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Abstract 6 

Dispersal is a fundamental ecological process that links populations, communities and food webs in 7 

space. However, dispersal is tremendously difficult to study in the wild because we must track individuals 8 

dispersing in a landscape. One conventional method to measure animal dispersal is a mark-recapture 9 

technique. Despite its usefulness, this approach has been recurrently criticized because it is virtually 10 

impossible to survey all possible ranges of dispersal in nature. Here, I propose a novel Bayesian model to 11 

better estimate dispersal parameters from incomplete mark-recapture data. The dispersal-observation 12 

coupled model, DOCM, can extract information from both recaptured and unrecaptured individuals, 13 

providing less biased estimates of dispersal parameters. Simulations demonstrated the usefulness of 14 

DOCM under various sampling designs. I also suggest extensions of the DOCM to accommodate more 15 

realistic scenarios. Application of the DOCM may, therefore, provide valuable insights into how 16 

individuals disperse in the wild. 17 

 18 

Keywords: movement, statistical inference, spatial ecology, Markov chain Monte Carlo, simulation 19 

 20 

Introduction 21 

Ecological entities rarely exist independently. Dispersal – any movement of organisms across space – 22 

links populations (Hanski 1999; Hanski & Ovaskainen 2000; Terui et al. 2018a; Terui et al. 2014b), 23 

communities (Leibold et al. 2004; Terui & Miyazaki 2016) and food webs (Nakano et al. 1999; Nakano 24 

& Murakami 2001; Spiller et al. 2010; Terui et al. 2018b) that are otherwise isolated from one another. 25 

Ecologists have been intrigued by the spatial process due to its implications for critical applied issues, 26 

such as the metapopulation persistence of endangered species in fragmented landscapes (Hanski 1999). 27 

More recently, accumulating evidence suggests that dispersal is highly plastic and context-dependent with 28 

significant consequences for landscape-level dynamics (Bonte & de la Pena 2009; Bonte et al. 2012; Cote 29 

et al. 2011; Cote et al. 2013; Fronhofer et al. 2018; Fronhofer et al. 2017; Little et al. 2019; Terui et al. 30 

2017). For example, Fronhofer et al. (2018) have shown that context-dependent dispersal in experimental 31 

landscapes has stabilizing effects on local food webs coupled via dispersal. Therefore, there is an 32 

increasing awareness that an in-depth understanding of dispersal is critical to biodiversity forecasting 33 

during rapid environmental changes. Nevertheless, dispersal is inherently difficult to study in the wild 34 

(Nathan 2001). There have been many attempts to track dispersal in natural systems (Clobert et al. 2012; 35 

Comte & Olden 2018; Nathan et al. 2008), but linking dispersal processes with specific ecological factors 36 

has been challenged by the incomplete nature of field observations. As such, a detailed analysis of 37 

dispersal is, to some extent, biased towards small-scale controlled experiments, limiting our ability to 38 

infer spatial dynamics at large spatial scales. 39 

One conventional method to measure animal dispersal in the wild is a mark-recapture technique.  40 

Although mark-recapture studies can provide valuable insights into how individuals move across space, 41 

there are some serious problems when applying this method in nature. First, it is virtually impossible to 42 

survey all possible range of dispersal in a landscape (Fujiwara et al. 2006; Gowan & Fausch 1996; 43 

Schwalb et al. 2010; Terui et al. 2014a). Consequently, a substantial portion of individuals can leave 44 
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behind the study area, causing serious underestimation of dispersal parameters. Second, even when 45 

marked individuals remained in the study area, imperfect detection of marked individuals may pose a 46 

challenge to infer dispersal processes (Pepino et al. 2012; Rodriguez 2002). To date, several statistical 47 

models have been proposed to overcome these difficulties (Fujiwara et al. 2006; Pepino et al. 2012; 48 

