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Abstract	
Glycomics measurements, like all other high-throughput technologies, are subject to technical variation due 
to fluctuations in the experimental conditions. The removal of this non-biological signal from the data is 
referred to as normalization. Contrary to other omics data types, a systematic evaluation of normalization 
options for glycomics data has not been published so far. In this paper, we assess the quality of different 
normalization strategies for glycomics data with an innovative approach. It has been shown previously that 
Gaussian Graphical Models (GGMs) inferred from glycomics data are able to identify enzymatic steps in the 
glycan synthesis pathways in a data-driven fashion. Based on this finding, we here quantify the quality of a 
given normalization method according to how well a GGM inferred from the respective normalized data 
reconstructs known synthesis reactions in the glycosylation pathway. The method therefore exploits a 
biological measure of goodness. We analyzed 23 different normalization combinations applied to six large-
scale glycomics cohorts across three experimental platforms (LC-ESI-MS, UHPLC-FLD and MALDI-FTICR-MS). 
Based on our results, we recommend normalizing glycan data using the ‘Probabilistic Quotient’ method 
followed by log-transformation, irrespective of the measurement platform. 
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1 Introduction	
Glycans have been recognized to contribute to the pathophysiology of every major disease1. To keep up with 
the increasing interest to better understand the involvement of glycans in biological processes at a molecular 
level, high-throughput platforms have been developed in the recent past. These platforms allow to profile 
glycans in large-scale datasets and from a wide variety of biospecimens.  

Similar to all other omics data types, glycomics samples need to be preprocessed prior to statistical analysis 
in order to minimize intrinsic, non-biological variation. This variation can arise, for example, from fluctuations 
in the instrument settings, sample preparation, or experimental conditions. The process that aims at 
reducing technical variations from the data is referred to as normalization. Different normalization 
procedures have substantially different assumptions regarding the nature of the non-biological variation, 
which, however, is unknown in most practical cases. Systematic comparisons of commonly implemented 
preprocessing strategies for various omics technologies have been published in recent years, including 
transcriptomics2, proteomics3, as well as metabolomics4–6. An analogous study for glycomics data is, to the 
best of our knowledge, currently still unavailable.  

This need for a glycomics-specific evaluation is further supported by the observation that the de facto 
standard for large-scale glycomics data preprocessing is Total Area (TA) normalization7, which describes each 
glycan intensity in a sample as a percentage of the total. Following this transformation, the normalized 
intensities of a sample sum up to one (or 100%) by definition, leading to the loss of one degree of freedom. 
The division of each value by the sum of all values in a sample is referred to as a closure operation, and the 
resulting dataset is known as a compositional dataset8. Notably, these types of data normalization alter the 
structure of the covariance matrix, subsequently affecting any downstream correlation-based analysis (for 
details on this phenomenon, see Methods). Compositional datasets are not unique to glycomics, but widely 
occur in other fields, prominently in microbiome profiling9, where percentages are used to describe the 
relative abundance of different microbial species. Notably, regular multivariate methods are not appropriate 
to treat these types of data, and specific statistical techniques need to be employed10–14. Most of such 
techniques require the definition of new variables, typically defined as ratios between the original 
compositional values15–17. This makes interpretation of the results in terms of the original quantities 
challenging18,19.  

In order to be able to infer biological interactions from the analysis of large-scale glycomics data, the 
selection of a more suitable alternative to TA normalization is therefore necessary. Given the variety of 
possible preprocessing strategies available, we need to define a criterion to quantitatively evaluate the 
performance of each method to select the most appropriate normalization method.  

