

1 **Title:** A Bayesian approach to inferring dispersal kernels with incomplete mark-recapture data
2 **Author:** Akira Terui*
3 Department of Biology, the University of North Carolina at Greensboro, Greensboro, NC 27412 USA
4 * hanabi0111@gmail.com
5

6 **Abstract**

7 Dispersal is a fundamental ecological process that links populations, communities and food webs in
8 space. However, dispersal is tremendously difficult to study in the wild because we must track individuals
9 dispersing in a landscape. One conventional method to measure animal dispersal is a mark-recapture
10 technique. Despite its usefulness, this approach has been recurrently criticized because it is virtually
11 impossible to survey all possible ranges of dispersal in nature. Here, I propose a novel Bayesian model to
12 better estimate dispersal parameters from incomplete mark-recapture data. The dispersal-observation
13 coupled model, DOCM, can extract information from both recaptured and unrecaptured individuals,
14 providing less biased estimates of dispersal parameters. Simulations demonstrated the usefulness of
15 DOCM under various sampling designs. I also suggest extensions of the DOCM to accommodate more
16 realistic scenarios. Application of the DOCM may, therefore, provide valuable insights into how
17 individuals disperse in the wild.

18
19 **Keywords:** movement, statistical inference, spatial ecology, Markov chain Monte Carlo, simulation
20

21 **Introduction**

22 Ecological entities rarely exist independently. Dispersal – any movement of organisms across space –
23 links populations (Hanski 1999; Hanski & Ovaskainen 2000; Terui *et al.* 2018a; Terui *et al.* 2014b),
24 communities (Leibold *et al.* 2004; Terui & Miyazaki 2016) and food webs (Nakano *et al.* 1999; Nakano
25 & Murakami 2001; Spiller *et al.* 2010; Terui *et al.* 2018b) that are otherwise isolated from one another.
26 Ecologists have been intrigued by the spatial process due to its implications for critical applied issues,
27 such as the metapopulation persistence of endangered species in fragmented landscapes (Hanski 1999).
28 More recently, accumulating evidence suggests that dispersal is highly plastic and context-dependent with
29 significant consequences for landscape-level dynamics (Bonte & de la Pena 2009; Bonte *et al.* 2012; Cote
30 *et al.* 2011; Cote *et al.* 2013; Fronhofer *et al.* 2018; Fronhofer *et al.* 2017; Little *et al.* 2019; Terui *et al.*
31 2017). For example, Fronhofer *et al.* (2018) have shown that context-dependent dispersal in experimental
32 landscapes has stabilizing effects on local food webs coupled via dispersal. Therefore, there is an
33 increasing awareness that an in-depth understanding of dispersal is critical to biodiversity forecasting
34 during rapid environmental changes. Nevertheless, dispersal is inherently difficult to study in the wild
35 (Nathan 2001). There have been many attempts to track dispersal in natural systems (Clobert *et al.* 2012;
36 Comte & Olden 2018; Nathan *et al.* 2008), but linking dispersal processes with specific ecological factors
37 has been challenged by the incomplete nature of field observations. As such, a detailed analysis of
38 dispersal is, to some extent, biased towards small-scale controlled experiments, limiting our ability to
39 infer spatial dynamics at large spatial scales.

40 One conventional method to measure animal dispersal in the wild is a mark-recapture technique.
41 Although mark-recapture studies can provide valuable insights into how individuals move across space,
42 there are some serious problems when applying this method in nature. First, it is virtually impossible to
43 survey all possible range of dispersal in a landscape (Fujiwara *et al.* 2006; Gowan & Fausch 1996;
44 Schwalb *et al.* 2010; Terui *et al.* 2014a). Consequently, a substantial portion of individuals can leave

45 behind the study area, causing serious underestimation of dispersal parameters. Second, even when
46 marked individuals remained in the study area, imperfect detection of marked individuals may pose a
47 challenge to infer dispersal processes (Pepino *et al.* 2012; Rodriguez 2002). To date, several statistical
48 models have been proposed to overcome these difficulties (Fujiwara *et al.* 2006; Pepino *et al.* 2012;
49 Rodriguez 2002). For example, Rodriguez (2002) developed a general class of dispersal models that
50 describe how marked individuals are recaptured through dispersal and sampling processes. However,
51 these models are implicit about unrecaptured individuals and/or have limited extendibility to more
52 complex models that capture plastic and context-dependent dispersal. Hence, there is a need to develop a
53 new class of statistical models that have a greater extension capacity.

54 Bayesian inference provides a flexible statistical framework that may open the opportunity to
55 overcome challenges in utilizing mark-recapture data (Kéry & Schaub 2012; Terui *et al.* 2017). Here, I
56 introduce a novel Bayesian model that integrates dispersal and observation processes into a single coupled
57 model. The dispersal-observation coupled model, DOCM, can extract information from both recaptured
58 and unrecaptured individuals. Consequently, the model can provide less biased estimates of ecological
59 parameters. In this study, I demonstrate that the usefulness of DOCM using simulated test datasets
60 produced under various sampling designs and discuss its extension capacity to more realistic models.

61

62 Model

63 I consider a situation in which a virtual ecologist conducts a mark-recapture study in a one-dimensional
64 space (e.g., a stream). They choose a section with length L for the mark-recapture study (i.e., the
65 observation section) and divide it into subsections with length l . The number of subsections is thus $L l^{-1}$.
66 In each subsection, virtual ecologists perform an initial capture survey and assign a subsection ID to each
67 individual to locate them. After marking individuals uniquely, captured individuals are released into the
68 center of the subsection where they were caught. Then, released individuals disperse freely for a certain
69 period and a recapture survey occurs in the observation section. Since the observation section is a finite
70 domain, individuals can leave this area. Also, only survived individuals may be recaptured with some
71 probability even when marked individuals stay in the observation section. Thus, to be recaptured,
72 individuals must (1) stay in the observation section, (2) survive until being recaptured, and (3) be detected
73 if they survive and remain in the observation section. To represent this data-producing process, I propose
74 the following modeling framework that integrates dispersal and observation processes (Figure 1).

75 *Dispersal model.* I first model the dispersal process. Let μ_i and x_i be locations at initial capture
76 and recapture sessions, respectively, for individual i . The variables μ_i and x_i may be expressed as the
77 distance from the center of the capture/recaptured subsection to either end of the observation section (e.g.,
78 the downstream end of the study section in streams). I assume the location variable at recapture x_i to
79 follow a Laplace distribution, a dispersal kernel commonly used in the dispersal literature (Nathan *et al.*
80 2012; Rodriguez 2002):

81

$$82 f_l(x_i, \mu_i, \delta) = \frac{1}{2\delta} \exp\left(-\frac{|x_i - \mu_i|}{\delta}\right) \quad (1)$$

83

84 The parameter δ is the average dispersal distance. Equation 1 illustrates that the recapture location x_i is
85 conditional on the release location μ_i and the dispersal parameter δ (Figure 1).