Rodriguez 2002). For example, Rodriguez (2002) developed a general class of dispersal models that 49 

describe how marked individuals are recaptured through dispersal and sampling processes. However, 50 

these models are implicit about unrecaptured individuals and/or have limited extendibility to more 51 

complex models that capture plastic and context-dependent dispersal. Hence, there is a need to develop a 52 

new class of statistical models that have a greater extension capacity. 53 

Bayesian inference provides a flexible statistical framework that may open the opportunity to 54 

overcome challenges in utilizing mark-recapture data (Kéry & Schaub 2012; Terui et al. 2017). Here, I 55 

introduce a novel Bayesian model that integrates dispersal and observation processes into a single coupled 56 

model. The dispersal-observation coupled model, DOCM, can extract information from both recaptured 57 

and unrecaptured individuals. Consequently, the model can provide less biased estimates of ecological 58 

parameters. In this study, I demonstrate that the usefulness of DOCM using simulated test datasets 59 

produced under various sampling designs and discuss its extension capacity to more realistic models.  60 

 61 

Model 62 

I consider a situation in which a virtual ecologist conducts a mark-recapture study in a one-dimensional 63 

space (e.g., a stream). They choose a section with length 𝐿 for the mark-recapture study (i.e., the 64 

observation section) and divide it into subsections with length l. The number of subsections is thus L l -1. 65 

In each subsection, virtual ecologists perform an initial capture survey and assign a subsection ID to each 66 

individual to locate them. After marking individuals uniquely, captured individuals are released into the 67 

center of the subsection where they were caught. Then, released individuals disperse freely for a certain 68 

period and a recapture survey occurs in the observation section. Since the observation section is a finite 69 

domain, individuals can leave this area. Also, only survived individuals may be recaptured with some 70 

probability even when marked individuals stay in the observation section. Thus, to be recaptured, 71 

individuals must (1) stay in the observation section, (2) survive until being recaptured, and (3) be detected 72 

if they survive and remain in the observation section. To represent this data-producing process, I propose 73 

the following modeling framework that integrates dispersal and observation processes (Figure 1). 74 

Dispersal model. I first model the dispersal process. Let 𝜇𝑖 and 𝑥𝑖 be locations at initial capture 75 

and recapture sessions, respectively, for individual 𝑖. The variables 𝜇𝑖 and 𝑥𝑖 may be expressed as the 76 

distance from the center of the capture/recaptured subsection to either end of the observation section (e.g., 77 

the downstream end of the study section in streams).  I assume the location variable at recapture 𝑥𝑖  to 78 

follow a Laplace distribution, a dispersal kernel commonly used in the dispersal literature (Nathan et al. 79 

2012; Rodriguez 2002): 80 

 81 

𝑓𝑙(𝑥𝑖, 𝜇𝑖 , 𝛿)  =
1

2𝛿
exp (−

|𝑥𝑖−𝜇𝑖|

𝛿
)         (1) 82 

 83 

The parameter 𝛿 is the average dispersal distance. Equation 1 illustrates that the recapture location 𝑥𝑖 is 84 

conditional on the release location 𝜇𝑖 and the dispersal parameter 𝛿 (Figure 1).  85 

Observation model. After dispersal, marked individuals are subject to an imperfect observation 86 

process. Let 𝑦𝑖 be the variable representing a recapture history for individual 𝑖 (𝑦𝑖 = 1 if recaptured; 87 

otherwise 0). The response variable 𝑦𝑖 can be modeled as a realization of a Bernoulli distribution: 88 
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 89 

𝑦𝑖|𝜓𝑖𝑠𝜉 ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜓𝑖𝑠𝜉)          (2) 90 

 91 

where 𝜓𝑖 is the probability that individual 𝑖 moves to the subsection of recapture (recaptured individuals) 92 

or stays in the observation section (unrecaptured individuals), 𝑠 is the survival probability between the 93 

time points of release and recapture, and 𝜉 is the detection probability during a recapture survey. The 94 

parameters 𝑠 and 𝜉 can be isolated if an independent dataset to estimate detection probability, e.g., 95 

multiple-pass removal data, is available (Dorazio et al. 2005). Otherwise, the two parameters need to be 96 

condensed into recapture probability 𝜙 (= 𝑠𝜉) such that: 97 

 98 

𝑦𝑖|𝜓𝑖𝜙 ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜓𝑖𝜙)         (3) 99 

 100 

Here, I couple the observation and dispersal models by describing 𝜓𝑖 as a function of the 101 

dispersal parameter 𝛿 and release location 𝜇𝑖. Specifically, 𝜓𝑖 is denoted as: 102 

 103 

𝜓𝑖 =  {
∫ 𝑓𝑙(𝑥𝑖, 𝜇𝑖 , 𝛿)

