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Abstract

In our everyday lives, we are often required to follow a conversation when background noise is
present (“speech-in-noise” perception). Speech-in-noise perception varies widely—and people who
are worse at speech-in-noise perception are also worse at fundamental auditory grouping, as
assessed by figure-ground tasks. Here, we examined the cortical processes that link difficulties with
speech-in-noise perception to difficulties with figure-ground perception using functional magnetic
resonance imaging (fMRI). We found strong evidence that the earliest stages of the auditory cortical
hierarchy (left core and belt areas) are similarly disinhibited when speech-in-noise and figure-ground
tasks are more difficult (i.e., at target-to-masker ratios corresponding to 60% than 90%
thresholds)—consistent with increased cortical gain at lower levels of the auditory hierarchy.
Overall, our results reveal a common neural substrate for these basic (figure-ground) and naturally
relevant (speech-in-noise) tasks—which provides a common computational basis for the link
between speech-in-noise perception and fundamental auditory grouping.

Keywords: Auditory cortex; Auditory scene analysis; Speech perception; Speech-in-noise; fMRI


https://doi.org/10.1101/814913
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/814913; this version posted October 23, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Introduction

One of the greatest challenges of everyday listening is the requirement to understand speech when
background noise is present (“speech-in-noise” perception). People vary widely in their ability to
understand speech-in-noise, yet we do not fully understand the processes that contribute to this
variability. A widely used clinical measure of peripheral hearing ability—the pure-tone audiogram—is
unable to fully account for speech-in-noise difficulties (Cooper and Gates, 1991; Hind et al., 201 I;
Holmes and Giriffiths, 2019; Kumar et al., 2007). Yet, recent evidence suggests that individual
variability in central processes relates to speech-in-noise perception (Holmes and Griffiths, 2019).
Here, we use functional magnetic resonance imaging (fMRI) to examine the cortical processes that
relate to speech-in-noise difficulty.

Holmes and Griffiths (2019) demonstrated that central auditory grouping processes also vary widely
between people and can help to explain individual differences in speech-in-noise perception. They
assessed fundamental grouping processes using stochastic figure-ground perception—which tests the
ability to track pure tones that retain the same frequency over time (the ‘figure’) amongst a
‘background’ of tones of random frequencies (Teki et al.,, 2013, 201 |). Holmes and Griffiths (2019)
varied the target-to-masker ratio between figure and background tones to estimate thresholds for
discriminating gaps that occurred in the figure or background components. They found that figure-
ground thresholds helped to explain individual differences in speech-in-noise perception, after
accounting for differences in peripheral hearing predicted by the pure-tone audiogram. In other
words, people who are worse at speech-in-noise perception are worse at figure-ground perception.

Figure-ground perception is non-linguistic—and the link between figure-ground and speech-in-noise
perception likely reflects a shared reliance on fundamental grouping processes, which are used to
segregate figure from background tones and to segregate target speech from other sounds (including
competing speech). Similar to speech-in-noise perception, the ‘figure’ and ‘background’ tones used
by Holmes and Griffiths (2019) overlap in frequency, so the figures cannot be detected based on
simple spectral separation. Instead, proposed figure-ground mechanisms are based on binding figure
elements of different frequencies—based on the detection of temporal coherence between figure
elements, as measured by cross correlation (Shamma et al,, 201 |; Teki et al., 2013). Auditory cortex
contains neurons that respond to multiple frequencies (Elhilali et al., 2009a; Rauschecker, 1998;
Wang, 2013), and thus could plausibly represent figures containing multiple frequency elements.
However, any account of the brain basis for the behavioural correlation between figure-ground and
speech-in-noise perception must also account for the fact that these are both active tasks, and the
task may interact with the stimulus representation.

In studies in which there is no task or an irrelevant task, processing of figure-ground stimuli is
associated with activity in high-level auditory-cortex and the intraparietal sulcus. Teki et al. (201 1)
showed with fMRI that figure properties associated with increased salience (i.e., longer figures or
figures with more frequency components), produce greater activity in the superior temporal sulcus
(STS) and inferior parietal sulcus (IPS), without a task. Additionally, longer figures produced more
activity in auditory cortex: in the right planum temporale (PT). When Teki et al. (201 1) specifically
examined early auditory cortex (human homologues of ‘core’ designated Te 1.0 and ‘belt’ designated
Te I.1 and Tel.2; Morosan et al.,, 2001), there was no evidence for modulations of activity by these
figure manipulations. A magnetoencephalography (MEG) study that used an irrelevant task (Teki et
al., 2016) similarly demonstrated that activity of high-level auditory cortex and IPS were modulated
by the same figure manipulations that increase salience. Figure detection in macaque monkeys has
also been localised to higher parabelt areas of auditory cortex (Schneider et al., 2018). These studies
are consistent with stimulus-driven effects in auditory cortex, although additional attentional effects
on the brain signal evoked by figure-ground stimuli have been demonstrated using EEG (O’Sullivan et
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al,, 2015). The brain locus for attentional effects has also been assessed using MEG (Molloy et al.,
2019), which revealed an effect of attentional load on activity in early auditory cortex. In the present
fMRI study, we were specifically interested in task effects in early auditory cortex that might be
relevant to both figure-ground analysis and speech-in—noise perception. To this aim, we compared
brain activity (here, estimated using blood-oxygen level-dependent [BOLD] activity) during active
figure-ground analysis and speech-in-noise perception, and modelled responses in the auditory
cortical hierarchy to establish the mechanism by which task effects operate.