86 *Observation model.* After dispersal, marked individuals are subject to an imperfect observation
87 process. Let y_i be the variable representing a recapture history for individual i ($y_i = 1$ if recaptured;
88 otherwise 0). The response variable y_i can be modeled as a realization of a Bernoulli distribution:

89

90 $y_i|\psi_i s \xi \sim Bernoulli(\psi_i s \xi)$ (2)

91

92 where ψ_i is the probability that individual i moves to the subsection of recapture (recaptured individuals)
93 or stays in the observation section (unrecaptured individuals), s is the survival probability between the
94 time points of release and recapture, and ξ is the detection probability during a recapture survey. The
95 parameters s and ξ can be isolated if an independent dataset to estimate detection probability, e.g.,
96 multiple-pass removal data, is available (Dorazio *et al.* 2005). Otherwise, the two parameters need to be
97 condensed into recapture probability ϕ ($= s \xi$) such that:

98

99 $y_i|\psi_i \phi \sim Bernoulli(\psi_i \phi)$ (3)

100

101 Here, I couple the observation and dispersal models by describing ψ_i as a function of the
102 dispersal parameter δ and release location μ_i . Specifically, ψ_i is denoted as:

103

104
$$\psi_i = \begin{cases} \int_{x_i - \frac{l}{2}}^{x_i + \frac{l}{2}} f_l(x_i, \mu_i, \delta) dx_i & \text{for recaptured individuals} \\ \int_0^L f_l(x_i, \mu_i, \delta) dx_i & \text{for unrecaptured individuals} \end{cases}$$
 (4)

105

106 Recaptured individuals are known to be present at the subsection of recapture, so the range of integration
107 is given as $x_i - \frac{l}{2}$ to $x_i + \frac{l}{2}$ in equation 4 (i.e., from one end to another end of the subsection). This
108 expression gives the probability of movement from the release location μ_i to the subsection of recapture
109 given the dispersal parameter δ . For unrecaptured individuals, equation 4 accounts for two important
110 facts: (1) a greater value of the dispersal parameter decreases the probability of remaining in the
111 observation section (ψ_i) and (2) the release location μ_i influences ψ_i (i.e., individuals released near the
112 edge of the observation section are more likely to emigrate; Figure 1b). Key parameters in the DOCM
113 were summarized in Table 1.

114

115 *Evaluation of model performance.* To evaluate the performance of the DOCM, I generated test datasets
116 under different sampling designs. Specifically, I focused on the following design factors that are related to
117 sampling efforts in the field: (1) the number of individuals marked and released N (100, 500, and 1000
118 individuals), (2) the length of the observation section L (500 and 1000 m) and (3) the length of an
119 individual subsection or resolution l (20 and 50 m) (Figure 2). In addition, I considered variation in the
120 recapture probability ϕ (0.25, 0.50, and 0.75). I considered all possible combinations of N , L , l , and ϕ (36
121 combinations) when generating test datasets.

122 Under each sampling design, I produced 100 test datasets with different values of δ , which was
123 drawn from a uniform distribution (range: 10 – 300 m). Each independent dataset was generated as
124 follows. First, N individuals were assigned randomly to $\frac{L}{l}$ subsections (Figure 3a). These “marked”
125 individuals were released at the center of the captured subsection, which was recorded as release location
126 μ_i . Second, released individuals relocate themselves along a one-dimensional space according to a known
127 dispersal kernel as $x_{i,true}|\mu_i, \delta \sim Laplace(\mu_i, \delta)$ (Figure 3b). Individuals were considered to remain in
128 the observation section if true recapture location $x_{i,true}$ was within a range of 0 – L m. Then, remained

129 individuals were recaptured with recapture probability ϕ (Figure 3c). When recaptured, the true recapture
130 location $x_{i,true}$ was rounded to a location value at the center of the recapture subsection x_i to mimic real
131 field data (Figure 3c). For unrecaptured individuals, x_i was recorded as “NA”.

132 I estimated average dispersal distance δ and recapture probability ϕ using the DOCM and a
133 simple dispersal model. The simple dispersal model is a “control” that does not model the observation
134 process and the average dispersal distance was estimated as $x_i|\mu_i, \delta \sim Laplace(\mu_i, \delta)$. The estimates of
135 average dispersal distances were compared between the models. Meanwhile, the estimated recapture
136 probability ϕ was compared with the proportion of individuals recaptured ($\frac{n}{N}$, where n is the number of
137 recaptured individuals) in the test dataset used to estimate ϕ because the simple dispersal model does not
138 estimate ϕ . Finally, I assessed the accuracy (i.e., the closeness of the median estimate to the true
139 parameter) and precision (i.e., the 95% credible interval [CI]) of the estimated parameters.

140 The Bayesian models were fitted to the test datasets to estimate δ and ϕ . Vague priors were
141 assigned to the parameters: a half-Cauchy distribution for δ (scale = 500) and a uniform distribution for ϕ
142 (range: 0 – 1). Three Markov chain Monte Carlo (MCMC) chains were run with 4500 iterations, 1500
143 burn-ins, and 3 thin numbers, resulting in a total of 1500 MCMC samples. Convergence was assessed by
144 whether the R-hat indicator of each parameter had reached a value near 1. All statistical analysis was
145 conducted using R 3.5.1 (RCoreTeam 2019) and JAGS 4.3.0 (Plummer 2003). A sample of JAGS scripts
146 for the DOCM was provided in Box 1. R and JAGS scripts used in simulations will be made available at
147 Github upon publication.

148

149 **Results and discussion**

150 *Model performance.* The DOCM performed well under various sampling designs. Figure 4 shows the
151 relationship between the true and estimated values of δ (denoted as δ_{true} and δ_{est} , respectively) when the
152 recapture probability ϕ was 0.50. The parameter estimates from the DOCM were always closer to the true
153 values (compare red and black lines in Figure 4) compared with those derived from the simple dispersal
154 model without the observation process. The degree of improvement was significant. While 95% CIs of
155 the simple dispersal model tended not to include δ_{true} , the DOCM was more likely to encompass the true
156 values especially when the observation length was long enough ($L = 1000$ m). Similarly, the DOCM
157 provided less biased estimates of recapture probability ϕ , a composite of survival and detection
158 probabilities (Figure 5). The estimated ϕ was higher than the proportion of individuals recaptured in the
159 test dataset ($\frac{n}{N}$, where n is the number of recaptured individuals) because it was corrected for permanent
160 emigration. However, as the δ_{true} increases, the DOCM became underestimating the parameters, though
161 the degree of bias is better than the simple dispersal model. This pattern was apparent when the
162 observation section was short relative to δ_{true} and is caused by the substantial number of individuals
163 leaving behind the observation section. For each of the parameters, these results were qualitatively similar
164 irrespective of ϕ_{true} , although higher values of ϕ_{true} led to the narrower range of 95% CIs for δ_{est} as
165 more individuals were recaptured. Detailed results with different values of ϕ_{true} were provided in
166 Figures S1 – S4.

167 The number of individuals marked (N), observation section length (L) and spatial resolution (l)
168 had distinct effects on δ_{est} and ϕ_{est} . The number of individuals marked had a clear influence on the
169 precision of the parameter estimates. The 95% CIs of δ_{est} and ϕ_{est} (error bars in Figures 4 and 5) became
170 narrower clearly when N increased from 100 to 500 individuals. A further increase in N , however, did not
171 improve the precision of the parameter estimates. Increasing N did not contribute to improving the

172 accuracy of the parameter estimates (i.e., the closeness to δ_{true} and ϕ_{true}). In contrast, the length of the
173 observation section L was more influential on the accuracy of δ_{est} while having little influence on the
174 precision of the parameter estimates (Figures 4 and 5). Increased L improved the accuracy of δ_{est} because
175 long-distance dispersers were more likely to be recaptured. Neither accuracy nor precision was improved
176 when the spatial resolution of sampling (smaller l) increased.
177

178 *Usefulness and limitations.* The DOCM worked well under various sampling designs, proving its
179 usefulness to infer dispersal processes in the wild. The DOCM can extract information from both
180 recaptured and unrecaptured individuals, thereby improving the accuracy of parameter estimates. The
181 DOCM, therefore, represents a promising tool to study dispersal processes. To apply the DOCM, users
182 must obtain the following data: (1) individuals must be marked uniquely or by release subsection; (2)
183 release location (μ_i); (3) recapture location (x_i); (3) spatial resolution of subsection length (l); (4)
184 observation section length (L). These are a common dataset obtained through a mark-recapture study, so
185 no additional work may be required to use the DOCM. Furthermore, if users have an independent
186 estimate of detection probability ξ through multiple-pass removal (Dorazio *et al.* 2005) or other methods,
187 it is also possible to estimate the true survival rate s that is corrected for permanent emigration (Terui *et*
188 *al.* 2017). However, there are caveats when interpreting the results. As stated above, the estimated
189 dispersal parameter δ_{est} and recapture probability ϕ_{est} can be biased when the average dispersal distance
190 (δ_{true}) exceeds ca. $\frac{L}{5}$. This happened because a significant portion of individuals may have left the
191 observation section. Practically, the estimated dispersal parameter δ_{est} may be used to determine whether
192 the average dispersal distance exceeds the threshold. In cases where $\delta_{est} > \frac{L}{5}$, users shall acknowledge the
193 potential bias in parameter estimates.