𝑥𝑖+
𝑙

2

𝑥𝑖−
𝑙

2

𝑑𝑥𝑖  𝑓𝑜𝑟 𝑟𝑒𝑐𝑎𝑝𝑡𝑢𝑟𝑒𝑑 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠

∫ 𝑓𝑙(𝑥𝑖, 𝜇𝑖 , 𝛿)
𝐿

0
𝑑𝑥𝑖 𝑓𝑜𝑟 𝑢𝑛𝑟𝑒𝑐𝑎𝑝𝑡𝑢𝑟𝑒𝑑 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠

      (4) 104 

 105 

Recaptured individuals are known to be present at the subsection of recapture, so the range of integration 106 

is given as 𝑥𝑖 −
𝑙

2
 to 𝑥𝑖 +

𝑙

2
 in equation 4 (i.e., from one end to another end of the subsection). This 107 

expression gives the probability of movement from the release location 𝜇𝑖 to the subsection of recapture 108 

given the dispersal parameter 𝛿. For unrecaptured individuals, equation 4 accounts for two important 109 

facts: (1) a greater value of the dispersal parameter decreases the probability of remaining in the 110 

observation section (𝜓𝑖) and (2) the release location 𝜇𝑖 influences 𝜓𝑖 (i.e., individuals released near the 111 

edge of the observation section are more likely to emigrate; Figure 1b). Key parameters in the DOCM 112 

were summarized in Table 1. 113 

 114 

Evaluation of model performance. To evaluate the performance of the DOCM, I generated test datasets 115 

under different sampling designs. Specifically, I focused on the following design factors that are related to 116 

sampling efforts in the field: (1) the number of individuals marked and released 𝑁 (100, 500, and 1000 117 

individuals), (2) the length of the observation section 𝐿 (500 and 1000 m) and (3) the length of an 118 

individual subsection or resolution 𝑙 (20 and 50 m) (Figure 2). In addition, I considered variation in the 119 

recapture probability 𝜙 (0.25, 0.50, and 0.75). I considered all possible combinations of N, L, l, and 𝜙 (36 120 

combinations) when generating test datasets. 121 

 Under each sampling design, I produced 100 test datasets with different values of 𝛿, which was 122 

drawn from a uniform distribution (range: 10 – 300 m). Each independent dataset was generated as 123 

follows. First, 𝑁 individuals were assigned randomly to 
𝐿

𝑙
 subsections (Figure 3a). These “marked” 124 

individuals were released at the center of the captured subsection, which was recorded as release location 125 

𝜇𝑖. Second, released individuals relocate themselves along a one-dimensional space according to a known 126 

dispersal kernel as 𝑥𝑖,𝑡𝑟𝑢𝑒| 𝜇𝑖 , 𝛿 ~ 𝐿𝑎𝑝𝑙𝑎𝑐𝑒(𝜇𝑖 , 𝛿) (Figure 3b). Individuals were considered to remain in 127 

the observation section if true recapture location 𝑥𝑖,𝑡𝑟𝑢𝑒 was within a range of 0 – 𝐿 m. Then, remained 128 
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individuals were recaptured with recapture probability 𝜙 (Figure 3c). When recaptured, the true recapture 129 

location 𝑥𝑖,𝑡𝑟𝑢𝑒 was rounded to a location value at the center of the recapture subsection 𝑥𝑖 to mimic real 130 

field data (Figure 3c). For unrecaptured individuals, 𝑥𝑖 was recorded as “NA”. 131 

I estimated average dispersal distance 𝛿 and recapture probability 𝜙 using the DOCM and a 132 

simple dispersal model. The simple dispersal model is a “control” that does not model the observation 133 

process and the average dispersal distance was estimated as 𝑥𝑖|𝜇𝑖 , 𝛿 ~ 𝐿𝑎𝑝𝑙𝑎𝑐𝑒(𝜇𝑖 , 𝛿). The estimates of 134 

average dispersal distances were compared between the models. Meanwhile, the estimated recapture 135 

probability 𝜙 was compared with the proportion of individuals recaptured (
𝑛

𝑁
, where 𝑛 is the number of 136 

recaptured individuals) in the test dataset used to estimate 𝜙 because the simple dispersal model does not 137 

estimate 𝜙. Finally, I assessed the accuracy (i.e., the closeness of the median estimate to the true 138 

parameter) and precision (i.e., the 95% credible interval [CI]) of the estimated parameters. 139 