Previous studies of speech-in-noise perception have revealed responses in a wide variety of areas,
including parts of auditory cortex that have been associated with figure-ground perception. When
more difficult listening conditions (e.g., speech at a lower target-to-masker ratio [TMR]) are
compared with easier listening conditions (e.g., at a higher TMR or without background noise), the
posterior STS (Eckert et al., 2016) and bilateral superior temporal gyrus (STG) (Wong et al., 2008)
show greater activity. Although primary (core) auditory cortex has typically been absent in studies
comparing different speech-in-noise conditions, it shows a relationship with the intelligibility of
speech presented alone: it shows greater activity for clear relative to degraded (vocoded) speech,
greater activity for degraded than unintelligible speech, and greater activity when the intelligibility of
degraded speech is enhanced by presenting a matching word prime (Wild et al., 2012). Putative belt
areas of auditory cortex show similar patterns: Anterolateral Heschl’s gyrus shows a preference for
clear compared to vocoded speech (Nourski et al., 2019), and posterior Heschl’s gyrus shows a
relationship with speech intelligibility in signal-correlated noise (Davis et al.,, 2011). Beyond auditory
cortex, speech-in-noise tasks engage fronto-parietal areas (Eckert et al., 2016; Hill and Miller, 2010)
that are commonly associated with attention—in particular, the inferior frontal gyrus, but also the
inferior frontal sulcus and middle frontal gyrus (Binder et al., 2004; Davis et al., 201 |; Scott et al,,
2004; Zekveld et al., 2006). Activity has also been observed in cingulo-opercular regions, including
the insula, frontal operculum, and cingulate gyrus (Eckert et al., 2016; Vaden Jr et al.,, 2016, 201 3).

Based on these studies, we anticipated that the greatest overlap of functional integration between
figure-ground and speech-in-noise perception would occur in auditory cortex. We used fMRI to
measure BOLD activity in combination with dynamic causal modelling (DCM) to examine the
common (i.e., shared) changes in effective connectivity engaged by active speech-in-noise and figure-
ground tasks. Regarding BOLD effects, we predicted the two tasks would activate distinct higher-
level regions beyond auditory cortex (e.g., IPS, IFG, and cingulo-opercular regions), but we predicted
overlapping activations in early auditory cortex. To ensure that behavioural performance did not
explain differences between the two tasks, we selected target-to-masker ratios for which accuracy
was matched. To assess the functional anatomy of the shared behavioural relationship, we selected
two different target-to-masker ratios—which, here, correspond to the salience of the figure and
speech or, in other words, the difficulty of the tasks—that led to different performance levels. For
the DCM analysis, we first assessed top-down connectivity from higher to lower levels of the
auditory cortical hierarchy when speech-in-noise and figure-ground perception are more difficult.
This would be consistent with the longstanding idea that, when speech is perceptually ambiguous due
to noise, listeners rely on (higher-level) prior expectations to a greater extent (e.g., Marslen-Wilson
and Tyler, 1980; Mattys et al., 2012; McClelland and Elman, 1986; Norris et al., 2015; Norris and
Mcqueen, 2008; Peelle, 2017). We were also interested to quantify changes in effective connectivity
within early sub-regions of auditory cortex, which might explain attentional and task effects
suggested by earlier studies. An advantage of using DCM is that it allows us to compare—using
Bayesian model comparison—models that do and do not contain task-specific effects of difficulty. If
models without task-specific effects have greater evidence, we can conclude that greater difficulty in
both tasks are mediated by similar changes in directed neuronal coupling.
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Results

Behaviour (d') in the scanner followed the expected patterns (see Figure 1). A two-way within-
subjects ANOVA showed a significant main effect of Difficulty [F(l, 43) = 19.40, p < .001, wp? = .29]
and no significant main effect of Task [F(1, 43) = .56, p = .46, w)?2 = -.01]. The interaction between
Task and Difficulty was not significant either [F(I, 43) = .95, p = .34, wy? < .01]. These results
confirm that the difficulty manipulation was successful, and show that performance did not differ

significantly between the two tasks.
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Figure 1. Sensitivity in the stochastic figure-ground (SFG) and speech-in-noise (SPIN) tasks, at the
two TMRs corresponding to 60% and 90% thresholds. Error bars display *1 standard error of the
mean.

Figure-ground perception predominantly activates a sub-set of the areas for speech-in-
noise perception

The univariate analyses showed significant differences in activity between the two tasks. Table | lists
the statistics and Figure 2A—B displays the thresholded SPMs. The speech-in-noise task was
associated with greater activity in bilateral STG, the left precentral gyrus, and the right cerebellum
than the figure-ground task; these results all survived a threshold of p <.001 after family-wise error
(FWE) correction. Whereas, the opposite contrast yielded only two significant voxels, and they did
not survive a prwe < .001 threshold. The finding that greater activity was revealed by the SPIN > SFG
contrast than the SFG > SPIN contrast implies that the figure-ground task predominantly activates a
sub-set of the areas that are active for the speech-in-noise task.

None of the other contrasts (main effect of Difficulty or Task—Difficulty interactions) revealed
activity below the p = .05 FWE threshold.
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Table I. Contrasts between the speech-in-noise (SPIN) and stochastic figure-ground (SFG) tasks.
Statistical analyses were conducted at the group level using one-sample t-tests, and were
thresholded at p = .05 after correcting for family-wise error (FWE). Peak locations were determined
using Neuromophometrics (Neuromorphometrics, Inc.; http://neuromorphometrics.com/).

Contrast Peak location X(mm) Y (mm) Z(mm) t Drwe
SPIN > SFG  Left STG -63 -36 6 856 <.00l
-60 -3 -3 800 <.00l
-57 -12 0 797 <.00l
Left precentral gyrus -51 -12 42 795 <.00l
Right STG 60 221 0 748 <.00l
66 -15 0 7.13  <.00l
63 -6 -6 6.97 <.00l
Right cerebellum 24 -60 -21 699 <.00l
Right cerebellum I5 -66 -12 591 011
Left inferior temporal gyrus -45 -57 -9 582 014
Left putamen -30 -15 -3 5.6l .029
Left middle frontal gyrus -39 6 36 5.55 .036
Cerebellar Vermal Lobules I-V 6 -57 -3 553 .038
Left STG 51 -9 -12 5.52  .040
White matter 9 -75 24 547  .047
SFG > SPIN  White matter 221 -6 51 572  .020
Left superior parietal lobule -36 -39 42 546  .048
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Figure 2. Group-level contrasts, thresholded at p < .05 (family-wise error corrected) and
superimposed on coronal sections of the average (N = 44) T |-weighted structural image. (a) Voxels
showing greater activity for the speech-in-noise (SPIN) than stochastic figure-ground (SFG) task. (b)
Voxels showing greater activity for the stochastic figure-ground than speech-in-noise task. (c) Voxels

for the All Trials > baseline contrast. MNI co-ordinates (in mm) are displayed below each coronal
section. White lines show the outlines of anatomical maps corresponding to areas Tel.0, Tel.l,
Tel.2, and Te3.