194 It is important to emphasize that different design factors (L, N, l) had different effects on the
195 parameter estimates, corroborating the previous findings by Pépino *et al.* (2016). The results indicate that
196 increasing the length of the observation section is most effective to increase the estimation accuracy of
197 model parameters (the closeness to the true value). This is reasonable because increasing the length of the
198 observation section is the only way to catch long-distance dispersers. In contrast, increasing the number
199 of individuals marked is more important to improve the precision of the dispersal parameters (i.e., the
200 range of 95% CI). Therefore, I recommend users paying close attention to the length of the observation
201 section L and the number of individuals marked N when designing a mark-recapture study. Spatial
202 resolution l had minimal influence on the accuracy and precision of parameter estimates, so this design
203 component may be determined based on the biology of a study species.
204

205 *Model extension.* The DOCM can be extended in two distinct ways. First, the dispersal model can capture
206 the further complexity of the dispersal process. A growing body of evidence suggests that populations are
207 composed of “resident” and “mobile” individuals with different behavioral and/or phenotypic
208 characteristics (Clobert *et al.* 2012; Clobert *et al.* 2009; Cote *et al.* 2008; Cote *et al.* 2011; Cote *et al.*
209 2013; Terui *et al.* 2017). Such a linkage between dispersal and individual-level traits can be modeled
210 using the following expression:
211

$$212 x_i | \mu_i, \delta_i \sim Laplace(\mu_i, \delta_i) \quad (5a)$$

$$213 \log(\delta_i) = \alpha + \beta z_i \quad (5b)$$

215 where α is the intercept, β the regression coefficient and z_i the linear predictor representing an individual
216 trait. Expressed differently, equation 5 can be written as:

217

218
$$f_l(x_i, \mu_i, \alpha, \beta, z_i) = \frac{1}{2 \exp(\alpha + \beta z_i)} \exp\left(-\frac{|x_i - \mu_i|}{\exp(\alpha + \beta z_i)}\right) \quad (6)$$

219

220 This model connects the trait variable z_i with the dispersal parameter δ_i by estimating α and β . In this
221 model, individuals follow different dispersal kernels according to their ecological trait(s), such as body
222 size. If the variable z is a random variable that follows a normal distribution with a mean μ_z and standard
223 deviation σ_z , $g(z, \mu_z, \sigma_z)$, then the composite dispersal kernel $h(x_i, \mu_i, \alpha, \beta)$ is:

224

225
$$h(x_i, \mu_i, \alpha, \beta) = \int f_l(x_i, \mu_i, \alpha, \beta, z) g(z, \mu_z, \sigma_z) dz \quad (7)$$

226

227 If z is a binary variable drawn from a Bernoulli distribution with a success probability p , the composite
228 dispersal kernel is:

229

230
$$h(x_i, \mu_i, \alpha, \beta) = p \left[\frac{1}{2 \exp(\alpha + \beta)} \exp\left(-\frac{|x_i - \mu_i|}{\exp(\alpha + \beta)}\right) \right] + (1 - p) \left[\frac{1}{2 \exp(\alpha)} \exp\left(-\frac{|x_i - \mu_i|}{\exp(\alpha)}\right) \right] \quad (8)$$

231

232 Equations 7 and 8 can be interpreted as an extension of a mixture Laplace dispersal kernel, in which a
233 certain proportion of individuals are assigned randomly to a resident or mobile component in the model
234 (Rodriguez 2002). The difference with a mixture Laplace dispersal kernel is that the above equations are
235 explicit regarding “who is resident or mobile” as the expected dispersal distance for individual i (δ_i) is
236 related to ecological traits via the regression parameters. Terui *et al.* (2017) used this modeling
237 framework to assess the effects of parasite infection on the dispersal of a stream fish species. It is
238 important to note that there are many other dispersal kernels, such as a mixture of Gaussian dispersal
239 kernels (Comte & Olden 2018; Nathan *et al.* 2012; Skalski & Gilliam 2000). Users may choose
240 appropriate dispersal kernels given the ecology of a study species. I also point interested readers to
241 Nathan *et al.* (2012) for dispersal kernels in two dimensional systems as another extension of the dispersal
242 model.

243 Second, the observation model can also be extended to account for individual-level variability in
244 recapture probability ϕ . Survival and detection probabilities may vary among individuals and ignoring
245 this complexity could cause biased estimates of dispersal parameters. The simplest way to account for the
246 variability is to model ϕ_i as a random variable drawn from a Beta distribution:

247

248
$$\phi_i \sim Beta(\epsilon, \nu) \quad (9)$$

249

250 This allows the model to account for individual-level variation in recapture probability ϕ . If there are
251 hypothesized predictors that could influence the recapture probability (e.g., habitat structure), such effects
252 can be modeled as:

253

254
$$\phi_i = Beta(\epsilon_i, \nu_i) \quad (10a)$$

255
$$\epsilon_i = \pi \theta_i \quad (10b)$$

256
$$\nu_i = \pi(1 - \theta_i) \quad (10c)$$

257
$$\text{logit}(\theta_i) = \alpha_\theta + \beta_\theta z_i \quad (10d)$$

258

259 where θ_i is the expected recapture probability, π the dispersion parameter, α_θ the intercept and β_θ the
260 regression coefficient. Therefore, the DOCM can deal with the complexity of field data.

261

262 *Conclusion.* Dispersal is a fundamental process that drives the ecology and evolution of various
263 organisms (Clobert *et al.* 2012) and quantifying dispersal is a critical task to forecast spatial dynamics of
264 ecological systems (Hanski 1999; Hanski & Ovaskainen 2000; Terui *et al.* 2017). Although great strides
265 have been made in how to quantify dispersal in the wild (e.g., genotyping) (Comte & Olden 2018;
266 Morrissey & Ferguson 2011), direct measurements of dispersal still provide essential information for an
267 understanding of spatial processes (Comte & Olden 2018; Kadoya & Inoue 2015; Terui *et al.* 2017). The
268 Bayesian implementation of the DOCM provides extensive flexibility in the model formulation, offering
269 a generic framework to study dispersal in the wild. Accurate inference of dispersal processes with
270 sophisticated statistical models may enhance our ability to manage ecosystems in a changing world.

271

272 **Acknowledgments**

273 I would like to express my sincere appreciation for all the help and kindness I have received from
274 everyone who has supported my work.

275 **References**

276 Bonte D, de la Pena E (2009) Evolution of body condition - dependent dispersal in metapopulations.
277 *Journal of Evolutionary Biology* 22: 1242-1251.

278 Bonte D, Van Dyck H, Bullock JM, Coulon A, Delgado M, Gibbs M, Lehouck V, Matthysen E, Mustin
279 K, Saastamoinen M (2012) Costs of dispersal. *Biological Reviews* 87: 290-312.

280 Cloibert J, Baguette M, Benton TG, Bullock JM (2012) *Dispersal ecology and evolution*. Oxford
281 University Press, Oxford

282 Cloibert J, Galliard L, Cote J, Meylan S, Massot M (2009) Informed dispersal, heterogeneity in animal
283 dispersal syndromes and the dynamics of spatially structured populations. *Ecology Letters* 12:
284 197-209.

285 Comte L, Olden JD (2018) Fish dispersal in flowing waters: A synthesis of movement- and genetic-based
286 studies. *Fish and Fisheries* 19: 1063-1077.

287 Cote J, Dreiss A, Cloibert J (2008) Social personality trait and fitness. *Proceedings of the Royal Society
288 B-Biological Sciences* 275: 2851-2858.

289 Cote J, Fogarty S, Brodin T, Weinermith K, Sih A (2011) Personality-dependent dispersal in the invasive
290 mosquitofish: group composition matters. *Proceedings of the Royal Society B: Biological
291 Sciences* 278: 1670-1678.