The Bayesian models were fitted to the test datasets to estimate 𝛿 and 𝜙. Vague priors were 140 

assigned to the parameters: a half-Cauchy distribution for δ (scale = 500) and a uniform distribution for 𝜙 141 

(range: 0 – 1). Three Markov chain Monte Carlo (MCMC) chains were run with 4500 iterations, 1500 142 

burn-ins, and 3 thin numbers, resulting in a total of 1500 MCMC samples. Convergence was assessed by 143 

whether the R–hat indicator of each parameter had reached a value near 1. All statistical analysis was 144 

conducted using R 3.5.1 (RCoreTeam 2019) and JAGS 4.3.0 (Plummer 2003). A sample of JAGS scripts 145 

for the DOCM was provided in Box 1. R and JAGS scripts used in simulations will be made available at 146 

Github upon publication. 147 

 148 

Results and discussion 149 

Model performance. The DOCM performed well under various sampling designs. Figure 4 shows the 150 

relationship between the true and estimated values of δ (denoted as 𝛿𝑡𝑟𝑢𝑒 and 𝛿𝑒𝑠𝑡, respectively) when the 151 

recapture probability 𝜙 was 0.50. The parameter estimates from the DOCM were always closer to the true 152 

values (compare red and black lines in Figure 4) compared with those derived from the simple dispersal 153 

model without the observation process. The degree of improvement was significant. While 95% CIs of 154 

the simple dispersal model tended not to include 𝛿𝑡𝑟𝑢𝑒, the DOCM was more likely to encompass the true 155 

values especially when the observation length was long enough (𝐿 = 1000 m). Similarly, the DOCM 156 

provided less biased estimates of recapture probability 𝜙, a composite of survival and detection 157 

probabilities (Figure 5). The estimated 𝜙 was higher than the proportion of individuals recaptured in the 158 

test dataset (
𝑛

𝑁
, where 𝑛 is the number of recaptured individuals) because it was corrected for permanent 159 

emigration. However, as the 𝛿𝑡𝑟𝑢𝑒 increases, the DOCM became underestimating the parameters, though 160 

the degree of bias is better than the simple dispersal model. This pattern was apparent when the 161 

observation section was short relative to 𝛿𝑡𝑟𝑢𝑒 and is caused by the substantial number of individuals 162 

leaving behind the observation section. For each of the parameters, these results were qualitatively similar 163 

irrespective of 𝜙𝑡𝑟𝑢𝑒, although higher values of 𝜙𝑡𝑟𝑢𝑒 led to the narrower range of 95% CIs for 𝛿𝑒𝑠𝑡 as 164 

more individuals were recaptured. Detailed results with different values of 𝜙𝑡𝑟𝑢𝑒 were provided in 165 

Figures S1 – S4. 166 

The number of individuals marked (N), observation section length (L) and spatial resolution (l) 167 

had distinct effects on 𝛿𝑒𝑠𝑡 and 𝜙𝑒𝑠𝑡. The number of individuals marked had a clear influence on the 168 

precision of the parameter estimates. The 95% CIs of 𝛿𝑒𝑠𝑡 and 𝜙𝑒𝑠𝑡 (error bars in Figures 4 and 5) became 169 

narrower clearly when 𝑁 increased from 100 to 500 individuals. A further increase in N, however, did not 170 

improve the precision of the parameter estimates. Increasing N did not contribute to improving the 171 
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accuracy of the parameter estimates (i.e., the closeness to 𝛿𝑡𝑟𝑢𝑒 and 𝜙𝑡𝑟𝑢𝑒).  In contrast, the length of the 172 

observation section L was more influential on the accuracy of 𝛿𝑒𝑠𝑡 while having little influence on the 173 

precision of the parameter estimates (Figures 4 and 5). Increased 𝐿 improved the accuracy of 𝛿𝑒𝑠𝑡 because 174 

long-distance dispersers were more likely to be recaptured. Neither accuracy nor precision was improved 175 

when the spatial resolution of sampling (smaller l) increased. 176 

 177 

Usefulness and limitations. The DOCM worked well under various sampling designs, proving its 178 

usefulness to infer dispersal processes in the wild. The DOCM can extract information from both 179 

recaptured and unrecaptured individuals, thereby improving the accuracy of parameter estimates. The 180 

