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Abstract

Dispersal is a fundamental ecological process that links populations, communities and food webs in
space. However, dispersal is tremendously difficult to study in the wild because we must track individuals
dispersing in a landscape. One conventional method to measure animal dispersal is a mark-recapture
technique. Despite its usefulness, this approach has been recurrently criticized because it is virtually
impossible to survey all possible ranges of dispersal in nature. Here, | propose a novel Bayesian model to
better estimate dispersal parameters from incomplete mark-recapture data. The dispersal-observation
coupled model, DOCM, can extract information from both recaptured and unrecaptured individuals,
providing less biased estimates of dispersal parameters. Simulations demonstrated the usefulness of
DOCM under various sampling designs. I also suggest extensions of the DOCM to accommodate more
realistic scenarios. Application of the DOCM may, therefore, provide valuable insights into how
individuals disperse in the wild.

Keywords: movement, statistical inference, spatial ecology, Markov chain Monte Carlo, simulation

Introduction

Ecological entities rarely exist independently. Dispersal — any movement of organisms across space —
links populations (Hanski 1999; Hanski & Ovaskainen 2000; Terui et al. 2018a; Terui et al. 2014b),
communities (Leibold et al. 2004; Terui & Miyazaki 2016) and food webs (Nakano et al. 1999; Nakano
& Murakami 2001; Spiller et al. 2010; Terui et al. 2018b) that are otherwise isolated from one another.
Ecologists have been intrigued by the spatial process due to its implications for critical applied issues,
such as the metapopulation persistence of endangered species in fragmented landscapes (Hanski 1999).
More recently, accumulating evidence suggests that dispersal is highly plastic and context-dependent with
significant consequences for landscape-level dynamics (Bonte & de la Pena 2009; Bonte et al. 2012; Cote
et al. 2011; Cote et al. 2013; Fronhofer et al. 2018; Fronhofer et al. 2017; Little et al. 2019; Terui et al.
2017). For example, Fronhofer et al. (2018) have shown that context-dependent dispersal in experimental
landscapes has stabilizing effects on local food webs coupled via dispersal. Therefore, there is an
increasing awareness that an in-depth understanding of dispersal is critical to biodiversity forecasting
during rapid environmental changes. Nevertheless, dispersal is inherently difficult to study in the wild
(Nathan 2001). There have been many attempts to track dispersal in natural systems (Clobert et al. 2012;
Comte & Olden 2018; Nathan et al. 2008), but linking dispersal processes with specific ecological factors
has been challenged by the incomplete nature of field observations. As such, a detailed analysis of
dispersal is, to some extent, biased towards small-scale controlled experiments, limiting our ability to
infer spatial dynamics at large spatial scales.

One conventional method to measure animal dispersal in the wild is a mark-recapture technique.
Although mark-recapture studies can provide valuable insights into how individuals move across space,
there are some serious problems when applying this method in nature. First, it is virtually impossible to
survey all possible range of dispersal in a landscape (Fujiwara et al. 2006; Gowan & Fausch 1996;
Schwalb et al. 2010; Terui et al. 2014a). Consequently, a substantial portion of individuals can leave
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behind the study area, causing serious underestimation of dispersal parameters. Second, even when
marked individuals remained in the study area, imperfect detection of marked individuals may pose a
challenge to infer dispersal processes (Pepino et al. 2012; Rodriguez 2002). To date, several statistical
models have been proposed to overcome these difficulties (Fujiwara et al. 2006; Pepino et al. 2012;
Rodriguez 2002). For example, Rodriguez (2002) developed a general class of dispersal models that
describe how marked individuals are recaptured through dispersal and sampling processes. However,
these models are implicit about unrecaptured individuals and/or have limited extendibility to more
complex models that capture plastic and context-dependent dispersal. Hence, there is a need to develop a
new class of statistical models that have a greater extension capacity.

Bayesian inference provides a flexible statistical framework that may open the opportunity to
overcome challenges in utilizing mark-recapture data (Kéry & Schaub 2012; Terui et al. 2017). Here, |
introduce a novel Bayesian model that integrates dispersal and observation processes into a single coupled
model. The dispersal-observation coupled model, DOCM, can extract information from both recaptured
and unrecaptured individuals. Consequently, the model can provide less biased estimates of ecological
parameters. In this study, | demonstrate that the usefulness of DOCM using simulated test datasets
produced under various sampling designs and discuss its extension capacity to more realistic models.

