

1 **Synaptonemal complex-deficient *Drosophila melanogaster* females exhibit rare DSB repair**
2 **events, recurrent copy number variation, and an increased rate of *de novo* transposable**
3 **element movement**

4
5 Danny E. Miller^{1,2,*}
6

7 ¹ Department of Medicine, Division of Medical Genetics, University of Washington, Seattle,
8 Washington 98105

9 ² Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle,
10 Washington and Seattle Children's Hospital, Seattle, Washington 98105

11
12 * To whom correspondence should be addressed: danny.miller@seattlechildrens.org
13

14
15 **Keywords:** meiosis, whole-genome sequencing, crossing over, noncrossover gene conversion,
16 c(3)G, corolla, synaptonemal complex, transposable element, copy-number variation, sister
17 chromatid exchange
18
19

20 **ABSTRACT**

21
22 Genetic stability depends on the maintenance of a variety of chromosome structures and the
23 precise repair of DNA breaks. During meiosis, programmed double-strand breaks (DSBs) made
24 in prophase I are normally repaired as gene conversions or crossovers. Additionally, DSBs are
25 made by the movement of transposable elements (TEs), which must also be resolved. Incorrect
26 repair of these DNA lesions can lead to mutations, copy number variations, translocations,
27 and/or aneuploid gametes. In *Drosophila melanogaster*, as in most organisms, meiotic DSB
28 repair occurs in the presence of a rapidly evolving multiprotein structure called the
29 synaptonemal complex (SC). Here, whole-genome sequencing is used to investigate the fate of
30 meiotic DSBs in *D. melanogaster* mutant females lacking functional SC, to assay for de novo
31 CNV formation, and to examine the role of the SC in transposable element movement in flies.
32 The data indicate that, in the absence of SC, copy number variation still occurs but meiotic DSB
33 repair by gene conversion may occur only rarely. Remarkably, an 856-kilobase de novo CNV was
34 observed in two unrelated individuals of different genetic backgrounds and was identical to a
35 CNV recovered in a previous wild-type study, suggesting that recurrent formation of large CNVs
36 occurs in *Drosophila*. In addition, the rate of novel TE insertion was markedly higher than wild
37 type in one of two SC mutants tested, suggesting that SC proteins may contribute to the
38 regulation of TE movement and insertion in the genome. Overall, this study provides novel
39 insight into the role that the SC plays in genome stability and provides clues as to why SC
40 proteins are among the most rapidly evolving in any organism.

41

42 **INTRODUCTION**

43
44 Programmed double-stranded DNA breaks (DSBs) made during prophase of meiosis I are a
45 critical step in the formation of healthy gametes, yet they are potentially catastrophic events
46 for cells. The meiotic break repair machinery must therefore accurately resolve DSBs as either
47 crossovers (COs) or noncrossover gene conversions (NCOGCs). More DSBs are made than will
48 be repaired as COs, and thus the majority of DSBs are repaired as NCOGCs which are
49 nonreciprocal exchange events that result in the 3:1 segregation of alleles. Crossover-
50 associated gene conversions—those that occur in conjunction with a crossover—are frequently
51 seen in some organisms (Jeffreys and May 2004; Santoyo *et al.* 2005; Mancera *et al.* 2008;
52 Wijnker *et al.* 2013), but are less frequently observed in *Drosophila* (Curtis *et al.* 1989; Hilliker
53 *et al.* 1994; Miller *et al.* 2016).

54 Crossing over is essential to ensure the proper segregation of homologous
55 chromosomes during the subsequent meiotic divisions. Crossing over occurs within the context
56 of a large multiprotein structure called the synaptonemal complex (SC), which forms between
57 homologous chromosomes. In most organisms, DSBs must be made before SC formation can
58 occur, and functional SC is required for proper DSB repair (de Massy 2012; Zickler and Kleckner
59 2015). However, in *Drosophila melanogaster* the SC is necessary for both robust DSB formation
60 and DSB repair (Lake and Hawley 2012); in the absence of functional SC, DSBs are made at
61 about 20–40% of the wild-type level (Mehrotra and McKim 2005; Collins *et al.* 2014).

62 The *Drosophila* SC protein C(3)G is functionally homologous to the transverse filament
63 proteins SYCP-1 in mammals and ZIP1 in budding yeast (Page and Hawley 2001). While females
64 heterozygous for a loss-of-function *c(3)G* allele appear to build normal SC, homozygous females
65 do not build SC and are thus unable to resolve into crossovers those DSBs that do occur (Page
66 and Hawley 2001). A previous study examining NCOGC events at a single locus in *Drosophila*
67 recovered no events from *c(3)G* homozygous females but did not report the number of progeny
68 scored (Carlson 1972), thus whether DSBs can be repaired as NCOGCs in females lacking
69 functional SC is unknown. Like C(3)G, the *Drosophila* SC protein Corolla is also required for SC
70 formation. *corolla* mutants exhibit phenotypes typical of *Drosophila* SC mutants, including a
71 reduced number of DSBs (~40% as assayed by γH2AV foci) and increased levels of chromosome
72 segregation defects (Collins *et al.* 2014). Similar to *c(3)G* homozygous females, how DSBs are
73 repaired in *corolla* homozygotes remains unknown.

74 While it is evident the SC plays a vital role in resolving DSBs into COs, its role in other
75 meiotic processes is less obvious. For example, there is some evidence for a link between SC
76 formation and transposable elements (TEs), but the data are not definitive (Pearlman *et al.*
77 1992; Hernández-Hernández *et al.* 2008; Marcon *et al.* 2008; van der Heijden and Bortvin
78 2009). Transposable elements are mobile genetic elements active during different stages of
79 gametogenesis. They can be divided into two classes: Class 1, or retrotransposons, replicate

80 using a copy-and-paste method to insert copies of themselves into new locations in the
81 genome, while Class 2, or DNA transposons, use a cut-and-paste method to move from one
82 position in the genome to another. SC genes are among the most rapidly evolving genes in all
83 organisms, but the reason for this remains unknown. It has been hypothesized that the rapid
84 evolution of SC genes may occur to counter the effects of transposable element (TE) movement
85 during meiosis (Fraune *et al.* 2012; Hemmer and Blumenstiel 2016). In *Drosophila* female
86 meiosis, the rate at which TE movement occurs and if the SC has any role in facilitating or
87 limiting TE movement remains unclear.

88 In the current study, whole-genome sequencing (WGS) was used to investigate
89 individual meiotic events in male offspring from females heterozygous or homozygous for a
90 loss-of-function allele of *c(3)G*. While the number and distribution of CO and NCOGC events in
91 individuals from females heterozygous for *c(3)G* was similar to wild-type, in progeny arising
92 from *c(3)G* homozygous mothers (which do not build SC), no crossovers and only one likely
93 NCOGC event were recovered. The recovery of a single presumed NCOGC event suggests that
94 while repair of DSBs via NCOGC may be possible in females lacking functional SC, it is extremely
95 rare. Consistent with the high levels of chromosome missegregation observed in SC mutants, *XO*
96 males lacking a *Y* chromosome, males with 4th chromosome gain or loss, and intersex males
97 were also recovered.

98 These data also provide information on what role, if any, the SC components C(3)G and
99 Corolla play in facilitating or inhibiting TE movement during meiosis. In the current study of SC-
100 defective mutants, novel TE insertions were curiously significantly elevated in *c(3)G*
101 homozygotes but similar to wild type in *corolla* homozygotes. Previous work observed an
102 unexpectedly high amount of transposable element (TE)-mediated copy number variation
103 (CNV) between sister chromatids in wild-type *Drosophila* offspring (Miller *et al.* 2016). Shared
104 and novel large-scale TE-mediated CNVs were also identified in progeny from all genotypes.
105 Remarkably, one of these CNVs was observed in three unrelated individuals—two from this
106 study and one from a separate study of individual meiotic events in wild type (Miller *et al.*
107 2016)—suggesting that, similar to humans (Itsara *et al.* 2009), recurrent CNVs may be a
108 common occurrence in *Drosophila*. Overall, this work helps further our understanding of how
109 meiotic cells cope with DNA breaks and maintain genetic stability.