292 Cote J, Fogarty S, Tymen B, Sih A, Brodin T (2013) Personality-dependent dispersal cancelled under
293 predation risk. *Proceedings of the Royal Society of London B: Biological Sciences* 280:
294 20132349.

295 Dorazio RM, Jelks HL, Jordan F (2005) Improving removal - based estimates of abundance by sampling
296 a population of spatially distinct subpopulations. *Biometrics* 61: 1093-1101.

297 Fronhofer EA, Legrand D, Altermatt F, Ansart A, Blanchet S, Bonte D, Chaine A, Dahirel M, De Laender
298 F, De Raedt J, di Gesu L, Jacob S, Kaltz O, Laurent E, Little CJ, Madec L, Manzi F, Masier S,
299 Pellerin F, Pennekamp F, Schickzelle N, Therry L, Vong A, Winandy L, Cote J (2018) Bottom-
300 up and top-down control of dispersal across major organismal groups. *Nature Ecology &
301 Evolution* 2: 1859-1863.

302 Fronhofer EA, Nitsche N, Altermatt F (2017) Information use shapes the dynamics of range expansions
303 into environmental gradients. *Global Ecology and Biogeography* 26: 400-411.

304 Fujiwara M, Anderson KE, Neubert MG, Caswell H (2006) On the Estimation of Dispersal Kernels from
305 Individual Mark-Recapture Data. *Environmental and Ecological Statistics* 13: 183-197.

306 Gowan C, Fausch KD (1996) Mobile brook trout in two high-elevation Colorado streams: re-evaluating
307 the concept of restricted movement. *Canadian Journal of Fisheries and Aquatic Sciences* 53:
308 1370-1381.

309 Hanski I (1999) *Metapopulation ecology*. Oxford University Press, Oxford

310 Hanski I, Ovaskainen O (2000) The metapopulation capacity of a fragmented landscape. *Nature* 404: 755-
311 758.

312 Kadoya T, Inoue T (2015) Spatio - temporal pattern of specific gravity of mangrove diaspore:
313 implications for upstream dispersal. *Ecography* 38: 472-479.

314 Kéry M, Schaub M (2012) *Bayesian population analysis using WinBUGS: a hierarchical perspective*.
315 Academic Press, Waltham, MA

316 Leibold MA, Holyoak M, Mouquet N, Amarasekare P, Chase JM, Hoopes MF, Holt RD, Shurin JB, Law
317 R, Tilman D, Loreau M, Gonzalez A (2004) The metacommunity concept: a framework for
318 multi-scale community ecology. *Ecology Letters* 7: 601-613.

319 Little CJ, Fronhofer EA, Altermatt F (2019) Dispersal syndromes can impact ecosystem functioning in
320 spatially structured freshwater populations. *Biology Letters* 15: 20180865.

321 Morrissey MB, Ferguson MM (2011) Individual variation in movement throughout the life cycle of a
322 stream-dwelling salmonid fish. *Molecular Ecology* 20: 235-248.

323 Nakano S, Miyasaka H, Kuhara N (1999) Terrestrial-aquatic linkages: Riparian arthropod inputs alter
324 trophic cascades in a stream food web. *Ecology* 80: 2435-2441.

325 Nakano S, Murakami M (2001) Reciprocal subsidies: dynamic interdependence between terrestrial and
326 aquatic food webs. *Proceedings of the National Academy of Sciences of the United States of
327 America* 98: 166-170.

328 Nathan R (2001) The challenges of studying dispersal. *Trends in Ecology & Evolution* 16: 481-483.

329 Nathan R, Getz WM, Revilla E, Holyoak M, Kadmon R, Saltz D, Smouse PE (2008) A movement
330 ecology paradigm for unifying organismal movement research. *Proceedings of the National
331 Academy of Sciences of the United States of America* 105: 19052-19059.

332 Nathan R, Klein E, Robledo-Arnuncio JJ, Revilla E (2012) Dispersal kernels: review. In: J Clobert, M
333 Baguette, TG Benton, JM Bullock (eds) *Dispersal Ecology and Evolution*. Oxford University
334 Press, Oxford, UK, pp. 187-210

335 Pepino M, Rodriguez MA, Magnan P (2012) Fish dispersal in fragmented landscapes: a modeling
336 framework for quantifying the permeability of structural barriers. *Ecological Applications* 22:
337 1435-1445.

338 Pépino M, Rodríguez MA, Magnan P (2016) Assessing the detectability of road crossing effects in
339 streams: mark-recapture sampling designs under complex fish movement behaviours. *Journal of
340 Applied Ecology* 53: 1831-1841.

341 Plummer M (2003) JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling
342 Proceedings of the 3rd international workshop on distributed statistical computing. Vienna,
343 Austria.

344 RCoreTeam (2019) R: A Language and Environment for Statistical Computing. [https://www.R-
345 project.org/](https://www.R-project.org/) 25 August, 2019

346 Rodriguez MA (2002) Restricted movement in stream fish: The paradigm is incomplete, not lost. *Ecology*
347 83: 1-13.

348 Schwalb AN, Garvie M, Ackerman JD (2010) Dispersion of freshwater mussel larvae in a lowland river.
349 *Limnology and Oceanography* 55: 628-638.

350 Skalski GT, Gilliam JF (2000) Modeling diffusive spread in a heterogeneous population: A movement
351 study with stream fish. *Ecology* 81: 1685-1700.

352 Spiller DA, Piovia-Scott J, Wright AN, Yang LH, Takimoto G, Schoener TW, Iwata T (2010) Marine
353 subsidies have multiple effects on coastal food webs. *Ecology* 91: 1424-1434.

354 Terui A, Ishiyama N, Urabe H, Ono S, Finlay JC, Nakamura F (2018a) Metapopulation stability in
355 branching river networks. *Proceedings of the National Academy of Sciences* 115: E5963-E5969.

356 Terui A, Miyazaki Y (2016) Three ecological factors influencing riverine fish diversity in the Shubuto
357 River system, Japan: habitat capacity, habitat heterogeneity and immigration. *Limnology* 17: 143-
358 149.

359 Terui A, Miyazaki Y, Yoshioka A, Kadoya T, Jopp F, Washitani I (2014a) Dispersal of larvae of
360 *Margaritifera laevis* by its host fish. *Freshwater Science* 33: 112-123.

361 Terui A, Miyazaki Y, Yoshioka A, Kaifu K, Matsuzaki SS, Washitani I (2014b) Asymmetric dispersal
362 structures a riverine metapopulation of the freshwater pearl mussel *Margaritifera laevis*. *Ecology*
363 and Evolution

364 Terui A, Negishi JN, Watanabe N, Nakamura F (2018b) Stream Resource Gradients Drive Consumption
365 Rates of Supplemental Prey in the Adjacent Riparian Zone. *Ecosystems* 21: 772-781.

366 Terui A, Ooue K, Urabe H, Nakamura F (2017) Parasite infection induces size-dependent host dispersal:
367 consequences for parasite persistence. *Proceedings of the Royal Society B: Biological Sciences*
368 284: 20171491.

