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Abstract

We have investigated the relationship between the function of the gene hindsight (hnt),
which is the Drosophila homolog of Ras Responsive Element Binding protein-1 (RREB-
1), and the EGFR signaling pathway. We report that znt mutant embryos are defective in
EGEFR signaling dependent processes, namely chordotonal organ recruitment and
oenocyte specification. We also show the temperature sensitive hypomorphic allele
hnt***" is enhanced by the hypomorphic MAPK allele rolled (rl). We find that hnt
overexpression results in ectopic DPax2 expression within the embryonic peripheral
nervous system, and we show that this effect is EGFR-dependent. Finally, we show that
the canonical U-shaped embryonic lethal phenotype of Ant, which is associated with
premature degeneration of the extraembyonic amnioserosa and a failure in germ band
retraction, is rescued by expression of several components of the EGFR signaling
pathway (sSpi, Ras85D""?, pnt"') as well as the caspase inhibitor p35. Based on this
collection of corroborating evidence, we suggest that an overarching function of /nt

involves the positive regulation of EGFR signaling.
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59  Introduction

60

61 The gene hindsight (hnt), also known as pebbled (peb), was first identified in

62  mutagenesis screens for embryonic lethal mutations performed in the early 1980°s

63  (WIESCHAUS et al. 1984). The embryonic lethal phenotype of int was categorized as “U-
64  shaped”, reflecting a failure to undergo or complete germ band retraction. Ant has since
65  been identified as the Drosophila homolog of mammalian Ras Responsive Element

66  Binding Protein -1 (RREB-1) (MELANI et al. 2008; MING et al. 2013), which strongly

67  suggests a connection between Ant and the EGFR/Ras/MAPK signaling pathway

68  (hereafter referred to as EGFR signaling). Interestingly, in Drosophila, 4nt has been

69 identified as a direct transcriptional target of the Notch signaling pathway (KREJCI ef al.
70  2009; TERRIENTE-FELIX et al. 2013). Mammalian RREB-1, on the other hand, has not
71  been linked with Notch signaling but functions downstream of Ras/MAPK signaling and
72 may either activate or repress certain Ras target genes (LIU ef al. 2009; KENT et al. 2014).
73 RREB-I has also been implicated in a number of human pathologies, including

74  pancreatic, prostate, thyroid, and colon cancer (THIAGALINGAM ef al. 1996;

75  MUKHOPADHYAY et al. 2007; KENT et al. 2013; FRANKLIN et al. 2014).

76 The hnt gene encodes a transcription factor composed of 1893 amino acids

77  containing 14 C,H,-type Zinc-fingers (YIP et al. 1997). Based on genetic interaction

78  studies, Hnt’s target genes are likely numerous and disparate with respect to function

79  (WILK et al. 2004). Candidate direct target genes of Hnt identified using molecular

80  methods include Ant itself, nervy, and jitterbug (MING et al. 2013; OLIVA et al. 2015).

81  The nervy gene encodes a Drosophila homolog of the human proto-oncogene
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ETO/MTGS, while jitterbug encodes a conserved actin binding protein also known as
filamen.

During development Ant is expressed in a broad range of tissues. In the embryo
these include the amnioserosa (AS), anterior and posterior midgut primordia, the
peripheral nervous system (PNS), the developing tracheal system, and the oenocytes (YIP
et al. 1997; WILK et al. 2000; BRODU et al. 2004). During larval stages, in addition to the
tracheal system, PNS, midgut, and oenocytes, Ant is expressed in the larval lymph gland,
differentiated crystal cells, imaginal tracheoblasts, and the salivary glands of the third
instar (PITSOULI AND PERRIMON 2010; MING ef al. 2013; TERRIENTE-FELIX et al. 2013).
In pupae, the sensory organ precursors (SOPs) of developing micro- and macrochaetae,
as well as myoblasts, and all photoreceptor cells (R cells) of the developing retina express
hnt (PICKUP et al. 2002; REEVES AND POSAKONY 2005; KREICI et al. 2009; BUFFIN AND
GHO 2010). In the adult, Hnt is expressed in the midgut (intestinal stem cells,
enteroblasts, and enterocytes), developing egg chambers (follicle cells and the migratory
border cells), spermathecae, and in mature neurons of the wing (SUN AND DENG 2007;
MELANI et al. 2008; BAECHLER ef al. 2015; SHEN AND SUN 2017; FARLEY et al. 2018).

While Ant is expressed in many different tissues, its expression within a given
tissue can be dynamic. For example, in the adult intestinal stem cell lineage there is an
increase of Hnt during enteroblast-to-enterocyte differentiation, but a decrease during
enteroblast-to-enteroendocrine cell differentiation (BAECHLER et al. 2015). Hnt levels are
particularly dynamic in the ovarian follicle cells, where Hnt is observed in stage 7-10A
egg chambers as these cells initiate endoreduplication. A subset of follicle cells are

subsequently devoid of Hnt through stages 10B to 13, and then display a strong increase
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105  in stage 14 egg chambers prior to follicle cell rupture and an ovulation-like event (DEADY
106 etal 2017).