Difficulty with speech-in-noise and figure-ground perception lead to similar disinhibition
in auditory cortex

To determine nodes for the DCM analysis, we contrasted All Trials against baseline. Table 2 lists the
locations of voxels that survived the p < .05 FWE threshold, and Figure 2C shows the locations on
four coronal slices. The voxels that survived a correction of p < .00 FWE were located on the
superior temporal lobe—with peaks in the left transverse temporal gyrus (Heschl’s gyrus), left
planum temporale, and bilateral planum polare. Thus, for the DCM analyses we focussed broadly on
these parts of auditory cortex as areas of interest. We segmented the functional activity into
anatomical regions of the auditory hierarchy: bilateral Tel.0, Tel.l, Tel.2, and Te3 (Morosan et al,,
2005, 2001).

Table 3 displays the parameters of interest in the final group-level DCM, after Bayesian model
reduction and averaging. These parameters quantified the modulatory effects of Difficulty and the
interaction between Task and Difficulty on each connection. Only two of the parameters had high
probabilities (Pp > .95). These two parameters correspond to the modulation of intrinsic (i.e., self)
connections for left Tel.0 and left Tel.l by the main effect of Difficulty (Figure 3). The values of
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these parameters were -.31 and -.30, respectively, which indicate a decrease in self-inhibition
associated with the experimental effects.

Interestingly, all of the parameters corresponding to modulations of connectivity by the Task—
Difficulty interaction were pruned away, as were as all of the modulations of extrinsic connectivity—
and therefore, these parameters are not present in the final model. In other words, the model
evidence was greater when these connections were ‘switched off’ than when they were ‘switched
on’. Thus, there is very strong evidence that, in auditory cortex, effects of Difficulty on effective
connectivity are shared between the speech-in-noise and figure-ground tasks. The evidence does not
support partially shared effects of Difficulty (which would be indicated by modulations of effective
connectivity by both Difficulty and the Task-Difficulty interaction) or separate effects (which would
be indicated by modulations of effective connectivity by the Task-Difficulty interaction only).

Some of the model parameters covaried with the TMR in one of the four conditions, although it is
worth noting that their posterior probabilities were low (< .81), and their connection strengths
differed minimally from the prior.

anterior

left right

posterior

-0.30

Figure 3. Group-level Dynamic Causal Model (DCM), after Bayesian model reduction and
averaging. Parameters that survive a threshold of Posterior Probability (Pp) > .95 are displayed:
These correspond to modulations of intrinsic connectivity by the main effect of Difficulty in left

Tel.0 and I.1. Their connection strengths (in Hz) are displayed in the figure. Results are displayed
on a 3D reconstructed surface of the anatomical regions of interest in the left hemisphere, which
was generated using ITK-SNAP (www.itksnap.org; Yushkevich et al., 2006) and ParaView
(www.paraview.org; Ahrens et al., 2005). Note that right-hemisphere homologues were included in
the DCM, but none of the parameters had posterior probabilities greater than .95.
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Table 2. Contrast of All Tasks > baseline. Statistical analyses were conducted at the group level
using one-sample t-tests, and were thresholded at p = .05 after correcting for family-wise error
(FWE). Peak locations were determined using Neuromophometrics (Neuromorphometrics, Inc.;
http://neuromorphometrics.com/).

Peak location X (mm) Y (mm) Z (mm) t Drwe
Left planum temporale -60 -18 9 9.55 <.00l1
Left transverse temporal gyrus -51 -15 6 9.45 < .00l
Left planum polare -45 -12 0 8.75 < .00l
Right planum polare 57 3 0 9.0l <.00l1
Right cerebral white matter 63 -12 3 8.89 <.00l
Right planum polare 51 -3 -3 791 <.00l1
Right anterior insula 30 24 0 6.74 .001
Right frontal operculum 33 18 9 5.60 .030
Left supplementary motor cortex -6 18 45 6.31 .003
Left opercular IFG -48 21 24 5.86 013
Left superior parietal lobule -27 -54 48 5.60 .031
Left anterior insula -39 18 -3 5.58 .032
Left anterior insula -33 21 0 5.58 .032
Right planum polare 42 -15 -6 5.55 .036
Left cerebral white matter -39 -30 0 5.55 .036
Right cerebellum 21 -66 -51 5.52 .040
Right opercular IFG 48 9 21 5.48 .045
Right opercular IFG 57 21 I5 5.48 .045
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Table 3. Parameters in the Dynamic Causal Model (DCM) after Bayesian model reduction and
averaging. Target-to-masker ratios (TMR) in each of the four conditions (SPIN-90, SPIN-60, SFG-90,
SFG-60) were included as regressors. The connection strengths and posterior probabilities
associated with the parameters (based on the free energy with and without the parameter) are
displayed in the final columns. For intrinsic parameters, the prior connection strength is -.5 Hz—
reflecting an inhibitory self-connection; therefore, values smaller than -.5 reflect disinhibition relative
to the prior. For extrinsic parameters, the prior is set to 0. Parameters with probabilities < .95 are
listed in italics.