369

370

371 **Box 1** Sample JAGS script for the dispersal-observation coupled model

```
372 model{  
373     # Priors  
374     theta ~ dscaled.gamma(500, 1)  
375     phi ~ dunif(0, 1)  
376  
377     # Observation model  
378     for (i in 1:Nsample){  
379         Y[i] ~ dbern(psi[i]*phi)  
380         psi[i] <- pdexp(UL[i], Mu[i], theta) - pdexp(DL[i], Mu[i], theta)  
381     }  
382  
383     # Dispersal model  
384     for(i in 1:Nsample){  
385         X[i] ~ ddexp(Mu[i], theta)  
386     }  
387     delta <- 1/theta  
388 }  
389  
390
```

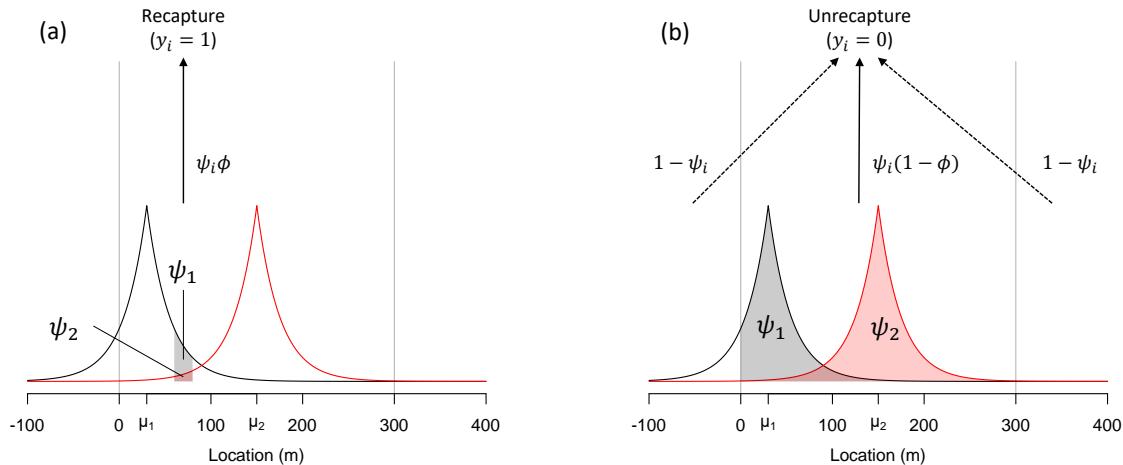
391 **Table 1** Key parameters used in the dispersal-observation coupled model (DOCM)

392

Parameter	Interpretation
δ	Average dispersal distance
μ	Release location
ψ	Probability of moving from the release location μ to the recapture subsection (recaptured individuals); Probability of remaining in the observation section (unrecaptured individuals)
ϕ	Recapture probability
s	True survival probability
ξ	Detection probability

393

394



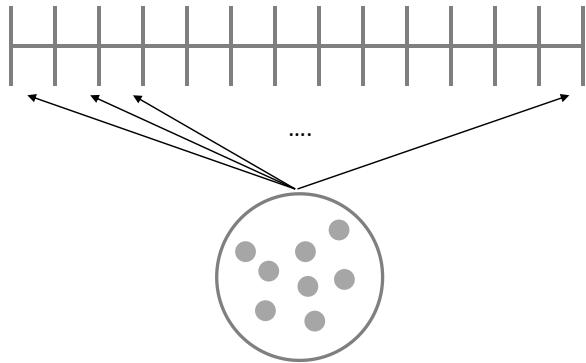
395
396
397 **Figure 1** Graphical representation of the dispersal-observation coupled model (DOCM). The black and
398 red lines are the examples of Laplace dispersal kernels for individual 1 and 2 released at different
399 locations (average dispersal distance $\delta = 25$ m for both kernels). Vertical gray lines indicate the
400 observation section (0 – 300 m for this example). Shaded areas denote ψ_i that represents the probability
401 that an individual moves from the release location μ_i to the recapture subsection for recaptured
402 individuals (a) or the probability that an individual stays in the observation section for unrecaptured
403 individuals (b). Individuals released at different locations (μ_1 and μ_2) have different values of ψ_i . After
404 the dispersal process, individuals are subject to incomplete recapture surveys, by which individuals may
405 be detected with the recapture probability ϕ if they remained in the observation section. Note that the
406 recapture probability ϕ is a composite of survival and detection probabilities.
407



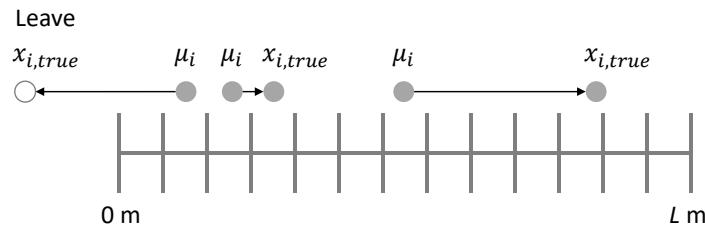
408
409
410
411

Figure 2 Schematic diagram of sampling designs. Three design factors were considered: (1) the number of individuals released N , (2) observation section length L , and (3) spatial resolution l .

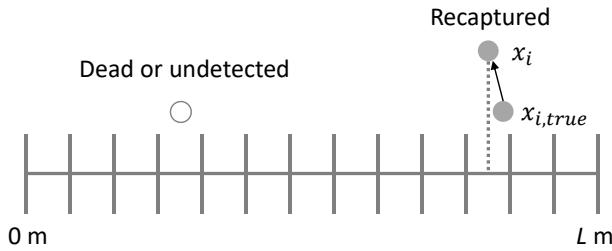
(a) Step1: Assign N individuals to subsections