110
111

112 **METHODS**

113

114 **Fly Stocks and husbandry**

115 The loss-of-function allele *c(3)G*⁶⁸ (Page and Hawley 2001) was crossed into stocks isogenic for
116 either *w*¹¹¹⁸ or Canton-S strain polymorphisms (Miller *et al.* 2012). Females homozygous for
117 *Canton-S X* and 2nd chromosomes and heterozygous for the *c(3)G*⁶⁸ loss-of-function allele were
118 crossed to *w*¹¹¹⁸ males to generate females heterozygous for Canton-S and *w*¹¹¹⁸ strain
119 polymorphisms. These heterozygous females were then crossed again to isogenic *w*¹¹¹⁸ males
120 and individual male progeny were isolated for sequencing (Figure S1). Females heterozygous for
121 *w*¹¹¹⁸ and *Canton-S X* and 2nd chromosomes and homozygous for *c(3)G*⁶⁸ were crossed to
122 isogenic *w*¹¹¹⁸ males and individual male offspring were isolated for sequencing (Figure S1).
123 Progeny from *corolla*¹²⁹ homozygous females were generated by crossing virgin *corolla*¹²⁹
124 females to sibling males and collecting both male and female progeny (Figure S1). All crosses
125 were done using a single male and female, and females were allowed to lay eggs for 7 days
126 before being removed from a vial. Male offspring used for sequencing were collected between
127 days 12 and 15. All flies were kept on standard cornmeal-molasses and maintained at 25°C.
128

129 **DNA preparation and sequencing**

130 For all flies, DNA was prepared from single adult males or females using the Qiagen DNeasy
131 Blood & Tissue Kit. All flies were starved for 4 hr before freezing at -80°C for at least 1 hr. One
132 µg of DNA from each was fragmented to 250-bp fragments by adjusting the treatment time to
133 85 sec using a Covaris S220 sonicator (Covaris Inc.). Libraries were prepared using a Nextera
134 DNA Sample Prep Kit and Bioo Scientific NEXTflex DNA Barcodes. The resulting libraries were
135 purified using Agencourt AMPure XP system (Beckman Coulter) then quantified using a
136 Bioanalyzer (Agilent Technologies) and a Qubit Fluorometer (Life Technologies). Samples from
137 *c(3)G*⁶⁸ homozygotes females were run on a HiSeq 2500 in rapid mode as either 100-bp paired-
138 end or 125-bp paired-end samples using HiSeq Control Software 1.8.2 and Real-Time Analysis
139 (RTA) version 1.17.21.3. Samples from the *c(3)G*⁶⁸ heterozygous and *corolla*¹²⁹ homozygous
140 experiments were run as 150-bp paired-end on a HiSeq 2500 in rapid mode using HiSeq Control
141 Software 2.2.58 and RTA version 1.18.64. Secondary Analysis version CASAVA-1.8.2 was run to
142 demultiplex reads and generate FASTQ files. Per-sample sequencing and alignment statistics
143 can be found in Table S1.

144

145 **DNA alignment, SNP calling, and identification of CO and NCOGC events**

146 Alignment to the *Drosophila* reference genome (dm6) was preformed using bwa version 0.7.7-
147 r441 using default paramters (Li and Durbin 2009). Single nucleotide and insertion or deletion
148 polymorphisms were identified using SAMtools version 1.9 (Li *et al.* 2009). Candidate CO and
149 NCOGC events were identified as described in Miller *et al.* (Miller *et al.* 2016).

150

151 **Depth-of-coverage calculations**

152 Depth of coverage for each chromosome arm was calculated by summing the total read depth
153 for each base position then dividing by the length of the entire chromosome arm. Because of
154 the repetitive nature of the Y chromosome, analysis was limited to *chrY*:332,000–510,000
155 (Table S1).

156

157 **Validation of NCOGCs by PCR**

158 Nine candidate NCOGC events were identified in 93 males from *c(3)G⁶⁸* females and examined
159 by PCR and Sanger sequencing; Phusion polymerase (NEB) was used according to the
160 manufacturer's instructions. Only one of the nine putative conversion events validated as real
161 in male *c3g6.4*. All primers used can be found in Table S2.

162

163 **Calculation of expected NCOGC events**

164 The number of NCOGCs expected to be recovered from 93 individuals from *c(3)G⁶⁸* females if all
165 DSBs on the X and 2nd chromosomes were repaired as NCOGCs was estimated by performing
166 100,000 trials of randomly distributing an estimated number of DSBs among the X and 2nd
167 chromosomes using the SNP density of a *w¹¹¹⁸/Canton-S* heterozygote. Given that DSBs in
168 *c(3)G⁶⁸* females are made at 20% of the wild-type rate of 18–20 DSBs per meiosis (Mehrotra and
169 McKim 2005), a per-arm number of DSBs was estimated as 0–2 per meiosis. Each break was
170 randomly assigned to a chromosome arm, then to a random chromatid. A random chromatid
171 was then selected to be recovered. NCOGC tract length was assumed to be a minimum of 250
172 bp and a maximum of 1000 bp (Miller *et al.* 2016). An NCOGC was predicted to be recoverable
173 if the tract involved at least one high-quality SNP that differentiated the *w¹¹¹⁸* and *Canton-S*
174 genotypes. The estimate of the number NCOGCs which should be recovered from individual
175 offspring of *c(3)G⁶⁸/+* females was calculated by multiplying the wild-type per-arm NCOGC rate
176 of 0.3 (Miller *et al.* 2016) by 120, the number of arms studied .

177

178 **Identification of novel deletion polymorphisms**

179 Novel deletions were identified using two approaches. Deletions smaller than 30 bp were
180 identified using SAMtools (Li *et al.* 2009). For each class of progeny (wild type, *c(3)G⁶⁸*,
181 *c(3)G⁶⁸/+*, and *corolla¹²⁹*) a custom script identified any deletion, regardless of quality score,
182 from all vcf files that did not overlap repetitive regions as defined by Repeatmasker (AFA *et al.*).
183 Novel deletions were those with quality scores over 200 (as determined by SAMtools) that did
184 not fall within 100 bp of another deletion on a different offspring. Candidate novel deletions
185 were validated visually using IGV (Thorvaldsdóttir *et al.* 2013). Data for both wild-type and
186 *c(3)G⁶⁸* were also analyzed using GATK HaplotypeCaller (McKenna *et al.* 2010), but no deletions
187 not identified by SAMtools were identified, thus the remainder of the analysis was completed

188 with SAMtools. Larger deletions were identified using Pindel (Ye *et al.* 2009). For each class of
189 progeny, Pindel was run using default settings with an average insert size of 200 bp. Output
190 files for each class of progeny were analyzed as a group and candidate novel deletions were
191 visually validated using IGV.

192

193 **Construction of synthetic genomes and sequencing reads**

194 In order to determine what percentage of small or large *de novo* deletion polymorphisms would
195 be identified by SAMtools and Pindel synthetic genomes were computationally modified with
196 deletions of varying sizes then analyzed using the approach described above. Two classes of
197 genomes were generated, 100 with 1–10 bp deletions, and 100 with 1–1000 bp deletions. For
198 each individual, two genomes were generated: one with an *X* and without a *Y* chromosome,
199 and one with a *Y* and without an *X*. For each of these genomes, a single nucleotide was
200 randomly changed approximately once every 500 nucleotides to a randomly selected A, G, C, or
201 T. Next, for each genome with an *X* and without a *Y* chromosome 2–6 DSBs (approximately 20%
202 of the 18–20 DSBs expected in wild-type (Mehrotra and McKim 2005)) were randomly placed
203 on one of four haplotypes in a euchromatic location in the genome. Each of these DSBs was
204 randomly determined to have a deletion between either 1–10 bp or 1–1,000 bp beginning at
205 the site of the DSB. One haplotype of these four was then randomly chosen as the genome for
206 the individual. For each individual, ART was used to generate synthetic reads for both genomes
207 with a read depth of approximately 10x (Huang *et al.* 2012). FASTQ files were then combined
208 into a single forward and a single reverse file, and thus represented data from an XY individual,
209 that were then aligned to the *D. melanogaster* reference genome as above. SNPs,
210 insertion/deletion polymorphism, and larger deletions were identified as described above with
211 SAMtools (Li *et al.* 2009) and Pindel (Ye *et al.* 2009). Deletions generated per individual genome
212 can be found in Table S3.

213

214 **Identification of transposable element insertions**

215 To identify TE insertions, split and discordant read pairs were isolated from alignment files
216 using SAMBLASTER (Faust and Hall 2014). BLAST (Altschul *et al.* 1997) was then used to
217 annotate individual split or discordant reads using the *D. melanogaster* canonical TE set
218 (Kaminker *et al.* 2002). Split and discordant clusters that contained more than five reads
219 aligning to a specific TE family were considered candidate TE insertion sites. Novel insertions
220 were detected by a custom script that compared insertions in one population or stock to
221 related stocks or populations and were visually validated using IGV (Thorvaldsdóttir *et al.* 2013).

222

223 **Identification of CNV events**

224 CNV events were identified as described in Miller *et al.* (Miller *et al.* 2016). Briefly, average
225 depth of coverage for each individual chromosome arm was determined, then the \log_2 depth of

226 coverage for 5-kb nonoverlapping windows was calculated and plotted to reveal large regions
227 of deletions or duplications.

228

229 **Data availability**

230 Illumina data generated for this project are available at the National Center for Biotechnology
231 Information (<https://www.ncbi.nlm.nih.gov/>). Data for males from *c(3)G*⁶⁸ females can be
232 found under project PRJNA565835, data for males from *c(3)G*⁶⁸ heterozygous females is under
233 project PRJNA565834, and data for males and females from *corolla*¹²⁹ females is under project
234 PRJNA565794. Wild-type data used in this study were obtained from project PRJNA307070
235 (Miller *et al.* 2016). All code used in this project is available at GitHub
236 (<https://github.com/danrdanny/c3g-corolla-project/>). Supplemental material is available at
237 Figshare.

238

239 **RESULTS AND DISCUSSION**

240

241 **Analysis of individual meiotic events from *c(3)G*⁶⁸ heterozygous and homozygous females**

242

243 While in many organisms DSBs are made in the absence of SC (de Massy 2012; Zickler and
244 Kleckner 2015), Drosophila is unique in that SC is required for robust DSB formation (Lake and
245 Hawley 2012). *D. melanogaster* females homozygous for loss-of-function alleles of SC genes
246 make DSBs at a rate approximately 20%–40% that of wild type (Mehrotra and McKim 2005;
247 Collins *et al.* 2014), and it remains unclear how these DSBs are repaired. Studies using visual
248 markers in Drosophila have shown that repair of DSBs by crossing over is substantially reduced
249 or completely abolished in females unable to construct full-length SC, and it is not known if
250 these DSBs can be repaired by other pathways, such as NCOGC or NHEJ (Gowen 1933; Hall
251 1972; Page and Hawley 2001; Manheim and McKim 2003; Jeffress *et al.* 2007; Page *et al.* 2007;
252 Collins *et al.* 2014).