Parameter Connection Posterior
strength (Hz) probability
Commonalities  Difficulty modulation: Left Tel.0 (intrinsic) -3l >.99
Difficulty modulation: Left Tel.l (intrinsic) -.30 >99
Difficulty modulation: Left Tel.3 (intrinsic) -38 .94
Difficulty modulation: Right Tel. | (intrinsic) -42 v
SFG-60 TMR Interaction modulation: Left Tel.l-Left Tel.2 -.02 .78
SPIN-60 TMR Difficulty modulation: Left Tel.2 (intrinsic) -53 .76
Difficulty modulation: Right Te .0 (intrinsic) -53 73
Difficulty modulation: Right Tel.2 (intrinsic) -53 81

Discussion

Our results demonstrate that speech-in-noise and figure-ground perception rely on similar cortical
processes. Using DCM, we found that greater difficulty in both tasks leads to similar disinhibition at
lower levels of the auditory cortical hierarchy: We found strong evidence (> 99% probability) that
left Tel.0 and left Tel.l are disinhibited when the tasks are more difficult—indicating that these
regions likely increase their gain when speech or figures are difficult to follow. Importantly, we found
the best model had no modulations by the Task—Difficulty interaction, suggesting that the best
explanation of the data is that effective connectivity in auditory cortex is common to the two tasks,
rather than task-specific. Overall, these results provide evidence for a common cortical substrate in
early auditory cortex that could explain why people who find speech-in-noise perception difficult
also find figure-ground perception difficult (Holmes and Griffiths, 2019).

The results showed that lower-level intrinsic connectivity, rather than top-down connectivity from
higher to lower areas, was modulated by task difficulty—consistent with previous reports that
activity in early auditory cortex is modulated by attentional load during figure-ground analysis
(Molloy et al., 2019). Previous studies of visual scene analysis that used DCM similarly found that
lower-level intrinsic connections, rather than top-down connections, offered the best explanation
for modulations of BOLD activity by the ‘noisiness’ of a random dot motion stimulus (Adams et al.,
2016, 2015). Intrinsic connections in DCM are rate constants, which control the rate of decay in a
region, and disinhibitory modulations indicate slower decay. In other words, disinhibition indicates
that an area becomes more excitable. In predictive coding formulations of perceptual synthesis, this

10
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is usually interpreted in terms of assigning more precision to prediction errors, so that they have
greater influence on evidence accumulation or Bayesian belief updating. From a psychological
perspective, this is usually thought of in terms of attentional selection (Auksztulewicz and Friston,
2015; Bauer et al,, 2014; Brown et al.,, 2013; Kanai et al., 2015; Vossel et al., 2015, 2014).

Thus, our results imply that when figure-ground and speech-in-noise perception are more difficult—
in other words, when figures and speech are less salient—we ‘listen harder’ or ‘pay more attention’
to lower levels of the auditory hierarchy. A likely mechanism for disinhibition of intrinsic
connections is increased neuronal gain or excitability, which is well-established in auditory cortex
(Rabinowitz et al., 201 I). This could be realized by communication through coherence, by spiking
inter-inhibitory neurons equipped with N-methyl-D-aspartate (NMDA) receptors, or by modulations
through acetylcholine (ACh). Broadly speaking, these mechanisms are unlikely to be synapse-specific
and would therefore more likely manifest in changes in intrinsic than extrinsic connectivity.
Modulations of particular extrinsic (e.g., top-down) connections would be more consistent with
synapse-specific effects.

Modulations of lower-level intrinsic connectivity are also consistent with the results of some
previous studies examining speech perception. For example, Mattys et al. (2005) found that when
speech is accompanied by white noise, lexical decisions are based on lower level (word stress) cues
rather than higher level (e.g., context) cues. In addition, several studies have proposed that listening
challenges during speech perception are realised by feedforward rather than feedback processes. For
example, Davis et al. (201 1) used fMRI to measure responses to spoken sentences. They found that
listening challenges introduced by presenting speech at a low TMR or by presenting semantically
ambiguous sentences were associated with early responses in anterior STG, which preceded later
changes in higher areas. They interpret their results as reflecting a greater demand on internal
representations of unanalysed speech when speech perception is challenging. Using DCM, Leff et al.
(Leff et al., 2008) found that feedforward, rather than feedback, connections were associated with
the difference between intelligible speech in quiet and unintelligible (time-reversed) speech. In
addition, these lower-level regions have previously been associated with speech intelligibility in some
studies: Binder et al. (2004) found that an anteriolateral temporal region—corresponding to Tel.l—
correlated with accuracy on a phoneme-in-noise discrimination task, and Wild et al. (2012) found
that activity in Tel.0 covaried with the intelligibility of degraded speech. The current results support
the idea that lower-level processes (in Tel.0 and Tel.l) are associated with the perceptual challenge
of a less favourable TMR during speech-in-noise perception. In addition, we show that perceptual
challenges during figure-ground perception affect these lower-level processes in a similar way as do
challenges during speech-in-noise perception.

A previous fMRI study of figure-ground perception (Teki et al.,, 201 I), which used the same maps of
auditory cortex that we used here, found no evidence for activity in primary auditory cortex—
although they did not use a task, whereas we used a relevant, active task. A previous EEG study
(O’Sullivan et al., 2015) found greater activity during active than passive listening to figure-ground
stimuli, and a MEG study (Molloy et al., 2019) similarly found greater activity in primary auditory
cortex under low than high visual load. Thus, our results are consistent with the idea that task
effects modulate early auditory cortex during figure-ground perception. Here, we extend this idea by
showing that the earliest stages of the auditory cortical hierarchy are more engaged (i.e., less
inhibited) when the figure-ground task is more challenging due to a lower TMR.

Studies using other simultaneous or sequential stream segregation to study perceptual organisation
have found that activity in both primary (Bidet-Caulet et al., 2007; Deike et al., 2010; Fishman et al.,
2001; Micheyl et al., 2005; Schadwinkel and Gutschalk, 2010; Wilson et al., 2007) and non-primary
(Deike et al., 2010; Schadwinkel and Gutschalk, 2010; Wilson et al., 2007) auditory cortex differs
depending on how listeners perceive acoustic sources—for example the number of sources they
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perceive or which features of the scene they attend to. Also, Overath et al. (2010) found both
primary and non-primary parts of auditory cortex were active when participants detected changes in
spectrotemporal coherence in dense acoustic ‘textures’, which contain multiple components that
changed frequency; participants made decisions about the how coherent the direction of frequency
changes were across components.