Model
I consider a situation in which a virtual ecologist conducts a mark-recapture study in a one-dimensional
space (e.g., a stream). They choose a section with length L for the mark-recapture study (i.e., the
observation section) and divide it into subsections with length I. The number of subsections is thus L | .
In each subsection, virtual ecologists perform an initial capture survey and assign a subsection ID to each
individual to locate them. After marking individuals uniquely, captured individuals are released into the
center of the subsection where they were caught. Then, released individuals disperse freely for a certain
period and a recapture survey occurs in the observation section. Since the observation section is a finite
domain, individuals can leave this area. Also, only survived individuals may be recaptured with some
probability even when marked individuals stay in the observation section. Thus, to be recaptured,
individuals must (1) stay in the observation section, (2) survive until being recaptured, and (3) be detected
if they survive and remain in the observation section. To represent this data-producing process, | propose
the following modeling framework that integrates dispersal and observation processes (Figure 1).
Dispersal model. | first model the dispersal process. Let u; and x; be locations at initial capture
and recapture sessions, respectively, for individual i. The variables y; and x; may be expressed as the
distance from the center of the capture/recaptured subsection to either end of the observation section (e.g.,
the downstream end of the study section in streams). | assume the location variable at recapture x; to
follow a Laplace distribution, a dispersal kernel commonly used in the dispersal literature (Nathan et al.
2012; Rodriguez 2002):

fileo 13, 6) = —exp (- A (1)

The parameter § is the average dispersal distance. Equation 1 illustrates that the recapture location x; is
conditional on the release location y; and the dispersal parameter § (Figure 1).

Observation model. After dispersal, marked individuals are subject to an imperfect observation
process. Let y; be the variable representing a recapture history for individual i (y; = 1 if recaptured,;
otherwise Q). The response variable y; can be modeled as a realization of a Bernoulli distribution:
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89

90  y;|P;s& ~ Bernoulli(i;s¢) 2

91

92  where 1); is the probability that individual i moves to the subsection of recapture (recaptured individuals)
93  or stays in the observation section (unrecaptured individuals), s is the survival probability between the
94  time points of release and recapture, and ¢ is the detection probability during a recapture survey. The

95  parameters s and & can be isolated if an independent dataset to estimate detection probability, e.g.,

96  multiple-pass removal data, is available (Dorazio et al. 2005). Otherwise, the two parameters need to be
97  condensed into recapture probability ¢ (= s¢) such that:

98

9 yilyi¢p ~ Bernoulli(y;¢) 3
100
101 Here, | couple the observation and dispersal models by describing ; as a function of the
102  dispersal parameter § and release location y;. Specifically, y; is denoted as:
103

l
fxl+12 fi(xi, pi, 8) dx; for recaptured individuals
104 ;= { %3 4)

fOL f1(xi, 1i, 6) dx; for unrecaptured individuals
105
106  Recaptured individuals are known to be present at the subsection of recapture, so the range of integration

107  isgivenas x; — é to x; + é in equation 4 (i.e., from one end to another end of the subsection). This

108  expression gives the probability of movement from the release location y; to the subsection of recapture
109  given the dispersal parameter §. For unrecaptured individuals, equation 4 accounts for two important

110  facts: (1) a greater value of the dispersal parameter decreases the probability of remaining in the

111 observation section (y;) and (2) the release location y; influences ; (i.e., individuals released near the
112 edge of the observation section are more likely to emigrate; Figure 1b). Key parameters in the DOCM
113 were summarized in Table 1.

114

115  Evaluation of model performance. To evaluate the performance of the DOCM, | generated test datasets
116  under different sampling designs. Specifically, | focused on the following design factors that are related to
117  sampling efforts in the field: (1) the number of individuals marked and released N (100, 500, and 1000
118  individuals), (2) the length of the observation section L (500 and 1000 m) and (3) the length of an

119  individual subsection or resolution [ (20 and 50 m) (Figure 2). In addition, | considered variation in the
120  recapture probability ¢ (0.25, 0.50, and 0.75). | considered all possible combinations of N, L, I, and ¢ (36
121 combinations) when generating test datasets.

