a, 2019b). We first 

inferred the effective connectivity parameters that best fit each participant’s fMRI data, then 

estimated the parameters and their uncertainty at the group level using parametric empirical Bayes. 

Finally, we used a particular form of Bayesian model comparison—namely, Bayesian model 

reduction—to establish which model of effective connectivity best explain the group data. 

Here, we were interested in making group-level inferences about how greater difficulty in figure-

ground and speech-in-noise tasks modulates intrinsic (i.e., within-region) and extrinsic (i.e., between-

region) connectivity (i.e., a main effect of Difficulty) and whether there are modulations specific to 

greater difficulty in one task over the other (i.e., an interaction between Task and Difficulty). 

Selection of timeseries. We extracted timeseries for each subject in 8 ROIs (left and right Te1.0, 

Te1.1, Te1.2, and Te3). To ensure the timeseries showed reliable task-related activity—and did not 

include voxels with random signal fluctuations—we selected voxels for each subject that were 

significant at pre-specified thresholds at both the group and individual-subject levels. In detail, we 

masked the group-level contrast (All Trials > baseline) with anatomical masks extracted from the 

SPM Anatomy Toolbox (version 2.2c) (Eickhoff et al., 2005), corresponding to the 8 ROIs. We used 

the voxels that were below the p = .05 threshold (after family-wise error correction) to generate a 

functional mask for each ROI. We applied these functional masks to the individual-subject results, 

and retained voxels at the individual-subject level that were below a threshold of p = .05 

uncorrected. Where no voxels within an ROI survived the p < .05 threshold (right Te1.0: 2/44 

participants; right Te1.1: 11/44 participants; right Te1.2: 1/44 participants; left Te1.1: 2/44 

participants; left TE1.2: 1/44 participants), we increased the individual-subject threshold in 

increments of .05 until one or more voxels survived. (Note that the thresholds applied in the 

selection of timeseries only specify the voxels that are included in the analysis and do not determine 
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statistical significance of the DCM analysis.) Finally, we created a summary timeseries for each ROI in 

each participant by extracting the principal eigenvariate.  

DCM estimation. The DCM for each participant included 8 nodes corresponding to the extracted 

timeseries for the 8 ROIs. We specified the input timing for the DCM analysis as vectors specifying 

All Trials of interest, the main effects of Task and Difficulty, the interaction between Task and 

Difficulty, and the motion and run covariates. We estimated (using Bayesian model inversion with 

Variational Laplace) a fully-connected DCM for each participant, which included all possible 

combinations of intrinsic and extrinsic fixed connections. We allowed All Trials and the main effect 

of Task to serve as external (i.e., direct or driving) inputs to each node. We allowed the main effect 

of Difficulty and the interaction between Task and Difficulty to modulate all intrinsic and extrinsic 

connections, and serve as external inputs to each region. 

Group level inference. To estimate parameters at the group level (i.e., across participants), we took 

the parameters of interest for each participant to a second-level Parametric Empirical Bayes (PEB) 

analysis. This is a hierarchical model of connectivity parameters, with connectivity parameters from 

all subjects at the first-level and a GLM at the second-level, estimated using a variational scheme. 

Our first-level parameters of interest were the modulations of intrinsic and extrinsic connectivity by 

the main effect of Difficulty and by the Task–Difficulty interaction (i.e., parameter matrix B from 

each subject’s DCM). We entered the absolute TMRs in each of the four conditions for each 

participant (which differed according to their thresholds measured in the pre-scan behavioural 

session) as regressors in the second level of the PEB model. Having estimated parameters of the full 

PEB model, we then pruned away parameters using Bayesian Model Reduction (BMR)—which 

performs an automatic (‘greedy’) search over the model space, essentially comparing the evidence 

for reduced models that have particular parameters ‘switched off’. The model evidence considers 

both accuracy (how well the model fits the data) and complexity (the difference between model 

parameters and their prior values, which were always set to zero). The algorithm iteratively discards 

parameters if the reduced model has greater evidence. Thus, simpler models (i.e., those with more 

parameters ‘switched off’) that fit the data sufficiently accurately are preferred, because greater 

complexity reduces the model evidence. The final 256 models from the BMR were entered into a 

Bayesian Model Average (Hoeting et al., 1999; Penny et al., 2006), which performs a weighted 

average of parameters across models, according to the posterior probabilities (Pp) of the models. 

We discounted parameters whose posterior probabilities were less than .95, to focus our 

conclusions on high-probability parameters; although, for completeness, we report the probabilities 

of all parameters in Table 3. 
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