Common evaluation schemes for the performance of preprocessing strategies are mostly based on two 
approaches: 1. Minimizing the variation between technical replicates20,21; 2. Maximizing the variation across 
groups6. Consistency across technical replicates is a desirable outcome, but alone is not sufficient to 
guarantee good data quality, and technical replicates might not always be available. The maximization of 
variation across groups, on the other hand, is based on the assumption that the measured variables associate 
strongly to an arbitrarily chosen phenotype, which might or might not be the case for specific data. This 
criterion does therefore not necessarily reflect the true underlying biology.  
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In this paper, we address the question of evaluating different normalization strategies for glycomics data 
with a different, innovative approach. We assess the quality of a normalized dataset through its ability to 
reconstruct a biochemically correct pathway using statistical network inference. The idea is based on the 
observation that Gaussian Graphical Models (GGMs) are able to selectively identify single enzymatic steps in 
metabolic pathways22. Thus, we compare the GGMs inferred from data normalized with different approaches 
to the known biochemical pathway of glycan synthesis and evaluate the quality of each normalization 
according to how well the corresponding GGM retrieves known synthesis reactions (Figure 1). By computing 
the overlap between estimated GGM and glycosylation pathway, we rely on a biological measure of quality, 
as a higher overlap indicates data whose correlations are able to better reflect known biochemical 
interactions. Hence, the normalization that produces the highest overlap is defined as the best. Glycomics 
data provide an ideal test case to demonstrate the validity of this approach, as the known biochemical 
pathway of synthesis is well characterized.  

In the following, we compared the performance of different variations of seven commonly implemented 
normalization methods on data from six cohorts across three different glycomics platforms, including 
measurements of IgG Fc, total IgG or total plasma N-glycans.  

2 Results	

2.1 Data	
We analyzed six large-scale glycomics datasets (Table 1), measured on three different platforms: 

(1) In four cohorts (Korčula2013, Korčula2010, Split, Vis)23, N-glycans from the Fc region of IgG were 
measured via liquid chromatography - electroSpray ionization – mass spectrometry (LC-ESI-MS). This 
platform allows to quantify glycopeptides, i.e. short amino acid sequences in proximity of the glycosylation 
site in combination with the attached glycans. Since IgG has four isoforms (also referred to as subclasses), 
which differ in their amino acid sequences24,25, the LC-ESI-MS technology is able to distinguish among glycans 
bound to different IgG subclasses. In total, 50 N-glycopeptide structures were quantified: 20 for IgG1, 20 for 
IgG2 and IgG3 (which have the same glycopeptide composition and hence are not distinguishable by 
mass24,25) and 10 for IgG4. In the main manuscript, we show results for the Korčula 2013 cohort, which 
included 669 samples.  

(2) In one cohort (Study of Colorectal Cancer in Scotland; SOCCS)26, IgG N-glycans were measured via ultra-
high-performance liquid chromatography  with fluorescence detection (UHPLC-FLD). In this case, all glycans 
bound to the IgG protein are first released and then measured, including the ones in the Fab region (see 
Methods), but no information about the IgG subclass of origin is retained. Peaks in the chromatogram reflect 
chemical-physical properties of the measured molecules and not necessarily single glycan structures. In the 
specific case of IgG N-glycans, however, each UHPLC peak typically includes one highly predominant 
structure27. For the purpose of the analyses presented in this paper, we only considered the most abundant 
structure within each peak. The final UHPLC cohort consisted of 24 glycan peaks quantified in 535 samples. 

(3) In the last cohort (Leiden Longevity Study; LLS)28, N-glycans from the whole set of human plasma proteins 
were measured via matrix-assisted laser desorption/ionization – Fourier-transform ion cyclotron resonance 
– mass spectrometry (MALDI-FTICR-MS). In this setting, glycans from all plasma proteins are released and 
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measured together. Therefore, glycans originating from highly abundant and highly glycosylated proteins will 
be predominant. Notably, this platform only identifies molecular masses, so structural information is not 
directly available from the data. Therefore, within each mass multiple glycan structures can be present, and 
this has to be taken into account. In the analyzed cohort, 61 distinct masses were quantified in 2,056 samples. 

2.2 Overview	of	normalization	methods	

Seven basic preprocessing approaches were considered, all of which are commonly used in omics data 
analysis (Table 2): (1) Raw (unprocessed) data were included for comparison; (2) Quantile29 and (3) Rank30 
normalization are widely used in microarray data analysis; (4) Total Area (TA) is often used to preprocess 
large-scale glycomics31 and microbiomics data9; (5) Median centering4, (6) Probabilistic Quotient 
normalization applied to raw and (7) to TA-normalized data are popular methods for the preprocessing of 
metabolomics data32,33. 