107 There is a wealth of information regarding 4nt mutant phenotypes and /nt

108  expression, yet a general definition of Hnt function remains elusive. Given that Hnt is
109  the Drosophila homolog of RREB-1, we present an examination of 4nt mutant

110  phenotypes as well as hnt overexpression with specific attention to EGFR signaling.
111 With respect to loss-of function analysis, we report two new findings that link 4n¢ and
112  EGFR signaling: first, snt mutant embryos are defective in the processes of chordotonal
113  organ recruitment as well as oenocyte specification, both of which are EGFR signaling-
114  dependent processes (MAKKI et al. 2014); and second, we show that the temperature
115  sensitive ant allele hn#*"* (hn”®"), which is associated with defective cone cell

116  specification in the pupal retina (PICKUP et al. 2009), is enhanced by the hypomorphic
117  MAPK allele rolled (rI'). In terms of hnt overexpression, we first show ectopic DPax2
118  expression in embryos overexpressing int. We show similar ectopic DPax2 expression
119  in embryos in which EGFR signaling is abnormally increased through global expression
120  of the active EGFR ligand secreted Spitz (sSpi). We subsequently demonstrate that Egfr
121  loss-of-function mutants abrogate ectopic DPax2 expression in the context of hnt

122 overexpression. Last, we show that the U-shaped phenotype of 4nt mutants, which

123  involves premature degeneration of the AS and a failure in the morphogenetic process of
124  germ band retraction (GBR) - which is also a phenotype displayed by Egfir mutants

125  (CLIFFORD AND SCHUPBACH 1992) - can be rescued by expression of components of the
126  EGEFR signaling pathway (sSpi, Ras85D""?, pnt”") as well as the caspase inhibitor p35.

127  Interestingly, expression of the pns"? isoform, which (unlike the pns”’ isoform) requires
gly, exp P P q
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activation by MAPK (O'NEILL ef al. 1994; SHWARTZ et al. 2013), does not rescue hnt
mutants. Given this collection of corroborating evidence, we suggest that a primary

function of /4nt involves the positive regulation of EGFR signaling.

Materials and Methods
Drosophila stocks

All cultures were raised on standard Drosophila medium at 25°C under a 12 hour
light/dark cycle, unless otherwise indicated. The hindsight (hnt) alleles used were hnt™™,
hnt® (Y1P et al. 1997; WILK et al. 2004), and hnt""7?7**! (this study). As previously
described (YIP et al. 1997), hnt®®' is a strong hypomorphic embryonic lethal allele while
hnt*® is a viable temperature sensitive hypomorphic allele associated with a rough eye
phenotype at the restrictive temperature of 29° C. The Egfr mutant alleles used were
Egfi'? and Egf#’” as previously described (SHEN et al. 2013). The rolled (rI') allele was
provided by A. Hilliker. To drive ubiquitous expression throughout the early embryo we
used daGAL4 as previously described (REED et al. 2001). The BO-GAL4 line was used
to mark embryonic oenocytes (GUTIERREZ et al. 2007) and was provided by A. Gould.
Overexpression of ant used UAS-GFP-hnt as previously described (BAECHLER et al.
2015). The adherens junctions marker Ubi-DEcadherin-GFP was used to outline cell
membranes as previously described (CORMIER et al. 2012). The reporter gene
DPax2" GFP was as previously described (JOHNSON et al. 2011). UAS-sSpi was
obtained from N. Harden. pebBAC"?!-/%2 was obtained from M. Freeman. All other
transgenes used originated from stocks obtained from the Bloomington Drosophila Stock

Center (UAS-CDS8-GFP, UAS-GFP™, UAS-p35, UAS-Ras85D""?, UAS-pnt”’, UAS-pnt™)
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151  Construction of DPax2-dsRed reporter lines

152 The DPax2”'dsRed and DPax2%*dsRed reporter lines were generated by standard
153  P-element transgenic methods (BACHMANN AND KNUST 2008) using the vector pRed H-
154  Stinger (BAROLO et al. 2004) containing a previously described 3 KB DPax?2 enhancer
155  (JOHNSON et al. 2011). Briefly, the 3 KB enhancer (position -3027 to +101 relative to the
156  DPax2 transcription start site) was excised from the Bam HI sites of a DPax”-pBluescript
157  KS + plasmid. The insert was then cloned into the Bam HI site of pRed H-Stinger.

158  Crossing schemes for analysis of DPax2” dsRed expression in Egfr mutants, and

159  DPax2®'GFP expression in embryos with elevated EGFR signaling.

160 In order to analyze DPax?2 reporter construct expression in different backgrounds,
161  the Ubi-DEcadherin-GFP (on second chromosome) was recombined with Egfi’“?, UAS-
162  GFP-hnt (on second chromosome) was recombined with Egfi’’, daGAL4 (on third

163  chromosome) was recombined with DPax2%*dsRed, and daGAL4 (on third chromosome)
164  was recombined with DPax2®' GFP creating the following stocks:

165  Stock 1: dp'*"’ Ubi-DEcadherin-GFP Egfi'*"/ CyO

166  Stock 2: UAS-GFP-hnt Egfi”’/ CyO

167  Stock 3: daGAL4 DPax2"dsRed

168  Stock 4: daGAL4 DPax2”' GFP | TM6C

169 To visualize DPax2%*dsRed expression in Egfi’*"’/Egfi’’ mutants, as well as

170  Egfi”’/+ heterozygotes, the following approach was used. Non-balancer male progeny of
171  Stock 1 x Stock 3 ( dp’*"’ Ubi-DE-cadherin Egfi'*"/+ ; daGAL4 DPax2*dsRed/+) were
172 crossed to Stock 2. In embryos collected from this cross, Egfi”'“/*/Egfi’” mutants were

173  recognized as embryos expressing UAS-GFP-hnt, DPax2*?dsRed, and Ubi-DE-cadherin-
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GFP, while Egfi”/+ heterozygotes also expressed UAS-GFP-hnt and DPax2%*dsRed, but
lacked Ubi-DE-cadherin-GFP.