122 Under each sampling design, | produced 100 test datasets with different values of &, which was
123 drawn from a uniform distribution (range: 10 — 300 m). Each independent dataset was generated as

124  follows. First, N individuals were assigned randomly to % subsections (Figure 3a). These “marked”

125  individuals were released at the center of the captured subsection, which was recorded as release location
126 p;. Second, released individuals relocate themselves along a one-dimensional space according to a known
127  dispersal kernel as x; ¢yye| i, 6 ~ Laplace(u;, 6) (Figure 3b). Individuals were considered to remain in
128  the observation section if true recapture location x; ¢, Was within a range of 0 — L m. Then, remained
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individuals were recaptured with recapture probability ¢ (Figure 3c). When recaptured, the true recapture
location x; ., Was rounded to a location value at the center of the recapture subsection x; to mimic real
field data (Figure 3c). For unrecaptured individuals, x; was recorded as “NA”.

| estimated average dispersal distance & and recapture probability ¢ using the DOCM and a
simple dispersal model. The simple dispersal model is a “control” that does not model the observation
process and the average dispersal distance was estimated as x;|u;, § ~ Laplace(u;, ). The estimates of
average dispersal distances were compared between the models. Meanwhile, the estimated recapture
probability ¢ was compared with the proportion of individuals recaptured (%, where n is the number of

recaptured individuals) in the test dataset used to estimate ¢ because the simple dispersal model does not
estimate ¢. Finally, | assessed the accuracy (i.e., the closeness of the median estimate to the true
parameter) and precision (i.e., the 95% credible interval [CI]) of the estimated parameters.

The Bayesian models were fitted to the test datasets to estimate § and ¢. Vague priors were
assigned to the parameters: a half-Cauchy distribution for 6 (scale = 500) and a uniform distribution for ¢
(range: 0 —1). Three Markov chain Monte Carlo (MCMC) chains were run with 4500 iterations, 1500
burn-ins, and 3 thin numbers, resulting in a total of 1500 MCMC samples. Convergence was assessed by
whether the R—hat indicator of each parameter had reached a value near 1. All statistical analysis was
conducted using R 3.5.1 (RCoreTeam 2019) and JAGS 4.3.0 (Plummer 2003). A sample of JAGS scripts
for the DOCM was provided in Box 1. R and JAGS scripts used in simulations will be made available at
Github upon publication.

Results and discussion

Model performance. The DOCM performed well under various sampling designs. Figure 4 shows the
relationship between the true and estimated values of & (denoted as ;. and ¢, respectively) when the
recapture probability ¢ was 0.50. The parameter estimates from the DOCM were always closer to the true
values (compare red and black lines in Figure 4) compared with those derived from the simple dispersal
model without the observation process. The degree of improvement was significant. While 95% Cls of
the simple dispersal model tended not to include &, the DOCM was more likely to encompass the true
values especially when the observation length was long enough (L = 1000 m). Similarly, the DOCM
provided less biased estimates of recapture probability ¢, a composite of survival and detection
probabilities (Figure 5). The estimated ¢ was higher than the proportion of individuals recaptured in the

test dataset (%, where n is the number of recaptured individuals) because it was corrected for permanent

emigration. However, as the &, increases, the DOCM became underestimating the parameters, though
the degree of bias is better than the simple dispersal model. This pattern was apparent when the
observation section was short relative to 6;,,. and is caused by the substantial number of individuals
leaving behind the observation section. For each of the parameters, these results were qualitatively similar
irrespective of ¢4, although higher values of ¢, led to the narrower range of 95% Cls for &, as
more individuals were recaptured. Detailed results with different values of ¢, Were provided in
Figures S1 — S4.

The number of individuals marked (N), observation section length (L) and spatial resolution (I)
had distinct effects on 8,5+ and ¢,,;:. The number of individuals marked had a clear influence on the
precision of the parameter estimates. The 95% Cls of 6, and ¢, (error bars in Figures 4 and 5) became
narrower clearly when N increased from 100 to 500 individuals. A further increase in N, however, did not
improve the precision of the parameter estimates. Increasing N did not contribute to improving the

4
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172 accuracy of the parameter estimates (i.e., the closeness to &, and ¢se)- In contrast, the length of the
173  observation section L was more influential on the accuracy of 8,5 while having little influence on the
174  precision of the parameter estimates (Figures 4 and 5). Increased L improved the accuracy of 6, because
175  long-distance dispersers were more likely to be recaptured. Neither accuracy nor precision was improved
176  when the spatial resolution of sampling (smaller I) increased.