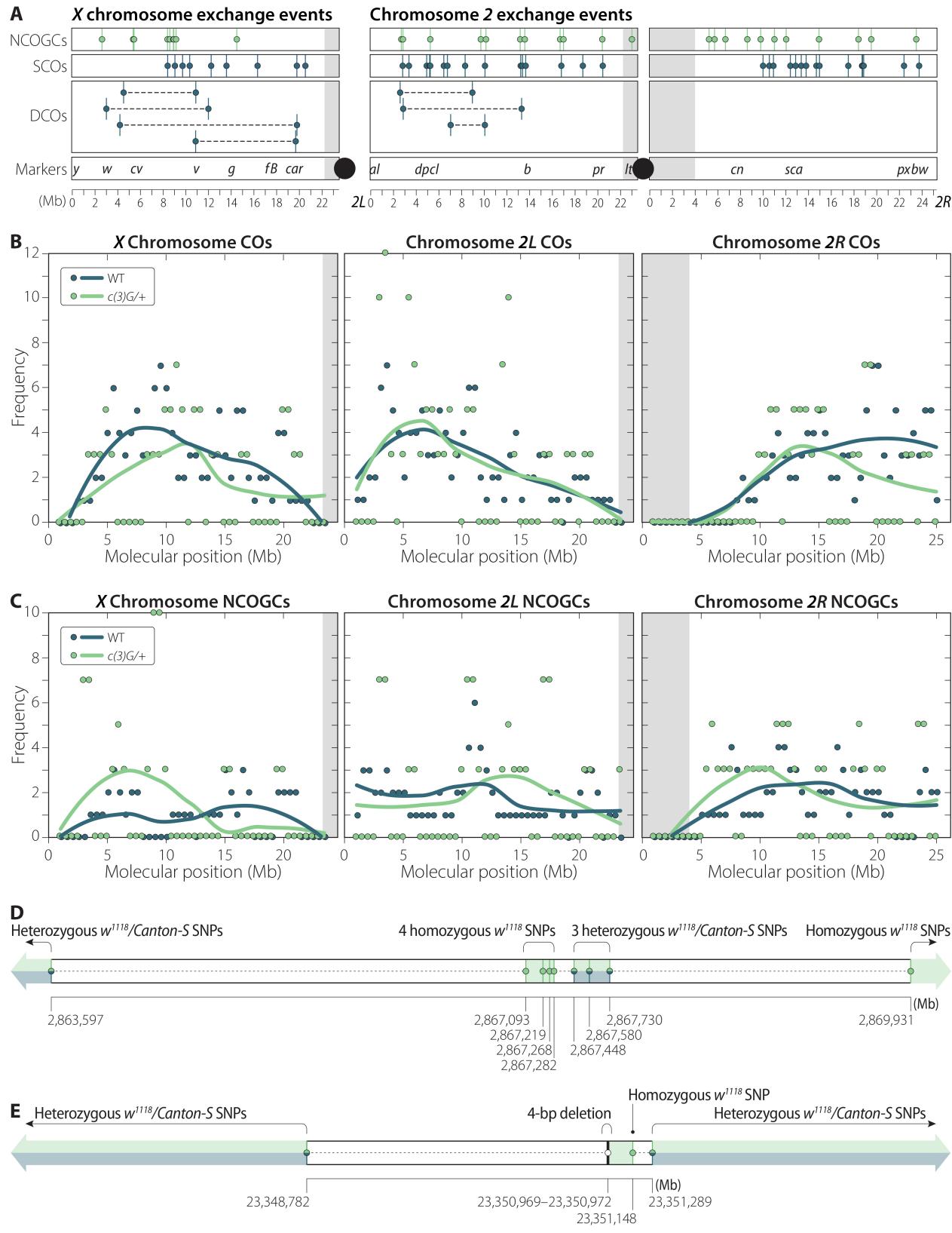
253 To better understand this process, whole-genome sequencing was performed on
254 individual male progeny from mothers heterozygous for wild-type *Canton-S* and *w¹¹¹⁸* *X* and 2nd
255 chromosomes and either homozygous or heterozygous for the loss-of-function allele *c(3)G*⁶⁸ on
256 chromosome 3. Male progeny from *c(3)G*⁶⁸ homozygous mothers (96 males from 10 females)
257 represent the experimental group lacking SC and will hereafter be referred to as *c(3)G*
258 offspring, and male progeny from *c(3)G*⁶⁸ heterozygous mothers (40 males from two females)
259 represent the control group with functional SC and will be referred to as *c(3)G/+* offspring
260 (Figure S1).

261 While Drosophila males normally have an *X* and a *Y* chromosome, sex is determined by
262 the ratio of *X* chromosomes to autosomes rather than the presence of a *Y*, thus *XO* flies are
263 male. This is seen when *X* chromosome missegregation (nondisjunction) leads to no maternal
264 sex chromosome contribution, with a paternally inherited *X*. Triploid flies carrying three copies
265 of each autosome and two *X* chromosomes are also phenotypically male and are known as
266 intersex males (Bridges 1921). To assay for *X* and 4th chromosome nondisjunction and the
267 presence of triploid flies, depth of coverage was calculated for each chromosome arm as a
268 percentage of one of the autosomes (Table S1). Males carrying the expected number of *X*
269 chromosomes should have *X* and *Y* chromosome depth of coverage half that of an autosome
270 and 4th chromosome depth of coverage equal to an autosome. As expected, all 40 male
271 offspring from the *c(3)G/+* control group were diploid with an *X* and a *Y* chromosome as well as
272 two copies of the 4th chromosome. Meanwhile, among the offspring from the SC-deficient *c(3)G*
273 experimental group 25 were found to be *XO* males and thus carried a paternally-inherited *X*
274 chromosome and six were found to have three 4th chromosomes (Table S1, Figure S2). This high
275 level of non-disjunction in *c(3)G* homozygotes was expected and is similar to previous genetic
276 analyses (Hall 1972).

277 Three of the 96 *c(3)G* offspring had *X* chromosome depth of coverage approximately
278 67% that of chromosomes 2 and 3, with two of these three also carrying a *Y* chromosome
279 (Figure S2, Table S1). Allele frequency for each SNP on each chromosome arm was calculated
280 and revealed all three males were triploid, with one XX:222:333 male and two XXY:222:333
281 males (Figure S3). The XX:222:333 intersex male was also mosaic for loss of a 4th chromosome,
282 with 75% depth of coverage of the 4th compared to chromosome 2L, suggesting post-meiotic
283 loss of the 4th in XX:222:333:444 cells (Figure S2). The recovery of intersex individuals was not
284 surprising as previous studies have noted an increase in the number of triploid individuals
285 recovered from *c(3)G* mutants (Gowen 1933; Lindsley and Zimm 1992). These three individuals
286 were excluded from subsequent analysis.

287 CO and NCOGC events were then identified on the *X* and 2nd chromosomes in both *c(3)G*
288 and *c(3)G/+* male offspring through changes in polymorphisms in each fly. (CO and NCOGC
289 events were not analyzed on the 3rd because *c(3)G* lies on this chromosome nor on the 25
290 paternally inherited *X* chromosomes carried by *XO c(3)G* offspring.) A total of 41 single COs and
291 7 double COs were identified in *c(3)G/+* offspring (Figure 1A, Table S4), with a frequency of
292 exchange similar to previous observations in wild type for all three arms (Figure 1B). A total of
293 32 NCOGCs were also identified (Table S5), close to the 36 expected to be recovered based on
294 wild-type rates (Miller *et al.* 2016). Previous work has shown rates of crossing over similar to
295 wild type for the *c(3)G⁶⁸* allele when heterozygous (Hall 1977), but higher rates of crossing over
296 for *c(3)G¹⁷* as a heterozygote (Hinton 1966). While the *c(3)G⁶⁸* allele is a known point mutation,
297 the *c(3)G¹⁷* allele (also historically known as *c(3)G¹*) is a transposable element insertion that
298 disrupts the function of the gene (Page and Hawley 2001), and the reason for the difference in
299 exchange between these two alleles is not clear.

300 Notably, a single crossover-associated gene conversion was identified abutting the distal
301 CO of a double CO in individual c3g-het-3.09 (Figure 1D, Table S4, Table S5). While crossover-
302 associated gene conversions are frequently observed in other organisms (Jeffreys and May
303 2004; Santoyo *et al.* 2005; Mancera *et al.* 2008; Wijnker *et al.* 2013), a previous study of 196
304 wild-type meiotic events in *D. melanogaster* found none among 541 CO events, suggesting that
305 these are relatively rare in flies or may be masked due to poor SNP density (Miller *et al.* 2016).


306 Among 93 *c(3)G* homozygous offspring, no CO events were recovered on the *X* or 2nd
307 chromosomes, but a single NCOGC event in male c3g-hom-6.4 was identified and validated by
308 PCR and Sanger sequencing. This event occurred on a chromosome with the *Caston-S*
309 haplotype, which could have occurred only in the heterozygous *w¹¹¹⁸/Caston-S* mother and so
310 was clearly not contributed by the isogenic *w¹¹¹⁸* father. This NCOGC was minimally defined by
311 a 4-bp deletion on the 5' side (2R:23,350,969–23,350,972, release 6 coordinates) and a single
312 polymorphism on the 3' side (2R:23,351,148) (Figure 1E, Table S5). Because it was defined by
313 these two closely located polymorphisms that created two changes identical to the other
314 haplotype used in this study, it is unlikely the event was the result of *de novo* somatic mutation.