To visualize DPax2®' GFP expression in embryos with elevated EGFR signaling,
Stock 4 was crossed to homozygous UAS-sSpi.

Immunostaining and Imaging

Immunostaining of embryos was carried out as described (REED et al. 2001). The
following primary antibodies were used at the indicated dilutions: mouse monoclonal
anti-Hindsight (Hnt) 27B8 1G9 (1:25; from H. Lipshitz, University of Toronto), mouse
monoclonal anti-22C10 (1:500; Developmental Studies Hybridoma Bank (DSHB)),
mouse monoclonal anti- Armadillo (1:100; DSHB), and rabbit polyclonal anti-DPax2
(1:2000; J. Kavaler, Colby College). The secondary antibodies used were: Alexa Fluor®
488 goat anti-mouse and goat anti-rabbit (1:500; Cedarlane Labs), and TRITC goat anti-
mouse (1:500; Cedarlane Labs). Staining embryos for f-actin using TRITC-phalloidin
was performed as previously described (REED et al. 2001). Confocal microscopy and
confocal image processing were performed as previously described (CORMIER ef al.
2012). Preparation of embryos for live imaging was as previously described (REED ef al.
2009).

Fluorescent in situ hybridization (FISH)

Whole mount fluorescent in situ hybridization used 3 hour embryo collections of
wild-type or daGAL4 > UAS-GFP-hnt aged for 10 hours at 25° C, giving embryos at
stage 13-16. Embryo fixation followed protocols as described (LECUYER ef al. 2008).
cDNA clones were acquired from the Drosophila Genomics Resource Center (Indiana

University), including the DPax2 clone IP01047.
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Cone cell distribution quantification

48hr APF pupal eye discs were immunostained using anti-armadillo as described
above in three genetic backgrounds (7/, peb, rl peb). peb is a temperature sensitive
recessive visible allele and was reared under permissive (25° C) and restrictive (29° C)
conditions. #/ and 7/ peb lines were reared at 25° C. Five to six independent eye discs
were examined for each genotype and condition (7/ 25° C, peb 25° C, peb 29° C, and r/
peb 25° C). The average frequencies of cone cell within an ommatidium, ranging from 1-
5, were calculated with the standard deviation then plotted onto a stacked bar graph.
Recovery of hnt""7?781

The viable and fertile GAL4 enhancer trap line NP7278, inserted 158 bp upstream
of the Ant transcription start site (THURMOND ef al. 2019), was mobilized by crossing to
A2-3 transposase. Progeny were crossed to FM7h, w B and lines were established from
single virgin females that had lost the w" marker of NP7278. Lethal lines (not producing
B" progeny) were subsequently selected and tested for GAL4 expression by crossing to
UAS-GFP™.
hnt""7?7% rescue experiments

The hnt"*7?7% stock was crossed into a background carrying second
chromosome insertions UAS-GFP" and Ubi-DE-cadherin-GFP. Virgin females of this
resulting stock (v w hnd"*7?75! FRT194/ FM7h, w; UAS-GFP"™ Ubi-DE-cadherin-GFP/
CyO) were subsequently crossed to tub-GALS80 hsFLP FRTI19A4 males (for control mutant)
or to tub-GALS0 hsFLP FRT19A4; UAS-X males for rescue experiments (where UAS-X
was the homozygous 2" chromosome insertion UAS-p35, or one of the homozygous 3

chromosome insertions UAS-sSpi, UAS-Ras85D""?, or UAS-pnt”"). In the case of the 3
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chromosome insertion UAS-pnt"?, which is not homozygous viable, male rub-GALS0
hsFLP FRT19A; UAS-pnt™ / UAS-Cherry™ outcross progeny were used. Embryos
between 12-14 hours old were collected from crosses of 30-40 females and males using
an automated Drosophila egg collector (Flymax Scientific Ltd.) at room temperature
(22°C) and mounted for live imaging as previously described (REED et al. 2009). For
each imaging session, non-mutant embryos were confirmed as having completed or being
in the terminal stages of dorsal closure. Mutant embryos (hnt"" 2% /y: UAS-GFP"™
Ubi-DE-cadherin-GFP/UAS-X ot hnt""?7**!/y; UAS-GFP"™ Ubi-DE-cadherin-GFP/+ ;
UAS-X/+) were unambiguously identified by expression of UAS-GFP™ (Fig. S3). In the
case of UAS-pnt™?, mutant embryos also expressing UAS-pnt"” were identified as those
embryos having UAS-GFP" expression while lacking UAS-Cherry™ expression. A
control rescue was performed by crossing to y w hnt"“*" FRT194; pebBAC3?!-#6/0
males (BAC insert is 4nt'). Images of mutant embryos were scored as one of three
possible categories: 1) GBR failure (telson pointed anteriorly) with a small AS remnant;
2) GBR partial (telson pointed vertically or posteriorly but not at full posterior position)
with an intact but distorted AS; 3) GBR complete (telson pointed posteriorly and located
at normal posterior position) and with an intact but distorted or normal AS.
Data and Reagent Availability

Stocks used that are unique to this study are available upon request.
Supplemental material has been uploaded to figshare. The image data sets and embryo

tNP 7278ex1

scoring result used to evaluate /n rescue (presented in Fig. 5K) are available as

supplemental material (Fig. S1). Other supplemental material includes the demonstration

tNP 7278ex1

of reduced /nt expression in hn mutant embryos (Fig. S2) and Punnett square

10
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diagrams detailing the genetic crosses used for the unambiguous identification of mutant

NP7278ex1
and rescued Ant “

mutant embryos (Fig. S3).