The strongest—and highest probability—modulations of effective connectivity by difficulty were
located in the left hemisphere. It is widely accepted that speech is processed bilaterally in auditory
cortex (see Peelle, 2012; Scott and McGettigan, 2013). However, the left hemisphere modulations
we observed are consistent with previous studies that have localised speech-in-noise effects to the
left hemisphere. For example, Scott et al. (2004) found an area within the left anterior STG that
showed a positive correlation with speech intelligibility, and Davis et al. (201 1) found that the left
posterior STG correlated positively with TMR. Regarding more basic stimuli designed to assess
auditory scene analysis, two previous studies of sequential stream segregation found correlates of
different percepts in the left but not right auditory cortex (Deike et al., 2010, 2004). Flinker et al.
(2019) suggest that perceiving temporal modulations leads to left lateralised responses, whereas
perceiving spectral modulations leads to right lateralised responses. Unlike other figure-ground tasks
(Elhilali et al., 2009b; Gutschalk et al., 2008; Kidd, 1994; Kidd et al., 1995), the stochastic figure-
ground task used here cannot be detected based on simple spectral separation; instead, it has been
associated with a temporal coherence mechanism (Shamma et al., 201 |; Teki et al., 2013). That we
found predominantly left-hemisphere modulations therefore aligns both with the division proposed
by Flinker et al. (2019), and with the findings from previous speech-in-noise tasks. However, it is
worth noting that one right hemisphere intrinsic connection (Tel.l) was present in our DCM (Table
3), albeit with a lower probability (.7 1)—suggesting the effects are not entirely lateralised. One
previous EEG study (Bidelman and Howell, 2016) reported greater right-hemisphere lateralisation
when speech-in-noise was presented at a lower TMR, although in this study, participants were
instructed to ignore the speech stimuli—and, therefore, responses are unlikely to relate to poorer
intelligibility and may instead relate to stimulus acoustics.

In the current study, we manipulated difficulty by manipulating TMR, which is a naturally relevant
quantity that varies greatly among different everyday listening settings. Rather than specifying a TMR
that was fixed across participants, we selected TMRs for each participant that corresponded to 60%
and 90% behavioural thresholds. This aspect of the design makes it less likely that the results reflect
acoustic properties of different TMRs, but rather the perceptual challenges imposed by a lower
TMR—which occur at different TMRs for different people. The selected TMRs and the acoustic
noise (babble for speech-in-noise; random tone chords for figure-ground) also differed between the
two tasks. Furthermore, absolute TMRs in each participant were regressed out of the model.
Therefore, disinhibition of left Tel.0 and Tel.| likely arose due to the increased difficulty associated
with lower TMRs, rather than acoustic properties of the speech-in-noise and figure-ground tasks
that covary with TMR.

Possibly, between-subjects differences in the disinhibition of left Tel.0 and I.] might help to explain
why Holmes and Griffiths (2019) found that people who are worse at figure-ground perception are
also worse at speech-in-noise perception. A common clinical observation is that patients report
difficulties with speech-in-noise perception, despite no evidence of impaired peripheral function
(Cooper and Gates, 1991; Hind et al., 201 |; Kumar et al., 2007). Clinical measures are usually
restricted to peripheral measures, such as the pure-tone audiogram, which do not fully account for
individual differences understanding speech in noise (Cooper and Gates, 1991; Hind et al., 201 |;
Holmes and Griffiths, 2019; Kumar et al., 2007). Figure-ground perception has great potential as a
useful clinical measure to predict speech-in-noise perception: Holmes and Griffiths (2019)
demonstrate that it explains variance in speech-in-noise perception after accounting for differences
in audiometric thresholds. One of the reasons it might be helpful in predicting speech-in-noise
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perception is because it assesses cortical processing that is relevant to speech-in-noise perception,
which is not assessed by current clinical measures. In other words, some of the individual variability
in speech-in-noise perception may arise from differences in disinhibition at the early stages of
auditory cortical processing.

The results of the univariate analysis indicate that figure-ground perception predominantly activates a
sub-set of the regions involved in speech-in-noise perception: both tasks reliably activate the
superior temporal lobe (Table 2), but speech-in-noise perception leads to greater activity in bilateral
STG, the left precentral gyrus, and the right cerebellum (Table 1). This finding is consistent with the
idea that our figure-ground task is a basic version of speech-in-noise perception that relies on similar
acoustic analysis (e.g., fundamental grouping processes), but does not require linguistic and
articulatory processes involved in speech-in-noise perception.

The areas that were more strongly activated by speech-in-noise than figure-ground—bilateral STG,
the left precentral gyrus, and the right cerebellum—have been associated with speech-in-noise tasks
in previous studies. For example, the STG correlates positively with speech intelligibility (Scott et al.,
2004) and TMR (Davis et al., 201 I). Cerebellar activity has also been reported in previous studies
(see Ackermann et al., 2007 for a review), despite the fact that—traditionally—the cerebellum is not
commonly thought to be part of the speech network. Using PET, Salvi et al. (2002) found activity in
the right cerebellum when speech-in-babble was compared to speech-in-quiet; perhaps, crucially,
they selected levels for the speech and babble to ensure that performance was approximately 50%
for each participant. Similarly, here, we ensured that speech intelligibility was below ceiling (60% or
90%) and equated performance between the speech-in-noise and figure-ground tasks. The
involvement of the motor cortex (precentral gyrus) in speech perception has been long debated (see
Scott et al., 2014), but several studies have found motor cortex activity during speech perception
(e.g., Wilson et al., 2004; Wilson and lacoboni, 2006). The current results lead further support to
the claim that, compared to more basic auditory stimuli, speech perception is associated with activity
in motor cortex.