DOCM, therefore, represents a promising tool to study dispersal processes. To apply the DOCM, users 181 

must obtain the following data: (1) individuals must be marked uniquely or by release subsection; (2) 182 

release location (𝜇𝑖); (3) recapture location (𝑥𝑖); (3) spatial resolution of subsection length (l); (4) 183 

observation section length (L). These are a common dataset obtained through a mark-recapture study, so 184 

no additional work may be required to use the DOCM. Furthermore, if users have an independent 185 

estimate of detection probability 𝜉 through multiple-pass removal (Dorazio et al. 2005) or other methods, 186 

it is also possible to estimate the true survival rate 𝑠 that is corrected for permanent emigration (Terui et 187 

al. 2017). However, there are caveats when interpreting the results. As stated above, the estimated 188 

dispersal parameter 𝛿𝑒𝑠𝑡 and recapture probability 𝜙𝑒𝑠𝑡 can be biased when the average dispersal distance 189 

(𝛿𝑡𝑟𝑢𝑒) exceeds ca. 
𝐿

5
. This happened because a significant portion of individuals may have left the 190 

observation section. Practically, the estimated dispersal parameter 𝛿𝑒𝑠𝑡 may be used to determine whether 191 

the average dispersal distance exceeds the threshold. In cases where 𝛿𝑒𝑠𝑡 >
𝐿

5
, users shall acknowledge the 192 

potential bias in parameter estimates. 193 

 It is important to emphasize that different design factors (𝐿, 𝑁, 𝑙) had different effects on the 194 

parameter estimates, corroborating the previous findings by Pépino et al. (2016). The results indicate that 195 

increasing the length of the observation section is most effective to increase the estimation accuracy of 196 

model parameters (the closeness to the true value). This is reasonable because increasing the length of the 197 

observation section is the only way to catch long-distance dispersers. In contrast, increasing the number 198 

of individuals marked is more important to improve the precision of the dispersal parameters (i.e., the 199 

range of 95% CI). Therefore, I recommend users paying close attention to the length of the observation 200 

section 𝐿 and the number of individuals marked 𝑁 when designing a mark-recapture study. Spatial 201 

resolution 𝑙 had minimal influence on the accuracy and precision of parameter estimates, so this design 202 

component may be determined based on the biology of a study species. 203 

 204 

Model extension. The DOCM can be extended in two distinct ways. First, the dispersal model can capture 205 

the further complexity of the dispersal process. A growing body of evidence suggests that populations are 206 

composed of “resident” and “mobile” individuals with different behavioral and/or phenotypic 207 

characteristics (Clobert et al. 2012; Clobert et al. 2009; Cote et al. 2008; Cote et al. 2011; Cote et al. 208 

2013; Terui et al. 2017). Such a linkage between dispersal and individual-level traits can be modeled 209 

using the following expression: 210 

 211 

𝑥𝑖| 𝜇𝑖, 𝛿𝑖  ~ 𝐿𝑎𝑝𝑙𝑎𝑐𝑒(𝜇𝑖, 𝛿𝑖)         (5a) 212 

log(𝛿𝑖) = 𝛼 + 𝛽𝑧𝑖          (5b) 213 

 214 
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where 𝛼 is the intercept, 𝛽 the regression coefficient and 𝑧𝑖 the linear predictor representing an individual 215 

trait. Expressed differently, equation 5 can be written as: 216 

 217 

𝑓𝑙(𝑥𝑖, 𝜇𝑖 , 𝛼, 𝛽, 𝑧𝑖)  =
1

2exp (𝛼+𝛽𝑧𝑖)
exp (−

|𝑥𝑖−𝜇𝑖|

exp (𝛼+𝛽𝑧𝑖)
)       (6) 218 

 219 

This model connects the trait variable 𝑧𝑖 with the dispersal parameter 𝛿𝑖 by estimating 𝛼 and 𝛽. In this 220 

model, individuals follow different dispersal kernels according to their ecological trait(s), such as body 221 

size. If the variable 𝑧 is a random variable that follows a normal distribution with a mean 𝜇𝑧 and standard 222 

deviation 𝜎𝑧,  𝑔(𝑧, 𝜇𝑧, 𝜎𝑧), then the composite dispersal kernel ℎ(𝑥𝑖, 𝜇𝑖 , 𝛼, 𝛽) is: 223 