Results

PNS, chordotonal organ and oenocyte specification are disrupted in /nt loss-of-
function mutants.

In order to determine if phenotypes associated with reduced EGFR signaling are
present in /nt mutants, we first examined the development of the PNS in Ant™**' mutant
embryos using anti-Futsch/22C10 (hereafter referred to as 22C10), which labels all
neurons of the PNS as well as some neurons of the central nervous system (CNS)
(HUMMEL et al. 2000). Ant™™® mutant embryos lack sensory neurons (Fig. 1A, B). The
absence of sensory neurons is most evident in the abdominal segments. Each embryonic
abdominal hemisegment normally contains eight internal stretch receptors known as
chordotonal organs, arranged as a single dorsal lateral organ (v’chl), a lateral cluster of
five (IchS), and two single ventral lateral organs (vchB, and vchA) (BREWSTER AND
BODMER 1995). 22C10 immunostaining shows the neurons of the Ich5 clusters are
frequently reduced from five to three in number in 4ne*™*' mutants (asterisks, Fig. 1A, B
and Fig. 1A’, B’). TRITC-phalloidin staining of f-actin confirms the reduction of the
Ich5 clusters from five to three (asterisks, Fig. 1C and Fig. 1D), and reveals a complete
absence of the single chordotonal organs in 4nr*™*' mutants (arrowheads in Fig. 1C).

In general, mutants lacking lateral chordotonal organs do not form oenocytes, and
EGFR signaling has been implicated in oenocyte induction (ELSTOB et al. 2001). We,

therefore, used the oenocyte specific BO-GAL4 to drive expression of nuclear-GFP in

11
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wild-type and Anr*™*' mutants to evaluate oenocyte specification (Fig. 1E,F). In addition
to Ant mutants having reduced numbers of BO-GAL4-positive cells, these cells are not
organized into clusters as in wild-type, but are scattered throughout the mutant embryos.
This newly reported phenotype of 4nt mutants, that of missing chordotonal organs and a
failure in oenocyte differentiation, is a hallmark of reduced EGFR signaling (MAKKI et

al. 2014).

hnt® is enhanced by reduced MAPK

Given the above findings, we were next interested in determining if a genetic
background of reduced EGFR signaling would enhance a snt mutant phenotype. Using
anti-Armadillo (Arm) immunostaining, we evaluated the pupal ommatidial structure of
the temperature sensitive hypomorphic /nt allele pebbled (hn#**’) as well as a viable
hypomorphic mutant of the EGFR downstream effector MAPK, also known as rolled
(rl"). At the permissive temperature of 25°C, 87% of ommatidia in n#*" mutants
resemble wild-type and contain four cone cells (Fig. 2A,B ¢f. 2C; Fig. 2G). Likewise,
90% of ommatidia of 7/ mutants raised at 25°C are normal (Fig. 2D,G). The number of
ommatidia showing a normal cone cell number is reduced to 28% in peb mutants raised
at the restrictive temperature of 29°C (Fig. 2E,G) while peb; rI' double mutants raised at
the permissive temperature (25°C) display a distinct enhancement of the peb mutant
phenotype, having only 22% of ommatidia with the correct cone cell number (Fig. 2F,G).
These observations demonstrate a novel genetic interaction between Ant and MAPK,
showing that 7/’ behaves as an enhancer of the cone cell specification defect of hn#*”.

Interestingly, /nt is not expressed in cone cells, but is expressed in photoreceptor

12
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precursor cells (R cells) where it is required for induction and expression within cone

cells of the determinant DPax2 (PICKUP et al. 2009).

Overexpression of 4nt during embryogenesis results in ectopic DPax2 expression
Using a candidate gene approach, we examined stage 13-16 embryos in which
UAS-GFP-hnt was globally expressed using the daGAL4 driver. Among candidate genes
tested, DPax2 (CG11049, also known as shaven (sv) or sparkling (spa)) was found to
show a striking transcriptional upregulation in embryos overexpressing hnt compared to
control embryos (Fig. 3A,B). The upregulation of DPax2 in embryos overexpressing Ant
was confirmed at the level of protein expression by anti-DPax2 immunostaining (Fig.
3C,D) as well as by reporter gene construct expression (Fig. 3E,F). Interestingly, int
mutants do not abolish or reduce DPax?2 expression (Fig. 3G), suggesting that while /nt
overexpression can result in DPax2 overexpression, Hnt is not required for endogenous

DPax?2 expression throughout the embryonic PNS.

Ectopic DPax2 expression in the context of hnt overexpression is EGFR dependent.