Only two voxels showed greater activity for figure-ground than speech-in-noise perception, and they
did not survive a stringent correction for family-wise error at an alpha of .001. However, it is worth
noting that they are located close to parts of the IPS that have previously been associated with
figure-ground perception (Teki et al., 2016, 201 I). Consistent with these results, earlier work has
demonstrated that IPS plays a role in basic auditory streaming (Cusack, 2005). Previously, IPS activity
has been attributed to top-down attention (Cusack, 2005) or to perceptual ‘pop-out’ (Shamma and
Micheyl, 2010; Teki et al,, 201 1) during auditory scene analysis. During figure-ground perception,
predictions about frequencies can be very precise after the figure has been detected (because the
frequencies of the figure remain the same for the entire figure duration), whereas speech changes
frequency over time; thus, greater activity in IPS during figure-ground perception could reflect
greater ‘pop-out’ of figures that remain the same frequency over time, than of speech, which changes
frequency over time.

In summary, our results demonstrate common processes for figure-ground and speech-in-noise
perception in early auditory cortex. We found that figure-ground perception predominantly
activates a sub-set of regions involved in speech-in-noise perception. Modelling of BOLD responses
showed that greater difficulty in both tasks is associated with disinhibition in left Tel.0 and left
Tel.l—implying that the early stages of the auditory cortical hierarchy increase their gain when
speech-in-noise and figure-ground perception become more difficult. Ultimately, these results
suggest a common cortical substrate that links perception of basic and natural sounds—and might
explain why people who are worse at figure-ground perception are also worse at speech-in-noise
perception.


https://doi.org/10.1101/814913
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/814913; this version posted October 23, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Materials and Methods

Subjects

49 participants completed the experiment. We measured their pure-tone audiometric thresholds at
octave frequencies between 0.25 and 8 kHz in accordance with BS EN ISO 8253-1 (British Society of
Audiology, 2004). We excluded one participant who had a mild sloping hearing loss; all other
participants had 6-frequency average thresholds better than 20 dB HL in either ear. We also
excluded 4 participants who were not native English speakers, leaving 44 participants—which is the
number we aimed to analyse based on an a priori power analysis. A sample size of 44 was estimated
using NeuroPower (http://neuropowertools.org) with power = 0.8, and was based on publicly
available fMRI data reported by Hakonen et al. (2017). The 44 participants (23 male) we tested were
19-35 years old (median = 22.7 years; interquartile range = 6.0) and all reported that they were
right-handed.

The study was approved by the University College London Research Ethics Committee, and was
performed in accordance with relevant guidelines and regulations. Informed consent was obtained
from all participants.

Stimuli

Stochastic figure-ground stimuli were based on Holmes & Griffiths (2019). They contained 50-ms
chords, gated by a 10-ms raised-cosine ramp, with 0 ms inter-chord interval. Each chord contained
multiple pure tones at frequencies selected from a logarithmic scale between 179 and 7246 Hz
(1/24th octave separation). The stimuli contained a figure that lasted 2100 ms (42 chords) and a
background that lasted 3100 ms (62 chords). The background comprised 5—15 pure tones, whose
frequencies were selected randomly at each time window. The figure comprised 3 components; the
frequencies were selected randomly on each trial and were the same for the entire figure duration.
The figure began 500 ms (10 chords) after the background. For half of stimuli, 4 chords (lasting 200
ms) were omitted from the figure. For the other half, the same number of components (3) were
omitted from the background (4 chords; 200 ms). The omitted components began 20—42 chords
after the onset of the figure-ground stimulus (10-32 chords after the onset of the figure); the
components were always omitted while the figure was present, even if they were omitted from the
background.

Sentences for the speech-in-noise task were from the English version of the Oldenburg matrix set
(HorTech, 2014) and were recorded by a male native-English speaker with a British accent. The
sentences are of the form “<Name> <verb> <number> <adjective> <noun>" and contain 10
options for each word (see Table 4). An example is “Rachel brought four large chairs”. Recorded
sentences were normalised to the same root-mean-square amplitude and lasted on average 2.2
seconds (standard deviation = .1). The sentences were presented simultaneously with |6-talker
babble, which began 500 ms before the sentence began, ended 500 ms after the sentence ended, and
was gated by a |0-ms raised-cosine ramp. The babble was taken from a continuous track lasting 20
seconds; a different segment of the babble was selected on each trial.

Stimuli were presented using MATLAB (R2015a) and Psychtoolbox (version 3.0.14). Sounds were
presented at 75 dB A, which was measured using a Briel & Kjaer (Narum, Denmark) Type 2636
sound level meter. The levels were calibrated separately with the equipment that was used for the
behavioural and MRI sessions.
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Table 4. Words from the English version of the Oldenburg International Matrix corpus, which was
used in the speech-in-noise task. Sentences were constructed by selecting one word from each of
the five columns with equal probability, ensuring that transition probabilities between words were
equated across sentences. Sentences were recorded in their entirety rather than as individual words.

Name Verb Number Adjective Noun
Alan got three large desks
Doris sees nine small chairs
Kathy brought seven old tables
Lucy gives eight dark toys
Nina sold four heavy spoons
Peter prefers nineteen green windows
Rachel has two cheap sofas
Steven kept fifteen pretty rings
Thomas ordered twelve red flowers
William wants sixty white houses

Experimental Procedures

Pre-scan behavioural

At the beginning of the experiment, participants completed a behavioural session, to determine their
thresholds for 60% and 90% performance on the stochastic figure-ground (SFG) and speech-in-noise
(SPIN) tasks.

The pre-scan behavioural was conducted in a sound-attenuating booth. Participants sat in a
comfortable chair facing an LCD visual display unit (Dell Inc.). Acoustic stimuli were presented
through a Roland Edirol UA-4FX (Roland Corporation, Shizuoka,, Japan) USB soundcard connected
to circumaural headphones (Sennheiser HD 380 Pro; Sennheiser electronic GmbH & Co. KG).

Participants first performed a short (< 5 minute) block to familiarise them with the figure-ground
stimuli. During the familiarisation block, they heard the figure and ground parts individually and
together, with and without a gap in the figure.