(b) Step2: Dispersal process

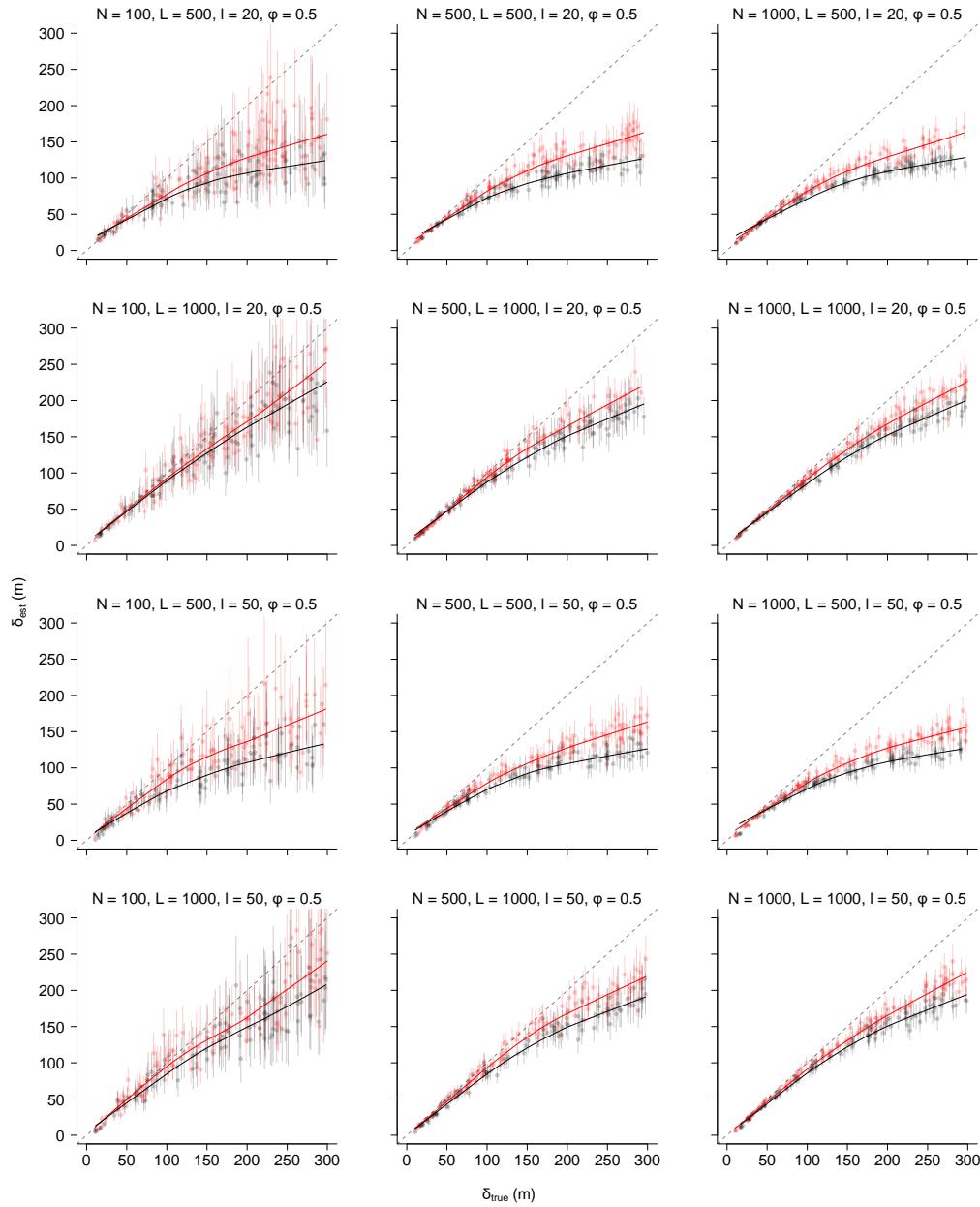


(c) Step3: Observation process



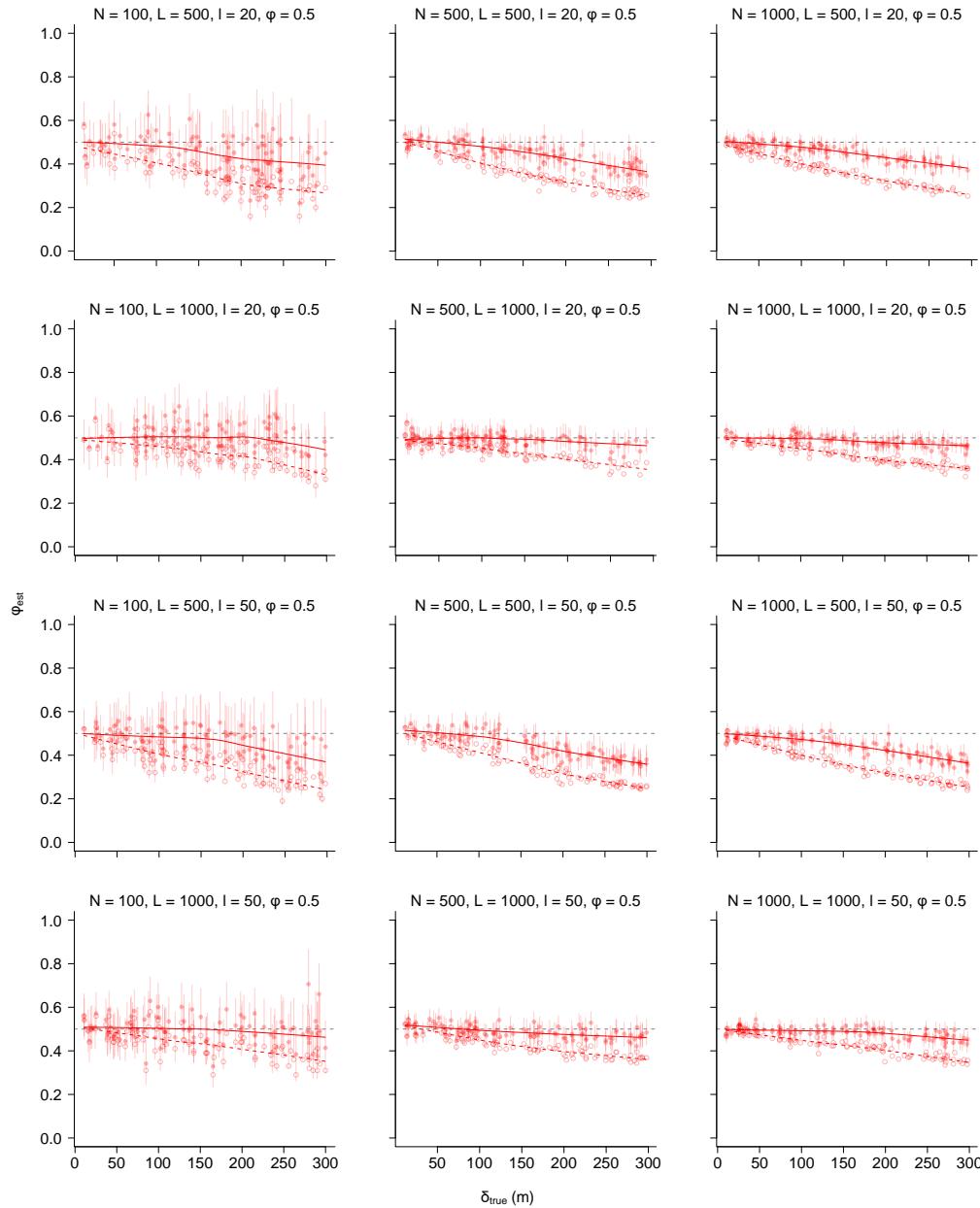
412
413

414 **Figure 3** Procedure used to generate test datasets. (a) In step 1, N individuals were randomly distributed
415 in the observation section, resembling a marking process in the field. (b) In step 2, marked individuals
416 move freely from the center of the released subsection (μ_i) according to a known dispersal kernel (in this
417 case, a Laplace distribution with a mean dispersal distance δ). Since the observation section is a finite
418 domain, individuals can leave the observation section and may never be recaptured (open circle in the
419 figure). Individuals were considered to remain in the observation section when true location after
420 dispersal $x_{i,true}$ was within a range of $0 - L$ m. (c) In step 3, individuals that remained in the observation
421 section were subject to an incomplete recapture survey. Remained individuals were recaptured with
422 recapture probability ϕ , and recapture location x_i was recorded as the center of the recapture subsection
423 (the vertical dotted line in the figure). A certain proportion of remained individuals ($1 - \phi$) may not be
424 recaptured because they may have died or undetected (open circle in the figure).



425
426
427
428
429
430
431
432

Figure 4 The relationship between true (y-axis) and estimated (x-axis) average dispersal distances when the true recapture probability $\phi_{true} = 0.5$. Red points are the median estimates from the DOCM, while grey points showing the median estimates from the simple dispersal model. Error bars are 95% credible intervals. Gray broken lines denote a 1:1 relationship. Different panels are estimates under different sampling designs, and the values of sampling design factors are shown on the top of each panel. Red and gray solid lines are smooths for the DOCM and the simple dispersal model, respectively.



433
 434
 435
 436
 437
 438
 439
 440
 441

Figure 5 The relationship between the estimated recapture probability ϕ_{est} and true average dispersal distance δ_{true} when the true recapture probability $\phi_{true} = 0.5$. Red filled points are the median estimates from the DOCM while red open points denote the proportion of individuals recaptured for each test dataset. Error bars are 95% credible intervals. Grey broken lines denote the true recapture probability ϕ_{true} . Different panels are estimates under different sampling designs, and the values of sampling design factors are shown on the top of each panel. Solid and broken red lines are smooths for the DOCM estimates and the proportion of individuals recaptured, respectively.

442 **Supporting Information for:**

443

444 **Title:** A Bayesian approach to inferring dispersal kernels with incomplete mark-recapture data