DPax?2 encodes a paired domain transcription factor and is expressed in the
developing PNS, including the embryonic PNS, pupal eye, and micro- and macrochaetes
(Fu et al. 1998). We next wished to determine if DPax2 expression in embryos
overexpressing hnt is dependent on EGFR signaling. Compared to the overexpression
control (Fig. 4A-A""), we found that reduced EGFR (Egfi'*"°/Egfi’?) suppresses ectopic
DPax?2 expression (Fig. 4B-B’’). We also observed that DPax2 overexpression

associated with Ant overexpression is sensitive to Egfi- dosage as Egfi’’/+ heterozygous
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312  embryos show reduced DPax2 expression relative to the overexpression control (Fig. 4C-
313 C”’). To further corroborate DPax2 ectopic expression as EGFR-dependent, we

314  examined DPax?2 reporter gene expression in embryos globally expressing the activated
315 EGFR ligand secreted Spitz (sSpi). Such embryos also show ectopic DPax2 expression,
316  suggesting that ectopic DPax2 expression is elicited through increased EGFR signaling
317  (Fig. 4 D.E). In addition, we found that the same Egfi- mutant (Egfi’*"*/Egfi’”) does show
318  expression of the DPax2"’dsRed reporter. Although the total number of DPax2

319  expressing cells is reduced relative to wildtype, this indicates that Egfrr mutants are

320 capable of producing cells that express DPax2 (Fig. 4F). Taken together, these data are
321  consistent with the interpretation that DPax?2 is not a direct target of /nt, that ectopic

322  DPax?2 expression is a consequence of excessive EGFR signaling, and that Ant

323  overexpression may result in DPax2 overexpression through excessive EGFR signaling.
324  Moreover, these results raise the possibility that Ant loss-of-function mutants could

325  possibly be rescued by ectopic activation of Egfr signaling.

326

327  The embryonic U-shaped terminal mutant phenotype of hnt"" 775!

is rescued by
328 activation of EGFR signaling

329 Given the above results showing phenotypes related to reduced EGFR signaling
330 in int mutants, the genetic enhancement between int’ > and rll, in addition to the EGFR-
331 dependence of ectopic DPax2 expression associated with Ant overexpression, we wished
332 to test if hnt loss-of-function phenotypes can be rescued by activation of Egfr signaling.

333  Asis the case for Egfr mutants, 4nt mutants fail to undergo or complete GBR and are

334  associated with premature AS degeneration and death (FRANK AND RUSHLOW 1996;
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335  GOLDMAN-LEVI et al. 1996; LAMKA AND LIPSHITZ 1999). We conducted rescue

336  experiments using a newly recovered hnt allele, hnt™"7?7%*! (see Materials and Methods).
337  The hnt""7?7**! allele is a GAL4 enhancer trap insertion that is embryonic lethal, fails to
338  complement int™™ | shows premature AS degeneration, has GBR defects (Fig. 5D,E,K),
339  and is rescued by pebBAC 72 (Fig_ 5F, K). Very similar to the previously

340  described allele int’”® (REED et al. 2001), hnt"" 727! shows reduced anti-Hnt

341  immunostaining (Fig. S2). hnt""7?7%!

is, therefore, best characterized as a strong

342 hypomorphic allele. Interestingly, the Ant""’?’%*! mutant retains GAL4 expression in a
343  pattern faithful to endogenous Ant expression, including early (prior to onset of GBR)
344  expression in the AS (Fig 5A,B). The hn™7?7**! mutant phenotype, however, does not
345  disrupt oenocyte specification or the Ich5 cluster of chordotonal organs as we described
346  for hnt'®®. We, therefore, chose to test for rescue of premature AS death and GBR

347  failure. We were able to use ant" 2’**! in combination with an X-linked fub-GAL80

348  insertion to unambiguously identify hemizygous hnt"7?7%"

mutant embryos that also
349  express an autosomal UAS transgene (see Materials and Methods, and Fig. S3). We
350 found that 72.4% (n=58) of control ins"""*’**! embryos show a strong U-shaped

351  phenotype in which the AS is reduced to a small remnant, indicative of GBR failure and
352  premature AS degeneration, respectively (Fig. SE,K). The AS degeneration and GBR

353  phenotype of hn\7?75!

mutants was rescued by expression of the baculovirus caspase
354  inhibitor UAS-p35 (5.9% GBR failure; n= 34; Fig. 5F,I), the activated EGFR ligand UAS-
355  sSpi (0% GBR failure; n = 27, Fig. 5H,K), constitutively active RAS (8.3% GBR failure;

356  n=36; Fig. 51,K). We also tested for rescue of hnt"""?7%*! by expression of two isoforms

357  ofthe ETS transcription factor effector encoded by pointed (pnt), which is a downstream
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effector of the EGFR/Ras/MAPK pathway. The isoform Pnt™ requires activation
through phosphorylation by MAPK, whereas the Pnt"' isoform, which is transcriptionally
activated by the activated form of Pnt™?, is constitutively active without activation by
MAPK (O'NEILL et al. 1994; SHWARTZ et al. 2013). Expression of the constitutively
active isoform via UAS-Pnt"’ resulted in rescue (9.1% GBR failure; n=31; Fig.5J,K).
Interestingly, expression the other isoform via U4S-Pnt"* did not rescue hnt"" 775!
(72.0% GBR failure, n= 25; Fig. 5K). All image data sets and scoring annotations used
to generate Fig. 5K are presented as supplemental material (Fig. S1). Rescue by UAS-
p35 confirms that premature AS degeneration in Ant mutants is associated with caspase
activation. Furthermore, rescue of snt mutants by expression of components of the
EGFR signaling pathway is consistent with /nt operating either upstream or in parallel to
this pathway. Rescue was not complete in that AS morphology was abnormal, and
rescued embryos failed to complete dorsal closure likely due to the abnormal persistence
of the rescued AS. Interestingly, the failure to rescue AS death and GBR defects by
expression of the Pnt™” isoform, which requires activation through phosphorylation by