315 The average depth of coverage within the 1-kb interval surrounding the two polymorphisms
316 was 54x, similar to the average depth of coverage for chromosome 2R for this individual,
317 making it unlikely that this NCOGC was due to a deletion or duplication of this interval.
318 Additionally, the minimum and maximum possible widths of this NCOGC are 180 bp and 2,507
319 bp, respectively, well within ranges observed in wild type (Bridges 1921). Homologous
320 chromosomes pair prior to meiotic onset, therefore this NCOGC could be the result of DSB
321 repair in a pre-meiotic cell (Bosco 2012; Joyce *et al.* 2012). Unfortunately, there are no reliable
322 estimates of the rate at which this occurs, making the likelihood difficult to assess.

323 Females homozygous for *c(3)G* loss-of-function alleles make DSBs at ~20% the level of
324 wild type (Mehrotra and McKim 2005). To estimate the number of NCOGCs that should have
325 been recovered in the *c(3)G* dataset if DSB repair as NCOGCs occurred frequently, a simulation
326 was performed. This model randomly distributed DSBs among 68 X and 93 2nd chromosome
327 arms as if they occurred at a rate 20% that of wild type. This model estimated that 37–62
328 NCOGCs should have been recovered if all DSBs that occurred were repaired as NCOGCs (since
329 crossovers do not occur in *c(3)G*⁶⁸ homozygotes). The recovery of a single candidate NCOGC
330 event is significantly less ($P < 0.001$, Fisher's exact) than the 37–62 expected NCOGCs, thus
331 repair of DSBs by NCOGC is rare in females unable to construct full-length SC. Therefore, the
332 rate of NCOGC in an SC-deficient female can be estimated as approximately 1×10^{-10} per bp per
333 meiosis, markedly lower than the wild-type rate of 1.9×10^{-8} NCOGCs per bp per meiosis (Hilliker
334 *et al.* 1994; Miller *et al.* 2016). This raises the obvious question, which will be considered next: if
335 DSBs are rarely, if ever, repaired as COs or NCOGCs, what is the fate of DSBs that occur in SC-
336 deficient flies?

337

338

341 **Figure 1.** CO and NCOGC events recovered from *c(3)G⁶⁸* heterozygous females, details in Table
342 S4 and Table S5. **A.** individual NCOGC, SCO, and DCO events recovered per chromosome arm.
343 No DCOs were recovered on 2R. **B.** Coefficient of exchange for all 55 crossover events
344 recovered in this study compared to wild type data from Miller *et al.* (Miller *et al.* 2016). **C.**
345 Coefficient of exchange for all 32 NCOGC events recovered in this study compared to wild type
346 data as in B. **D.** Detail of the single CO-associated GC was recovered in this study. The crossover
347 could have occurred at one of two positions, either between SNPs at positions 2,863,597 and
348 2,867,093 with the CO-associated GC being the heterozygous tract between positions 2,867,448
349 and 2,867,730. Alternatively, the CO may have occurred between 2,867,730 and 2,869,931 with
350 the CO-associated GC defined by the 4 SNPs between 2,867,093 and 2,867,282. No CO-
351 associated GC events were recovered in a previous analysis of 196 individual meiotic events
352 from wild-type females (Miller *et al.* 2016). **E.** Structure of the single NCOGC event recovered
353 from a homozygous *c(3)G⁶⁸* female in this study. This NCOGC, validated by PCR and Sanger
354 Sequencing was defined by a 4 bp deletion on one side and a SNP on the other, both from the
355 *w¹¹¹⁸* line. The NCOGC has a maximum possible tract length of 2,507 bp and a minimum tract
356 length of 180 bp.

357

358

359 **DSB repair in SC-deficient females does not result in novel deletion polymorphisms**

360

361 In addition to meiotic CO or NCOGC, other potential mechanisms for repair of meiotic DSBs
362 exist. Although nonhomologous end-joining (NHEJ) has been described as an error-prone
363 process resulting in deletions (Bétermier *et al.* 2014), data suggest the canonical NHEJ pathway
364 is a higher-fidelity system than previously believed (Kabotyanski *et al.* 1998; Feldmann *et al.*
365 2000). Alternatively, single-strand annealing (SSA), alternative end-joining (Alt-EJ), and
366 microhomology-mediated end-joining (MMEJ) are pathways that may result in small deletions
367 that could be detected as novel deletion polymorphisms in whole-genome sequencing data
368 (Wang *et al.* 2003, 2005; Guirouilh-Barbat *et al.* 2007; Rass *et al.* 2009). Finally, repair of DSBs
369 using the sister chromatid as a template may occur and leave little or no evidence that could be
370 detected by WGS. Gene conversion with the sister chromatid has been shown to be a
371 significant repair pathway in both *S. cerevisiae* (Goldfarb and Lichten 2010) and mammalian
372 cells (Johnson and Jasin 2000), thus it is reasonable to assume it may be active during
373 Drosophila female meiosis as well. Indeed, ring chromosome assays have shown a decrease in
374 the recovery of ring chromosomes in the absence of *c(3)G*, suggesting breaks in *c(3)G*
375 homozygous females may be repaired by intersister recombination (Sandler 1965).
376 Furthermore, the recovery of *Bar* revertants from *FM7+/c(3)G⁶⁸* females through unequal
377 exchange between sister chromatids supports the hypothesis that sister chromatid exchange
378 occurs in flies as well, although the rate is unknown (Curtis *et al.* 1989; Hilliker *et al.* 1994;
379 Miller *et al.* 2016b).

380 To determine if DSB repair in SC-deficient females occurs by an error-prone process
381 such as NHEJ, novel deletion polymorphisms were identified in the three previously described
382 classes of progeny (wild-type, *c(3)G⁶⁸* heterozygotes, and *c(3)G⁶⁸* homozygotes) plus an
383 additional class unable to repair DSBs by crossing over. Females carrying loss-of-function
384 mutations of the SC gene *corolla* are unable to construct full-length SC and thus have a high
385 rate of nondisjunction yet still make DSBs at a rate approximately 40% of wild-type (Collins *et*
386 *al.* 2014), similar to the phenotype observed in *c(3)G* loss-of-function mutations. 50 individual
387 males and females from three females homozygous for a nonsense mutation in the SC protein
388 *corolla* (*corolla*¹²⁹) were sequenced. Of these 50 individuals, 11 were the result of X
389 chromosome nondisjunction, with 3 *XO* males and 8 *XXY* females; 9 were triplo-4; 2 were
390 nondisjunctional for both the X and 4th chromosomes; and no X or 4th chromosome mosaics
391 were observed (Table S1). The genetic background of the 2nd and 3rd chromosomes of females
392 homozygous for *corolla*¹²⁹ was not controlled, thus candidate CO and NCOGC events could not
393 be identified, but previous studies have shown a nearly complete absence of exchange in
394 *corolla* homozygous females (Collins *et al.* 2014).

395 *De novo* deletions were searched for using two different approaches (see methods).
396 First, vcf files generated by SAMtools (Li *et al.* 2009) were analyzed for deletion polymorphisms

397 (these are generally less than 20 bp), and second, larger deletions were identified using Pindel
398 (Ye *et al.* 2009). Separately, the output of GATK HaploType caller (McKenna *et al.* 2010) was
399 compared to SAMtools and was found to produce similar results, thus only data from SAMtools
400 was analyzed. Both approaches identified a similar number of *de novo* deletions per fly in all
401 four classes of progeny (wild-type, *c(3)G*⁶⁸ heterozygotes, *c(3)G*⁶⁸ homozygotes, and *corolla*¹²⁹
402 homozygotes). Specifically, using SAMtools, 11 deletions ranging from 1–11 bp were identified
403 in previously published data from 196 wild-type males, a single 21-bp deletion in 40 *c(3)G*+/
404 offspring, 8 deletions 1–14 bp large from 93 *c(3)G* offspring, and a single 3 bp deletion in 50
405 *corolla*¹²⁹ individuals were identified (Table S6). Pindel, which searches for larger deletions than
406 would be identified by SAMtools, identified only one novel deletion among all genotypes, a
407 complex 17-bp deletion in a *c(3)G* homozygous male. The recovery of deletions at a rate similar
408 to wild-type suggests that DSBs are repaired by a non-error-prone process with the homolog or
409 with the sister chromatid. However, a caveat of this analysis is that secondary alignment and/or
410 analysis errors make these events difficult to detect.

411 To test whether the analysis approach was robust enough to detect both large and small
412 deletions, 200 *D. melanogaster* genomes with novel random single nucleotide and deletion
413 polymorphisms were generated computationally. Two different classes of genomes were
414 created, 100 with deletions 1–10 bp in size, and 100 with deletions 1–1,000 bp in size (Table
415 S3). Synthetic reads were generated based on these genomes and aligned and analyzed using
416 the same steps as the experimental samples. A total of 713 synthetic deletions were generated,
417 with 339 1–10 bp deletions and 374 1–1,000 bp deletions. SAMtools identified 86% of 1–10 bp
418 deletions on the *X*, 2nd, and 3rd chromosomes. Pindel recovered 57% of synthetic 1–1000 bp
419 deletions (213 of the 374) with the highest fraction of deletions recovered on chromosome 2L
420 (72%) and the fewest on chromosome 2R (44%) (Table S7). These models indicate that had
421 deletions occurred at a rate higher than observed in wild type, the additional small and large
422 deletion polymorphisms created by error-prone repair mechanisms should have been detected
423 in *c(3)G* or *corolla* females. Taken together, it is most likely that DSBs in SC-deficient flies are
424 repaired by a higher-fidelity repair process, such as canonical NHEJ or sister chromatid repair.
425 When considering the decreased recovery of ring chromosomes in *c(3)G* mutants (Sandler
426 1965), the simplest explanation for DSB repair in SC-deficient females is by sister chromatid
427 repair.