445 **Author:** Akira Terui*

446 Department of Biology, the University of North Carolina at Greensboro, Greensboro, NC 27412 USA

447 *hanabi0111@gmail.com

448

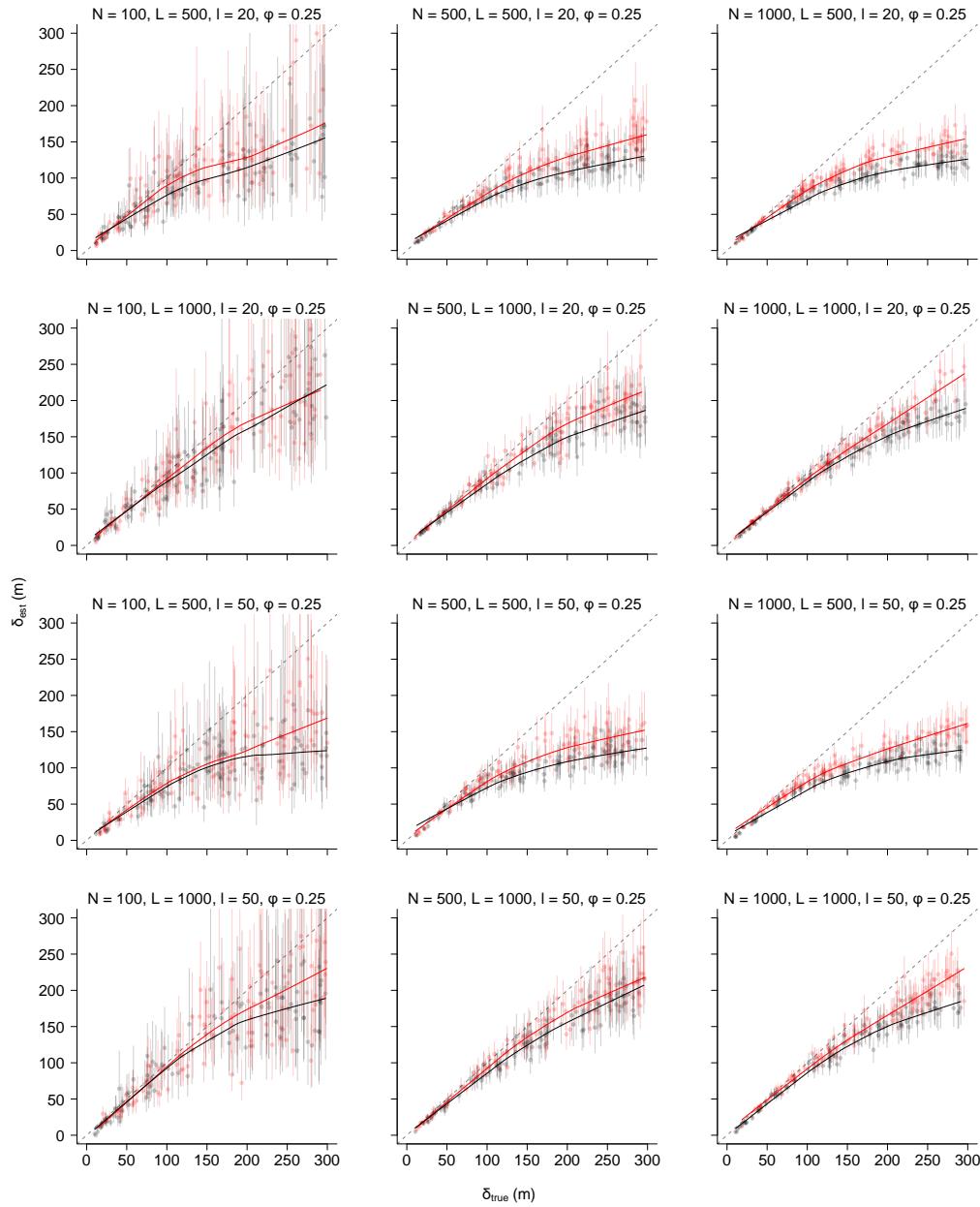
449

450 **This PDF file includes:**

451 Figures S1 – S4

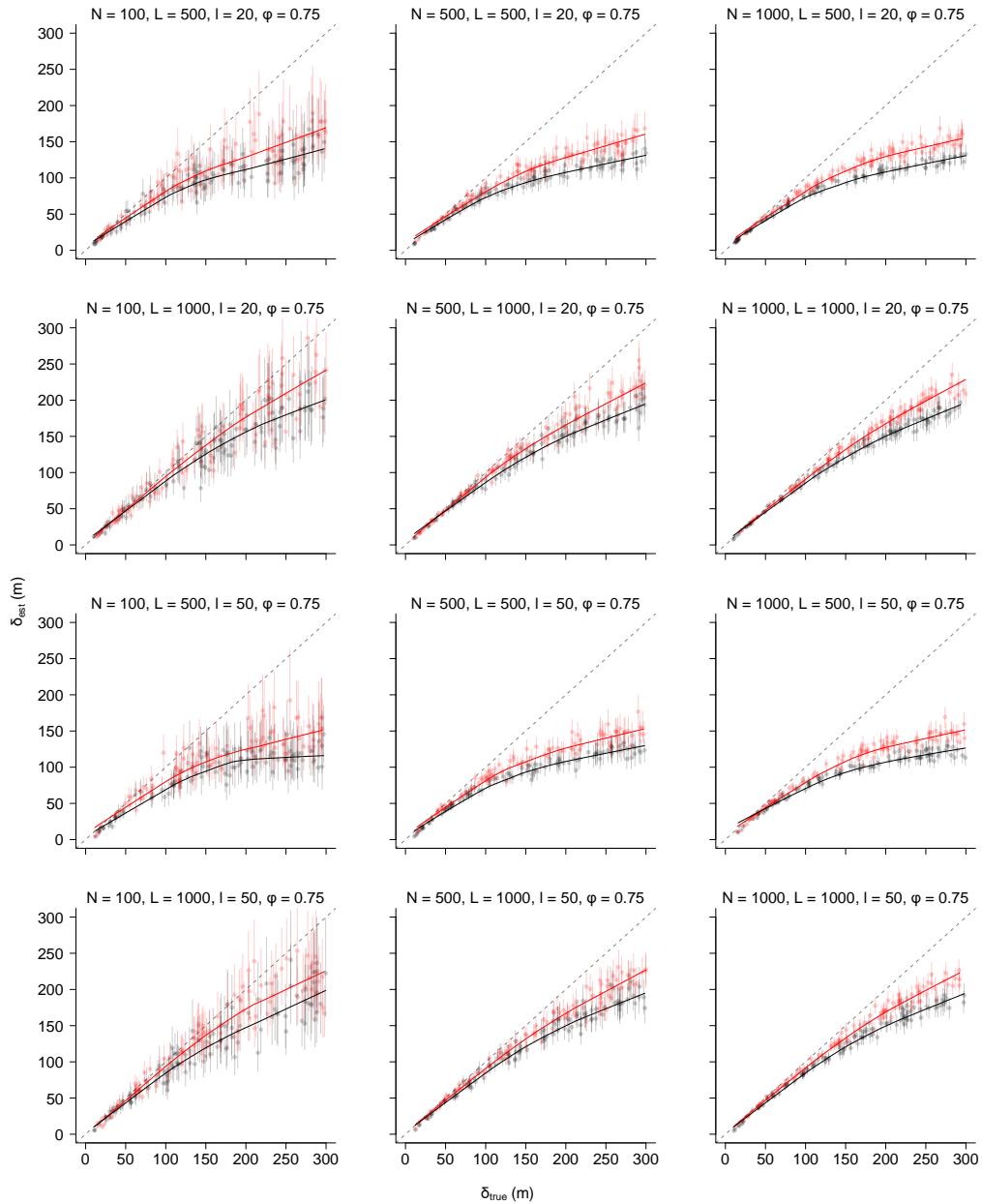
452

453



454
455
456
457
458
459
460
461
462

Figure S1 The relationship between true (δ_{true} ; y-axis) and estimated (δ_{est} ; x-axis) average dispersal distances when the true recapture probability $\phi_{true} = 0.25$. Red points are the median estimates from the DOCM while grey points showing the median estimates from the simple dispersal model. Error bars are 95% credible intervals. Gray broken lines denote a 1:1 relationship. Different panels are estimates under different sampling designs, and the values of sampling design factors are shown on the top of each panel. Red and gray solid lines are smooths for the DOCM and the simple dispersal model, respectively.