MAPK (O'NEILL et al. 1994; SHWARTZ et al. 2013), is consistent with reduced MAPK

activity within the AS of /4nt mutants.
Discussion

hnt loss-of-function and int overexpression phenotypes are consistent with
perturbations in EGFR signaling.
The development of chordotonal organs and oenocyte specification are both

disrupted in ~nt mutants and these phenotypes are hallmarks of reduced EGFR signaling.
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As an overview, each embryonic abdominal hemisegment normally develops eight
chordotonal organs, organized into three single organs (v’chl, vchB, and vchA), and a
cluster of five organs (Ich5). The embryonic specification and differentiation of
chordotonal organs initiates with the delamination of chordotonal precursor cells (COPs)
from the ectoderm (reviewed in (GOULD et al. 2001)). Briefly, chordotonal organs arise
from five primary COPs (C1-C5), where C1-C3 give rise to the five organs of Ich5, C4 is
a precursor of v’chl, and C5 is the precursor for vchB and vchA. The secretion of the
active EGFR ligand Spitz by C3 and C5 expands the number of COPs from five to eight.
Further EGFR signaling elicited by the C1 COP is also required for the induction of
oenocytes (reviewed in (MAKKI et al. 2014)). In the absence of Egft signaling, C1 fails
to recruit oenocytes, and C3 fails to recruit secondary COPs to complete the five lateral
chordotonal organs of the Ich5 cluster (GOULD et al. 2001). Mutant phenotypes of genes
belonging to what has been called the Spitz group (which encode components of the
EGEFR signaling pathway and include Star, rhomboid, spitz, and pointed), as well as the
expression of dominant-negative EGFR, all display an absence of oenocytes and the
formation of only three lateral chordotonal organs within the Ich5 cluster (BIER et al.
1990; ELSTOB et al. 2001; RUSTEN et al. 2001). Based on our analysis of 4nt mutant
embryos, we suggest that 4nt can be aptly described as a previously unrecognized
member of the Spitz group of mutants. Overall, however, our findings represent
additions to the list of phenotypic similarities between /int and Egfr mutants, including
germ band retraction and dorsal closure failure, as well as the loss of tracheal epithelial
integrity (CLIFFORD AND SCHUPBACH 1992; CELA AND LLIMARGAS 2006; SHEN et al.

2013).
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We found /nt overexpression in the embryo results in increased and ectopic
expression of DPax2, and we found this effect to be unequivocally Egfr-dependent. We
also found that global activation of Egfr signaling via expression of the Egfr ligand sSpi
also causes DPax2 overexpression. Our results are consistent with previous work
showing that Hnt is required in the developing eye imaginal disc for cone cell induction;
here, it was also shown that reduced /Ant expression resulted in reduced DPax2, that int
overexpression resulted in increased DPax2, and that these effects were non-autonomous
(PICKUP ef al. 2009). The suggested model was that Hnt is required within the R1/R6
photoreceptor precursor cells to achieve a level of Delta sufficient for cone cell induction.
While our suggestion that Hnt promotes Egfr signaling is not mutually exclusive with a
role in promoting Delta expression, it is noteworthy that the expression of Delta within
R-precursor cells is elevated by the activation of EGFR signaling in these cells (TSUDA et
al. 2006). The observation of reduced Delta associated with reduced Ant expression
could, therefore, be attributed to reduced Hnt-dependent EGFR signaling within the R-

precursor cells.

Rescue of the int U-shaped mutant phenotype

The AS, which is programmed to die during and following the process of dorsal
closure, is possibly required for mechanical as well as signaling events that are critical for
the morphogenetic processes of GBR and dorsal closure. Premature AS death may,
therefore, lead to U-shaped or dorsal closure phenotypes. In support of this view, AS-
specific cell abalation disrupts dorsal closure (SCUDERI AND LETSOU 2005), and other U-

shaped mutants display premature AS death, including u-shaped (ush) , tail-up (tup),
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428  serpent (srp), and myospheroid (mys) (FRANK AND RUSHLOW 1996; GOLDMAN-LEVI et al.
429  1996; REED et al. 2004).

430 AS programmed cell death normally occurs through an upregulation of autophagy
431  in combination with caspase activation (MOHSENI et al. 2009; CORMIER ef al. 2012). AS
432  death can be prevented, resulting in a persistent AS phenotype, in a number of

433  backgrounds. These include expression of the caspase inhibitor p35, RNAi1 knockdown
434  of the proapoptotic gene hid, expression of activated Insulin receptor (dInR*“"), dominant
435  negative ecdysone receptor (EcR™™), active EGFR ligand secreted Spitz (sSpi),

436  constitutively active RAS (Ras85D""?), as well as over expression of Egfr-GFP

437  (MOHSENI et al. 2009; SHEN et al. 2013). In addition, embryos homozygous for

438  Df(3L)HY9, which deletes the pro-apoptotic gene cluster reaper/hid/grim, also present a
439  persistent AS phenotype (MOHSENI et al. 2009; CORMIER et al. 2012). During normal
440  development, Hnt is no longer detectable by immunostaining within the AS as it begins
441  to degenerate following dorsal closure (REED et al. 2004; MOHSENI et al. 2009). Thus, it
447  is likely that ~nt downregulation is required for normal AS degeneration, and that the
443  mutant phenotype of /nt is the result of a premature activation of the normal death

444  process. In support of this, we have demonstrated that several backgrounds associated
445  with a persistent AS phenotype are able to rescue GBR failure and AS death in Ant

446  mutants.