Since omics data have frequently been reported to follow an approximately log-normal distribution34,35, and 
since GGMs assume normally distributed data, log-transformation of normalized data was also included in 
the analysis when applicable (indicated by a check mark in the second column of Table 2. This resulted in a 
total of 13 different preprocessing strategies. For LC-ESI-MS IgG data, 10 additional variations were included, 
as in this case data normalization can be performed over the full dataset or per IgG subclass separately (third 
column in Table 2. A detailed description of each normalization procedure can be found in the Methods. 

2.3 Prior	knowledge-based	evaluation	
Once all normalizations were applied to the data, partial correlation coefficients were computed with the 
GeneNet algorithm, which has been proven to give more reliable and stable estimates of partial correlation 
coefficients than the analytical method36. Statistical significance of coefficients was determined by applying 
a False Discovery Rate (FDR) of 0.01. The resulting partial correlation network, or Gaussian Graphical Model 
(GGM), was then compared to the respective biochemical pathway of glycan synthesis. As a quantitative 
measure of overlap between the calculated GGM and the pathway, we chose the Fisher test p-value (see 
Methods), where lower p-values correspond to a higher overlap between inferred network and prior 
knowledge, thus corresponding to a better normalization. The biochemical pathway for IgG was taken from 
Benedetti et al. 201737, while the reference pathway for the total-plasma N-glycome was based on the 
measured glycan masses (see Methods). Schematics of the pathways used for the evaluation can be found 
in Figure S1-S4. 

2.4 LC-ESI-MS	–	IgG	Fc	N-glycopeptides	
For the LC-ESI-MS platform, most methods produced networks with high overlap to the biochemical pathway 
of synthesis, indicated by low Fisher’s test p-values (Figure 2, left).  

Interestingly, the unprocessed data (Raw) were among the best-performing methods, which might be related 
to the fact that, with this platform, the ionization is dominated by the peptide, which might serve as an 
internal standard for the glycan quantification. As expected, TA-based normalizations performed significantly 
worse than all other considered strategies, probably due to the alteration of the covariance matrix induced 
by closure operation. Moreover, we observed that, in most cases, log-transformation did not improve 
performance (Figure 2, center). Given the assumption of normality of the Gaussian graphical models, we 
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expected log-transformed data, which are more normally distributed, to perform better than their non-
transformed counterparts. This might indicate that GGMs, although formally only suitable for normally 
distributed data, are effective also for non-Gaussian data. An exception to this observation was the TA-log 
normalization, for which log-transformation appears to neutralize the constraints imposed by TA and hence 
improving performance. Normalizing per total IgG or per IgG subclass did not result in substantial differences 
in performance, except for TA (Figure 2, right).  

The results of the evaluation were consistent across all four cohorts (Figure S5-S7).  

In summary, we showed that for LC-ESI-MS IgG Fc glycomics data, all considered preprocessing performed 
comparably except TA, which was significantly worse than the rest. Moreover, non-log-transformed data did 
not perform worse than the transformed data, and normalizing per total IgG or per IgG subclass did not make 
a significant difference. 

2.5 UHPLC-FLD	–	Total	IgG	N-glycans	
For the UHPLC-FLD dataset, contrary to the previous case, the performance was highly affected by the chosen 
normalization method (Figure 3, left), with TA Probabilistic Quotient and Probabilistic Quotient ranking at 
the top. In this case, the unprocessed data performed poorly. Moreover, in contrast to what we observed in 
the LC-ESI-MS case, for UHPLC-FLD data, the log-transformation had a significant impact on the performance 
of normalizations, although with opposite effects depending on the methodology: for some it substantially 
enhanced performance (Quantile, Total Area), while for others it was detrimental (Rank, Raw data) (Figure 
3, right). 

2.6 MALDI-FTICR-MS	–	Total	plasma	N-glycans	
The MALDI dataset included 61 glycan peaks. Similar to the LC-ESI-MS case, most methods perfom 
comparably (Figure 4, left). Log-transformed unprocessed data yielded the worst performance, although in 
all other cases log-transformation did not significantly affect the normalization performance (Figure 4, right).  

In conclusion, for MALDI data most normalization methods performed comparably. Log-transformation did 
not significantly alter performance, except when considering log-transformed unprocessed data, which was 
the worst performing approach. 