 224 

ℎ(𝑥𝑖 , 𝜇𝑖 , 𝛼, 𝛽) = ∫ 𝑓𝑙(𝑥𝑖, 𝜇𝑖 , 𝛼, 𝛽, 𝑧)𝑔(𝑧, 𝜇𝑧, 𝜎𝑧) 𝑑𝑧       (7) 225 

 226 

If 𝑧 is a binary variable drawn from a Bernoulli distribution with a success probability 𝑝, the composite 227 

dispersal kernel is: 228 

 229 

ℎ(𝑥𝑖 , 𝜇𝑖 , 𝛼, 𝛽) = 𝑝 [
1

2 exp(𝛼+𝛽)
exp (−

|𝑥𝑖−𝜇𝑖|

exp(𝛼+𝛽)
)] + (1 − 𝑝) [

1

2 exp(𝛼)
exp (−

|𝑥𝑖−𝜇𝑖|

exp(𝛼)
)]   (8) 230 

 231 

Equations 7 and 8 can be interpreted as an extension of a mixture Laplace dispersal kernel, in which a 232 

certain proportion of individuals are assigned randomly to a resident or mobile component in the model 233 

(Rodriguez 2002). The difference with a mixture Laplace dispersal kernel is that the above equations are 234 

explicit regarding “who is resident or mobile” as the expected dispersal distance for individual i (𝛿𝑖) is 235 

related to ecological traits via the regression parameters. Terui et al. (2017) used this modeling 236 

framework to assess the effects of parasite infection on the dispersal of a stream fish species. It is 237 

important to note that there are many other dispersal kernels, such as a mixture of Gaussian dispersal 238 

kernels (Comte & Olden 2018; Nathan et al. 2012; Skalski & Gilliam 2000). Users may choose 239 

appropriate dispersal kernels given the ecology of a study species. I also point interested readers to 240 

Nathan et al. (2012) for dispersal kernels in two dimensional systems as another extension of the dispersal 241 

model. 242 

Second, the observation model can also be extended to account for individual-level variability in 243 

recapture probability 𝜙. Survival and detection probabilities may vary among individuals and ignoring 244 

this complexity could cause biased estimates of dispersal parameters. The simplest way to account for the 245 

variability is to model 𝜙𝑖 as a random variable drawn from a Beta distribution: 246 

 247 

𝜙𝑖~ 𝐵𝑒𝑡𝑎(ϵ, ν)            (9) 248 

 249 

This allows the model to account for individual-level variation in recapture probability 𝜙. If there are 250 

hypothesized predictors that could influence the recapture probability (e.g., habitat structure), such effects 251 

can be modeled as: 252 

 253 

𝜙𝑖 = 𝐵𝑒𝑡𝑎(ϵ𝑖, 𝜈𝑖)           (10a) 254 

ϵ𝑖 = 𝜋𝜃𝑖            (10b) 255 

𝜈𝑖 = 𝜋(1 − 𝜃𝑖)            (10c) 256 

logit(𝜃𝑖) = αθ + βθ𝑧𝑖           (10d) 257 
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 258 

where 𝜃𝑖 is the expected recapture probability, 𝜋 the dispersion parameter, 𝛼𝜃 the intercept and 𝛽𝜃 the 259 

regression coefficient. Therefore, the DOCM can deal with the complexity of field data. 260 

 261 

Conclusion. Dispersal is a fundamental process that drives the ecology and evolution of various 262 

organisms (Clobert et al. 2012) and quantifying dispersal is a critical task to forecast spatial dynamics of 263 

ecological systems (Hanski 1999; Hanski & Ovaskainen 2000; Terui et al. 2017). Although great strides 264 

have been made in how to quantify dispersal in the wild (e.g., genotyping) (Comte & Olden 2018; 265 

Morrissey & Ferguson 2011), direct measurements of dispersal still provide essential information for an 266 

understanding of spatial processes (Comte & Olden 2018; Kadoya & Inoue 2015; Terui et al. 2017). The 267 