447 In the context of programmed cell death within the embryonic CNS, MAPK

448  dependent phosphorylation has been show to inhibit the pro-apoptotic activity of the Hid
449  protein (BERGMANN et al. 2002). We suggest that Egfr signaling within the AS could

450  also represent a survival signal, leading to MAPK activation and Hid inhibition. Several
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observations are consistent with this model, including AS expression of several
components of the Egfr signaling pathway. For example, within the AS anlage there is
robust expression of rhomboid (rho) (FRANCOIS et al. 1994), which encodes a
intramembrane serine protease required for the activation of EGFR ligands; see (SHILO
2005). In addition, prior to the onset of GBR, there is pronounced AS expression of vein
(vn), which encodes an additional EGFR ligand (SCHNEPP et al. 1996). Vein is a weaker
EGFR ligand, but it is produced in an active form and is not subject to inhibition by the
EGFR antagonist Argos (Aos); see (GOLEMBO et al. 1999; SHILO 2005). At about the
same stage, expression of a downstream EGFR effector pointed (pnt) is found in the AS,
as is hid, which is also expressed in the apoptotic AS (see Berkeley Drosophila Genome

Project; https://insitu.fruitfly.org/cgi-bin/ex/insitu.pl).

Potential Hnt target genes and EGFR signaling
As a model for normal AS death, we suggest that a downregulation of sn¢
expression could lead to reduced EGFR AS signaling, thereby decreasing MAPK
inhibitory phosphorylation of the pro-apoptotic protein Hid. According to this model, AS
death and subsequent GBR failure in #nt mutants would be attributed to reduced EGFR
signaling, lower MAPK activity, and pro-apoptotic activity of unphosphorylated Hid.
But how might Ant expression promote Egftr signaling and maintain high MAPK activity?
A recent genetic screen for genes involved in the regulation of Wallerian
degeneration (the fragmentation and clearance of severed axons) identified Ant as being
required for this process. As part of this work, the authors performed ChIP-seq analysis

of a GM?2 Drosophila cell line expressing a tagged version of Hnt. This resulted in the
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identification of 80 potential direct targets of Hnt (FARLEY et al. 2018). Interestingly,
several of these putative Hnt target genes are also known targets of the EGFR signaling
pathway, including /nR (ZHANG et al. 2011), E2f1 (XIANG et al. 2017), bantam
(HERRANZ et al. 2012), DI (TSUDA et al. 2002), and dve (SHIRALI et al. 2003); while others
have been implicated in the regulation of EGFR signaling and include EcR (QIAN ef al.
2014), srp (CAMPBELL et al. 2018), MESR6 (HUANG AND RUBIN 2000), Madm (SINGH et
al. 2016), and skd (LM et al. 2007). Also, and of particular interest, among the genes
identified are known target genes of EGFR signaling that are also regulators or effectors
of EGFR signaling. These include the gene pnt, which encodes an ETS transcriptional
activator - a key component for the transcriptional output of EGFR signaling that can also
create a positive feedback loop through the transcription of v (GOLEMBO ef al. 1999;
PAUL et al. 2013; CRUZ et al. 2015), and Mkp3 (Mitogen-activated protein kinase), which
is a negative regulator of EGFR signaling (GABAY et al. 1996; KM et al. 2004; BUTCHAR
et al. 2012). Further investigations will be required to determine if the phenotypes
associated with snt overexpression, as well as int loss-of-function, can be attributable (in

whole or in part) to changes in expression of any of these potential target genes.
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707  Figure 1. The embryonic Anf mutant phenotype includes hallmarks of reduced

708  EGFR signaling.

709  (A) Wild-type stage 15 embryo immunostained using the neuronal marker 22C10

710  showing typical development of the PNS, including clusters of ventral neurons in the

711  second and third thoracic segments (arrowheads) and five neurons associated with lateral
712 chordotonal organ clusters in the abdominal segments (blue with white outline

713  arrowheads and inset A’). (B) 22C10 immunostained #nt mutant embryo showing the
714  absence of neurons (arrowheads cf. panel A) including two of the five neurons of each
715 lateral chordotonal cluster (blue with white outline arrowheads and inset B’). (C)

716  TRITC-phalloidin stained stage 15 wild-type embryo showing the f-actin rich structure of
717  the lateral chordotonal Ich5 organ clusters (asterisks) and the dorsolateral chordotonal
718  organ Ichl (arrowheads). (D) TRITC-phalloidin stained 4nt mutant embryo showing
719  differentiated lateral chordotonal organs that are reduced in number (asterisks) and the
720  absence of the dorsolateral chordotonal Ichl organ. (E) Wild-type embryo showing UAS-
721  GFP" expression using the oenocyte-specific driver BO-GALA4. (F) hnt™™' mutant

722 embryo showing reduced number of GFP-positive oenocytes (BO-GAL4 > UAS-GFP"™)
723  and failure to form oenocyte clusters. Scale bars represent 20 microns (C,D).