3 Discussion	

Several systematic evaluations of preprocessing methodologies have been recently published for different 
omics data types, but glycomics has received little attention so far in this regard. In order to address this gap, 
we developed an innovative approach to assess the quality of different normalization strategies applied to 
glycomics data. The main feature of our procedure lies in the definition of a biological measure of quality. 
More specifically, we quantify how well significant correlations in the data normalized with a given technique 
represent known biochemical reactions in the pathway of glycan synthesis. Our quantitative measure of 
choice for this evaluation was the p-value of a Fisher’s exact test, which allows for an intuitive interpretation 
of overlap between correlations and biochemical pathway.  
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We performed a systematic analysis of 23 preprocessing strategies applied to six large-scale glycomics 
cohorts across three platforms, with measurements ranging from single protein and single glycosylation site 
(LC-ESI-MS), to total plasma N-glycome (MALDI-FTICR-MS). The observed normalization ranking was 
consistent across platforms: overall, the Probabilistic Quotient appeared to be the most reliable method, as 
all variations of this procedure ranked consistently in the top performers in all cohorts and across platforms. 
Log-transformation and normalization per IgG subclass or per total IgG did not seem to significantly affect 
the ability of this method to correctly retrieve the glycan synthesis pathway. Interestingly, while Total Area 
normalization did not rank high in comparison to other methods (as expected), the log-transformed Total 
Area preprocessing was a well-performing method. In fact, TA Probabilistic Quotient was among the best 
performing approaches overall, suggesting that additional transformations on TA normalized data can 
neutralize the constraints imposed on the data correlation structure, as shown in Dieterle et al.32.  

One interesting finding was the substantial difference of the evaluation results between MS- and UHPLC-
based platforms: While for MS most normalization approaches performed comparably, the variance among 
the considered strategies was considerable for UHPLC. The origin of this discrepancy is not easy to trace, but 
it could be due to the fact that UHPLC does not separate glycans according to their mass, like MS-based 
techniques do, but according to their chemical and physical properties. This leads to most chromatographic 
peaks to represent a mixture of glycan structures. Although it has been shown that there is a predominant 
structure in the vast majority of IgG chromatographic peaks27, this contamination is likely to make the data 
correlation structure noisier and thus more sensitive to different normalizations. Moreover, it is expected to 
affect the comparison to the biological reference, which does not account for any structure mixture.  

While the results presented here seem to suggest that log-transformation does not significantly affect 
performance, it should be considered that data normality is an assumption for many other statistical tests 
and approaches, and thus we still recommend to always log-transform omics data after normalization.  

The same approach described here could moreover be employed to evaluate other preprocessing steps. For 
example, it has been already shown that, for untargeted metabolomics data, different missing value 
imputation strategies have a prominent impact on the results of the downstream analysis38. We could 
investigate whether the same holds for glycomics data and quantitatively evaluate the performance of each 
strategy. Similarly, our framework could be applied to the evaluation of batch correction approaches, which 
aim at reducing the technical variation due to samples being measured at different times. 

In conclusion, we recommend normalizing glycan data with the Probabilistic Quotient normalization followed 
by log-transformation. This technique was robust and reliable regardless of the measurement platform.  
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4 Materials	and	Methods	

4.1 Datasets	

4.1.1 LC-ESI-MS	
Samples were collected from the Croatian islands of Vis and Korčula, and were obtained from the “10,001 
Dalmatians” biobank23, while samples for a second cohort from Korčula and a cohort from Split were 
collected separately a few years later. For this paper, we only considered unrelated individuals, as described 
previously37. Samples with missing values were excluded from this analysis. The final datasets included 669 
(Korčula2013), 504 (Korčula2010), 980 (Split), and 395 (Vis) samples. 

The Croatian cohorts received ethical approval of the ethics committee of the University of Split School of 
Medicine, as well as the South East Scotland Research. Written informed consent was obtained from each 
participant. 

A detailed description of the experimental procedure can be found in Selman et al. (2012)39 and Huffman et 
al. (2014)40.  

4.1.2 UHPLC-FLD	
The Study of Colorectal Cancer in Scotland (SOCCS) study (1999–2006) is a case–control study designed to 
identify genetic and environmental factors associated with nonhereditary colorectal cancer risk and survival 
outcomes 41. Only the control samples with no missing values were considered for this analysis, for a total of 
535 samples. 