177

178  Usefulness and limitations. The DOCM worked well under various sampling designs, proving its

179  usefulness to infer dispersal processes in the wild. The DOCM can extract information from both

180  recaptured and unrecaptured individuals, thereby improving the accuracy of parameter estimates. The
181  DOCM, therefore, represents a promising tool to study dispersal processes. To apply the DOCM, users
182  must obtain the following data: (1) individuals must be marked uniquely or by release subsection; (2)

183  release location (y;); (3) recapture location (x;); (3) spatial resolution of subsection length (1); (4)

184  observation section length (L). These are a common dataset obtained through a mark-recapture study, so
185  no additional work may be required to use the DOCM. Furthermore, if users have an independent

186  estimate of detection probability ¢ through multiple-pass removal (Dorazio et al. 2005) or other methods,
187  itisalso possible to estimate the true survival rate s that is corrected for permanent emigration (Terui et
188  al. 2017). However, there are caveats when interpreting the results. As stated above, the estimated

189  dispersal parameter &, and recapture probability ¢, can be biased when the average dispersal distance

190  (84pye) EXCEEdS Ca. é This happened because a significant portion of individuals may have left the
191  observation section. Practically, the estimated dispersal parameter &,5; may be used to determine whether
192  the average dispersal distance exceeds the threshold. In cases where 6,5 > é users shall acknowledge the

193  potential bias in parameter estimates.

194 It is important to emphasize that different design factors (L, N, [) had different effects on the

195  parameter estimates, corroborating the previous findings by Pépino et al. (2016). The results indicate that
196  increasing the length of the observation section is most effective to increase the estimation accuracy of
197  model parameters (the closeness to the true value). This is reasonable because increasing the length of the
198  observation section is the only way to catch long-distance dispersers. In contrast, increasing the number
199  of individuals marked is more important to improve the precision of the dispersal parameters (i.e., the
200  range of 95% CI). Therefore, | recommend users paying close attention to the length of the observation
201  section L and the number of individuals marked N when designing a mark-recapture study. Spatial

202  resolution ! had minimal influence on the accuracy and precision of parameter estimates, so this design
203  component may be determined based on the biology of a study species.

204

205  Model extension. The DOCM can be extended in two distinct ways. First, the dispersal model can capture
206 the further complexity of the dispersal process. A growing body of evidence suggests that populations are
207  composed of “resident” and “mobile” individuals with different behavioral and/or phenotypic

208  characteristics (Clobert et al. 2012; Clobert et al. 2009; Cote et al. 2008; Cote et al. 2011; Cote et al.

209  2013; Terui et al. 2017). Such a linkage between dispersal and individual-level traits can be modeled

210  using the following expression:

211
212 x;| p;, 6; ~ Laplace(y;, 6;) (5a)
213 log(8;) = a+ Bz; (5b)
214
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where « is the intercept, £ the regression coefficient and z; the linear predictor representing an individual
trait. Expressed differently, equation 5 can be written as:

_ 1 il
fl(xi' Hi &, ﬁ' Zi) " 2exp (a+fBz)) €Xp ( exp (a+ﬁzi)) (6)

This model connects the trait variable z; with the dispersal parameter §; by estimating a and 8. In this
model, individuals follow different dispersal kernels according to their ecological trait(s), such as body
size. If the variable z is a random variable that follows a normal distribution with a mean 1, and standard
deviation o, g(z, u,, ad,), then the composite dispersal kernel h(x;, u;, @, B) is:

hCei i, B) = [ files, i @, B, 2)g (2, 1z, 0,) dz (1)

If z is a binary variable drawn from a Bernoulli distribution with a success probability p, the composite
dispersal kernel is:

eS| 0w e (2] o

Equations 7 and 8 can be interpreted as an extension of a mixture Laplace dispersal kernel, in which a
certain proportion of individuals are assigned randomly to a resident or mobile component in the model
(Rodriguez 2002). The difference with a mixture Laplace dispersal kernel is that the above equations are
explicit regarding “who is resident or mobile” as the expected dispersal distance for individual i (8;) is
related to ecological traits via the regression parameters. Terui et al. (2017) used this modeling
framework to assess the effects of parasite infection on the dispersal of a stream fish species. It is
important to note that there are many other dispersal kernels, such as a mixture of Gaussian dispersal
kernels (Comte & Olden 2018; Nathan et al. 2012; Skalski & Gilliam 2000). Users may choose
appropriate dispersal kernels given the ecology of a study species. | also point interested readers to
Nathan et al. (2012) for dispersal kernels in two dimensional systems as another extension of the dispersal
model.