724

725  Figure 2. The viable temperature sensitive hypomorphic snt allele pebbled (hnf’®) is
726  enhanced by the viable hypomorphic MAPK allele rolled (rl').

727  (A) Anti-Arm immunostained wild-type pupal retina 48h APF showing the normal

728  organization of ommatidial units. (B) Cartoon of wild-type ommatidial structure showing

729  four cone cells (red - c), two primary pigment cells (yellow - 1°), and the secondary
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(white - 2°) and tertiary pigment cells (white - 3°) of the interommatidial lattice. Also
depicted as a part of the lattice are the interommatidial bristles (dark green). (C) Anti-
Arm immunostained pupal retina (48h APF) of peb mutant raised at the permissive
temperature (25°C) showing normal ommatidial organization. (D) Anti-Arm
immunostained pupal retina (48h APF) of 7/ mutant raised at 25°C showing normal
ommatidial organization. (E) Anti-Arm immunostained pupal retina (48h APF) of peb
mutant raised at the restrictive temperature (29°C) showing a disruption in ommatidial
organization. (F) Anti-Arm immunostained pupal retina (48h APF) of peb; r/ double
mutant raised at the permissive temperature of 25°C showing disrupted ommatidial
organization, indicating a genetic enhancement of peb under what is normally the
permissive condition. (G) Stacked bar graph showing the average frequency of observed

cone cells per ommatidium (1-5 CC) for peb 25°C, rl 25°C, peb 29°C, and peb; rl 25°C.

Figure 3. Global overexpression of /nt results in ectopic DPax2 expression.

(A) Wild-type embryo showing DPax2 mRNA distribution expression using FISH
(green) (B) Embryo overexpressing hnt (daGAL4 > UAS-GFP-hnt) showing ectopic and
increased levels of DPax2 mRNA using FISH (green). (C) Wild-type embryo showing
DPax?2 expression using anti-DPax2 immunostaining (blue). (D) Embryo overexpressing
hnt immunostained for DPax2 (blue) showing ectopic DPax2 in large regions of lateral
ectoderm. (E) Wild-type embryo showing expression of the shaven reporter gene
construct DPax2%dsRed (blue) as faithful to endogenous DPax2 expression throughout
the developing PNS. (F) Embryo overexpressing snt showing ectopic DPax2 expression

using the DPax2%dsRed reporter gene. (G) Embryo immunostained for DPax2 (blue) and
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Hnt (yellow) showing that this embryo is a znt*™*' mutant (absence of Hnt signal) and

DPax2 throughout the PNS.

Figure 4. Ectopic DPax2 expression associated with int overexpression requires
EGFR signaling.

(A-A”’) Immunostained pan-GFP-hnt embryo (daGAL4 > UAS-GFP-hnt) showing Hnt
(yellow, A’) and associated ectopic DPax2 (Blue, A’’). (B-B*’) Pan-GFP-hnt embryo
that carries the loss-of-function allelic combination Egfi'“"?/ Egfi’?, showing absence of
ectopic DPax2 expression using the DPax2%*dsRed reporter. (C-C**) Pan-GFP-hnt
embryo heterozygous for the Egfi’* allele showing reduced ectopic expression of the
DPax2"dsRed reporter. (D) Wild-type stage 15 embryo showing that expression of the
DPax2" GFP reporter gene is consistent with endogeneous DPax2 (cf. Fig. 3C). (E)
Embryo expressing the DPax2” GFP reporter gene in the background of globally
activated EGFR signaling (daGAL4 > UAS-sSpi) showing ectopic DPax2 expression. (F)
The loss-of-function allelic combination Egfi’“"’/ Egfi’” in the absence of hnt
overexpression, showing DPax2 expression using the DPax2?dsRed reporter.

Figure 5. GBR and premature amnioserosa death of hnt"" *’**! is rescued by
caspase suppression and by activation of EGFR signaling.

(A) Anti-Hnt immunostained showing AS expression prior to onset of GBR. (B) Live
confocal image of hnt"" 7% |+, UAS-GFP" Ubi-DEcadherin-GFP/+ embryo showing

tNP 7278ex1

AS expression associated with /n prior to onset of GBR. (C) Same embryo

shown in B imaged 67 minutes later during initiation of GBR. The AS is folded over the
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extended tail and lamellopodia-type extensions contact the epidermis (white arrowheads.
(D) Live confocal image of int""7?7%*!1y: UAS-GFP"™ Ubi-DEcadherin-GFP/+ mutant
embryo at onset of GBR showing a failure of AS to maintain the fold over the posterior
tail. AS apoptotic corpses are also present (white arrowheads). (E) Terminal GBR
failure phenotype of hnt""?"*! Y ; UAS-GFP"™ Ubi-DEcadherin-GFP/+ mutant embryo
showing tail-up phenotype and AS remnant (white arrowhead). (F) Control rescue

AP7278el 6 hnNP7278 i EST mutant with UAS-GFPnls Ubi-DEcadherin

embryo: hn
showing rescue by pebBAC?!"2 (G) GBR complete rescue of hnt"" 7?75 by UAS-
sSpi. (H) GBR complete rescue of hnt" 27! by UAS-p35. (I) GBR complete rescue of
hnt"* 7?75 by UAS-Ras85D"". (J) GBR complete rescue of hnt"" 7?75 by UAS-pnt"”.

tNP7278ex]

(K) Stacked bar graph showing the frequency of GBR defects in /n mutants and

rescue backgrounds.
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