428
429

430 **De novo transposable element insertions are more frequent in *c(3)G*⁶⁸ homozygous females**

431

432 While the SC is essential for repair of DSBs as CO and NCOGCs, it is unknown if the SC regulates
433 other molecular events such as the movement of TEs. Absence of the yeast *c(3)G* homolog *Zip1*
434 has been shown to result in a decreased insertion rate of the retrotransposon *Ty1*, suggesting
435 there is a role for the SC in TE movement (Dakshinamurthy *et al.* 2010). The rate at which TE
436 movement occurs during *Drosophila* meiosis is unknown, therefore to determine the baseline
437 transposition rate, we utilized previously published data and identified forty-four novel TE
438 insertions from the *X*, 2nd and 3rd chromosomes from 196 wild-type individuals (Miller *et al.*
439 2016b) (Figure 2, Table S8). In this dataset a single novel insertion on the 4th chromosome was
440 observed but is not included in the rate calculations (Table S8). Seven of the 44 insertions
441 occurred close enough to a polymorphism to confirm through linkage that they could only have
442 been maternally inherited. For example, male cs13.13 carries a novel *roo* insertion on the *w*¹¹¹⁸
443 *X* chromosome that is not seen in the 11 other male siblings that also inherited the *w*¹¹¹⁸
444 haplotype from the same female. It is not possible to definitively determine which parent the
445 remaining 37 events were inherited from due to low SNP density. Using these data, a per arm
446 rate of *de novo* euchromatic TE insertion can be estimated as 0.18 insertions per arm per
447 meiosis [(44 events x 4 haploid meiotic products) / (196 meiosis * 5 arms)], meaning that while
448 a novel TE insertion occurs in approximately 1 in every 5 meioses, it would only be recovered in
449 approximately every 1 in 20 progeny.

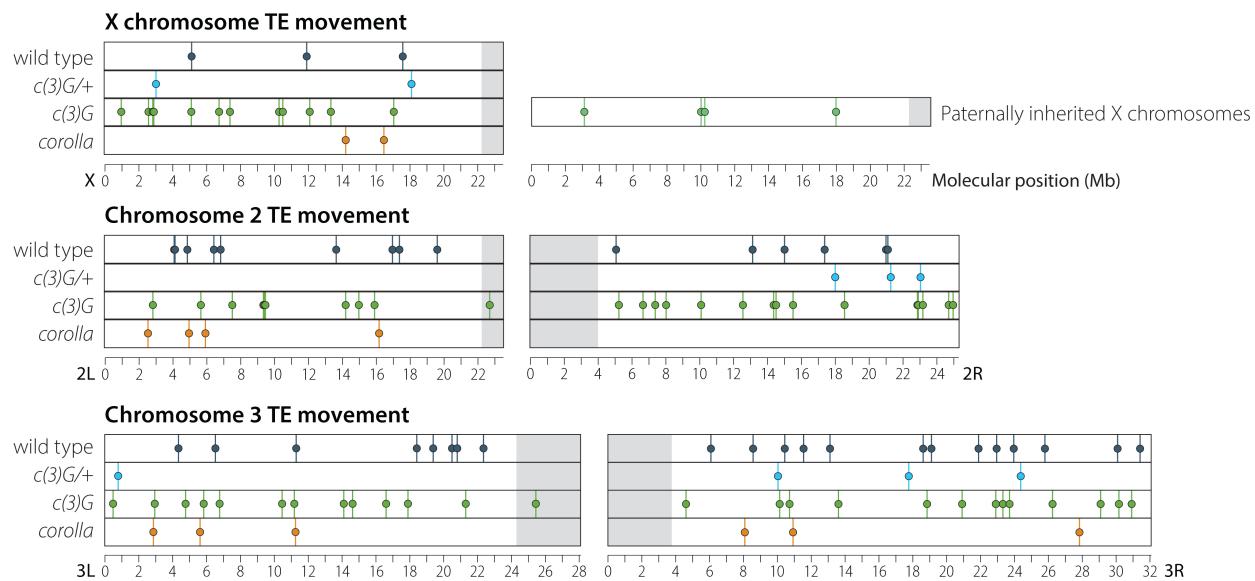
450 This same approach was then applied to the *X*, 2nd, and 3rd chromosomes from *c(3)G*+/
451 and *c(3)G* offspring. In the 40 *c(3)G*+/ offspring, 9 novel insertion events were identified—2 on
452 the *X* chromosome, 3 on chromosome 2*R*, 1 on chromosome 3*L*, and 3 on chromosome 3*R*
453 (Figure 2, Table S8). Recovery of 9 novel insertion events in 40 individuals when surveying 5
454 chromosome arms gives a per arm *de novo* rate of transposition of 0.18 insertions per arm per
455 meiosis, identical to the rate observed above in wild type.

456 In *c(3)G* homozygotes, *de novo* transposition events were identified on all 2nd and 3rd
457 chromosomes as well as the 68 maternally inherited *X* chromosomes from the 93 non-intersex
458 males; the 25 paternally inherited *X* chromosomes were analyzed separately. For maternally
459 inherited chromosomes, 64 novel transposition events were identified—12 on the *X*
460 chromosome, 10 on 2*L*, 15 on 2*R*, 13 on 3*L*, and 14 on 3*R* (Figure 2, Table S8). Analysis of sibling
461 *X* chromosome haplotypes confirmed that all 12 maternally inherited *X* chromosome insertions
462 were *de novo*. Among the 25 paternally inherited *X* chromosomes, 4 *de novo* TE insertions were
463 observed. Considering only maternally inherited chromosomes, the per arm rate of novel
464 transposon insertion events in *c(3)G* male offspring was 0.70 for the *X*, 2nd, and 3rd
465 chromosomes, significantly higher than wild type ($p < 0.001$, Chi-square test). The rate of *de*
466 *novo* transposition events for paternally inherited *X* chromosomes was 0.64, similar to the rate

467 of 0.70 observed in maternally derived chromosomes and also significantly higher than wild
468 type ($p = 0.002$, Chi-square test).

469 To help delineate whether the increase in *de novo* transposition events is a general
470 property of SC-deficient females or specific to *c(3)G*⁶⁸ homozygous females, novel TE insertions
471 were identified in offspring from the previously described *corolla* mutant females. Using the
472 same approach as above, 12 *de novo* transposon insertions were identified on the *X*, 2nd, and 3rd
473 chromosomes of 50 individual offspring (Figure 2, Table S8). Of the 12 novel insertions
474 identified, none occurred on the *X* in a male with a paternally inherited *X* chromosome, and one
475 occurred on the *X* chromosome of an *XXY* female carrying two maternally inherited *X*
476 chromosomes. The distribution of events was similar to that observed in wild type. These 12
477 events were recovered from all five chromosome arms, giving a rate of 0.19 insertions per arm
478 per meiosis in *corolla* mutants, similar to the rate of 0.18 observed in both wild type and *c(3)G*⁶⁸
479 heterozygous females but significantly less than the observed *de novo* TE insertion rate in
480 *c(3)G*⁶⁸ homozygous females. This suggests that the increase in *de novo* TE insertions may not
481 be a general property of SC-deficient mutants, but is specific to *c(3)G*⁶⁸ homozygotes.

482 The increased rate of *de novo* transposition in an SC mutant may provide new clues to
483 the role SC components might play in facilitating or preventing the movement of TEs. The
484 observed rate of novel TE insertions in this study was significantly higher in offspring from
485 *c(3)G*⁶⁸ females when compared to the other three classes of progeny studied: wild type,
486 *c(3)G*⁶⁸ heterozygotes, and *corolla*¹²⁹ homozygotes. Somewhat surprisingly, the elevated rate in
487 *c(3)G*⁶⁸ maternally derived chromosomes was similar to the rate from paternally derived *X*
488 chromosomes, which came from males with two wild-type copies of *c(3)G*. That the rate of
489 insertion was equal in both maternally and paternally inherited chromosomes was unexpected
490 and suggests that SC proteins may play previously unappreciated roles during both male and
491 female meiosis.


492 The increased rate of novel TE insertions in *c(3)G*⁶⁸ mutants could be explained by a
493 model in which C(3)G prevents mobilized TEs from inserting into genomic DNA. In the absence
494 of C(3)G a greater number of TEs may be available to insert into nuclear DNA. A higher number
495 of active TEs may also explain why the rate of TE insertions was similar on *X* chromosomes
496 derived from wild type males, but would require that TE insertions occur post-fertilization.