After familiarisation, we determined thresholds for the two tasks. We varied the target-to-masker
ratio (TMR) between the target (figure or speech) and masker (background tones or babble noise,
respectively) in a weighted adaptive procedure (Kaernbach, 1991). We used a step size ratio of 6:1
to estimate 60% thresholds and a step size ratio of 9:1 to estimate 90% thresholds. We used four
separate blocks to estimate the TMRs corresponding to 60% and 90% thresholds for the two tasks.
Each block included two separate but interleaved runs, which were identical except that different
stimuli were presented. Each run started at a TMR of 0 dB and terminated after 10 reversals. The
step size began at | dB and decreased to .5 dB after 3 reversals. Identical stimuli were used in the
60% and 90% blocks, but they were presented in different orders.
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To estimate figure-ground thresholds, participants completed a yes-no task. On each trial,
participants heard a figure-ground stimulus and had to decide whether or not there was a gap in the
figure. The figure contained a gap on 50% of trials. On trials in which there was no gap in the figure,
there was a gap in the background of the same magnitude (for details, see ‘Stimuli’ section above).
Participants responded by clicking buttons on the screen corresponding to yes and no responses.

During the speech-in-noise blocks, participants also completed a yes-no task. They had to decide
whether a sentence written on the screen was the same as the target sentence they heard spoken.
The written sentence was presented on the screen after the spoken sentence had ended, and was
identical to the spoken sentence on 50% of trials. It was different on 50% of trials: On these trials,
one word in the written sentence differed from the word in the spoken sentence; this word
occurred at each position in the sentence with equal probability, and was selected randomly from
the other words in the corpus. Participants responded by clicking buttons on the screen
corresponding to yes (same sentence) and no (different sentence) responses.

The order of the figure-ground and speech-in-noise blocks were counterbalanced across
participants. Before the first block of each task, participants performed a 6-trial practice at 3 dB
TMR, with feedback.

MRI

The MRI session was completed on the same day, immediately after the pre-scan behavioural. The
same figure-ground and speech-in-noise tasks were presented, but at fixed TMRs—corresponding to
the adapted TMRs from the pre-scan behavioural. Each task was presented at two different TMRs:
One corresponding to the 90% threshold (SPIN-90 and SFG-90) and another corresponding to the
60% threshold (SPIN-60 and SFG-60).

Participants laid on a bed in the MRI scanner. Visual stimuli were presented through an Epson EB-
L1100U projector, which participants viewed through a mirror attached to the head coil. Auditory
stimuli were presented through a Roland Edirol UA-4FX (Roland Corporation, Shizuoka,, Japan) USB
soundcard connected to Ear-Tone Etymotic earphones (Etymotic Research, Inc., lllinois, U.S.A.) with
disposable foam ear tips.

We presented 8 functional runs, each containing 24 trials. Each run contained 6 trials from each
condition, which were pseudorandomly interleaved. Figure 4 shows a schematic of the trial
structure. Each trial lasted 8 seconds and contained three major components: A visual cue, which
indicated the task for the upcoming trial; the acoustic stimuli; and a probe sentence, which cued
participants to make a response. We used a sparse sampling method with one functional MRI volume
acquisition at the end of each trial. The acoustic stimuli were presented in the silent gap between
scans. They began, on average, |.4 seconds after the start of the trial and were jittered within an
interval of 2 seconds (i.e., .4—2.4 seconds after the end of the previous scan). The visual cue was the
word “figure” or “speech”; it was presented for .4 seconds (.35 seconds during the previous scan,
and .05 seconds after the previous scan had ended). A fixation cross then appeared on the screen
until the probe sentence was presented 5.6 seconds after the trial began. The probe sentence
remained on the screen until the visual cue for the next trial began. On figure-ground trials, the
probe sentence was “Gap in figure?”. On speech-in-noise trials, the probe was a written sentence
followed by a question mark. Participants responded using a button box in their right hand; they
pressed one button to respond “yes”—if the there was a gap in the figure (figure-ground task) or if
the written sentence matched the spoken sentence (speech-in-noise task)—and a different button to
respond “no”.

Before participants began the MRI session, they first completed a practice of 24 trials outside the
scanner using the same equipment that was used for the pre-scan behavioural. The trial structure of
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Figure 4. Schematic of the trial structure during the MRI session. The upper row displays the onset
of visual stimulus presentation. The lower row displays the positioning of acoustic stimuli, and the
approximate timing of button press responses. Grey bars represent functional volume acquisitions,

which each lasted 3.36 seconds. Two exemplar trials are shown: a speech-in-noise trial followed by a

figure-ground trial.

the practice was identical to the MRI session, and participants received no feedback about their
responses.

MRI data acquisition

MRI was conducted on a 3.0 Tesla Siemens MAGNETOM TIM Trio MR scanner (Siemens
Healthcare, Erlangen, Germany) at the Wellcome Centre for Human Neuroimaging (London, U.K.)
with a 64-channel receive coil.

T2*-weighted functional images were acquired using echo-planar imaging (EPI) with field of view of
192 x 192 x 144 mm; voxel size = 3.0 x 3.0 x 2.5 mm; echo spacing of 30 ms; time-to-repeat (TR) of
3.36 seconds; 48 slices; anterior-to-posterior phase encoding; bandwidth of 2298 Hz/Px. Acquisition
was whole-brain transverse oblique, angled away from the eyes. We used sparse temporal sampling
(Hall et al,, 1999): A delay of 4.64 seconds was imposed between successive volumes, such that each
volume acquisition began 8 seconds after the previous volume acquisition began. We collected 24
volumes from each participant in each of the 8 runs, plus an additional ‘dummy’ scan, which was
presented immediately prior to the first trial of each run and was excluded from the analyses. We
collected field maps immediately after the functional runs (short TE = 10.00 ms and long TE = 12.46
ms).

At the end of the session, we acquired a whole-brain T |-weighted anatomical image (MPRAGE, 176
slices; voxel size = | mm isotropic; field of view 256 x 256 x 176 mm; PAT GRAPPA of factor 2;
anterior-to-posterior phase encoding; TR = 2530 ms, TE = 3.34 ms).

Analyses

Pre-scan behavioural
We calculated thresholds as the median of the last 6 reversals in each run. We averaged the
thresholds from the two interleaved runs within each block.
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Behaviour during scan

To determine behaviour during the MRI session, we calculated d’ (Green and Swets, 1966) with
loglinear correction (Hautus, 1995). Trials with no response were included in the analysis as misses
and false alarms (i.e., as incorrect responses).