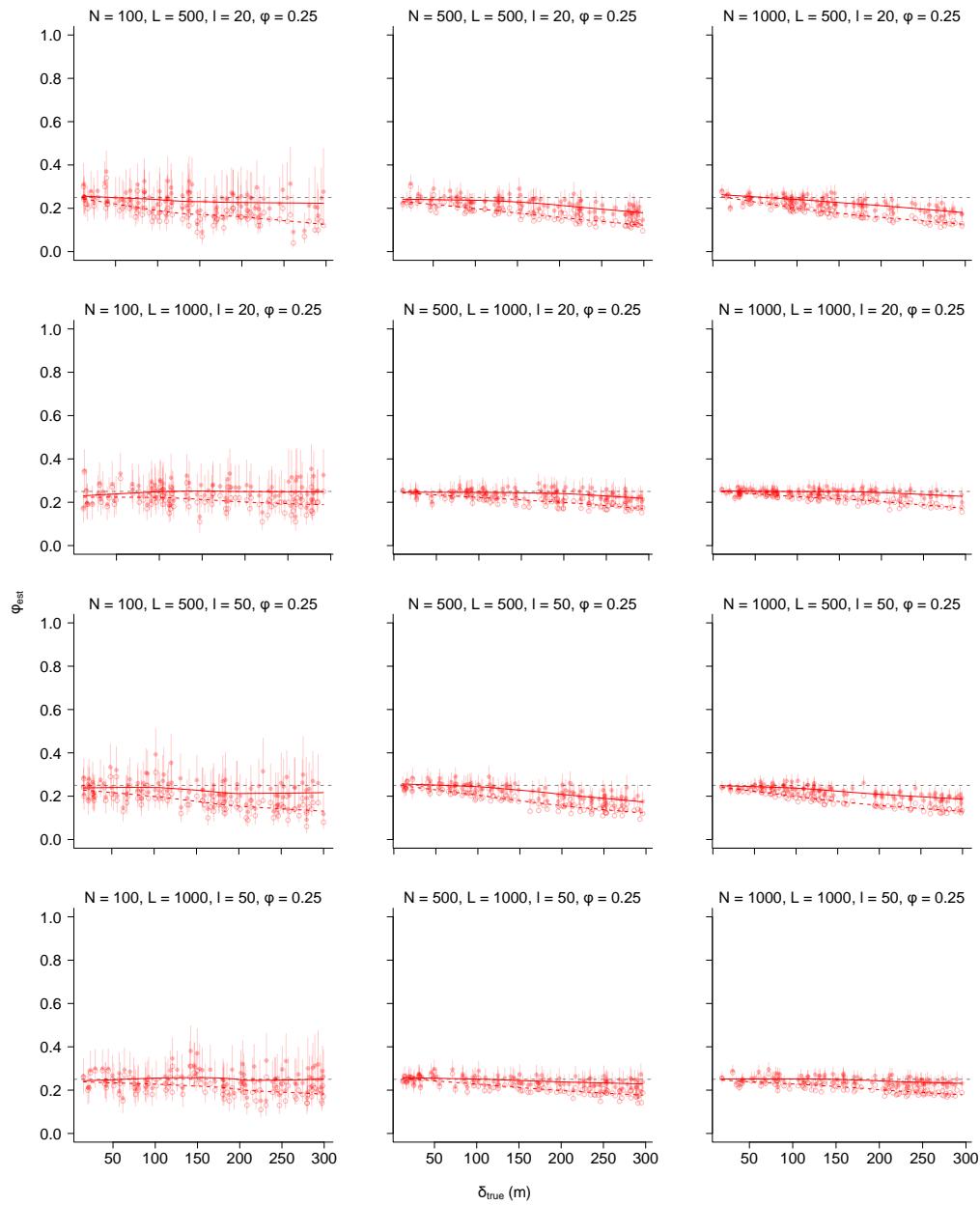


463

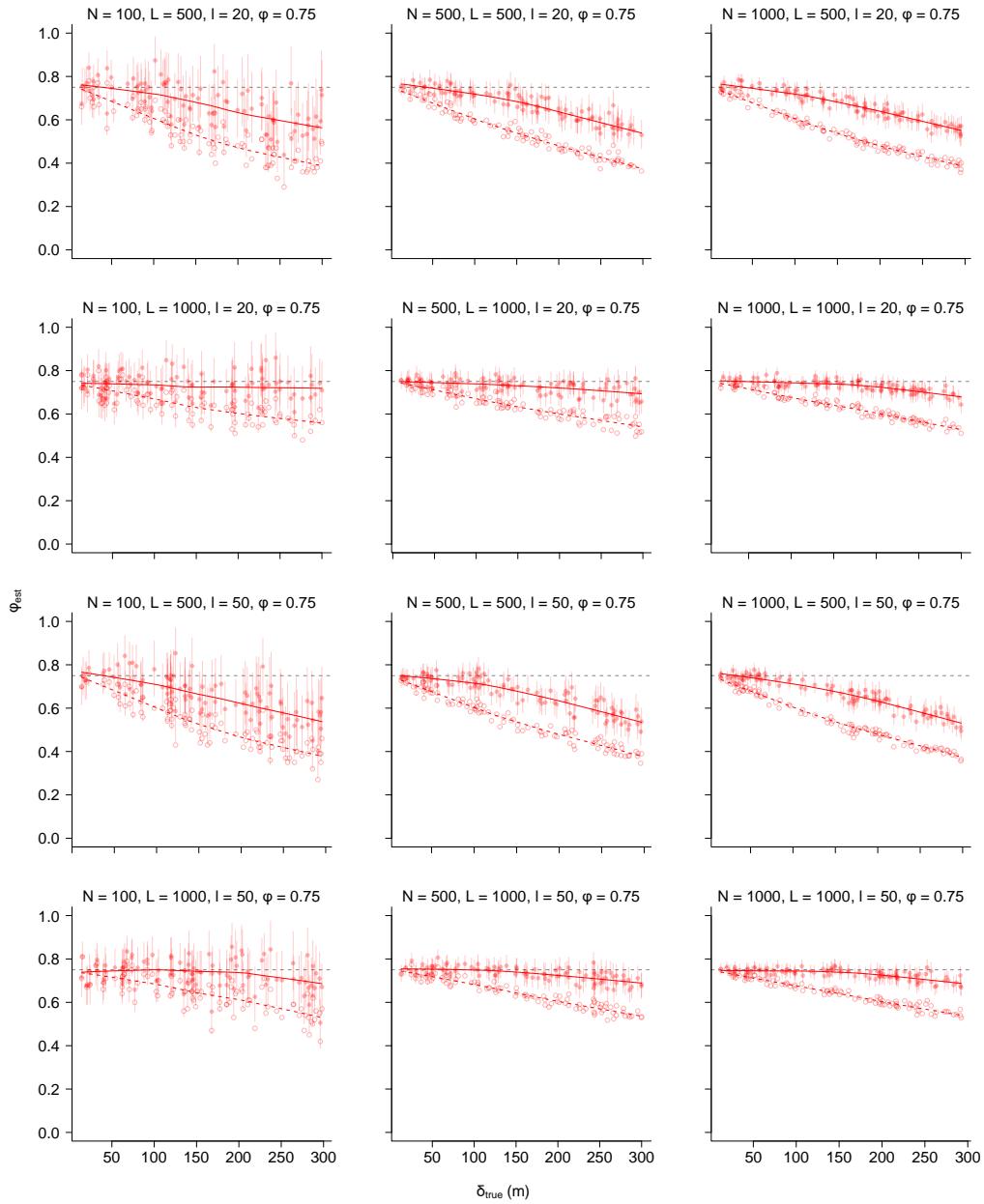
464

465 **Figure S2** The relationship between true (y-axis) and estimated (x-axis) average dispersal distances when
466 the true recapture probability $\phi_{true} = 0.75$. See Figure S1 for captions.

467



468
469 **Figure S3** The relationship between the estimated recapture probability ϕ_{est} and true average dispersal
470 distance δ_{true} when the true recapture probability $\phi_{true} = 0.25$. Red filled points are the median
471 estimates from the DOCM while red open points denote the proportion of individuals recaptured for
472 each test dataset. Error bars are 95% credible intervals. Grey broken lines denote the true recapture
473 probability ϕ_{true} . Different panels are estimates under different sampling designs, and the values of
474 sampling design factors are shown on the top of each panel. Solid and broken red lines are smooths for
475 the DOCM estimates and the proportion of individuals recaptured, respectively.
476
477



478
479
480

Figure S4 The relationship between the estimated recapture probability ϕ_{est} and true average dispersal distance δ_{true} when the true recapture probability $\phi_{true} = 0.75$. See Figure S3 for captions.