497 Another possible explanation for the increased rate of TE insertion in *c(3)G* females is
498 differences in genetic background leading to an increased rate of transposition (Kidwell *et al.*
499 1977). Previous studies have reported “bursts” of TE insertions from a specific TE class and
500 attributed the observation to differences in genetic background (Pasyukova and Nuzhdin 1993;
501 Page *et al.* 2007; Guerreiro 2011). It is worth noting that 20 novel insertions in the homozygous
502 *c(3)G*⁶⁸ dataset were *doc* elements, which does raise the possibility of differences in genetic
503 background leading to an increased rate of transposition. Although, the genetic background in
504 these experiments was somewhat controlled as females both heterozygous and homozygous

505 for *c(3)G*⁶⁸ were heterozygous for the same *w¹¹¹⁸* and *Canton-S* X and 2nd chromosomes, which
506 were from the same stocks used in the wild-type experiment (Miller *et al.* 2016b). These two
507 stocks differed in that females heterozygous for *c(3)G*⁶⁸ carried one copy of a *w¹¹¹⁸* 3rd
508 chromosome, while those homozygous for *c(3)G*⁶⁸ did not. The background of *corolla* mutants
509 was not controlled. Thus, while this may reduce the likelihood of genetic background
510 contributing to the elevated TE insertion rate, it does not completely eliminate it.

511 A unifying explanation may be that *c(3)G* itself plays a previously unappreciated role in
512 the prevention of TE movement and that this is separate from the role, if any, played by fully
513 functional SC. Despite not building SC, *D. melanogaster* males express *c(3)G*, and other SC
514 genes during meiosis (Brown *et al.* 2014). The reason for this is unclear, but it could be that
515 C(3)G modulates TE movement during both male and female meiosis. This type of role could
516 help explain why SC components are among the most rapidly evolving of all genes (Fraune *et al.*
517 2012; Hemmer and Blumenstiel 2016) and could be clarified with experimental approaches that
518 delineate the rate of TE insertions in male and female meiosis, control for genetic background,
519 and use sequencing technologies which more reliably identify TE insertions in the genome.

520

521

522

523 **Figure 2.** Novel TE insertion positions identified after a single round of meiosis for all four
524 classes of offspring analyzed in this study. Details about insertion position and class of TE
525 inserted can be found in Table S8.

526

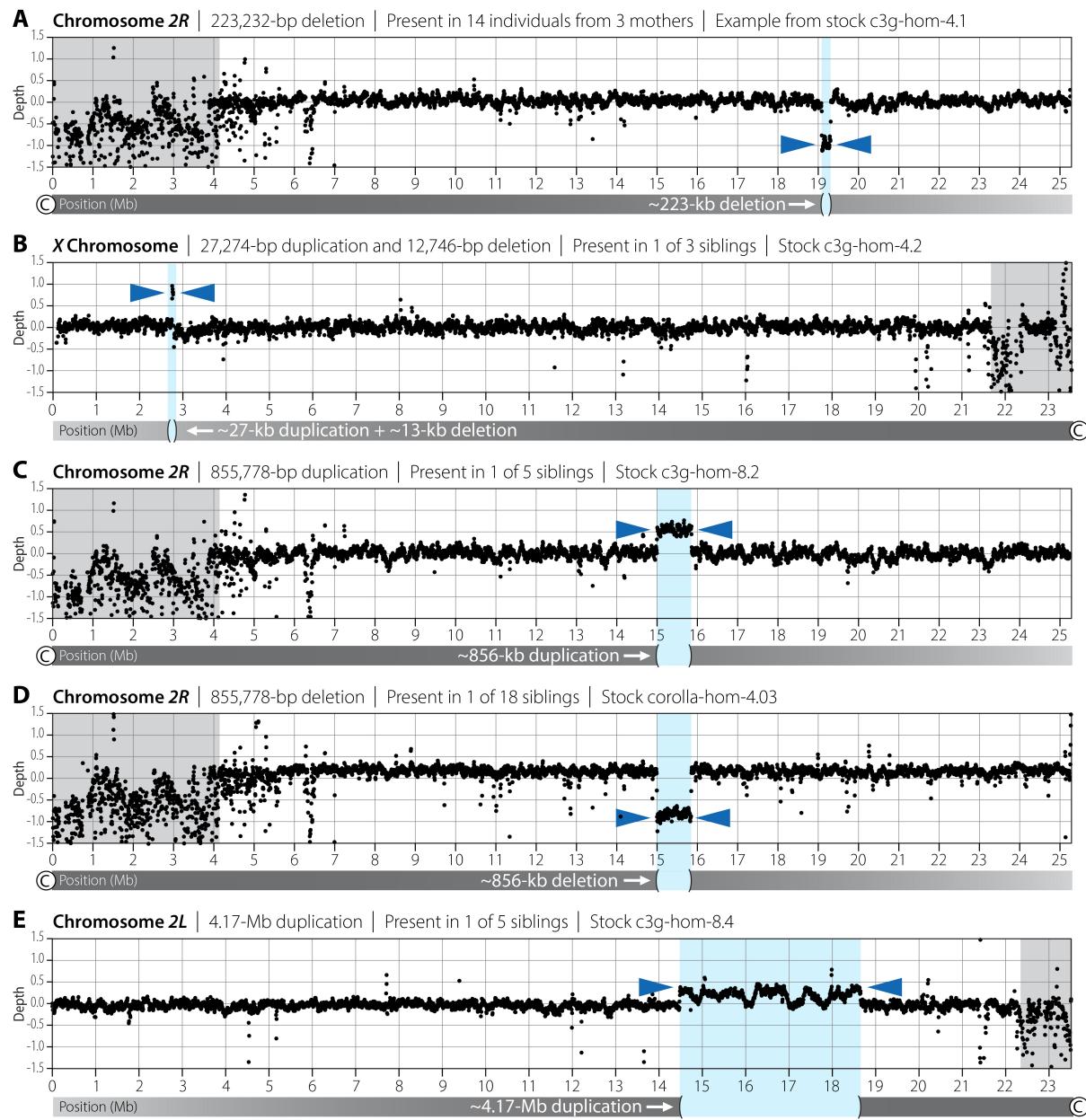
527 ***De novo* copy-number variation occurs in the absence of full-length SC**

528

529 Copy number variation is a significant source of genetic variability within populations
530 (Kaminker *et al.* 2002; Lee and Langley 2010). CNVs may be beneficial or deleterious to an
531 individual and may involve a large or small number of genes. Previous studies in *D.*
532 *melanogaster* have revealed surprisingly high rates of *de novo* CNV both in single offspring or
533 shared among several siblings (Watanabe *et al.* 2009; Miller *et al.* 2016b). In wild type CNVs
534 frequently formed between sister chromatids and were flanked by transposable elements,
535 suggesting that TEs may play a key role in *de novo* CNV formation (Miller *et al.* 2016b).
536 Whether between sister or between homolog CNV formation is dependent on functional SC is
537 unclear.

538 Large CNVs were identified by plotting depth of coverage for individual chromosome
539 arms. Plots for all chromosome arms for all individuals from *c(3)G⁶⁸*+/+, *c(3)G⁶⁸*, or *corolla¹²⁹*
540 females were generated and revealed 5 total events. No *de novo* CNV events were observed in
541 offspring from *c(3)G⁶⁸*+/+ females, 4 events were recovered in offspring from *c(3)G⁶⁸*
542 homozygous females, and 1 event in offspring of *corolla¹²⁹* homozygotes (Figure 3, Table S9).
543 Among the 4 events recovered from *c(3)G⁶⁸* homozygous females one was shared among
544 multiple siblings—a 223 kb deletion of chromosome 2R involving 27 genes, which was
545 recovered from 14 males from females 4, 5, and 6 (Figure 3A). That this event was observed in
546 individuals from multiple crosses of individual male and female makes it likely that the deletion
547 occurred at least two generations prior and did not significantly reduce the fitness of those
548 individuals carrying it.

549 The remaining CNVs recovered were only observed in single individuals and, based on
550 haplotype analysis, were likely *de novo* events. One event, a complex *de novo* CNV involving
551 both a deletion and a duplication was identified at the *w* locus on chromosome X in a single
552 male from a *c(3)G⁶⁸* homozygous female (Figure 3B). This was an event mediated by unequal
553 crossing over between *Roo* elements. Previous work describing ectopic recombination in *D.*
554 *melanogaster* focused on unequal exchange between *Roo* elements at the *w* locus, similar to
555 the event observed here (Goldberg *et al.* 1983).


556 Two *de novo* CNVs, one duplication and one deletion, occurred at the exact same
557 position on chromosome 2R in two individuals. One of these events, a duplication, was
558 recovered from the offspring of a *c(3)G⁶⁸* homozygous female while a deletion was recovered
559 from the offspring of a *corolla¹²⁹* homozygous female (Figure 3C,D). This 856-kb event includes
560 107 genes and is flanked on both sides by a hobo element. Remarkably, a CNV with the exact
561 same breakpoints was identified in a previous study of individuals from wild-type females
562 (Miller *et al.* 2016b). All three of these CNVs were *de novo* events validated using the
563 haplotypes of the siblings that did not carry the CNV. All three crosses were between individual
564 males and females and multiple genetic backgrounds are involved (*w¹¹¹⁸*, *Canton-S*, and the

565 undefined *corolla*¹²⁹ background) thus these CNVs are not variants segregating at low frequency
566 in the population and are recurrent *de novo* events.