MRI pre-processing

MRI data were processed using SPM12 (Wellcome Centre for Human Neuroimaging, London, UK).
Each participant’s functional images (EPIs) were unwarped using their field maps and were realigned
to the first image of the run. We then applied slice time correction. The functional and anatomical
images were co-registered to the mean EPI, then normalised to the standard spm|2 template
(avg305T1). We spatially smoothed the images using a Gaussian kernel with 4 mm full-width at half-
maximum.

Statistical parametric mapping

We modelled the fMRI timeseries for each participant with a General Linear (convolution) Model,
with the motion realignment parameters as covariates of no interest. Each stimulus was modelled as
a delta function, convolved with the canonical hemodynamic response function. We ran a contrast of
all trials over the (implicit) baseline, which we used to define regions of interest (ROls) for the DCM
analysis. For completeness, we also ran contrasts to test the main effect of Task (figure-ground and
speech-in-noise), the main effect of Difficulty (TMRs for 90% or 60% performance), and the
interactions between Task and Difficulty. We entered the contrasts into a second level analysis,
which applied one-sample t-tests at the group level.

Dynamic Causal Modelling

DCM is used to infer effective connectivity—and how directed causal influences among neural
populations are affected by experimental manipulations. In brief, DCM is based on a model of neural
population dynamics, which is combined with a hemodynamic model. The technical details of DCM
are explained in other papers (see Friston et al,, 2017, 2003; Zeidman et al., 2019a, 2019b). We first
inferred the effective connectivity parameters that best fit each participant’s fMRI data, then
estimated the parameters and their uncertainty at the group level using parametric empirical Bayes.
Finally, we used a particular form of Bayesian model comparison—namely, Bayesian model
reduction—to establish which model of effective connectivity best explain the group data.

Here, we were interested in making group-level inferences about how greater difficulty in figure-
ground and speech-in-noise tasks modulates intrinsic (i.e., within-region) and extrinsic (i.e., between-
region) connectivity (i.e., a main effect of Difficulty) and whether there are modulations specific to
greater difficulty in one task over the other (i.e., an interaction between Task and Difficulty).

Selection of timeseries. We extracted timeseries for each subject in 8 ROls (left and right Tel .0,
Tel.l, Tel.2, and Te3). To ensure the timeseries showed reliable task-related activity—and did not
include voxels with random signal fluctuations—we selected voxels for each subject that were
significant at pre-specified thresholds at both the group and individual-subject levels. In detail, we
masked the group-level contrast (All Trials > baseline) with anatomical masks extracted from the
SPM Anatomy Toolbox (version 2.2c) (Eickhoff et al., 2005), corresponding to the 8 ROls. We used
the voxels that were below the p = .05 threshold (after family-wise error correction) to generate a
functional mask for each ROI. We applied these functional masks to the individual-subject results,
and retained voxels at the individual-subject level that were below a threshold of p = .05
uncorrected. Where no voxels within an ROl survived the p < .05 threshold (right Tel.0: 2/44
participants; right Tel.l: | 1/44 participants; right Tel.2: 1/44 participants; left Tel.l: 2/44
participants; left TEI.2: 1/44 participants), we increased the individual-subject threshold in
increments of .05 until one or more voxels survived. (Note that the thresholds applied in the
selection of timeseries only specify the voxels that are included in the analysis and do not determine

18


https://doi.org/10.1101/814913
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/814913; this version posted October 23, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

statistical significance of the DCM analysis.) Finally, we created a summary timeseries for each ROl in
each participant by extracting the principal eigenvariate.

DCM estimation. The DCM for each participant included 8 nodes corresponding to the extracted
timeseries for the 8 ROls. We specified the input timing for the DCM analysis as vectors specifying
All Trials of interest, the main effects of Task and Difficulty, the interaction between Task and
Difficulty, and the motion and run covariates. We estimated (using Bayesian model inversion with
Variational Laplace) a fully-connected DCM for each participant, which included all possible
combinations of intrinsic and extrinsic fixed connections. We allowed All Trials and the main effect
of Task to serve as external (i.e., direct or driving) inputs to each node. We allowed the main effect
of Difficulty and the interaction between Task and Difficulty to modulate all intrinsic and extrinsic
connections, and serve as external inputs to each region.

Group level inference. To estimate parameters at the group level (i.e., across participants), we took
the parameters of interest for each participant to a second-level Parametric Empirical Bayes (PEB)
analysis. This is a hierarchical model of connectivity parameters, with connectivity parameters from
all subjects at the first-level and a GLM at the second-level, estimated using a variational scheme.
Our first-level parameters of interest were the modulations of intrinsic and extrinsic connectivity by
the main effect of Difficulty and by the Task—Difficulty interaction (i.e., parameter matrix B from
each subject’s DCM). We entered the absolute TMRs in each of the four conditions for each
participant (which differed according to their thresholds measured in the pre-scan behavioural
session) as regressors in the second level of the PEB model. Having estimated parameters of the full
PEB model, we then pruned away parameters using Bayesian Model Reduction (BMR)—which
performs an automatic (‘greedy’) search over the model space, essentially comparing the evidence
for reduced models that have particular parameters ‘switched off. The model evidence considers
both accuracy (how well the model fits the data) and complexity (the difference between model
parameters and their prior values, which were always set to zero). The algorithm iteratively discards
parameters if the reduced model has greater evidence. Thus, simpler models (i.e., those with more
parameters ‘switched off’) that fit the data sufficiently accurately are preferred, because greater
complexity reduces the model evidence. The final 256 models from the BMR were entered into a
Bayesian Model Average (Hoeting et al., 1999; Penny et al., 2006), which performs a weighted
average of parameters across models, according to the posterior probabilities (Pp) of the models.
We discounted parameters whose posterior probabilities were less than .95, to focus our
conclusions on high-probability parameters; although, for completeness, we report the probabilities
of all parameters in Table 3.
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