Approval for the study was obtained from the MultiCentre Research Ethics Committee for Scotland and Local 
Research Ethics committee, and all participants gave written informed consent.  

A detailed description of the experimental procedure can be found in Vučković et al. (2016)26.  

4.1.3 MALDI-FTICR-MS	
The Leiden Longevity Study (LLS) is a family-based study comprising 1,671 offspring of 421 nonagenarians 
sibling pairs of Dutch descent, and the 744 partners of these offspring42. After removal of samples with 
missing values, a total of 2,056 individuals were included in the current analysis.  

The study protocol was approved by the Leiden University Medical Center ethical committee and an 
informed consent was signed by all participants prior to participation in the study. 

A detailed description of the experimental procedure can be found in Reiding et al. (2017)28. 

4.2 Normalization	methods	
Prior to normalization, samples containing missing values were excluded from all cohorts. 

Raw: These are the unprocessed, raw peaks intensities.  
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Median Centering: The median value over all samples is subtracted from each glycan value in the dataset. 
The underlying assumption is that the samples have a constant offset. 

Total Area: The intensity of each glycan is normalized to the total area of the spectrum. This preserves the 
relative intensities of each peak within the sample, at the cost of losing one degree of freedom due to the 
constant sum constraint and giving rise to a so-called “compositional dataset”43. The underlying assumption 
here is that only relative intensities are biologically relevant. This transformation, however, introduces 
artifacts in the covariance matrix, which, just because of the constraint introduced by the normalization, 
results with at least one negative value per each row8. 

Probabilistic Quotient: This approach is based on the calculation of the dilution factor of each sample with 
respect to a reference sample32. Here, the reference sample was calculated as the median value of each 
glycan’s abundance across all measured samples. For each sample, a vector of quotients was then obtained 
by dividing each glycan measure by the corresponding value in the reference sample. The median of these 
quotients was then used as the sample’s dilution factor, and the original sample values were subsequently 
divided by that value. The underlying assumption is that the different intensities observed across individuals 
are imputable to different amounts of the biological material in the collected samples. 

Quantile: This method forces the distributions of the glycans (columns) to be the same with respect to the 
quantiles44. It requires replacing each point of a glycan with the mean of the corresponding quantile, resulting 
in perfectly aligned distributions by construction.  

Rank: Values are replaced with their corresponding ranks across the samples.  

Log-transformation:  Biological data have been observed to often follow a log-normal distribution34. Since 
our correlation estimator assumes normally distributed data, we included both the non-transformed and the 
log-transformed data for each considered normalization method, except the median centering.  

Subclass-specific normalization: LC-ESI-MS measures IgG glycosylation  at the glycopeptide level, which 
means that the information about the IgG isoform is preserved. In Caucasian populations, as those 
considered in this paper, the Fc glycopeptides of IgG2 and IgG3 have identical peptide moieties24,25, and are 
therefore not distinguishable with this profiling method. Furthermore, only 10 glycoforms of IgG4 were 
detectable due to the low abundance of this IgG subclass in human plasma. For this platform, each 
normalization method was applied both on the 50 glycoform measurements together, as well as separately 
per each IgG subclass. 

4.3 Prior	knowledge	
The IgG N-glycan synthesis pathway considered in this analysis reflects the extended version established and 
validated in Benedetti et al. (2017)37. For LC-ESI-MS data, the same glycosylation pathway was assumed for 
all IgG subclasses (Figure S1). For UHPLC-FLD data, each peak was approximated to only be represented by 
its most abundant structure, according to Pučić et al. (2011)27 (Figure S1).  

For MALDI-FTICR-MS, the biochemical pathway was constructed based on current understanding of 
glycosylation synthesis reactions45 (Figure S2). However, since the available data included only glycan masses 
and not single structures, all the structures with the same mass were merged into a single node and masses 
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not included in our dataset were removed (Figure S3). The resulting compositional pathway was then 
adapted to match the masses in the dataset (Figure S4).  

4.4 GGM	estimation	
Correlation networks were computed using the preprocessed glycan abundances. GGMs are based on partial 
correlation coefficients, which represent pairwise dependencies in multivariate normally distributed data 
when conditioned against all other variables. To obtain a reliable estimate for the partial correlation matrix, 
we used the shrinkage-based GeneNet algorithm36. Multiple hypothesis testing was corrected for by 
controlling the FDR at 0.01 using the Benjamini–Hochberg method46. 