567 The final CNV observed was a 4.2-Mb duplication on chromosome 2L not flanked by a TE
568 or low-complexity sequence recovered in a single male from a *c(3)G*⁶⁸ homozygous female
569 (Figure 3E). Analysis of read pairs demonstrate that this is a tandem duplication as reads
570 mapping to the proximal end of the duplication are linked to reads mapping to the distal end of
571 the duplication. The \log_2 depth-of-coverage ratio for this interval is 1.25, 0.25 higher than
572 expected for a diploid and less than the \log_2 depth-of-coverage ratio of 1.5 that would be seen
573 in an autosomal duplication occurring before the first mitotic division. Thus, this duplication is
574 present in half the cells in the individual sequenced and likely occurred during the first mitotic
575 division, possibly as a consequence of a re-replication event that was then repaired by
576 recombination between the duplicated segments (Green *et al.* 2010). It is notable that the fly
577 was able to tolerate such a large duplication, involving 513 genes, present in half of all cells.
578 Although the possibility that there was selection against cells carrying the large duplication
579 cannot be excluded, a \log_2 depth-of-coverage ratio of 1.25 does strongly suggest there was
580 limited selection against those cells with the duplication. If selection was acting strongly on
581 these cells the \log_2 ratio would fall below 1.25 and perhaps become undetectable.

582 The recovery of TE-mediated CNVs in females unable to construct SC demonstrates that
583 these CNVs can occur independently of normal meiotic synapsis and DSB formation, perhaps
584 depending only on the presence of a chromosome axis. It is also possible these events may
585 occur during mitosis. That two different TE-mediated CNV events, a deletion and a duplication,
586 were recovered at the exact same coordinates in two different genetic backgrounds as a
587 duplication observed in wild-type individuals was surprising and suggests that the rate of CNV
588 formation is not uniform across the genome. As would be expected in mutants with defective
589 homologous chromosome pairing, all four TE-mediated CNV events recovered appear, based on
590 allele frequency and TE positioning, to be events between sister chromatids and not between
591 homologous chromosomes.

592

604 **ACKNOWLEDGEMENTS**

605 I would like to thank Angela Miller for editorial and figure preparation assistance; the Stowers
606 Institute Molecular Biology core for expert assistance with DNA sequencing; Nazanin Yeganeh
607 Kazemi and Clarissa Smith for assistance with DNA preparation and NCOGC validation; Justin
608 Blumenstiel, Cori Cahoon, and Talia Hatkevich for helpful discussion and comments; and R.
609 Scott Hawley for critical feedback and invaluable mentorship. The DNA sequence data
610 described here were supported by funding to Scott Hawley from the Stowers Institute for
611 Medical Research during my work in his lab.

612

613 **SUPPLEMENTAL FIGURES:**

614

615 **Figure S1:** Cross schemes. **A.** Isogenic Canton-S females carrying the loss-of-function mutant
616 $c(3)G^{68}$ were crossed to isogenic w^{1118} males. Individual females heterozygous for the $c(3)G^{68}$
617 mutant allele were collected and crossed to individual isogenic w^{1118} males and individual male
618 offspring were collected and sequenced. **B.** Isogenic *Canton-S* females carrying the loss-of-
619 function mutant $c(3)G^{68}$ were crossed to isogenic w^{1118} males carrying the loss-of-function
620 mutant $c(3)G^{68}$. Individual females hemizygous for both mutant alleles were collected and
621 crossed to individual isogenic w^{1118} males. Individual phenotypically male offspring were then
622 collected and sequenced. **C.** Individual females homozygous for *corolla*¹²⁹ were crossed to
623 individual male siblings and individual male and female offspring were then collected and
624 sequenced.

625

626 **Figure S2:** Log₂ depth-of-coverage analysis for chromosome 2L, the X chromosome, and the 4th
627 chromosome. Wild-type data from Miller *et al.* (Miller *et al.* 2016b), genotypes are given for each
628 individual. This analysis uncovered three intersex males and six individuals with an extra copy of
629 chromosome 4. One of the intersex males and one of the XY males are also mosaic for loss of a
630 4th chromosome, meaning some of their cells have 3 4th chromosomes while others have 2 4th
631 chromosomes. The log₂ differences for the X and 4th chromosomes use chromosome 2L as the
632 basis of their log₂ ratio calculation (Table S1).

633

634 **Figure S3:** Three intersex males were based on depth of coverage and their autosomal allele
635 frequency. A heterozygous male should have a 50%/50% w^{1118} /Canton-S allele frequency for
636 the 2nd chromosome, and because they are hemizygous for the X chromosome, a 100% allele
637 frequency for either *Canton-S* or w^{1118} SNPs along the X chromosome. These three males carry a
638 50% w^{1118} /Canton-S allele frequency for the X, suggesting that they carry two distinct X
639 chromosomes. They also carry a 67%/33% w^{1118} /Canton-S allele frequency for both arms of the
640 2nd chromosome, with 67% of the SNPs from the w^{1118} stock, and 33% of the SNPs from the
641 *Canton-S* genome—evidence for the presence of three 2nd chromosomes.

642

643 **SUPPLEMENTAL TABLES**

644

645 **Table S1:** Details for each individual sequenced in this project including maternal genotype,
646 barcode, and depth of coverage for each chromosome arm.

647

648 **Table S2:** Primers used to check gene conversions in males from c3g homozygous mothers.

649

650 **Table S3:** List of random deletions generated per genome in order to test the deletion
651 identification pipeline.

652

653 **Table S4:** COs recovered in this study.

654

655 **Table S5:** NCOGCs recovered in this study.

656

657 **Table S6:** Novel deletions identified in all four classes of progeny used in this study.

658

659 **Table S7:** Summary of recovery using Pindel of deletions 1-1000bp in size for computationally
660 generated genomes.

661

662 **Table S8:** Details of de novo transposable element insertion events.

663

664 **Table S9:** Details of one complex and four simple copy-number variants recovered in this study.

665

666

667 REFERENCES

668

669

670 AFA, S., R. Hubley, and P. Green RepeatMasker. RepeatMasker Open-4.0. 2013-2015
671 <<http://www.repeatmasker.org>>.

672

673 Altschul, S. F., T. L. Madden, A. A. Schäffer, J. Zhang, Z. Zhang *et al.*, 1997 Gapped BLAST and
674 PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:
675 3389–3402.

676

677 Bétermier, M., P. Bertrand, and B. S. Lopez, 2014 Is Non-Homologous End-Joining Really an
678 Inherently Error-Prone Process? Plos Genet 10: e1004086 9.

679

680 Bosco, G., 2012 Chromosome Pairing: A Hidden Treasure No More. Plos Genet 8: e1002737
681 3.

682

683 Bridges, C. B., 1921 Triploid Intersexes in *Drosophila Melanogaster*. Science 54: 252–254.

684

685 Brown, J. B., N. Boley, R. Eisman, G. E. May, M. H. Stoiber *et al.*, 2014 Diversity and
686 dynamics of the *Drosophila* transcriptome. Nature 512: 1 7.

687

688 Collins, K. A., J. R. Unruh, B. D. Slaughter, Z. Yu, C. M. Lake *et al.*, 2014 Corolla is a novel
689 protein that contributes to the architecture of the synaptonemal complex of *Drosophila*.
690 Genetics 198: 219 228.

691

692 Curtis, D., S. Clark, A. Chovnick, and W. Bender, 1989 Molecular analysis of recombination
693 events in *Drosophila*. Genetics 122: 653 661.

694

695 Dakshinamurthy, A., K. M. Nyswaner, P. J. Farabaugh, and D. J. Garfinkel, 2010 BUD22
696 Affects Ty1 Retrotransposition and Ribosome Biogenesis in *Saccharomyces cerevisiae*.
697 Genetics 185: 1193–1205.

698

699 Faust, G. G., and I. M. Hall, 2014 SAMBLASTER: fast duplicate marking and structural variant
700 read extraction. Bioinformatics 30: 2503 2505.

701

702 Feldmann, E., V. Schmiemann, W. Goedecke, S. Reichenberger, and P. Pfeiffer, 2000 DNA
703 double-strand break repair in cell-free extracts from Ku80-deficient cells: implications for
704 Ku serving as an alignment factor in non-homologous DNA end joining. Nucleic Acids Res
705 28: 2585–2596.

706

707 Fraune, J., M. Alsheimer, J.-N. Volff, K. Busch, S. Fraune *et al.*, 2012 Hydra meiosis reveals
708 unexpected conservation of structural synaptonemal complex proteins across metazoans.
709 Proc National Acad Sci 109: 16588–16593.

710

711 Goldberg, M. L., J.-Y. Sheen, W. J. Gehring, and M. Green, 1983 Unequal crossing-over
712 associated with asymmetrical synapsis between nomadic elements in the *Drosophila*
713 *melanogaster* genome. *Proc National Acad Sci* 80: 5017–5021.

714

715 Goldfarb, T., and M. Lichten, 2010 Frequent and efficient use of the sister chromatid for
716 DNA double-strand break repair during budding yeast meiosis. *Plos Biol* 8: e1000520.

717

718 Gowen, J. W., 1933 Meiosis as a genetic character in *Drosophila melanogaster*. *J Exp Zool*
719 65: 83–106.

720

721 Green, B. M., K. J. Finn, and J. J. Li, 2010 Loss of DNA replication control is a potent inducer
722 of gene amplification. *Science* 329: 943 946.

723

724 Guerreiro, G. M., 2011 What makes transposable elements move in the *Drosophila*
725 genome? *Heredity* 108: hdy201189.

726

727 Guirouilh-Barbat, J., E. Rass, I. Plo, P. Bertrand, and B. S. Lopez, 2007 Defects in XRCC4 and
728 KU80 differentially affect the joining of distal nonhomologous ends. *Proc National Acad Sci*
729 104: 20902–20907.

730

731 Hall, J., 1972 Chromosome segregation influenced by two alleles of the meiotic mutant
732 c(3)G in *Drosophila melanogaster*. *Genetics* 71: 367 400.