Second, the observation model can also be extended to account for individual-level variability in
recapture probability ¢. Survival and detection probabilities may vary among individuals and ignoring
this complexity could cause biased estimates of dispersal parameters. The simplest way to account for the
variability is to model ¢; as a random variable drawn from a Beta distribution:

¢~ Beta(e,v) 9)
This allows the model to account for individual-level variation in recapture probability ¢. If there are

hypothesized predictors that could influence the recapture probability (e.g., habitat structure), such effects
can be modeled as:

¢; = Beta(e;, v;) (10a)
€; = mo; (10b)
vi =n(1—-6;) (10c)
logit(6;) = ag + Bez; (10d)
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where 0; is the expected recapture probability, 7 the dispersion parameter, ag the intercept and g the
regression coefficient. Therefore, the DOCM can deal with the complexity of field data.

Conclusion. Dispersal is a fundamental process that drives the ecology and evolution of various
organisms (Clobert et al. 2012) and quantifying dispersal is a critical task to forecast spatial dynamics of
ecological systems (Hanski 1999; Hanski & Ovaskainen 2000; Terui et al. 2017). Although great strides
have been made in how to quantify dispersal in the wild (e.g., genotyping) (Comte & Olden 2018;
Morrissey & Ferguson 2011), direct measurements of dispersal still provide essential information for an
understanding of spatial processes (Comte & Olden 2018; Kadoya & Inoue 2015; Terui et al. 2017). The
Bayesian implementation of the DOCM provides extensive flexibility in the model formulation, offering
a generic framework to study dispersal in the wild. Accurate inference of dispersal processes with
sophisticated statistical models may enhance our ability to manage ecosystems in a changing world.
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371  Box 1 Sample JAGS script for the dispersal-observation coupled model

372 model{

373 # Priors

374 theta ~ dscaled.gamma(500, 1)
375 phi ~ dunif(o, 1)

376

377 # Observation model

378 for (i in 1:Nsample){

379 Y[i] ~ dbern(psi[i]*phi)
380 psi[i] <- pdexp(UL[i], Mu[i], theta) - pdexp(DL[i], Mu[i], theta)
381 }

382

383 # Dispersal model

384 for(i in 1:Nsample){

385 X[i] ~ ddexp(Mu[i], theta)
386 }

387 delta <- 1/theta

388

389  }

390

10


https://doi.org/10.1101/813790
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/813790; this version posted October 22, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

391 Table 1 Key parameters used in the dispersal-observation coupled model (DOCM)
392

Parameter  Interpretation

é Average dispersal distance
U Release location
Y Probability of moving from the release location u to the

recapture subsection (recaptured individuals); Probability
of remaining in the observation section (unrecaptured

individuals)
[0) Recapture probability
s True survival probability
& Detection probability
393
394
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Recapture b Unrecapture
(a) i=1) (b) (i =0)
4 A ‘\\
i 1=y wi(l=¢) N 1-W%
L3
Y2 Y2
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-100 0 M1 100 M2 200 300 400 -100 0 M1 100 M2 200 300 400
Location (m) Location (m)

Figure 1 Graphical representation of the dispersal-observation coupled model (DOCM). The black and
red lines are the examples of Laplace dispersal kernels for individual 1 and 2 released at different
locations (average dispersal distance § = 25 m for both kernels). Vertical gray lines indicate the
observation section (0 — 300 m for this example). Shaded areas denote ; that represents the probability
that an individual moves from the release location y; to the recapture subsection for recaptured
individuals (a) or the probability that an individual stays in the observation section for unrecaptured
individuals (b). Individuals released at different locations (u; and u,) have different values of ;. After
the dispersal process, individuals are subject to incomplete recapture surveys, by which individuals may
be detected with the recapture probability ¢ if they remained in the observation section. Note that the
recapture probability ¢ is a composite of survival and detection probabilities.
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408
409  Figure 2 Schematic diagram of sampling designs. Three design factors were considered: (1) the number

410 of individuals released N, (2) observation section length L, and (3) spatial resolution L.
411
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(a) Step1: Assign N individuals to subsections

(b) Step2: Dispersal process

Leave
xi,true 2 xi,true |25 xi,true
Oe—— — _

(c) Step3: Observation process

Recaptured
Dead or undetected \ Xi
O - Xitrue
I I I O A
HEEEEEREEEERE
Om Lm
412
413