4.5 Overlap	to	the	biological	reference		
The overlap between biological reference and correlation network was calculated using Fisher’s exact 
tests47,48, which evaluate whether two categorical variables are statistically independent49, with low p-values 
indicating a lack of independence. We classified all glycan pairs in a 2x2 contingency table, according to 
whether they were connected by an edge in both the data-driven GGM and the biochemical pathway (true 
positives), only in the GGM (false positives), only in the pathway (false negatives) or in neither (true 
negatives). From these values, the computed Fisher’s exact test p-value can be interpreted as an overlap 
measure between the two classifiers (in our case represented by the presence or absence of an edge in the 
GGM and in the pathway). The lower the p-value, the higher the overlap. In the context of this paper, the 
normalization with the lowest Fisher’s test p-value will produce the GGM with the highest overlap to the 
biochemical pathway of glycan synthesis and will be ranked as the best normalization. 
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Figures	
 

 

Figure 1: Pipeline for the evaluation of different normalization methods for glycomics data. First, data are normalized 
with various approaches. From each processed dataset, a GGM is inferred and compared to the known biochemical 
pathway of glycan synthesis. The result of this comparison is a quantitative overlap value that describes how well the 
estimated GGM represents known synthesis reactions. This overlap is the used to evaluate the normalization approach, 
where higher overlap corresponds to a better data normalization.  
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Figure 2: LC-ESI-MS normalization analysis results (Korčula 2013 cohort). Results in the panels are colored according 
to type of normalization (left), log-transformation (center), or normalization per IgG subclass or total IgG (right). Bars 
represent the median of the Fisher’s exact test p-values over 1,000 bootstrap samples, and error bars indicate the 
corresponding 95% confidence intervals. 
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Figure 3: UHPLC-FLD normalization analysis results (CRC cohort). Results in the panels are colored according to type 
of normalization (left), or log-transformation (right). Bars represent the median of the Fisher’s exact test p-values over 
1,000 bootstrapping, and error bars the corresponding 95% confidence intervals. 

 

 

Figure 4: MALDI-FTICR-MS normalization analysis results (LLS cohort). Results in the panels are colored according to 
type of normalization (left), or log-transformation (right). Bars represent the median of the Fisher’s exact test p-values 
over 1,000 bootstrapping, and error bars the corresponding 95% confidence intervals. 
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Tables	
Table 1: Summary of datasets. 

 LC-ESI-MS UHPLC-FLD MALDI-FTICR 

Dataset name 
Korčula 

2013 
Korčula  

2010 
Split Vis CRC controls LLS 

Glycans measured IgG Fc IgG Fc IgG Fc IgG Fc IgG total Total plasma 

Number of peaks 50 50 50 50 24 61 

Number of samples 
for analysis 

669 504 980 395 535 2,056 
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Table 2: Evaluated normalization methods. 

Normalization Label Group 

Raw Raw Basic 
Normalizations 

Quantile per glycan Quantile 

Rank per glycan Rank 

Total Area TA 

Median Centering Median 

Probabilistic Quotient Quotient 

Total Area + Probabilistic Quotient TAQuotient 

log(Raw) Raw log Logarithm 

log(Quantile per glycan) Quantile log 

log(Rank per glycan) Rank log 

log(Total Area) TA log 

log(Probabilistic Quotient) Quotient log 

log(Total Area + Probabilistic Quotient) TAQuotient log 

(Quantile per glycan) per IgG subclass Quantile subclass Per Subclass 

(Rank per glycan) per IgG subclass Rank subclass 

(Total Area) per IgG subclass TA subclass 

(Probabilistic Quotient) per IgG subclass Quotient subclass 

(Total Area + Probabilistic Quotient) per IgG subclass TAQuotient subclass 

(log(Quantile per glycan)) per IgG subclass Quantile log subclass 

(log(Rank per glycan) per IgG subclass Rank log subclass 

(log(Total Area)) per IgG subclass TA log subclass 

(log(Probabilistic Quotient)) per IgG subclass Quotient log subclass 

(log(Total Area + Probabilistic Quotient)) per IgG subclass TAQuotient log subclass 
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