733

734 Hall, J., 1977 Recombination influenced by two alleles of the meiotic mutant c(3)G.
735 *Drosophila Information Service* 143–144.

736

737 van der Heijden, G. W., and A. Bortvin, 2009 Transient relaxation of transposon silencing at
738 the onset of mammalian meiosis. *Epigenetics* 4: 76–79.

739

740 Hemmer, L. W., and J. P. Blumenstiel, 2016 Holding it together: rapid evolution and positive
741 selection in the synaptonemal complex of *Drosophila*. *Bmc Evol Biol* 16: 91.

742

743 Hernández-Hernández, A., H. Rincón-Arano, F. Recillas-Targa, R. Ortiz, C. Valdes-Quezada *et*
744 *al.*, 2008 Differential distribution and association of repeat DNA sequences in the lateral
745 element of the synaptonemal complex in rat spermatocytes. *Chromosoma* 117: 77–87.

746

747 Hilliker, A., G. Harauz, A. Reaume, M. Gray, S. Clark *et al.*, 1994 Meiotic gene conversion
748 tract length distribution within the rosy locus of *Drosophila melanogaster*. *Genetics* 137:
749 1019 1026.

750

751 Hinton, C., 1966 Enhancement of recombination associated with the c3G mutant of
752 *Drosophila melanogaster*. *Genetics* 53: 157 164.

753

754 Huang, W., L. Li, J. R. Myers, and G. T. Marth, 2012 ART: a next-generation sequencing read

755 simulator. *Bioinformatics* 28: 593–594.

756

757 Jeffress, J. K., S. L. Page, S. K. Royer, E. D. Belden, J. P. Blumenstiel *et al.*, 2007 The
758 formation of the central element of the synaptonemal complex may occur by multiple
759 mechanisms: the roles of the N- and C-terminal domains of the *Drosophila* C(3)G protein in
760 mediating synapsis and recombination. *Genetics* 177: 2445 2456.

761

762 Jeffreys, A. J., and C. A. May, 2004 Intense and highly localized gene conversion activity in
763 human meiotic crossover hot spots. *Nat Genet* 36: 151 156.

764

765 Johnson, R. D., and M. Jasin, 2000 Sister chromatid gene conversion is a prominent double-
766 strand break repair pathway in mammalian cells. *Embo J* 19: 3398–3407.

767

768 Joyce, E. F., B. R. Williams, T. Xie, and C. ting Wu, 2012 Identification of Genes That Promote
769 or Antagonize Somatic Homolog Pairing Using a High-Throughput FISH-Based Screen. *Plos
770 Genet* 8: e1002667 20.

771

772 Kabytanski, E. B., L. Gomelsky, J.-O. Han, D. B. Roth, and T. D. Stamato, 1998 Double-
773 strand break repair in Ku86- and XRCC4-deficient cells. *Nucleic Acids Res* 26: 5333–5342.

774

775 Kaminker, J. S., C. M. Bergman, B. Kronmiller, J. Carlson, R. Svirskas *et al.*, 2002 The
776 transposable elements of the *Drosophila melanogaster* euchromatin: a genomics
777 perspective. *Genome Biol* 3: RESEARCH0084.

778

779 Kidwell, M., J. Kidwell, and J. Sved, 1977 Hybrid Dysgenesis in *DROSOPHILA
780 MELANOGASTER*: A Syndrome of Aberrant Traits Including Mutation, Sterility and Male
781 Recombination. *Genetics* 86: 813–33.

782

783 Lake, C. M., and S. R. Hawley, 2012 The Molecular Control of Meiotic Chromosomal
784 Behavior: Events in Early Meiotic Prophase in *Drosophila* Oocytes. *Annu Rev Physiol* 74:
785 425–451.

786

787 Lee, Y. G., and C. H. Langley, 2010 Transposable elements in natural populations of
788 *Drosophila melanogaster*. *Philosophical Transactions Royal Soc B Biological Sci* 365: 1219–
789 1228.

790

791 Li, H., B. Handsaker, A. Wysoker, T. Fennell, J. Ruan *et al.*, 2009 The Sequence
792 Alignment/Map format and SAMtools. *Bioinformatics* 25: 2078–2079.

793

794 Lindsley, D., and G. Zimm, 1992 The Genome of *Drosophila melanogaster*. Academic Press.

795

796 Mancera, E., R. Bourgon, A. Brozzi, W. Huber, and L. M. Steinmetz, 2008 High-resolution
797 mapping of meiotic crossovers and non-crossovers in yeast. *Nature* 454: 479.

798

799 Manheim, E. A., and K. S. McKim, 2003 The Synaptonemal Complex Component C(2)M
800 Regulates Meiotic Crossing over in *Drosophila*. *Curr Biol* 13: 276–285.

801

802 Marcon, E., T. Babak, G. Chua, T. Hughes, and P. Moens, 2008 miRNA and piRNA localization
803 in the male mammalian meiotic nucleus. *Chromosome Res* 16: 243–260.

804

805 de Massy, B., 2012 Initiation of Meiotic Recombination: How and Where? Conservation and
806 Specificities Among Eukaryotes. *Genetics* 47: 563–599.

807

808 McKenna, A., M. Hanna, E. Banks, A. Sivachenko, K. Cibulskis *et al.*, 2010 The Genome
809 Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing
810 data. *Genome Res* 20: 1297–1303.

811

812 Mehrotra, S., and K. S. McKim, 2005 Temporal analysis of meiotic DNA double strand break
813 formation and repair in *Drosophila* females. *Plos Genet* preprint: e200.

814

815 Miller, D. E., K. R. Cook, N. Kazemi, C. B. Smith, A. J. Cockrell *et al.*, 2016a Rare
816 recombination events generate sequence diversity among balancer chromosomes in
817 *Drosophila melanogaster*. *Proc National Acad Sci* 113: E1352–E1361.

818

819 Miller, D. E., C. B. Smith, N. Kazemi, A. J. Cockrell, A. V. Arvanitakis *et al.*, 2016b Whole-
820 Genome Analysis of Individual Meiotic Events in *Drosophila melanogaster* Reveals That
821 Noncrossover Gene Conversions Are Insensitive to Interference and the Centromere Effect.
822 *Genetics* 203: 159–171.

823

824 Page, S., and R. Hawley, 2001 c(3)G encodes a *Drosophila* synaptonemal complex protein.
825 *Gene Dev* 15: 3130–3143.

826

827 Page, S. L., R. J. Nielsen, K. Teeter, C. M. Lake, S. Ong *et al.*, 2007 A germline clone screen
828 for meiotic mutants in *Drosophila melanogaster*. *Fly* 1: 172–181.

829

830 Pasyukova, E. G., and S. V. Nuzhdin, 1993 Doc and copia instability in an isogenic *Drosophila*
831 *melanogaster* stock. *Mol Gen Genetics Mgg* 240: 302–306.

832

833 Pearlman, R., N. Tsao, and P. Moens, 1992 Synaptonemal complexes from DNase-treated
834 rat pachytene chromosomes contain (GT)n and LINE/SINE sequences. *Genetics* 130: 865–
835 72.

836

837 Rass, E., A. Grabarz, I. Plo, J. Gautier, P. Bertrand *et al.*, 2009 Role of Mre11 in chromosomal
838 nonhomologous end joining in mammalian cells. *Nat Struct Mol Biol* 16: 819–824.

839

840 Sandler, L., 1965 The meiotic mechanics of ring chromosomes in female *Drosophila*
841 *melanogaster*. *National Cancer Inst Monogr* 18: 243–73.

842

843 Santoyo, G., J. M. Martínez-Salazar, C. Rodríguez, and D. Romero, 2005 Gene Conversion
844 Tracts Associated with Crossovers in *Rhizobium etli*. *J Bacteriol* 187: 4116–4126.
845
846 Thorvaldsdóttir, H., J. T. Robinson, and J. P. Mesirov, 2013 Integrative Genomics Viewer
847 (IGV): high-performance genomics data visualization and exploration. *Brief Bioinform* 14:
848 178–192.
849
850 Wang, H., A. Perrault, Y. Takeda, W. Qin, H. Wang *et al.*, 2003 Biochemical evidence for Ku-
851 independent backup pathways of NHEJ. *Nucleic Acids Res* 31: 5377–5388.
852
853 Wang, H., B. Rosidi, R. Perrault, M. Wang, L. Zhang *et al.*, 2005 DNA Ligase III as a Candidate
854 Component of Backup Pathways of Nonhomologous End Joining. *Cancer Res* 65: 4020–
855 4030.
856
857 Watanabe, Y., A. Takahashi, M. Itoh, and T. Takano-Shimizu, 2009 Molecular spectrum of
858 spontaneous de novo mutations in male and female germline cells of *Drosophila*
859 *melanogaster*. *Genetics* 181: 1035 1043.
860
861 Wijnker, E., V. G. James, J. Ding, F. Becker, J. Klasen *et al.*, 2013 The genomic landscape of
862 meiotic crossovers and gene conversions in *Arabidopsis thaliana*. *eLife* 2: e01426 e01426.
863
864 Ye, K., M. H. Schulz, Q. Long, R. Apweiler, and Z. Ning, 2009 Pindel: a pattern growth
865 approach to detect break points of large deletions and medium sized insertions from
866 paired-end short reads. *Bioinformatics* 25: 2865–2871.
867
868 Zickler, D., and N. Kleckner, 2015 Recombination, Pairing, and Synapsis of Homologs during
869 Meiosis. *Csh Perspect Biol* 7: a016626.
870