414  Figure 3 Procedure used to generate test datasets. (a) In step 1, N individuals were randomly distributed
415 in the observation section, resembling a marking process in the field. (b) In step 2, marked individuals
416  move freely from the center of the released subsection (u;) according to a known dispersal kernel (in this
417  case, a Laplace distribution with a mean dispersal distance §). Since the observation section is a finite
418  domain, individuals can leave the observation section and may never be recaptured (open circle in the
419  figure). Individuals were considered to remain in the observation section when true location after

420  dispersal x; 1, Was within a range of 0 — L m. (c) In step 3, individuals that remained in the observation
421  section were subject to an incomplete recapture survey. Remained individuals were recaptured with

422  recapture probability ¢, and recapture location x; was recorded as the center of the recapture subsection
423  (the vertical dotted line in the figure). A certain proportion of remained individuals (1 — ¢) may not be
424 recaptured because they may have died or undetected (open circle in the figure).
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425
426  Figure 4 The relationship between true (y-axis) and estimated (x-axis) average dispersal distances when
427  the true recapture probability ¢, = 0.5. Red points are the median estimates from the DOCM, while
428  grey points showing the median estimates from the simple dispersal model. Error bars are 95% credible
429 intervals. Gray broken lines denote a 1:1 relationship. Different panels are estimates under different
430  sampling designs, and the values of sampling design factors are shown on the top of each panel. Red and
431  gray solid lines are smooths for the DOCM and the simple dispersal model, respectively.
432
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433

434  Figure 5 The relationship between the estimated recapture probability ¢.; and true average dispersal
435  distance &, When the true recapture probability ¢, = 0.5. Red filled points are the median estimates
436  from the DOCM while red open points denoting the proportion of individuals recaptured for each test
437  dataset. Error bars are 95% credible intervals. Grey broken lines denote the true recapture probability

438  ¢srye- Different panels are estimates under different sampling designs, and the values of sampling design
439  factors are shown on the top of each panel. Solid and broken red lines are smooths for the DOCM

440  estimates and the proportion of individuals recaptured, respectively.

441
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454

455  Figure S1 The relationship between true (8;,,¢; Y-axis) and estimated (5, ; X-axis) average dispersal

456  distances when the true recapture probability ¢;,,. = 0.25. Red points are the median estimates from the

457  DOCM while grey points showing the median estimates from the simple dispersal model. Error bars are

458  95% credible intervals. Gray broken lines denote a 1:1 relationship. Different panels are estimates under

459  different sampling designs, and the values of sampling design factors are shown on the top of each panel.

460  Red and gray solid lines are smooths for the DOCM and the simple dispersal model, respectively.
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the true recapture probability ¢, = 0.75. See Figure S1 for captions.

19


https://doi.org/10.1101/813790
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/813790; this version posted October 22, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

N =100, L =500, | =20, 9 =0.25 N =500, L =500, | =20, ¢ =0.25 N =1000, L =500, =20, ¢ =0.25
1.0 B b

0.8 1 B

N =100, L =1000, | = 20, ¢ =0.25 N =500, L =1000, | = 20, ¢ =0.25 N =1000, L = 1000, | = 20, ¢ = 0.25
1.0 4 1 b

0.8 1 B b

0.0 b b

N =100, L =500, | =50, ¢ = 0.25 N =500, L =500, | =50, ¢ = 0.25 N =1000, L =500, | =50, ¢ =0.25
1.0 1 1 b

Pest

0.8 b 1

0.6 1 b

0.0 b b

N =100, L =1000, | =50, ¢ =0.25 N =500, L =1000, | =50, ¢ =0.25 N =1000, L = 1000, | =50, ¢ =0.25
1.0 1 1 b

0.8 b 1

0.6 b 1

0.0 1 1 1

50 160 1é0 260 25‘0 360 50 160 1‘50 260 2!30 360 50 160 léO 260 2é0 360

Sue ()
468
469  Figure S3 The relationship between the estimated recapture probability ¢, and true average dispersal
470  distance &, When the true recapture probability ¢, = 0.25. Red filled points are the median
471  estimates from the DOCM while red open points denoting the proportion of individuals recaptured for
472  each test dataset. Error bars are 95% credible intervals. Grey broken lines denote the true recapture
473  probability ¢¢,,.. Different panels are estimates under different sampling designs, and the values of
474  sampling design factors are shown on the top of each panel. Solid and broken red lines are smooths for
475  the DOCM estimates and the proportion of individuals recaptured, respectively.
476
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478
479  Figure S4 The relationship between the estimated recapture probability ¢, and true average dispersal

480  distance &4y When the true recapture probability ¢4, = 0.75. See Figure S3 for captions.
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