Bayesian implementation of the DOCM provides extensive flexibility in the model formulation, offering 268 

a generic framework to study dispersal in the wild. Accurate inference of dispersal processes with 269 

sophisticated statistical models may enhance our ability to manage ecosystems in a changing world. 270 
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Box 1 Sample JAGS script for the dispersal-observation coupled model 371 

model{ 372 
  # Priors 373 
  theta ~ dscaled.gamma(500, 1) 374 
  phi ~ dunif(0, 1) 375 
   376 
  # Observation model 377 
  for (i in 1:Nsample){ 378 
    Y[i] ~ dbern(psi[i]*phi) 379 
    psi[i] <- pdexp(UL[i], Mu[i], theta) - pdexp(DL[i], Mu[i], theta) 380 
  } 381 
   382 
  # Dispersal model 383 
  for(i in 1:Nsample){ 384 
    X[i] ~ ddexp(Mu[i], theta) 385 
  } 386 
  delta <- 1/theta 387 
   388 
} 389 

  390 
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Table 1 Key parameters used in the dispersal-observation coupled model (DOCM) 391 
 392 
Parameter Interpretation 

𝛿 Average dispersal distance 

𝜇 Release location 

𝜓 Probability of moving from the release location 𝜇 to the 

recapture subsection (recaptured individuals); Probability 

of remaining in the observation section (unrecaptured 

individuals) 

𝜙 Recapture probability 

𝑠 True survival probability 

𝜉 Detection probability 

 393 

  394 
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 395 
 396 
Figure 1 Graphical representation of the dispersal-observation coupled model (DOCM). The black and 397 
red lines are the examples of Laplace dispersal kernels for individual 1 and 2 released at different 398 
locations (average dispersal distance 𝛿 = 25 m for both kernels). Vertical gray lines indicate the 399 
observation section (0 – 300 m for this example). Shaded areas denote 𝜓𝑖 that represents the probability 400 
that an individual moves from the release location 𝜇𝑖 to the recapture subsection for recaptured 401 
individuals (a) or the probability that an individual stays in the observation section for unrecaptured 402 
individuals (b). Individuals released at different locations (𝜇1 and 𝜇2) have different values of 𝜓𝑖. After 403 
the dispersal process, individuals are subject to incomplete recapture surveys, by which individuals may 404 
be detected with the recapture probability 𝜙 if they remained in the observation section. Note that the 405 
recapture probability 𝜙 is a composite of survival and detection probabilities. 406 
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 408 
Figure 2 Schematic diagram of sampling designs. Three design factors were considered: (1) the number 409 

of individuals released 𝑁, (2) observation section length 𝐿, and (3) spatial resolution 𝑙. 410 
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 412 
 413 

Figure 3 Procedure used to generate test datasets. (a) In step 1, 𝑁 individuals were randomly distributed 414 

in the observation section, resembling a marking process in the field. (b) In step 2, marked individuals 415 

move freely from the center of the released subsection (𝜇𝑖) according to a known dispersal kernel (in this 416 

case, a Laplace distribution with a mean dispersal distance 𝛿). Since the observation section is a finite 417 

domain, individuals can leave the observation section and may never be recaptured (open circle in the 418 

figure). Individuals were considered to remain in the observation section when true location after 419 

dispersal 𝑥𝑖,𝑡𝑟𝑢𝑒 was within a range of 0 – 𝐿 m. (c) In step 3, individuals that remained in the observation 420 

section were subject to an incomplete recapture survey. Remained individuals were recaptured with 421 

recapture probability 𝜙, and recapture location 𝑥𝑖 was recorded as the center of the recapture subsection 422 

(the vertical dotted line in the figure). A certain proportion of remained individuals (1 − 𝜙) may not be 423 

recaptured because they may have died or undetected (open circle in the figure).  424 
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 425 
Figure 4 The relationship between true (y-axis) and estimated (x-axis) average dispersal distances when 426 

the true recapture probability 𝜙𝑡𝑟𝑢𝑒 = 0.5. Red points are the median estimates from the DOCM, while 427 

grey points showing the median estimates from the simple dispersal model. Error bars are 95% credible 428 

intervals. Gray broken lines denote a 1:1 relationship. Different panels are estimates under different 429 

sampling designs, and the values of sampling design factors are shown on the top of each panel. Red and 430 

gray solid lines are smooths for the DOCM and the simple dispersal model, respectively. 431 
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 433 
Figure 5 The relationship between the estimated recapture probability 𝜙𝑒𝑠𝑡 and true average dispersal 434 

distance 𝛿𝑡𝑟𝑢𝑒 when the true recapture probability 𝜙𝑡𝑟𝑢𝑒 = 0.5. Red filled points are the median estimates 435 

from the DOCM while red open points denoting the proportion of individuals recaptured for each test 436 

dataset. Error bars are 95% credible intervals. Grey broken lines denote the true recapture probability 437 

𝜙𝑡𝑟𝑢𝑒. Different panels are estimates under different sampling designs, and the values of sampling design 438 

factors are shown on the top of each panel. Solid and broken red lines are smooths for the DOCM 439 

estimates and the proportion of individuals recaptured, respectively. 440 
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 454 
Figure S1 The relationship between true (𝛿𝑡𝑟𝑢𝑒; y-axis) and estimated (𝛿𝑒𝑠𝑡; x-axis) average dispersal 455 

distances when the true recapture probability 𝜙𝑡𝑟𝑢𝑒 = 0.25. Red points are the median estimates from the 456 

DOCM while grey points showing the median estimates from the simple dispersal model. Error bars are 457 

95% credible intervals. Gray broken lines denote a 1:1 relationship. Different panels are estimates under 458 

different sampling designs, and the values of sampling design factors are shown on the top of each panel. 459 

Red and gray solid lines are smooths for the DOCM and the simple dispersal model, respectively. 460 
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 463 
 464 

Figure S2 The relationship between true (y-axis) and estimated (x-axis) average dispersal distances when 465 

the true recapture probability 𝜙𝑡𝑟𝑢𝑒 = 0.75. See Figure S1 for captions. 466 
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 468 
Figure S3 The relationship between the estimated recapture probability 𝜙𝑒𝑠𝑡 and true average dispersal 469 

distance 𝛿𝑡𝑟𝑢𝑒 when the true recapture probability 𝜙𝑡𝑟𝑢𝑒 = 0.25. Red filled points are the median 470 

estimates from the DOCM while red open points denoting the proportion of individuals recaptured for 471 

each test dataset. Error bars are 95% credible intervals. Grey broken lines denote the true recapture 472 

probability 𝜙𝑡𝑟𝑢𝑒. Different panels are estimates under different sampling designs, and the values of 473 

sampling design factors are shown on the top of each panel. Solid and broken red lines are smooths for 474 

the DOCM estimates and the proportion of individuals recaptured, respectively. 475 
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 478 
Figure S4 The relationship between the estimated recapture probability 𝜙𝑒𝑠𝑡 and true average dispersal 479 

distance 𝛿𝑡𝑟𝑢𝑒 when the true recapture probability 𝜙𝑡𝑟𝑢𝑒 = 0.75. See Figure S3 for captions. 480 

0.0

0.2

0.4

0.6

0.8

1.0

N = 100, L = 500, l = 20, φ = 0.75

δtrue (m)

φ
e
s
t

N = 500, L = 500, l = 20, φ = 0.75 N = 1000, L = 500, l = 20, φ = 0.75

0.0

0.2

0.4

0.6

0.8

1.0

N = 100, L = 1000, l = 20, φ = 0.75 N = 500, L = 1000, l = 20, φ = 0.75 N = 1000, L = 1000, l = 20, φ = 0.75

0.0

0.2

0.4

0.6

0.8

1.0

N = 100, L = 500, l = 50, φ = 0.75 N = 500, L = 500, l = 50, φ = 0.75 N = 1000, L = 500, l = 50, φ = 0.75

50 100 150 200 250 300

0.0

0.2

0.4

0.6

0.8

1.0

N = 100, L = 1000, l = 50, φ = 0.75

50 100 150 200 250 300

N = 500, L = 1000, l = 50, φ = 0.75

50 100 150 200 250 300

N = 1000, L = 1000, l = 50, φ = 0.75

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 22, 2019. ; https://doi.org/10.1101/813790doi: bioRxiv preprint 

https://doi.org/10.1101/813790
http://creativecommons.org/licenses/by/4.0/

